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ON THE FRACTAL NATURE OF EMPIRICAL INCREMENTS

By PAuL DEHEUVELS ! AND DAvVID M. MAsSON2

Université Paris VI and University of Delaware

We prove that the set of points where exceptional oscillations of
empirical and related processes occur infinitely often is a random fractal,
and evaluate its Hausdorff dimension.

1. Introduction and motivation. Let o, (t) = n/2(F(t) —¢t) for 0 <
¢t < 1 denote the uniform empirical process, where F,(¢) = n '#{U, < t: 1 <
i < n} is the uniform empirical distribution function based on the first n
observations from a sequence U,, U,,... of independent uniform (0, 1) ran-
dom variables, and #E denotes the number of elements in the set E.

We will be mainly concerned with the study of local oscillations of «,.
These are conveniently described by introducing a sequence {k,, n > 1} of
positive constants, which we will assume to satisfy assumptions among
(H.1)—(H.4) listed below. Let log; denote the jth iterated logarithm.

H1) A,l0,nh,T®and 0<h, < 1.
(H.2) nh,/logn — .

(H.3) log(1/h,)/log, n — .

(H.4) nh,/logy,n — .

The following Theorems A and B give a partial description, suitable for our
needs, of the limiting behavior of the extremal A4 ,-increments of «,.

THEOREM A. Under (H.1) and (H.4), for any prescribed t, € [0,1), we
have

(1.1) limsup + (2h, log, n) "/?(a,(te + k,) — a,(t))) =1 a.s.

n—o
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THEOREM B. Under (H.1), (H.2) and (H.3), we have

(1.2) lim { sup =+ (2h, log(l/hn))_l/ (an(t+h,) — an(t))}

n-=>° \0<t<l-h,

=1 a.s.

Theorem A was proved for ¢, = 0 by Kiefer (1972), and an easy argument
shows that it holds equivalently for any prescribed ¢, € [0,1). Theorem B
coincides with (1.3) in Deheuvels and Mason (1992) and extends previous
results due to Stute (1982) and Mason, Shorack and Wellner (1983).

Keeping (1.1) and (1.2) in mind, introduce the sequence of random sets
defined for n > 1 and A > 0 by

EF(A) = {te[0,1-4,]:
(1.3) s
+ (2, log(1/h,)) *(an(t + hy) = a,(1)) = A},

Observe that (H.2) = (H.4). Therefore, Theorem A implies that, under
(H.1D-(H.2)—(H.3), for any A > 0 and prescribed ¢, € [0, 1),

(1.4) P(t, € EX(A)io0.) =0,

whereas Theorem B implies under the same assumptions that for any A €
(0, ]-)’

(1.5) P(EX(A) = Dio.) =0.

In other words, (1.4) and (1.5) show that, under (H.1), (H.2) and (H.3), with
probability 1 for any A € (0,1) and prescribed ¢, € [0, 1), the sets EX(A),
n =1,2,..., are ultimately nonvoid and not containing t,. The main purpose
of the present paper is to study this strange phenomenon by giving a precise
description of the limiting behavior of such random sets of exceptional points,
where large oscillations of «, occur infinitely often.

To motivate further our investigations, we shall survey the very much
related problem of local oscillations of the Wiener process. First, we recall
from the Komlés, Major and Tusnady (1975,1976) strong approximations
that we may define {U,, n > 1} on a probability space on which sits a
sequence {W,(¢), ¢t > 0}, n = 1,2,..., of standard Wiener processes such that

(1.6) sup |a,(t) — W,(¢) +tW,(1)| =O(n"*/2logn) as.asn — .
0<t<1

Making use of the easily proven fact (which follows from an application of the
Borel-Cantelli lemma) that [W,(1)] = O(y/log n) a.s. as n — o, it is readily
verified from (1.6) that both (1.1) and (1.2) hold under (H.1)-(H.2)-(H.3), with
the formal replacement of «, by W,. This gives heuristic support to the idea
that one should obtain useful guidance toward the solution of our problem by
considering the much simpler case where «, is replaced by a single Wiener
process W. This question has been investigated in detail by Orey and Taylor
(1974) [see also Kono (1977)], whose results we now briefly discuss. The
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following Theorem C [Lévy (1948); see, e.g., (1.1)-(1.2) in Orey and Taylor
(1974)] gives the analogues of Theorems A and B in this case.

THEOREM C. For any prescribed t, € [0, 1), we have
(1.7) limsup + (2 logy(1/h)) " *(W(ty + k) — W(ty)) =1 a.s.,
h10 .

whereas
(1.8) lim{ sup i(2hlog(1/h))_1/2(W(t+h)—W(t))}=1 as.
R0 \o<t<1-n

In spite of the fact that (1.7) does not fully coincide with (1.1) when, in the
latter statement, 2~ and W are formally replaced by 4, and W, (or «,),
respectively, the similarities of (1.7)—(1.8) and (1.1)-(1.2) are very striking. It
is therefore natural to introduce the Brownian motion analogue of E (A) by
setting, for A > 0,

B*(A) = {te [0,1):

(1.9)
limsup + (24 log(1/A)) " (W(t + k) — W(¢)) > A}.
hl0

Orey and Taylor (1974) showed that B*(A) is a random fractal. Their
main result, stated in Theorem D below, provides the Hausdorff dimension of
this set. Recall [see, e.g., Falconer (1985), Chapter 2 in Falconer (1990) and
Taylor (1986)] that the Hausdorff (or Hausdorff—Besicovitch) dimension dim B
of a subset B of [0, 1] may be defined by setting
(1.10) dim B = inf{c > 0: s°-mes B = 0},
where the s®-measure of B is, in turn, defined for each ¢ > 0 by

(1.11) s‘-mes B = lin& (in YL Bc UL, I < h))

Here, the I, constitute an h-cover of B (i.e., a collection of intervals with
lengths not exceeding %, whose union includes B), we set || for the Lebesgue
measure of I and the infimum in (1.11) is taken over all Ak-covers of B.

THEOREM D. For any A € [0, 1] we have almost surely
(1.12) dim B*(A) =1 — A%,

A statement like that of Theorem D is clearly meaningless with the
replacement of B *(A) by E f(A) since that latter sets depend upon n. We are
therefore led to define, for any A > 0, '

E*(A) = {t e [0,1):
“(1.13)
| limsup + (2h, log(1/k,)) /2(an(t + hy) — an(t)) = A}.

n—ow .
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One of the purposes of this paper is to establish the following theorem, in
the spirit of Theorem D, where we prove that E *(A) is a random fractal, and
evaluate its Hausdorff dimension.

THEOREM 1.1. Under (H.1), (H.2) and (H.3), for any A € [0, 1], we have
almost surely

(1.14) dim E*(A) = 1 — A2,

Moreover, for any A €[0,1), E*(A) is almost surely everywhere dense in
[0, 1].

Theorem 1.1 seems paradoxical in the sense that it implies, among all
points of [0, 1], the existence of some exceptional locations in the vicinity of
which occur infinitely often large fluctuations of «,. One might have expected
some kind of uniformity principle to hold among the points of [0, 1], which
would be in contradiction with the existence of such exceptional sites. This
however, is not the case, since Theorem 1.1 implies that, with probability 1
E*(A) #+ O for each A €[0,1). We note that a similar phenomenon was
discovered by Hawkes (1981) for uniform spacings.

Up to now, we have only considered the extremal fluctuations of «,
corresponding to large values of +(a,(t + A,) — ,(¢)). One could, however,
have obtained very similar results by replacing this expression by other types
of statistics based upon {a,(v): u € [¢,¢t + h,]}. For instance [see e.g., De-
heuvels and Mason (1992), Mason, Shorack and Wellner (1983) and Stute
(1982)], versions of Theorems A and B are known to be true when +(a,(¢ +
h,) — a,(t)) is replaced by supg <y, <», |, (t + u) — ,(¢t + v)|. In the follow-
ing Section 2, we will state an extended form of Theorem 1.1, where a general
functional version of large fluctuations of «, is used. That will enable us to
describe in the same way all exceptional oscillations of «, within a large
class. We will deduce all of our results from the very general setup of
Theorem 3.1 in Section 3, where the proofs are detailed.

2. Statement of main results for the uniform empirical process.

2.1. Preliminary facts and notation. In what follows, B(0, 1) will denote
the set of all bounded functions on [0, 1] and AC(0, 1) will denote the set of all
absolutely continuous functions f € B(0, 1) of the form f(s) = [§f(u) du, with

¢f(w)? du < =, for s € [0, 1]. U will denote the topology defined on B(0, 1) by
the sup-norm || fll = supy_, _117(s)l. A set E, endowed with a topology T' will
be denoted by (E, T').

The following notation will be convenient. Set, for any fe B(0,1) and
>0,

' N,(f) = {g €B(O,1): If - gll < &},

(2.1) _
N.(f) ={g€B(0,1):lf-gll < ¢}
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and for any (nonvoid) A € B(C,1) and £ > 0,
(2.2) Ar = U N(f).

feA

For any 0 > 0, set
(2.3) S, = {fe AC(0, 1): jlf’(u)2 du < 02}.
0

Note that S, = 0S,, where S; is the so-called Strassen set, introduced by
Strassen (1964) in the statement of his famous law of the iterated logarithm.
An application of the Arzela—Ascoli theorem shows that S, is a compact
subset of (B(0, 1), U) for each 6 > 0.

Let I denote the identity mapping of [0, 1] onto [0, 1]. We will make use of
the following Theorems E and F.

THEOREM E. Under (H.1) and (H.4), for any prescribed t, € [0, 1), the
sequence of functions {(2h, log, n) 1/ %(a,(t, + h,D — a,(ty), n > 1} is al-
most surely relatively compact in (B(0, 1), U) with limit set equal to S;.

THEOREM F. Let J, c[0,1—h,] n=1,2,..., be a sequence of intervals
such that (log(|J,|/h,))/log(l/h,) > 1 as n > ©, and let K, (J,) =
{2h,log(1/h,) " 2(a,(t + b, D) — a,(t)): t €dJ,}). Then, under (H.1), (H.2)
and (H.3), for any & > 0, there exists almost surely an n(e) < « such that, for
all n > n(e),

(2.4) S, cK:(J,) c S?°.

Theorem E was proved by Mason (1988) for ¢, = 0, and an easy argument
shows that it holds equivalently for any prescribed ¢, € [0,1) [see, e.g.,
Deheuvels and Mason (1994a)]. Theorem F is due to Deheuvels and Mason
(1992). The following corollary is a direct consequence of Theorems E and F
and is stated without proof [see, e.g., Deheuvels and Mason (1992)].

COROLLARY A. Let ®: B(0,1) - R be continuous with respect to U. Then:
Whenever (H.1) and (H.4) hold, we have for each prescribed t, € [0, 1),

lim sup ©((2h, log, n) " *(a,(to + h,I) — ,(%)))

n—©

= sup O(f) a.s.
fes$,

Whenever (H.1)-(H.3) hold and {J,, n > 1} is as in Theorem F, we have

(2.5)

lim { sup O((2h, log(1/k,)) " *(ay(t + h,T) ~ an(t)))}
T(26) T s
' = sup O(f) a.s.

fes,
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Observe that Corollary A implies Theorems A and B, by choosing O(f) =
+/(1) in (2.5) and (2.6) and J, = [0,1 — A,] in (2.6).

The following well-known facts about s°-measures and Hausdorff dimen-
sion, as defined in (1.10) and (1.11), will be useful. In the first place, for any
¢ > 0, the s°-measure is a metric outer measure [see, e.g., Falconer (1990),
page 25]. This means that s°(J) = 0, 0 < s°(A) < s°(B) < « for each pair of
Borel sets A ¢ B C R, and, for any sequence {A,, n > 1} of Borel subsets of
R,

(2.7 s”-mes( U A,,) < Y s®mes(A,),
n=1 n=1
with equality when the {A,, n > 1} are disjoint. Moreover [see, e.g., Falconer
(1990), page 291,
o, ife<dimA,
0, ifec>dimA.

These properties, when combined with the definition (1.10) of the Haus-
dorff dimension, imply that, for any sequence {A,, n > 1} of Borel subsets of
R,

(2.9) dim( U An) = sup{dim A,}.

nx1 nx1

(2.8) s®mes A = {

2.2. Main results for the uniform empirical process. For an arbitrary
f € B(0,1), we set

L(f) = {t € [0,1): liminfl(2A, log(1/A,)) "/

(2.10) X(an(t + h,) = a,(1)) = £l = 0}.

An application of Theorem F shows that, with probability 1, L(f) = & for
all f& S,, so that we need only consider L(f) for f € S,. Set, accordingly, for
an arbitrary A € [0, 1],

(2.11) L, = U{L(f):fe §1,[1f(u)2 duzAz}.
: (1]
The main result of this section is stated in the following theorem.

THEOREM 2.1. Under (H.1), (H.2) and (H.3), for any f€ S, such that
df(w)?du €(0,1) and A €[0,1), the sets L(f) and L, are almost surely
everywhere dense in [0, 1] and satisfy

(212)  dimL(f) =1- folf(u)z du and dimE, =1 - A%

. REMARK 2.1. Theorem 1.1 is a consequence of Theorem 2.1, as follows
from the arguments below. First, observe, by (1.10) and (1.11), that

(2.13) AcBc[0,1]] = 0<dmA<dmB<l.
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For any A > 0, the function defined by f,*(¢) = +At, for 0 < ¢ < 1, satis-
fies [}ft(¢)? dt = A%. Recalling (1.13) and (2.10), we see then that
(2.14) L(fy*) cE*(A).

Conversely, let ¢ € E*(A). By (1.13) and Theorem F, there exists a A > A
and a sequence 1 < n,; < n, < -+, along which +(2A, log(1/h,))"/%(a,(t +
h,) ~ a,(¢)) = A. Another application of Theorem F shows that there exists
an event E of probability 1, independent of ¢, A and of {rn;, j > 1}, such that
the following property holds. For each w € E, there exists an f € S, (depend-
ing upon ) and an unbounded subsequence {r/;, j > 1} of {n;, j > 1} (depend-
ing upon ), along which || + (2A, log(1/h,)) "/ ?(a, (¢t + h,D — a, (&) — fl
— 0. This, in turn, entails f(1) = + A, and hence, by the Schwarz inequality,

1/2
(2.15) A <A=If(D) =|f01f'(u) du folf(u)z du

It follows from (2.11) and (2.15) that ¢ € L(f) c L,. Since this last property
holds for each w € E and for all ¢ € E *(A), we have with probability 1,

(2.16) Ef(A) cL,.
Given the conclusion of Theorem 2.1, we obtain readily from (2.12), (2.13),
(2.14) and (2.16) that, for any A € [0,1), the set E*(A) is almost surely

everywhere dense in [0, 1] and satisfies dim E*(A) = 1 — A2, which estab-
lishes Theorem 1.1

<

REMARK 2.2. It will become obvious from the arguments used in the
sequel for the proof of Theorem 2.1 that the statement of this theorem
remains valid when, in the definition (2.10) of L(f), [0, 1) is replaced by any
fixed interval (¢, d) c [0, 1) with ¢ < d.

REMARK 2.3. It follows from Theorem F that, with probability 1, for any
t €[0,1] there exists an f€ S; such that ¢ € L(f). This, in turn, implies
that L, = [0,1] a.s.

3. A more general setup and proofs.

3.1. Preliminaries. We will frame our proofs in a more general setup
than that of the uniform empirical process. Denote by (B(0,1),U) the set
B(0, 1) of all bounded functions on [0, 1] endowed with the uniform topology.

Let {I',(¢), t € [0,1]} be a sequence of processes taking values in B(0, 1).
For any 0 < & < 1, define the corresponding increment process

(3.1) £(h,t1) = T,(t+hI) —T,(¢), fort E.[O,l - k],
0 otherwise,

’

" and oscillation modulus

(3.2) w,(h) = sup sup [T,(t+s)—T,(¢)l

0<s<h O0<st<l-s
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Throughout this section and unless otherwise specified, we define L(f) and
L, as in (2.10) and (2.11), respectively, with the formal replacement of a, by
T',. Namely, we set

L(f) = {t e [0,1): liminfli(2A, log(1/A,)) /2
(3.3) noe
X (Tt + h,T) = T,(8)) = £l = 0]
and
(3.4) L,=U {L(f): fes,, folf(u)2 du > AZ}.
For any y> 0, set v, =[(1 + y)*], k=0,1,..., with lu] denoting the

integer part of u and for any sequence {A,, n > 1} satisfying (H.1), (H.2) and
(H.3), set

(3.5) b, = (2h, log(1/k,))">.
Introduce the following assumptions. There exists a function (y) of ¥y > 0,

where (y) — 0 and y | 0, such that, for all sequences {h,, n > 1} satisfying
(H.1), (H.2) and (H.3) and y > 0, we have:

(D limsup; .. b, 'w,(yh,) = ¥(y) as.
(II) For any £ > 0 and A > 0, we have for each ¢ € [0, 1) and all j sufficiently
large,

P((n/vj)l/zb;%n(h,,,t;l) & S{ for some vi_1<n< VJ-)
(3.6) ! !

< C,P(b %, (h,, ;1) & S§/?),
for some universal constant C;.

Let {II(¢), ¢ > 0} denote a process with stationary and independent incre-
ments satisfying:

(i) E(II(t)) = 0 and Var(II(¢)) = ¢ for all ¢ > O,
and for which the moment generating function
(i) ¢(s) = E(exp(sII(1)))

is finite in a neighborhood of 0. Set for 0 <h <1, 0<s <1, ¢t >0 and
integers n > 1,

(3.7) L,(h,t;s) =n"Y2{II(n(t + sh)) — II(nt)}.

(III) Assume that, for some II(:) as above, for all n sufficiently large and any
m > 1, for any t,,...,t, €[0,%] (respectively, ¢,,...,¢, €[3,1]) and
Borel sets By,..., B,, € (B(0,1),U),

38) P(b,%,(h,,t;0) €B;,i=1,...,m)
o < CyP(b; Ly(hy,t;1) € B, i=1,...,m),

for some universal constant C,.
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We record for later use the following auxiliary results which follow from
Assumption (I), just as in Lemmas 3.5 and 3.6 of Deheuvels and Mason
(1992). There exist functions ¢;(y), i = 1,2, of y > 0, where each y;(y) = 0
as vy |0, such that, for all sequences {h,, n > 1} satisfying (H.1), (H.2) and
(H.3) and y > 0, we have

limSup{ max sup | n/V~ 1/2b,:1 _ bn-llnfn h,,,t;I ”}
(A.l) Jjo® Vi 1<n<vy; Ostsl( J) J ( '§ )

=¢y(y) as.

limsup{ max  sup b,;lug,,(h,,,t;l)—g,,(hn,t;l)u}
(A2) joo A%<y 0<t<1 !

= y(v) as.

We will establish the following result, which we will show contains Theo-
rem 2.1.

THEOREM 3.1. Under the assumptions (H.1)-(H.2)-(H.3) and (D-(ID-(IID),
for any f € S, such that [{f(u)®du € (0,1) and A € [0, 1], the sets L(f) and
L, are almost surely dense in [0, 1] and satisfy

(3.9) dimL(f) =1- [f(u)’du and dimL,=1- A%,
0

To see how Theorem 2.1 follows from Theorem 3.1, set I, = a,, for n > 1.
That Assumption (I) holds is readily inferred from Theorem 02 of Stute (1982)
or Theorem 1 of Mason, Shorack and Wellner (1983), which implies that for
all y > 0,

(3.10) lim b lw,(yh,) = Y% as.

The proof that Assumption (II) holds is easily achieved by a slight variation of

the proof of Lemma 3.4 of Deheuvels and Mason (1992). Finally, from Lemma

3.1 of Deheuvels and Mason (1992), we conclude that Assumption (III) is

fulfilled with {II(¢) + ¢, ¢ > 0} being a standard Poisson process with rate 1.
Assumptions (I), (I1) and (III) also hold when

n
(3.11) [,b=n"12 % M, forn>1,

m=1

where II;,II,,..., is an ii.d. sequence of processes with stationary and
independent increments satisfying (i) and (ii) above. In particular, they hold
when II,, I1,,..., are ii.d. standard Wiener processes. The details of showing
this are worked out in Deheuvels and Mason (1994b).

3.2. Upper bounds. In this subsection, we will establish the “upper
bound” half of Theorem 3.1. Namely, we will show that, under its assump-
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tions, we have forall0 < A < 1,
(3.12) dim L, <1 — A%

We will assume throughout that (H.1)-(H.2)-(H.3) hold together with
assumptions (I)-(I)-(II1I) and make use of the following notation. Recalling
(8.1) and (8.2), foreach n > 1, A > 0 and £ > 0, set

(8.13) Uye,A) = {t €[0,1]: b, %,(h,,t;I) & S5}
and write
(8.14) L(e,A) = {t€[0,1]: b, %,(h,,t;I) & S} i.0.}.

Let further, for each f € B(0, 1),
(815)  L(f) = {t & [0,1]: liminfllb;*,(ky, £51) ~ £l = o}
and, for each A > 0,
(3.16) L,,= U {L(f): fes,, [Olf'(u)"' du > AZ}.

Note for further use that, for any 0 < A; <A <A,, L,,,cL,cL, ,, so
that, by (2.13),

(3.17) dim L, ,<dimL, <dimL, ..

LEMMA 3.1. For every integer m, > 1, we have

(3.18) L,.C G L(1/m, A).

m=mg

ProoF. In view of (2.10) and (2.11), it suffices to show that, whenever
f €S, is such that [f(¢)®dt == A> > A2, we have L(f) C U5, L(1/m, A).
Since, in this case, f & S,, there is an &(f) > 0 such that f& S} for all
e € [0, e(f)]. Therefore, by (3.14) and (3.15), for any ¢ € [0, ()], L(f) €
L(e, A). Since, by (3.14), for every 0 < &, < &, <, L(g4, A) € L(&,, A), the
conclusion is straightforward. O

Recalling definition (1.10), we will show that, for every A € (0,1), n € (0,1
— A%?) and ¢ > 0,

(3.19) s M+1.mes(L(s,A)) =0 as.,
which by (2.7) and (3.18) implies
(3.20) s+ mes(L,,) =0 as.

. Since n € (0,1 — A?) can be made as small as desired in (3.20), this says
that
(3.21) dimL,,<1—- A% as.
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Now, since (3.21) shows that dim L, , <1 — Aj as. for each 0 < A; <A,
we will obtain via (3.17) and (3.12) holds for all 0 < A < 1.

Note that inequality (3.12) is trivial for A = 0 by (2.13). To show that it
also holds for A = 1, observe that L, c L,_, for each ¢ € (0,1), which, by
(2.13) and (8.12) holding for all 0 < A <1 implies that 0 < dim L, <
dim L,_, = 1 — (1 — ¢£)2 This, in turn, implies that dim L, = 0. Summing up
the cases A €(0,1),A =0 and A = 1, we see that (3.12) holds for all A €
[0,1].

In order to establish (3.19), we must first fix some notation and gather
some facts together.

Denote by |u] <u <|u]+ 1 the integer part of u, and by L{E} the
indicator function of the event E. For v > 0 and 6 > 0, set

(3.22) n=a+9, k=12,
and
tj(i,0) = ioh,,
(3.23) 0<i<m;=4#[i:i=0,[t;(i,0),4(i+1,0)] c[0,1]}

-1 .
= I(Oh,,j) I -1, Jj=1.
Furthermore, let for 0 < e <A/2,6>0,y>0and0<i<m;, j=>1,

1, (s,A) = ]l{(n/vj)l/zb,,;lfn(h,,j,tj(i, 6);1) & /2
(3.24)
for some v;_; <n < Vj}

and

(325) I, (&)= {[tj(i’o) = Oh,,t,(i, 6) + 6k, |, if1; ;(e,A) =1
,J @

2

otherwise.
Note for further use that the distribution of 1, (¢, A) does not depend upon
i€{0,...,m,}.

Recall (3.13), (3.24) and (3.25). From (A.1), (A.2) and Assumption (I), we

easily infer that, for all v > 0 and 6 > 0 small enough, there exists almost
surely an N = N(e, A; v, ) < ® such that for all j > N,

(3.26) U(e,A) c U ().
Notice that, by definition (1.11) and (3.26), for any ¢ > 0,

/ (3.2:7) s®mes(U,(&,A)) < g (20 h,,j)c]li,j(a,A).
Jj=0
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Let E; = E1, (&, A). We shall show that, for any A > 0,
s 1- A2
(3.28) jgl(mj +1)(20h,) VE; <,
which since, by (3.13) and (3.14),

(3.29) L(e,8) = N U Uy(e,A),
k=1n=k

the finiteness of the series in (3.28) will imply that, for any A € (0, 1],
(3.30) s' " .mes(L(s,A)) < as.,

as long as 6 > 0 and y > 0 are such that (3.26) holds. In view of (2.8), this, in

turn suffices for (3.19).
In order to prove (3.28), we shall require a number of lemmas.

LEMMA 3.2. Forevery € > 0, A > 0 and y > 0, there exists a j(e, A, y) < ©
such that, for all j > j(e,A,y) and 0 <i < m;,

(3.31) E;=P(L ;(¢,A) =1) < C,P(b; %, (h,,, t,(i, 0);1) & SF/4).

Proor. It follows directly from Assumption (II) [see, e.g., (3.6)], taken
with the formal replacement of ¢ by ¢/2. O

From Lemma 3.2 we see that the remainder of the proof of (3.28) boils
down to obtaining an appropriate upper bound for the right-hand side of
(8.31). The next lemmas are directed toward this aim.

Let {II(¢), ¢t = 0} be the stationary independent increment process of
Assumption (III). In view of (i) and (ii) of Assumption (I), we can make use of
the strong approximation results of Komlés, Major and Tusnady (1975, 1976)
to construct on the same probability space a version of the process {II(2),
t > 0} and a standard Wiener process {W(¢), ¢ > 0} such that, for universal
constants C; > 0, C, > 0 and C; > 0,

(3.32) P( sup |l(x) ~ W(x)| = CylogT +2) < C,exp(~C;2),
O<x<T
forallT>1and —© <z < o,
The following large-deviation result will also be useful. Let {W(¢), ¢ > 0} be
a standard Wiener process, and, for any A > 0, set W,,(¢) = 2712~ 'W(\s)
for 0 < s < 1. For each f < B(0, 1), set
1. (2 . . o . :
(333) J(f) = [0 f(u)? du, if fe AC(0,1) with Lebesgue derivative f,
o, otherwise,

and fer any B c B(0, 1), define
(3.34) J(B) = fingJ(f) ifB+J and J(J) = .
E .
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LEMMA 3.3. The function J is a lower semicontinuous mapping of
(B(0,1),U) onto [0,x]. Moreover, for each closed subset F of (B(0, 1), U), we

have
(8.35) limsupA~'log P(W,,, € F) < —J(F),

Ao ®

and for each open subset G of (B(0,1),U), we have
(3.36) li;ninf/\‘1 log P(W,,, € G) = —J(G).

ProOOF. This result is due to Schilder (1966). We refer to Deuschel and
Stroock [(1989), page 12] and to Varadhan [(1966), pages 262-263] for details
concerning this fact. O

LEMMA 3.4. For any n > 0 and A € (0, 1], there exists a « > 0 such that
for all large n,

(8.37)  P(b;'L,(h,, t;I) € S]) < 2hY** for 0 <t<1-—h,.

PRrOOF. First, observe that the complement F = B(0,1) — S7/2 of S}/% in
B(0,1) is closed with respect to U and such that p:= J(F) > A% Next,
making use of Assumption (III), (3.32) and the triangle inequality, we obtain
for nh, > 1and 0 <¢ < 1 — h, the chain of inequalities [see (3.5)—(3.7)]

P(b;'L,(h,,t;I) & S7)
=P(n"%p,'I(nh,I) & S})

-1/2
<P (2nhn log(-h—)) W(nh,I) & S}{/Z)

n

sup |M(x) — W(x)l > gnl/zbn)

O0<x<nh,

(3.38) +P

< P(Waoga/n,n € F)

n 1 1/2
—-C; 3 (2nhn log(z;-)) — C5log(nh,)

= n,l(n) + Pn,Z(n)'
Let « be an arbitrary constant such that « € (0, p — A2). By (3.35), we
have for all large n, .
(3.39) P, () < exp(— (A% + k)log(1/h,)) = hi**x,

* where we have used from (H.1) that 4, — 0 [and hence, that log(1/A,) — =]
and nh, — «. Further, it follows from (H.1) that log(nk,) = o((nh, log(1/
h,)Y?), and from (H.2) that log(1/A,) = o((nh, log(1/h,)*/?) as n > —c.

+ C, exp
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Thus, for any 7 > A2 + k, we have for all large n,
(3.40) P, 5(n) < exp(—7exp(1/h,)) = kT, < A2+,
The conclusion (3.37) follows directly from (3.38), (3.39) and (3.40). O

We are now ready to prove (3.28). Recalling (3.31), an application .of
Assumption (ITI) and (3.8) taken with n = »; and B = S;/* shows that
E; < C,CyP(b, 'L, (h,,t,()D & S§/*) for all J sufficiently large By (3.37),
taken with n'= vJ and n = ¢/4, this yields in turn the inequality E <
2C:lCZhA * for some k > 0. Recalling from (3.23) that (m; + 1) < (6h,,
for all large J, we thus obtain that, for all y > 0 and & large
(3.41) Y (m; + 1)(26h,)" EJ. <22°4C,C 07" z‘, Ay .

J=k j=k

Making use of (H.3), we see that the inequality %, < (log n)~2/% holds
ultimately as n — . Thus, k) < (log v,)"? = O(j?) as j — o, which implies
that the right-hand side of (8. 41) is ﬁmte, and establishes (3. 28)

REMARK 3.1. We have just proved the following statement, which is
slightly stronger than the inequality dim L, < 1 — A%. Namely, we have, for
each A €(0,1],

(3.42) lim dim L(¢,A) <1 - A%,
el

3.3. Lower bounds. We inherit the notation and assumptions of Sections
3.1 and 3.2, and turn to showing that, for any function f € S, with

(3.43) 0 <X = [f(u)y*du<1,
0

we have

(3.44) dim L(f) = 1 — A2,

First, we will discuss some -consequences of this property. Let A € (0, 1).
By choosing A = A € (0,1) and taking f(¢) = At for ¢ € [0, 1], the obvious
inclusion L(f) ¢ L, implies by (2.13) and (8.44) that dim L, > 1 — A% In
view of (3.12), this shows that

(3.45) dim L, =1 - A? foreach A € (0,1).
We next observe that (2.13) and (3.12) jointly imply that (3.45) holds for
A = 1. For the case A = 0, we combine (2.9) with (3.45) te obtain that

d1m L,= dlm( U Ll/m) = sup dimL,,,, = sup (1 -m~2) = 1.

m>1 m>1

Therefore, to prove that (3.45) holds for each A € [0, 1], it suffices to show
that (3.44) holds for all A € (0, 1).
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Given that (3.45) holds, and since, by (2.11), L(f) c L, whenever A% =
J&fw) du € [0, 1], we see from (2.13) that, whenever 0 < A* < 1,

(3.46) 0<dimL(f) <dimL, = 1 — A%,
By combining (3.44) (for 0 < A2 < 1) and (3.46) (for 0 < A® < 1), we readily
obtain that, for 0 < A2 < 1, we have

(3.47) dimL(f) =1- 2 =1- ['f(w)’ du,
0

which completes the proof of the “lower bound” half of Theorem 3.1, given
that (3.44) holds.
The following lemma will turn out to be an instrumental tool in proving

(3.44).

LEMMA 3.5. Let K [0, 1] be such that K Ns,_.E,, where E; 2 2
E,> - for m=12,..., and E, = U}nI, ,, with {I,,, 1<k<M}
bezng, for each m > 1, a collectwn of dzspmt ‘closed subintervals of [0,3]
such that max, _, .y |, ;| > 0 and M,, - © as m — . Then, if there exist
two constants A > 0 and 'd > 0 such that for every interval I c [0, 2] with
|I| < A there is a constant m(I) such that for all m > m(I),

(3.48) M, (I)=#{I, ,cl:1<k<M,} <dIM,,
we have s®-mes(K) > 0.

ProoF. This is a version of Lemma 2.2 of Orey and Taylor (1974). The
corresponding proof being 51mple we give details for the sake of complete-
ness. Consider an h-cover U I, D K of K = N, _(U ¥ 1, .}, the I; being
open intervals with |I;| <h for i =1,...,N. By (3 48), we have for each I
and m > m,=max,_;_ym(l), #{I,,cl: 1<k<M,} <dl[I'M,, so
that XV #{I,, , CI;: 1 <k < M,} < d¥L},|[’M,,. Since there exists an m,
such that Up~1I, , € UN I, for all m > m,, the I, , which are not in-
cluded in any I, = (c;,d;) for i = 1,..., N must contain at least one point
among cy,...,¢y,dy,...,dy. The I, ,, k=1,..., M, being disjoint, this
entails that LY #{I,,cI: 1<k <M,}>M, — 2N. Therefore, for all
m > max{m,, m} such that M,, > 4N, we have ZN JLIS > d™ Y1 — 2NM;,Y)
>id1>0. 0O

We will apply Lemma 3.5 with [ chosen as a suitable subset of L(f) and
¢ =1— A% — 1, for a small n > 0. This will enable us to show that

(3.49) s ¥ ~1.mes(L(f)) = s*~**~"-mes(IK) > 0.

By (2.8) and making use of the fact that > 0 in (3.49) may be chosen
arbitrarily small, this will suffice for (3.44). The remainder of this section is
devoted to the construction of K and was inspired by the arguments in

. Section 4 of Orey and Taylor (1974).
Throughout the sequel, we will assume that

€ (0,max{31*,1 — A?}) and y > 0 are fixed.
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We require some additional notation. For any VC R and & > 0, let
(3.50) N(e, V)= U (x—e,x+ ¢)

xeV

be an open &-neighborhood of V' in R. For fixed 6 > 0 and j > 1, we let »; be
as in (3.22) and ¢,(i) =¢,(i,1), for 1 <i <2m;, be an in (3.23). For any
f € B(0,1), a>0andJ> 1 we set

(3.51) U (&) = {t € [0,3]: 116, (h,, ;1) = fll < s}

and

(3852) W, (&) = {t;(i): 1 <i <mj,11b%,(h, , £;(i);T) = fll < g}.
Let ¢ be as in Assumption (I).

LEMMA 3.6. For any £<(0,1) and 6= 6(&) < 1 satisfying ¢(0) < :e,
there exists almost surely a j(e, 0) such that, for all j > j,(&, 0),

(3.53) N(oh, , W, ;(£)) S Uj ((28).

PROOF. Let ¢ (z) €W, (&) with 1 <i < m; and let ¢ be such that [t —
¢ (i)l < 6h,. By (3 23), the fact that 6 < 1 obv1ously implies that ¢ € [0, 1].
Recalhng the notation (3.52), the triangle inequality entails

18,7, (h,,, 1) = £l < 61016, (R, , 651) = £ (b, , £,(0); D)
(3.54) + 1167, (B, 2;(i);I) — £
< 2b,,;1a),,j(0h,,j) + &.

By combining (3.54) and Assumption (I), we obtain that the inequality
(8.55) 16,7, (B, t1) — fll < 49(0) + &
holds almost surely for all j sufficiently large. Our choice of 6 in this last
inequality readily implies (3.53). O

For each ¢ > 0 we set from now on 6 = 6(¢) as in Lemma 3.6 j(e&) =
 Jo(e, 6(¢)) and
(3.56) ti) =t(i,1) = #ih, forj>1landl<i<m;:=|h"']-1

Further for j > 1 let
(857) N, () = #W, (&) = #{i: 1 <i <m, 6% (h,,,();T) — fll < &},
and for any set I c [0, 1],

N; (&3 1) = #{W, ()N I}

(3.58) = #{z 1<i<mt(i) €1,

16, %, (1, £,(0); T) = fll < &}
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By the Assumption (III) and (3.8), we see that, for j sufficiently large and
all i1 T2
(3.59)(i) P(N; ((e;1) <r; ) <CyP(N/ ((&;1) <r;,),
(3.59)(ii) P( j’f(a;I) > rj,l) <C,P (Nj”f(s;I) > rj’l),
where
(3.60) N ((,1) = ) X,

irl<i<m; t;(i)el
and, for 0, 1,...,m;,
(3.61) X, = 1{lIb; 'L, (R, t;(i);T) - 1l < o).
Observe that X, X,,... are independent and identically distributed Ber-
noulli random variables with probability of success
(3.62) pi(e) = P(X, = 1) = P(b;'L,(h,,0;I) € N,(f)),

with N,(f) being as in (2.1). The following lemma evaluates p;(¢), when f
satisfies (3.43).

LEMMA 3.7. For any 6 € (0, \%), there exist 0 < 8" <8 <8, an & =
£4(8) €(0,3) and a ji(&, 8) = 1 such that for each & € (0, ] and j > ji(¢, 8),
we have

(3.63) hY <Y <pi(e) <hl ¥ <h)?
Proor. Let II(:) be as in Assumption (III) and W(:) be as in (3.32).
Observe that p;(¢) = P,, where
(3.64) P, = P((2hn,, log(1/h,))”*1(nh,X) € N,(f)).
Next, we make use of the obvious inequalities
P, > P((2nh, log(1/h,)) " *W(nh,T) € N, ;5(f))
(3.65)
-p( sup () ~ W(x)| = gnt/%b ) — P~ P,
O<x<nh,

By Lemma 3.3 applied with G = N, ,,(f), which is open with respect to U,
we see that, for any specified p € (J(N, 5,(f)), 1), we have for all large n,

(3.66) P = P(W(loga/h,,)) € G) = exp(—plog(1/h,)) = hf.

On the other hand, a comparison of (3.38) with (3.65) shows that P
P, ,(£). By choosing 7 = ¢ and 7> 1 > p in (3.40), it follows that for all large
n, .

(3.67) P, , < ihe.
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Since &, — 0, for any fixed p’ € (p, 1), we have ultimately +4? > h”'. This,
in combination with (3.65), (3.66), (3.67) and the fact that p € (J(N, ,5(f)), D
is arbitrary, suffices to show that the inequality

(3.68) P >hf
holds ultimately in n for each p’ € (J(N, 5(f)), D.

Observe (see, e.g.,, Lemma 3.3) that J, as defined in (3.33), is lower
semicontinuous with respect to U, so that liminf, |, J(N, ,(f)) = J(f) = A%,

Since obviously J(N, ,,(f)) <J(f), it follows that lim, , J(N, (f)) = AZ,
Thus, for any fixed 8 > 0, there exists & > 0 so small that, for all ¢ € (0, £'],

(3.69) A —8<J(N,,(f)) <22

By (3.68) and (3.69) we obtain the first inequality in (3.63) by first choosing
an ¢ € (0, £'] and then by selecting a 8’ € (0, A> — J(N, 5(f)). It follows
from (3.69) that 0 < &' < 6.

For the second inequality in (3.63), we observe that p(¢) < P}, where

(3.70) P! = P((2nh, log(1/h,)) " /*Ii(nk,I) € N,(f))

and N,(f) 2 N,(f) is as in (2.1). By a similar argument as that used for
(3.65), we obtain that

P! < P((2nh, log(1/h,)) " *W(hn,X) € N, 5(f))

(3.711) £
+P( sup [MI(x) — W(x)l = —2—n1/2bn) =P +P,,.
O<x<nh,
We now apply Lemma 3.3 with F = N, ,2(f), which is closed with respect
to U, to obtain that, for any specified p € (0, J(N, ,5(f))), we have for all large
n,

(3.72) 1= P(W(log(l/h,,)) € F) < exp(—plog(1/h,)) = h.

By (3.67), (3.71) and (3.72), we see that for all n sufficiently large, P, < 3hf,
which is ultimately less than A/ if p” € (0, p). Since p € (0, J(N, ,,(f)) is
arbitrary, the inequality

(3.73) P’ <h?
holds ultimately in n for each p" € (0, J(N, ,2(f)). Since N, 2(f) C N, ,9(f)

C N,(f), we have J(N, ,(f)) < A% and lim, | , J(N, /5(f)) = A*. Thus, for any
fixed 8§ > 0, there exists an &" € (0, £'] so small that, for all £ € (0, &"],

(3.74) 2 =8 <J(N,,5(f)) < A2

By (3.73) and (3.74) we obtain the second inequality in (8.63) by first
choosing an £ € (0, &”] and the by selecting a 8" € (A* — J(N, ,(f), 8)).
Since the choice of & € (0, £'] which was required for the first inequality in
(3.63) was arbitrary, and &" < &', we see that we obtain both halves of (3.63)
by setting £,(8) = &”. O
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Let
logu —u+1, foru>0
h = u b ’
() { 1, for u = 0.

LEMMA 3.8. Let Sy follow a binomial distribution with parameters N and
p- Then, for all r €[1,1/p],

(3.75) P(Sy = Nrp) < exp(—Nph(r)),
and for all r € {0, 1],
(3.76) P(Sy < Nrp) < exp(—Nph(r)),

Proor. The inequalities are trivial when either p = 0 or p = 1. When
0 <p <1 the Markov inequality implies that for 1 <r < 1/p, P(Sy > Nrp)
< exp(—~NH(r, p)), and for 0 <r <1, P(Sy < Nrp) < exp(—NH(r, p)),
where in both cases

(rp — 1)10g( T

—log(1 - p), forr =0,
—log p, forr=1/p.

:;) +rplogr, for0<r<1/p,
H(r,p) =

Making use of the inequality log s <s — 1 for s > 0, we obtain that, for
0<r<l/pand0<p <1,

— I; - 1) + rp log r = ph(r),

15’(",10)2(00—1)(1

and likewise, H(0, p) = —log(1 — p) > p = ph(0) and H(1/p, p) = —log p >
—log p — 1 + p = ph(1/p), from which (3.75) and (3.76) are immediate. OJ

Let my(I) = #{i: 0 <i<m; [t;@),¢;(i+ D] cI). Recalhng (3.23) and
(3.56), we see that m;([0,1]) = m; and ‘Whenever E c [0, 1] is an union of
disjoint intervals of lengths greater than L > 34, vy

|E| ( 2hy)lE| IEI
<|1

3hyj I h—yj < mJ(E)

(3.77)

"j

LEMMA 3.9. Let & € (0, £(3A2)), where &,(-) is as in Lemma 3.7, and let
8€ (0,1 — A2) be fixed. For any o € (0,1), there exists almost surely a
Jo(e, 0, 8) = 1 such that, for all j > j,(e, o, 8), we have

(3.78) IN; ;(&; E) — m;(E)p;(&)l < om;(E)p;(¢),

for all E c[0,1] which are unions of disjoint intervals with lengths L >
hl A2 6

PrROOF. Since N, (¢;-) and m () are additive set functlons, it suffices to

prove (3.78) when E I is an interval with |I| > h1 M-8 Fix 0 < & < & and
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0 < ¢’ < 0. We next show that we need only prove that the conclusion of the
lemma holds when E=J is an 1nterval of the form [¢,(i), ¢;(i + x(;))) for
some 0 <i < 2mj, where k(j) = [h A*=8'| (note here that |J| = K(j)h S
[h1 A"’ -h, h1 M-8']). To see thls assume accordingly that (3. 78) is
satisfied Wlth the formal replacements of E and o by J and o’ respectlvely,
and for each interval J as above. Observe that h1 M-t (h,1 25y h,
o(h}" %), K =K(I, ) = II/h "] > |h2~ 3y = K(j) - © as j-
Choose j' so large that, for all j > 7, K(]) > 3, 3h < h1 ¥-5" and

2h)\2+8’
l—a's(l—a"){ i } and

1+4/(K(j) —2)

1+4/(K(j) — 2
s | AT

For j > j' and for each interval I C [0, 3], with |I| > h1 M-8 there exists
(K + 2) disjoint intervals J,..., Jx, of the form [z, (z) t;( + k(7)) such
that UX-2J, cIc UK+2J, and BARIPALS S o for kh=1,..., K+ 2
(here we use the notation a; ~ b, when a;/b; > 1as j—> ) Moreover we
have the inequalities (K — 2)|J1| <|I| < (K + 2)|J,|. Also, our assumptions
imply that we may apply the right side of (3.77) to either E =1 or E = J,,.
Therefore, it follows from (3.79) that almost surely for all j large enough,

K+2 K+2
Nj,f(3§I) {

(3.79)

}S(l+a‘).

IA

> N, ;(e;d,) <(1+0) > mj(Jk)}pj(g)
k=1 k=1

IA

(1 + o) {h; (K + 2)|d,1}p,( &)

(3.80) <1+ a')(g—t%){h;jlm}pj(g)

1+4/(K-2)
1_2hA2+6 }mJ(I)pj(a)

<(1+ o"){

<(1+a)ym;(I)p;(e).
A similar argument shows likewise that almost surely for all j large
enough,

\

K

Z Nj,f(é‘; J3)
k=1
(1= o) {h; (1 = 2h+%)(K - 2)I,1}y(2)

Nj,f(8§I)

v

(3.81) L e
' 2(1—0'){1,+4/(£_2)}mj(l)pj(g)
| > (1-o)m(I)p,(#).
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Thus, by combining (3.80) and (3.81), we obtain that (3.78) is satisfied for
E=1

In the remainder of our proof, we set of convenience o = ¢’, § = §' and
restrict our attentlon to the intervals I of the form I = [¢,(i), ¢;(i + «(;j))) for
some 0 <i < 3m. e Notlng that the total number of such mtervals is bound-
ed above by hv , we let @ =P(N, (&) >r;,), where r;; =(1 +
a)m(Dp(e). By (3.59), the mequahty Q < CZQ» = C,P(N] ; (3 1) > ri1)
holds ultimately as j — . Recalling the notations (3 60), (3. 61) and (3.62), We
apply (3.75) to Sy = N/ (¢; ), N=m4(I), r =r; ; and p = p;(¢), to obtain
in turn that

(3.82) Q; < Cyexp(—m;(I)p;(£)h(1 + o)).
Observe from (3.23) that m (I) > h,'|I| - 2 > 3h, ¥=8 for all large j. On
the other hand, by (3.63), the assumption that & € (0 £0o(3A%)) entails that

pi(e) = h" for all large j. By combining these two inequalities with (3.82), we
obtaJn that for all large j,

(3.83) h;'Q; < Cyexp(—h(1 + o)k /%)

Making use of (H.3), we see that the inequality A,' > (log n)*/° holds
ultimately as n — . This, in turn, implies that n'a/ 2> 1(jlog(1 + y))? for
all large j, whence XA, 1Q < o, The Borel- Cantelh lemma completes the

proof of the “upper half” of (3 78). The proof of the “lower half” is very similar
and therefore is omitted. O

We shall now show that for any f € S, satisfying (3.43) with probability 1
there exists a sequence of sets E; D E, 2 ... fulfilling the assumptions of
Lemma 3.5 and such that K = N5,_,E,, € L(f). The following arguments are
directed toward the construction of such a sequence of sets. In a first step, we
establish the existence of this sequence via an induction argument. In a
second step, we will show that {E,, m > 1} satisfies (3.48). In a third
concluding step, we will apply Lemma 3.5 to prove that (3.44) holds.

STEP 1. Existence of E,,. Choose an f € S, satisfying (3.43). We first fix
an arbitrary .
n € (0, min(3A%, 3(1 — A?))
and choose two auxiliary sequences of nonnegative constants {o;,,, m > 1} and
{5,,, m > 0} such that

1
(3.84)(i) 0<og, < 3 form > 1,
® (1+a,
(3.84)(ii) ]—[ ) <2,
m=1\1— 0,
8,=0,8,>0 form=>1 and

- 1 1.1
(3.84)(iii) Y s, <37 min(gx\z,g(l—)\2)).

m=1
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Note for further use that the assumption that 0 < 1 < 1 [see, e.g., (3.43)]
and (3.84)(iii) entail that

m
A, = 8, <min{iA%, (1 - A?)} and
(385) m kgl k {6 6( )}

0<6,<A,<1 formz=1.

Let £,(8) be defined as in Lemma 3.7 for § € (0, A?), 6(¢) be as in Lemma
3.6 for ¢ € (0,1) and observe that we may assume &,(-) to be nondecreasing.
We select two decreasing sequences {¢,,, m > 1} and {6,,, m > 1} of positive
constants such that the following conditions hold for m > 1:

(3.86)(i) £, 10 asm1to,
1
(3.86)(ii) 0<eg, < min{—z-, 30(5m)}»
1

(3.86)(iii) 0, < min{f)(am), —lge,ﬁ},
(3.86)(iv) 201"~ < min{a,,, 0, ..},

0 2(1-12)/3 1

m
(3.86)(v) (1 _— ) < E‘Tm+1’

(3.86)(vi)

1 \'** 1+ (5/6)0,,,
< .
1-0, =1+ (1/2)0,.,

Next, for each m > 1, we choose j,(e,, 0,,, 8,) = Ji(&p, 8,) = Jo(&,,) =
Jo(&y, 6(&,)) in Lemmas 3.6, 3.7 and 3.9, and observe that all the terms of the
random sequence {j,(¢,, 0,,, 8,,), m > 1} are finite with probability 1. Our
construction of the sets {E,,, m > 1} relies on an induction argument which,
given {M,,_1,jn_1, E,_1, E¥X_.}, evaluates {M,,, j,., E,,, EX}. Here, M,, and
Jm denote positive integers, whereas E,, and E} are nonvoid subsets of [0, 1].
It is helpful to first describe the choice of j,, given {M,,_,, j,,_,} for m > 1.
Set )

Jo=1, Ly=7% and M,=1,
andfor m > 1, L,=6,h and L' ,=L,_ ,—-L,.

m m vjm

(3.87)

We choose j,, to be any positive integer such that the following set of
conditions hold:

(3-88)(i) Jm > max{jn 1, J2(m, Oy 8m)}s
(3.88)(ii) 8L, <8k, <hl N <A Nm<I¥ <L,

(3.88)(iii)

m—1
<1+ —o,,
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2h,
(3.88)(iv) l1-0,<1- —% <1,
Lm—l
2h%n
(3.88)(v) ;L)‘Z"'—;m—l <6, formz=2,
Vim-1
(3.88)(vi) 6hf;" <6, form=>1,
2
(3.88)(vii) 6hf}f" <6,M, Lt < gh,,_j's"‘.

The fact that 4, — 0 as j —» « readily implies that (3.88) holds by select-
ing j, sufficiently large, so the existence of Jm (and hence, of L,, and L* _,)
is guaranteed with probability 1. Moreover, (3.88)(ii) implies that L* _, >
3L, > 0. To evaluate M,,, E,, and E}, given j, and {M,,_1,j,_1, E,_1,
E} _.}, we set

irl<i<m;_
(3.89) t;,(DEW,; (e )NEx_;
for m > 1, with E, = [0, L,] = [0, %],
E; - U IORAGES:A
irl<i<m;
(3.90) t;, (DEW, (e )NEL_;

for m > 1, with E¥ = [0, L¥],
and, in view of (3.52), (3.58), (3.89) and (3.90), let
M, =N; (&, E;_1)
(3.91) =#{i:l<i<m; ,t; (i) €W, (e,)NE%_,}
form>1,M,=1.

It is obvious from (3.89), (3.90), (3.91) and the definitions of M,, E, and E}
that, for each m > 0, E,, (resp. E}) is the union of M,, closed intervals of
length L,, (resp. L},), which will be denoted by I, , (resp. I} ,) for k =
1,..., M,,. Moreover, these intervals are disjoint, since, by (3.88)(ii), t; (@) +
L, <t;(i+ 1) and ¢ (i) + L}, <t; (i + 1). We have for m > 0,

M, M,
(3.92) E,=UI,, and E}= {JI},.
k=1 k=1

Also by construction note that for m > 1,
(3.93) E,cE, , and Ej CE;_,.

i Tp"prove that the induction assumption carries over from stage m — 1 to
stage m, we need only check that M, > 1, given that M,,_, > 1. This
property will be proved by first establishing the following lemma.
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LEMMA 3.10. We have

(3.94) ML > 3
and, whenever M,,_, > 1 for some m > 1,
(3.95) M, L, > k)" and M,L% <h) -2

ProOF. Statement (3.94) follows from (3.88)(ii) which implies that
MyLy=L5=Ly— Ly > Ly — 3L > (1 - 1)L, = L.

The first part of (3.95), is proved by induction on m > 1, assuming that
{M,, j,, E,, E;} have been defined for 2 =0,...,m — 1 and that M,,_, > 1
(recall that M, = 1). If such is the case, the notations (3.90) and (3.91), with
the formal change of m into m — 1, say that E} _, is the union of M,, _,
disjoint intervals of lengths equal to L*,_,. By (3.84)(iii) and (3.86)(1) (which
jointly imply that ¢, < £1(8,) < g,(3m) < £,(31%)), (8.85) (which implies
that 8, <1 — A?) and (3.88)(ii), we may apply Lemma 3.9 with &= ¢,,
6=6,, o=o0,, E=E'_, and L =L* _,, to obtain, via (3.78) and (3.91),

m

that
M

m

3.96 l1-0, < <1l+a,.
(8:96) (B 2) Py (o)
Recall by (3.88)(ii) that L7 _, > 3k, , and by (3.88)iv) that (1 — 2h,, /
L% ) > 1 - o,. This allows us to apply inequality (3.77) with E = E} _ |,
|E|=M,_,L*% _, and L =L* _,, to get

m; (Ey_)
. 1— -1 o _Im M7
(3.97) (1= on;! < 375

m-—1

Since (3.84)(iii), (3.85), (3.86)i) and (ii) and (3.88)(i) jointly imply that
(3.63) of Lemma 3.7 holds with 6 = §,,, ¢ = ¢,, and j =j,, this, in combina-
tion with (3.96) and (3.97), shows that

(1-0,)°h; " < (1= 0,)°h; by (e)

-1
<h,,

(3.98)

IA

m <1+ 0,)h; p; (&)

< (1+ 0,)h; 4 0m,
Now (3.88)(iii) and the definitions (3.87) of L,, and 'L*, imply that
L,/(1+o0,.,) = Oty /(1 + 0yiy) <L <L, = Onhs,
'ancll (3.84)(i) implies that ‘

3<l-o,, l+0,<%2 and 1+g0,,, <

(N[5
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These inequalities when combined with (3.98) imply that

1
E{omMm—lL’;z—l}hl);;

2 1+ A2 bt
3 * —14+A%\____Jm
< {(1 0,) My, 1Ly 1k, } 1+ 0,,,

<M,L* < {(1 + am)Mm_lL’;n_lh;jmz-sm}omh,j

(3.99)

3
< 510 M, L Y ) S

Making use of (3.88)(vii), we obtain readily from (3.99) the first part of (3.95).
Moreover, we also get from (3.88)(vii) and (3.99), for each m > 1, the upper
bound M, L* < h)‘ ~2% which is the second part of (3.95). This completes
the proof of the lemma D

Now, armed with Lemma 3.10, we can complete the induction argument.
For this, we note that (3.85) implies 1 — A% — §,, > 2(1 — A%) > 0, whereas
(3.86)()) and (ii) show that 6, < (1/16)¢2 < 1/64. Therefore, L} <L,, =
emh,,jm <1/ 64)h,,jm, so that, by (3.94) and (3.95), we have for m > 1,

(3.100) M, > 64k, 2173,

which converges to infinity as m — . Moreover, (3.100) and k2, < 1 show
that M,, > 64 for m > 1, which, in view of M, = 1, obviously 1mp11es that
M, =1 for all m > 1.

This finishes the proof of our induction argument, and establishes the
existence of {M,,, j,., E,,, Ex} for each m > 0. This completes Step 1.

STEP 2. Properties of E,,. We now turn to the more difficult proof that, for
appropriate choices of ¢, d and A, (3.48) holds for all intervals I c [0, 2] such
that |I| < A. This will be achieved by considering separately a series of
special cases depending upon the length and endpoints of I.

Recallmg (3.48), (3.58), (3.89) and (3.92), we see that, for any interval
I c[0,%] and for each m > 1,

(3.101) M, (I)=#{I,,cl:1<k<M,} <N, ((&,,1).

Case 1. We assume that m > 1 and that I [0, 3] is an interval such that
Icl,_,,, for some k, € {1,. 1}. We will consider the following three
p0331b111t1es denoted by 1a, lb and 1c

Possibility 1a. For m >1,let I c[O, ] be an interval such that I c I
" for 'some k, € {1,. n_1) and |I] > h1 ¥-6n [this is possible by 3. 88)(13
and (ii)]. By applylng Lemma 3.9 with ¢ 2 Epy 6=068,,0=0,, j=Jn, E=1
and L = |I|, and then the right side of (3.77) with E = I , we obtain via (3.101)
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that
M,(I) <N; ¢(&n,1)
(3.102) 1
< (1+ ) m; (1D p;,(6n) < (1+ )b M 1D, ().
Consider first the case where m > 2. Since I C I,,_, ; , we have

<L, _1,4,) =Ly = 1,  <h, for m > 2.

Thus, by (3.94), we have
M

2 2 F)
mo1ly_ 1 2 A} Fmr > [I|**°m-1 for m > 2.

This, in combination with the left side of (3.98) and (3.102), entails that, for
m>2,

Mm(I) Mm—lLﬁ;n—l
M, M,

XM, (I) X i

*
m—le—l

1
< 2; 1
(1 - Um) hvjmpjm(am)

-1
X(l + Um)hvjmlIlpjm(gm) X Mm—lL*

(3.103) 4o, . o
- 1+ O'm)2| X M, L,
1+a0, |I]
(1-0,)" R *on
1+ o, | 1+, [P,

< X
(1-0,)" " [I¥*1  (1-o0,)

For m = 1, (3.94) yields ML} > 1, so that in this case the first inequality
in (3.103) yields

M) __1+0,

< TR
M, (1-o0,)° M, L7 _,
(3.104)
1+, 1+0, . 1 s
<3 5111 <3 oAl {
(1 _‘a-m) (1 - m)
Possibility 1b. For m > 1, let Ic [0, ] be an interval with I C I, _1,, for
some ko€ (1,...,M,_;} and 36,k, <II|< h,l,J;)‘Z"s"'. In this case, there

exists an interval I' with I cI' c[0,}] and |I'| = AL~ **~%». Making use of
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the assumption that 2, < 26, !|I| and of (3.84)(ii), which implies that 0 < 1
—A2—-2§, <1, we obtaln that

3.105 R 20 < (26, 111)' N0 < 20, 1T,
Vim m m

For m > 2, we apply (3.103) with the formal change of I into I', which yields
M. (I) M,(I) 1+ o0, ||
< <

M, = M, T (1-g,)"hX
m l’Jm—l
8"!
= —1 * pl-A2-28, h"hn
(1-o )2 Vim B+
(3.106) -
o a,,,
< 1+o, IIII_’\Z_%"‘{ h, }
- _ 2 A2+ 6,
(1- ) B ons
1+o0,
< —"I M2 form > 2,
(1-0,)°

where we have made use of (3.105) and (3.88)(v) for the last two steps.
Recall from (3.85) that 0 < §,, < 1. It follows from the assumption h <
20, 11| that

hin < (2651111) < 26,111
For m = 1, this last inequality, in combination with (3.104) implies that
M. (I) M, (I) 1+ o0,
<3

< < ||
Mm M’n (1 - Um)z
1+,
S Aoy X3k
(3.107) .
< H—U|I|1 A-25, {69 lhs }
(1-o,)
1+ g,
< ﬁl[ll =26, for m = 1,

where we have made use of (3.88)(vi).
Possibility 1c. For m>11etIC [O 31 be an interval with I c I,,_, ,_ for
some k,€{1,..., M, _;} and II | < 16, h . In this case, we obtain that
M (I)—OsmceL = 6,h,
i By combining the 1nequa11t1es (3.103), (3.104) of Possibility 1a, (3.106),
(3.107) of Possibility 1b and M,,(I) = 0 in Possibility 1lc, we see that, when-
ever m > 1 and I C[0,1] is an interval such that I Sl 14, for some
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K,e{1,...,M,_,}, we have
M, (I) 1+o0,

(8.108) (i) T a )2|I|1_Az_zsm for m > 2;
m - Oy,
M, (1 1+ 0, 2
(3.108)(ii) 2\4( ) <3 a )2|I|1_)‘ “2% for m = 1.
m - O,

We now turn to the cases when I is not necessarily a subset of some
I,,_1,4, It will be convenient for m = 1,2,... to denote by H(m) the state-
ment that for each interval I C [0, 3

wam D (I,

m i=1\1—-0;

Note for further use that (3.108) implies (3.109), which therefore holds for
all m > 1 under the assumptions of Case 1, that is, if I [0, 2] is a subset of
some I,,_, , for some k, €{1,..., M,,_;}. In the particular case m = 1, we
have Mm 1=M,=1and I, ,, =1, = [0, 3], so that (3.109) then holds for
each interval I c [0,3] and H(1) is satisfied. Thus, to show that H(m) is
satisfied for each m > 1, it suffices to prove that H(m — 1) implies H(m) for
each m > 2.

Assume accordingly that H(m — 1) holds for some m > 2, that is, that, for

each interval I C [0, 1], we have

m-— o; 2 2
(3.110) Mni(D) _ 3{ Hl(l i ) }III1 N2,

Mm—l i= 1—0'

Toward the aim of showing that H(m) is satisfied, given that it is the case
for H(m — 1), it will be convenient to first establish the following lemma.

LEMMA 3.11. Let m > 2. Assume that I C [0, 1] is an interval with |I| + 0
and endpoints belonging to the set {¢; (i),1<i<m; }andthat Him —1)
holds. Then

M, (I) 1+ (1/2)0, 1+ o0 128,
M, =3 1+ o, {n(l—a)}m

m

©(8.111)

PrROOF. Recall from (3.48) that for m > 2, M, (I) = #{I,, , CI: 1<k <
M,} and M, _(I)=#{I,_,,<I: 1<k <M, ;}. Recalling the notation
(3.89) and (3.92), with the change of m to m — 1, if I has endpoints belonging
to{t; (i),1<i<m; } thenINE,_, isthe disjoint union of the M,, _,(I)
intervals I,,_, , suchthat I, _, , cland 1<k <M,,_,. It follows that

Mm(I) Z Mm(Im—l,k)
L My pickzm, . Mn
(3.112) In-1,8€!

<M, ,(I)X max (‘———Mm(;;_l’k)).

1<k<M,, _, m
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By (3.88)(ii), for any k € (1,..., M,,_}, |I,,_; 4| =L, _; > h} ¥ ~°n It fol-
lows that I,,_, , satisfies the assumptlons of Possibility 1a of Case 1. By
applymg the first inequality in (3.103) with the formal replacements of I and
|I| by I, ,, and L, _,, respectively, in combination with (3.88)(iii), we
therefore obtain the inequalities

Mm(Im—l,k) < 1+ Om Lm—l

Mm - (1_0' )2 Mm—lL* -1
(3.113) " "
1+ o, (1 L1 1 ) 1
< —7 X
(1 - O-m)2 2 m Mm—l

By combining (3.110), (3.112) and (3.113), we see that, under the assump-
tions of the lemma,

M (I) M, (I) 1+0,\> 1+ (1/2)a,
< X X
M M, , 1+,

S31+(1/2)am {I‘l(“a )Z}IIII w20,

1+ o, i 1-o

1-o0,

which is (3.111). O

Recalling the notations (3.89) and (8.92), we see that for m > 2, an
arbitrary interval I C [0, 3] must be of one of the following types:

Type (): I N Im—l,k = foreach k=1,...,M,,_,, in which case we will set
I'=

Type Gi): IN1,_,,, #* O for some &k, € {1,..., M,,_,}, in which case we will
let I " denote the smallest poss1ble closed interval containing all
I, ,,withkefl,...,M, ,}suchthat INI,_,,+O.

Observe that we have only the following two possibilities for type (ii):

Type (iia): I' = 1I,,_, ; , that i is, I' contains at most one interval I, _, , with
ke {1 Mm ns
Type (iib): I' contams at least two intervals I,,_, , with k € {1,...,M,,_,},
in which case I’ may be decomposed into the disjoint union of two

intervals I'=1, VI, where I, cI, ,, for some k, &

{1,. _1} and I, has endpoints belonglng to {t (i), 1<ic<
Jm 1}
Let I" = I N I' and note for further use that in all cases, we have
+(3.114) M, (I) = Mm(I”') <M(I') and [I"|<|[II.

We will show that H(m — 1) = H(m) for m > 2 by considering succes-
sively the cases where I belongs to either Type (i), Type (iia) or Type (iib).
Case 2. We assume that m > 2 and that I is of Type (i), that is, that
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INI, ,,=Oforeach k=1,...,M,,_,.In this casé, I' = &, whence (3.114)
yields
M, (I) M,(I)
<
M - M

m m

and H(m) holds for each m < 2.

Case 3. We assume that m > 2 and that I is of Type (iia), that is, that
I'=1I,_,,, forsomek,<{l,..., M, _,}. In this case, the interval I" =I N I’
cl,_,,, satisfies the assumptions of Case 1. It therefore follows readily
from (3.108Xi), when applied with the formal replacement of I by I”, and
(3.114), that

(3.115)

M, (I M (I 1+ 1+
m( ) — m( ) < Om 2|I”|1—A2—28m < Om 2|I|1—'A2—28m,
M, M’" (1 - Um) (1 - Um)

so that H(m) holds also in this case for each m > 2.

Case 4. We finally assume that m > 2, H(m — 1) holds and I is of Type
(iib). Let I' =1, UI, be as above and note for further use that these
assumptions imply that I” = I N I’ satisfies

(3.116)(i) L] —L,,_, <II"l < Il
(8.116) (i) 1" < | I'| = |I| + | L,
L =Ly 5= 1Ry, o and

3.116)(iii
( (i) ol =L,y 2 h'o',,,_l “Lpo=(1- em‘l)h"fm-l'

By first applying (3.108Xi) with the formal replacement of I by I, and then
(3.116)(i) and (iii), we obtain the inequalities
M, (I,) 1+o
<

m 1-1%2-25
S| L1 20

Mm B (1 - Um)
1+ o, at_25 IIll 1-2%2-25,
O o) (ot ] e
(1-o0,) ||
1+ 0, 1-22-25 1| R
< —2-|II m) ——————
(1 - O',n) |I2| - Lm—l
1+ o 0 _ 1-2%2-25,
(3.117) < It —"‘1——)
(1 - Um) 1- 0’”‘1
1+a, 7|12~ 28 O -1 )2(1_)‘2)/3
< — | ——
(1-a,)° 1= 0p
2
(1/2)0-"1 1 + o-m |I|1—Az—23m
l1+o0, \1-o0,
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< (1/6)0' {ﬁ ( 1+ "i)z}m1—).2-2Am

1+0, |ici\l1l—o0;

where we have used (3.86)(v), in combination with the observation that by
(3.84)(ii1),

0<2(1-A)<1-2A%-2A,<1-X-2§,<1.

Likewise, by applying (3.111) with the formal replacement of I by I, and
then (3.116)(1) and (iii), we obtain the inequalities

M, (I,) <31+(1/2)0'm{1_1(1+0') }II A2,

31+(1/2)am ﬁ 1+0;)\°
< ——
- 1+ 0, i1\ 1— o
1-22-24,,
x(%) A 7 (i
1+ (1/2)0, (™ (1+ 0\
<3— ="
= 1+ o, Ll:l 1—0'
(3.118) IL| 1-A%-24,,
2 — 22—
><(IIl—L ) L
2

1+ (1/2)0, (7 (1+0;)°
=3 1+ g, {iUl(l—a'i)}

1- a2
X 1 |I|1—1\2—2Am
1- om— 1

. ) Y
31+(5/6)0'm{1_1(1+ .

1+0'm ]._O'i

}lIll—/\Z—ZAm
where we have used (3.86)(vi).
By combining (3.116)ii) with (3.117) and (3.118), we readily obtain that
MD) _ M) M) M) M)
M M, - M M, M,

m m m

< 3{ 11 ( t - )Z}mI w28

so that H(m) holds, as sought.

(3.119)




386 P. DEHEUVELS AND D. M. MASON

By the above remark that H(1) holds, it follows from (3.108) in Case 1
(3.115) in Case 2, (3.117) in Case 3 and (3.119) in Case 4 that H(m) [see, e.g.,
(3.109)] holds for each m > 1. By (3.84)(ii) and (3.85), this implies in turn
that, for every interval I c [0, 3] and m > 1, we have

(3.120) M, (I) <61 M,
which completes Step 2.

Step 3. The Hausdorff dimension of L(f). By (3.92), (3.93) and (3.120), we
see that the sequence of random sets {E,,, m > 1} satisfies with probability 1
the assumptions of Lemma 3.5. By applying this lemma with ¢ = 1 — AZ — 9,
d =6, A=1 and m(I) = 1, we obtain that s'~**~"-mes(K) > 0 a.s., where
K= N%_,E,.

In view of Lemma 3.6 and of the inequality L,, = 6,4, < 0(e,)h, , the
fact [following from (3.88)D)] that Jj,, > jy(&,, Gpns 8,) = Jo(&, 0(5,,)), implies
via (3.53) that for each m > 1, N(L,,, W; ((¢,)) C U;, ;(2¢,,). Since, by defi-
nitions (3.50) and (3.89), E, c N(L,,, W, , /(¢,)), it follows that, for each
m=>1, E, cU 2¢,). In view of (3.51), this means that, for each m > 1
and t € E,, 115, '¢, (h, ,t;D - fll < 2¢,. Since K = N}, _,E,, this last in-
equality also holds for each ¢ € I and all m > 1. The fact [see, e.g., (8.86)()]
that &, — 0 implies in turn that ¢ € L(f), and hence, that I € L(f). Thus
(3.49) holds with probability 1. In view of the arguments following (3.49), this
suffices for (3.44) and completes Step 3.

REMARK 3.2. Note that to prove (3.44), we have only made use of the
Assumptions (I) and (ITI). In particular, if we assume that I, = W is a single
Wiener process, the Assumption (I) holds by Lévy (1948), whereas Assump-
tion (III) is trivial. In this case, our arguments show readily that, if {W(z),
t > 0} is a Wiener process, for any f € S; with A2 = [} f(w)?du € (0,1), we
have
(3.121) dim B(f) =1 - A2,
where

B(f) = {t e [0,1): lim infll(2% log(1/A)) ~'/*
(3.122) "
X(W(t +hI) — W()) - fll = 0}-

In Deheuvels and Mason (1994b) it is shown that in fact we have dim B(f) =
1A%

REMARK 3.3. It is obvious from the arguments used in the preceding proof
of (3.44) that, for any f € S, with. A2 = [{f(u)? du € (0,1) and each nonvoid
open -subinterval I of [0, 1], we have dim{L(f) NI} =1 — »? a.s. This, in
turn, implies that L(f) N I # J a.s., whence an easy argument shows that
L(f) is almost surely everywhere dense in [0, 1]. Since, by (3.4), L, is the
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union of the L(f)’s such that A? > A, it follows that L, is almost surely
everywhere dense in [0, 1] for each A € [0, 1). This completes the proofs of
Theorems 2.1 and 3.1, and, in view of Remark 2.1, of Theorem 1.1.
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