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STRONG FELLER PROPERTY AND IRREDUCIBILITY FOR
DIFFUSIONS ON HILBERT SPACES!

BY SZYMON PESZAT AND JERZY ZABCZYK
University of Mining and Metallurgy and Polish Academy of Science

It is shown that the transition semigroup (P;);»0 corresponding to
a nonlinear stochastic evolution equation is strong Feller and irreducible,
provided the nonlinearities are Lipschitz continuous and the diffusion term
is nondegenerate. This result ensures the uniqueness of the invariant mea-
sure for (P;);»0.

0. Introduction. In the present paper we study the transition semigroup
(P¢)t=0 corresponding to a nonlinear stochastic equation on a real separable
Hilbert space. Our main theorems, Theorems 1.2 and 1.3, provide criteria
under which (P;);>o is strong Feller or is irreducible. The importance of the
strong Feller property for the probabilistic potential theory in infinite dimen-
sions has been stressed by Carmona [1] and Gross [7]. Moreover, it is well
known (see [3] and [8]) that the strong Feller property and irreducibility en-
sure the uniqueness of the invariant measure for ( P;);>o. Therefore our results
easily imply, in particular, the uniqueness of invariant measure for stochastic
heat equations (see Theorem 4.2). Under stronger conditions the uniqueness
of invariant measure for stochastic heat equations has been recently obtained
by Sowers [13], [14] and Mueller [12]. We believe that our approach is simpler,
more natural and more general than theirs.

Strong Feller property and irreducibility for stochastic evolution equations
have been studied only for equations with a constant diffusion coefficient (see
[9], [10], [11], [5] and [6]). The general case has not been studied before.

The paper is organized as follows. In the first section we set up notation,
terminology and we formulate the main results. Sections 2 and 3 are devoted
to the proofs of the strong Feller property and irreducibility. In the final section
we apply our general results to the case of stochastic heat equations.

1. Notations and formiulations of the results. Let (H,(,-)) be a real
separable Hilbert space. By | - | we denote the norm on H. The spaces of
bounded and Hilbert—Schmidt operators on H are denoted by L(H) and
Ly(H), respectively. In the present paper || - || and | - ||z stand for the operator
and the Hilbert—Schmidt norms. The spaces of bounded measurable and
bounded continuous functions on H are denoted by By(H) and Cy(H). By
|l - llo we denote the supremum norm on By(H) or Cp(H).
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158 S. PESZAT AND J. ZABCZYK

Let (Q, % ,P) be a probability space with a right-continuous increasing
family F = (F;)s>0 of sub-o-fields of & each containing P-null sets. Let {e,}
be an orthonormal basis in H and let {W,} be a sequence of independent,
real-valued F-Wiener processes. We define a cylindrical Wiener process on H
by the series

W(t)=) Walt)en, t20,
n=1

which converges in a Hilbert space H containing H with a Hilbert—-Schmidt
embedding.

Let (P;):>0 be a Markov semigroup on By(H). Recall that (P;);>¢ is strong
Feller if for arbitrary ¢ € By(H) and ¢ > 0, P,y € Cp(H). The semigroup
(P¢)t=0 is irreducible if the transition probabilities Pi(x,U) := P;xy(x) are
strictly positive for all ¢ > 0, x € H and nonempty open sets U C H. A prob-
ability measure u on H is said to be invariant with respect to the semigroup
(Pt)t=0 if

[, Pb@)uidx) = [ p(x)n(dx) for y e By(H), t 20,
The following classical result (see [3] and [8]) links the above concepts.

THEOREM 1.1. Assume that a Markov semigroup (P;):>o on a Polish space
is strong Feller and irreducible. Then there exists at most one invariant measure
for (P:)i=0, and if p is invariant for (Py)i>o then p is ergodic and equivalent
to each transition probability P;(x,-). Moreover, for an arbitrary Borel set T,
Py(x,T') = w(T) as t — oc.

In the present paper (P;);>o is defined by P:;y(x) = Ey(X(¢,x)), where
X (-, x) is the solution of the stochastic Ité equation
(1) dX =(AX + F(X))dt+ B(X)dW, X(0) = x«.

In (1), A is the generator of a Cy-semigroup S on H, the mappings F and
B act from H into H and from H into L(H), respectively. By the solution
we understand the so-called mild solution, that is, the solution of the integral
equation

X(t)=S({t)x+ /OtS(t —-s)F(X(s))ds+ _/:S(t —s)B(X(s))dW(s), t>0.

We will say that X is strong Feller or irreducible if its transition semigroup
is strong Feller or irreducible.
We will need the following assumptions on F, B and S:
(A.1) There exists a constant L < oo such that for all z,y € H,
|F(z) — F(y)| < Llz - yl,
B(z) — B(y)ll < Llz - yll.
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(A.2) The operators B(z), z € H, are invertible and

K =sup| B (2)|| < oo. -

zeH

(A.3) Forevery T > 0,
T
| is@igar < co.
0
(A.4) There exists a constant a > 0 such that for every T > 0,
T
/ £ 1S()I2 dt < oo.
0
(A.5) Either mapping F or mapping B is bounded.
Occasionally instead of (A.1) we will assume the following weaker condition:

(B.1) B is weakly continuous and there exists a constant L < oo such that
for all z,y € H and ¢ > 0,

|F(z) — F(y)| < L|z -y,
I1S(t)[B(z) — B(y)]llz < LIIS(t)llzlz — yI.

REMARK 1.1. Assume (B.1) and (A.3). Then, by Theorem A.1 of the Ap-
pendix, equation (1) has the unique solution X satisfying

sup E|X(¢,x)> < oo for every T < oo.
0<t<T

Under additional assumption (A.4) the process X has continuous trajectories
in H (see [5], Theorem 7.6).

Since S is a Cy-semigroup there exist constants M and y such that || S(¢)|| <
Me"t for ¢t > 0. Obviously we may assume that y > 0.

We can now formulate our main results. The first theorem, which is con-
cerned with strong Feller property, seems to be interesting even in the finite-
dimensional case.

THEOREM 1.2. Assume that (A.1) to (A.3) hold. Then for all ¢ € By(H)
*andt >0,

(2) [Pip(x) — Pep(y)| < cellfllolx — yl, x,y€ H,
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where

¢t = ————e"T  gnd Ty > 0 is such that
3) VEA To

T
M2L2T2eTo 4 L2 fo " 1S(s)12ds < ;.

COROLLARY 1.1. If (A.1) to (A.3) hold, then the process X is strong Feller.
Our second theorem deals with irreducibility.

THEOREM 1.3. Assume that (B.1), (A.2), (A.3) and either (A.4) or (A.5) hold.
Then the process X is irreducible.

Combining Theorem 1.1 and Corollary 1.1 with Theorem 1.3 yields:

THEOREM 1.4. Assume that (A.1) to (A.3) and either (A.4) or (A.5) hold.
Then there exists at most one invariant measure for the transition semigroup

of X.

2. Proof of Theorem 1.2. Throughout this section we assume (A.1) to
(A.3). We will need the following two lemmas. For the proof of the first one,
we refer the reader to [5], Theorem 9.4.

LEMMA 2.1. If F and B have bounded and continuous Fréchet derivatives
DF and DB, then for arbitrary t > 0, x € H and h € H, the process X (t,x)
has mean square directional derivative D, X (t,x)h at x and in the direction
of h. Moreover, for each fixed h € H, Y(-) = D, X (-,x)h is the unique solution
of the equation

dY = (AY + DF(X)Y)dt+ DB(X)Y dW, Y(0) = A,
satisfying

4) sup E|Y(¢)2 < oo for every T > 0.
0<¢<T

LEMMA 2.2. Let (Py)i>0 be a Markov semigroup on By(H) and let ¢ > 0
and t > 0 be fixed. Then the following conditions are equivalent:

() Y¢ € C2(H)Vx,y € H,|Pi¢p(x) — Pidp(y)| < clldllolx — .
(ii) V¢ € By(H)Vx,y € H,|P;p(x) — Pip(y)| < cllpllolx — y!.

" PROOF. We have to show that (i) = (ii). Let % = {¢ € Bs(H):|¢llo < 1},
K1 = {¢ € Co(H):|pllo < 1} and #2-= {¢ € CZ(H):||¢llo < 1}. Since
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each bounded continuous function on H may be approximated pointwise by
functions of the class C2, we have

sup |P;¢(x) — Pi¢p(y)| = sup |Pid(x) — Pip(y)| forall x,y € H.

beX, PeXs

As a simple consequence of the Hahn decomposition theorem we have

¢,Sl.1;51/) |Pip(x) — Pid(y)| = Var(Py(x, ) — Pe(y,-)).

Therefore for all x, y € H we have
Var(Py(x,-) — P(y,-)) < clx — y|

and consequently for all ¢ € By(H),

IPig(x) — Pd(9)] = | [ #(2)(Pu(x,d2) - Pu(,d2))
< li¢llo Var(Py(x, ) — Pe(y,-))
< cll¢llolx — 1,

which is the desired conclusion. O

The proof of Theorem 1.2 consists of two parts. In the first part we prove
the desired assertion under the following additional assumption:

(A.6) F, B are twice Fréchet differentiable functions with bounded and
continuous derivatives up to the second order.

In the second part we show how to dispense with assumption (A.6).

Part 1. We have divided this part into a sequence of lemmas. The formula-
tions and proofs of the two first lemmas are similar to those in Steps 1 and 2 in
the proof of Theorem 2.2 from [4]. However our formulations are slightly more
general. We present the proofs for the convenience of the reader. In what fol-
lows ¢ € By(H) is regarded as fixed. For abbreviation, we write v(t, x) instead
of Puy(x).

LEMMA 2.3. Assume that (A.6) holds and ¢ € Cg(H). Then v € C12([0,0)
x H) and

B)  P(X(t,x))=v(t,x)+ fot(Dzv(t — s, X(s,x)), B(X(s,x)) dW(s)).
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PROOF. For each n, let X, (-, x) be the solution of the equation

where A, = nA(nl — A)~! is the Yosida approximation of A and @, is
the finite dimensional projection of H onto lin{ei,...,e,}. Applying twice
Lemma 2.1, one can prove that the function v (¢, x) = E¢(X,(t, x)) belongs
to the class C1%([0,00) x H). Moreover, it follows easily that v(™) satisfies the

Kolmogorov equation
Dyw™(t,x) = 3 Tr[ B(x) @, B*(x) D, v™(t, x)] + (Anx + F(x), D0 (t, %)),

v™(0,x) = y(x).

Therefore, applying the It6 formula to the process s — v (¢ — s, X, (s, x)) we
obtain

¢
P(Xn(t,x)) = v™(¢,x) +/0 (Do ™(t — 5, X,(s,%)), B(X (s, %)) Qn dW(s)).
Letting n — oo gives the desired result (for more details see [4]). O

LEMMA 2.4. Assume that (A.6) holds and € C2(H). Then the directional
derivatives D,v(t,x)h are given by

Dyv(t, 2)h = 5 B[w(X(5,2) [ (B(X(s,2))Ds X (s, 2)h, dW(s)].

PROOF. Multiplying the both sides of (5) by the term
¢
f(B'I(X(s,x))DxX(s,x)h,dW(S))
0
and taking the expectation, we get

E[0(X(6,0) [ (B(X(s,2)DeX (5, )b, dW(s))]
—E /0 "(B*(X(s,%))D,u(t — 5, X(5, %)), B-{(X (s, %)) Dy X (s, x)h) ds
—E /0 “(Dav(t - s X(s,x)), D+ X (s, x)h) ds
_—_/Oth(E(v(t—s,X(s,x))))hds
- /0 " Do(PyPs_y(x))hds = tD,o(t, x)h. o

LEMMA 2.5. Assume (A.6). Then for all t > 0 and ¢ € By(H) the function
P.y(-) is Lipschitz continuous. Moreover, for arbitrary x,y € H,

[Peip(x) — Pep(3)] < cellgfllolx — vl
the constant c; being given by (3).
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PROOF. First let ¢ € C%(H ). From Lemma 2.4, we have

Dol x)h1 < FW10E] [ (B (X(s, %) DX (5, 20k, dW(s))
®) < 71o(E [ 1B-(X (5, 2)D. X (s, 2)hf?ds)

=<

N N

t 1/2
110K (E [ 1D X(s, )k ds) .
Our goal is to evaluate the term

¢ g o \1/2
(Ef0 1D, X (s, )hI? ds)
To this end, write Y (¢) = D, X (¢,x)h. Lemma 2.1 gives
1Y ()] < 1S(¢)h| +/: 1S(¢ — s)Il IDF(X (s, x))Y (s)|ds
+ ~ /Ot S(t —s)DB(X(s,x))Y(s) dW(s)‘.

Let as denote the right-hand side of the above inequality by I1(t)+12(¢)+13(t).
Then we have

t t t t
/ E|Y(s)|2dss3(f I%(s)ds+/ Elg(s)ds+f E I3(s) ds).
0 0 0 0
By the definition of M and vy,
t
/0 I2(s)ds < M?|h|%te®”".
Since |DF(z)| < L for z € H, we have
t t s 2
f EI2(s)ds < / M2L2E( f e IY (r)ldr) ds
0 0 0
’ ¢
< M2L22e27 / E|Y(s)[? ds.
0
Using standard arguments we obtain
t t t
f EI%(s)ds < L? fo I1S(s)112 ds /0 E|Y(s)?ds.
0
Combining the above estimates gives

t
f E|Y(s)2ds < 3M2|h|%te?"!
B 0

t t
+3(MPL22e 4 L2 / 1S(s) 1 ds) f E|Y(s)ds.
JOo 0
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From (4) we have
¢
/0 E|Y(s)]?ds < .

Consequently for ¢ < Ty (T appears in the formulation of Theorem 1.2) we
have

t
) / E|Y(s)[2ds < OM2|h2te®",
0
Combining (6) with (7) gives

e”|lyllo for t < To.

®) \Dyo(t, x)h] < %%'—h—‘

Since
|Pip(x) — Pep(y)| < sup | D, (P:p(2))(y — x)|

<sup|D.v(¢,2)(y — x),
zeH

(8) gives the desired estimate (2) for all ¢ € C2(H) and ¢ < T. According to
Lemma 2.2, (2) holds for all ¢ € By(H) and ¢ < Ty. Since for ¢ > Ty we have

|Pep(x) — Psp(y)| < |Pros(t-To)¥(xX) — Prore-1o) ()]

< ery | Pe-moliolx — y1 < eryllgllolx — 1,

and (2) holds for all ¢. D

Part 2. In this part we want to apply Theorem A.1 from the Appendix.
Thus the task is now to find good approximations F, of F' and B, of B. For
this purpose we take a sequence of nonnegative twice differentiable functions
{pn} such that

supp(p) € {€ € R™:|¢lwr <1/n} and [ pu(§)dg =1.

Let @, be the orthonormal projection of H onto lin{ey,...,e,}. Recall that {e,}
stands for the orthonormal basis in H. We will identify R” with lin{e;,...,e,}.
The mappings F,: H — H and B,: H — L(H) are defined by

Fal®) = [ on(é - an)F(Zn; fiei) dt,
(g) i=1

B(x) = [, ool = Qu) B( X ie:) .

i=1
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Observe that F, and B, are twice Fréchet differentiable functions with
bounded and continuous derivatives. Moreover, for all x, y and n,

Fae) = Fa0)i = | [ pn<§>[F(i§::lfiei +Qux) - F(iéaei +@uy)]ag

< LIQu(x =) [ pa()dé < Lix =y

In the same manner we can see that ||B,(x) — B,(y)|| < L|x — y|.
We next prove that for n sufficiently large the operators B,(z), z € H, are
invertible and

lim sup sup B, L) <K,

n—>oo zeH

the constant K being defined in (A.2). To this end, observe that the operators
B(Q.z), z € H, n € N, are invertible,

sup sup | B1(Q,2)] < sup IBY(2)I < K
neN zeH

and

sup | B(@nrz) — Ba(2)l
zeH

= sup

pn<§>[B(an) ( gfiei n an)] dgH

i€ df < Ln_l

< [ onter2 i;

Consequently, for n sufficiently large the operators B, (z), z € H, are invertible
and

lim sup sup I|1B;(2)]

n—>oo ze

= lim sup sup”[B(an) — (B(Qnz) — Bo(2)]7Y

<limsup sup 1B @x2)ll }:uB 1(Q,2)(B(Qn2) — Bu(2))II

n—>oo ze 0

51imsupKZKijn"j =K.

n—-oo j=0

Summing up, we have actually proved that:

" 1. F, and B,, n € N, are twice Fréchet differentiable functions with bounded

and continuous derivatives.
2. B,, F,, n €N, satisfy the Lipschitz condition with the constant L.
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3. For n sufficiently large the operators B,(z), z € H, are invertible and
VK > K3ng € N such that

sup | B;1(2)| < K for n > ny.
zeH

Moreover, it is easy to check that:
4. For every z € H,
}im |Fo(2) — F(2)]=0 and lim ||B,(z)— B(2)| =0.
—00 n—oo

Now, let X,,(-, x) be the solution of the equation

and let (P,(f”) )t=0 be the corresponding semigroup. According to Lemma 2.2 it
is enough to show that (2) holds for every ¢ € C%(H ). To do this fix ¢t > 0 and

a number é greater than c;. Lemma 2.5 applied to (P,(,n))tzo shows that for
all ¢ € C%(H ), x,y € H, and n sufficiently large we have

IPMy(x) — PLy(9)] < Ellllolx — yl.

Theorem A.1 now implies that for all ¢ and x there exists a subsequence such
that X, (¢,x) - X(¢,x) a.s. as j — oo. Since ¢ is a bounded continuous
function, we have

|Pep(x) — Pep(y)] < cellgrliolx — vl

and the proof of Theorem 1.2 is complete. O

3. Proof of Theorem 1.3. Throughout this section we assume that (B.1),
(A.2) and (A.3) hold. Only in the proof of Lemma 3.1 will we need (A.4) or
(A.5).

For givena € H and r > 0, let B(a,r) stand for the ball {z € H:|a—2| < r}.
Note that X is irreducible iff for all x e H,t > 0,a € H and r > 0,

P(X(t,x) € B(a,r)) > 0.
From now on, x, ¢, a and r are fixed. We need the following lemma:
LEMMA 3.1. Assume that (A.4) or (A.5) is fulfilled. Let t; € (0,t) and let

f:[t1,t]x H — H be a bounded and measurable mapping. If Z is the solution
of the equation

dZ(s) = AZ(s)ds+ B(Z(s))dW(s) : on [0,#],
(10) dZ(s)=(AZ(s)+ f(s,Z(t1)))ds+ B(Z(s))dW(s) on (t1,t],
' Z(0)=x,

then the laws in H of X(t,x) and Z(t) are-equivalent.
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PROOF. Let a(s) = B™1(Z(s))[f1(s)— F(Z(s))], where f1(s) = f(s, Z(t1))
for s € (¢1,t] and O otherwise. Finally, let

E= exp(— fot(a(s),dW(s)) — %/Ot |a(s)|2 ds).

If F is bounded or if B is bounded, then by Novikov’s criterion (see [5],
Theorem 10.18) and by Theorem 4.1 from [2], EE = 1 and P(E > 0) = 1.
Therefore by the Girsanov theorem (see [5]) the process

W*(s) = W(s) +fos o(u)du, se[0,¢],

is a cylindrical Wiener process in H defined on the probability space
(Q,7,P*), where dP* = EdP. Note that P and P* are equivalent. Now,

since

Z(s) = S(s)x + fo S(s — u)f1(u)du + /0 S(s — u)B(Z(w)) dW(u)
= S(s)x + [0 S(s—u)F(Z(x))du + /0 S(s — u)B(Z (1)) dW*(u),

Z is the solution of (1) on the probability space ({), & ,P*). Since the law of the
solution does not depend on the particular choice of the probability space, for
every Borel set I' € H we have P(X(¢,x) € I') = P*(Z(t) € I'). Consequently,
since P and P* are equivalent the same is true for the laws of X(¢,x) and
Z(t), which is our claim.

If S satisfies (A.4) then the processes X(.,x) and Z have continuous tra-
jectories (see Remark 1.1). Now, let for an arbitrary [ € N, F; be a bounded
Lipschitz mapping identical with F on the ball B(0,1), and let X; be a contin-
uous solution of (1) with F' = F;. Then, again by the Girsanov theorem, the
laws of X; and Z on the space of trajectories C([0, ¢t]; H) are equivalent. It is
clear that for every / the laws of X and X are identical on C([0,¢]; B(0,1)).
These two facts imply the equivalence of X and Z. O

We can now proceed to the proof of Theorem 1.3. What is left is to show that
there exists a function f satisfying the assumptions specified in Lemma 3.1
such that for the corresponding solution Z, P(Z(t) € B(a,r)) > 0.

Let us denote by Z the solution of the equation

dZ =AZdt+ B(Z)dW, Z(0)=x.

From Theorem A.1 there exists a constant R > 0 such that

. R?
(11) sup E|Z(7)]® < =

b O<7<t

Take an element G of D(A) such that |a —&| < r/3. From now on R and @ are
fixed. For any 7 < ¢ let us denote by f, a bounded and measurable extension
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of the function f, defined by
0, if |y| > 2R,

ff(s,y)= 1 - - .
——S(s—7)(@a—-y)— Aa, if|y|<R.

t—1

We will show that for a certain #; < ¢ the function f = f;, has the desired
properties. Obviously we may assume that there exist constants ¢;, c2 and

extensions f, of f, such that
(12) fr(s, ) <ci(t—7)1+cog forall0<r<t,se[rt],yecH.

Let Z be the solution of (10) with f equal to f, and ¢; = 7. From Theorem A.1,
(11) and (12) we have

sup sup E |Z.(s)]? < oo.

0<7<t 0<s<t

Hence from (B.1) we may find and fix ¢; < ¢ such that
t 2 r2
E| [ S(t-5)B(Z4(9)dW(s)| < Iz
t
and consequently
¢ r 1
(13) P(| /t S(t—9)B(Z(s)dW(s)| = 1) < .
Let us observe now that for all y € H such that |y| < R,

S(t—t)y+ [ S(t=5)fuls,)ds

1 ¢ ~
= S(t -ty + =1 [ St-9)S(s— 1)@~ y)ds
(14) ) 1Jh
— | S(t-s)Adads

t
t d
= S(t— t1)d+/ 2 S(t - s)ads = a.
4 ds
Set Z =Z,, and f = f:,. Then Z satisfies

t
Z(t) = [S(t — ) Z(t) +ft S(t—8)f (s, Z(tl))ds]

+ ftt S(t - 8)B(Z(s)) dW(s) =: I1 + I.

Combining (11) with (14) gives
P(I,=a)>P(Z(t))|<R)> 3.
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r 1
P<1I2| = g) =< 3

Consequently, as |&@ — a| < r/3 we have

P(Z(t) € B(a,r))=P(|Z(t) —a| <r)
=P(((Ii—-a)+I+a—a|l<r)

From (13),

> P(Il =g and |I] < g)

>P(I, = &) — P(Ile > g)

3 1 1
23737270
which completes the proof of Theorem 1.3. O

4. Stochastic heat equation. Let S! be the unit circle and let W (-, -) be
a Brownian sheet on [0,00) x S!. In this section we are concerned with the
equations of the form

IX(8) .. X(t)
(15 ot (&)= 7
X(0)(-) = x(-) e LA(SY),

32w

(€)= aX (&) + FX (D) + HX WD) Tz,

where a is a constant and f, b are real-valued functions. Note that (15) is a
special case of (1), with
2

H = L2%(SY), Ax = (dd_fz - a)x, D(A) = WH2(S1),
and the mappings F and B given for ¢ € S! and x, y € L2(S!) by

F(x)(§) = f(x(£)),

(16)
B(x)[y](€) = b(x(£))y(¢).
THEOREM 4.1. Assume that:

(C.1) f and b are Lipschitz continuous.
(C.2) b is bounded and there exists a constant m > 0 such that |b(¢)| > m
forall £ eR. ’

Then the process X given by (15) is strong Feller and irreducible.
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PROOF. Let us observe first that the semigroup S generated by A is given
by

S(t)x = e *Hx, ho)ho + Y e "+ (x, hou_1)hon—1 + (%, hon) han},

n=1

where kg = (27) Y2, hop_1(£) = w2 cosné and hg,(¢) = w12 sinné. Thus
S satisfies (A.4) with an arbitrary « € (0,1/2). Obviously (A.2) holds. Unfor-
tunately B given by (16) is not a Lipschitz continuous mapping acting from
H into L(H, H). However, it is easy to check that (B.1) holds. Thus the irre-
ducibility of X is a direct consequence of Theorem 1.3. As far as the strong
Feller property is concerned we note that if we replace (A.1) by (B.1), then the
method applied in the proof of Theorem 1.2 works with only one exception.
Namely, we do not know whether mappings B, (z) given by (9) are invertible.
In the present particular situation their invertibility is a simple consequence
of the fact that either 5(¢) > m for all £ or b(¢) < —m for all €. O

In [12], [13] and [14] the existence and uniqueness of the invariant measure
for (15) in the space C(S') of the continuous function is shown, provided that
(C.1) and (C.2) are fulfilled and:

(C.3) f is bounded, @ > O and the Lipschitz constant for f is strictly
smaller than a.

The last condition is needed only in the proof of existence. In [13] and [14]
some specific properties of heat kernels are used. In [12] the idea of coupling
is applied.

As a direct corollary of Theorems 1.4 and 4.1 we have the following stronger
version of the uniqueness results from [13], [14] and [12].

THEOREM 4.2. If (C.1) and (C.2) hold, then there exists at most one in-
variant measure for (15) in-the space L?(S). Moreover, if u is the invariant
measure and if P(-,-) is the transition probabilities for (15), then for every
Borel set T', P;y(x,I') > u(I') as t — oo.

APPENDIX
Throughout the Appendix we assume that S, F and B satisfy (B.1) and (A.3).

THEOREM A.1. (i) For all x € H, (1) has the unique solution X(-,x)
. satisfying ’

sup E [ X(¢,x))2 <00 for T < oo.
0<t<T )
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(i) Let F,: H — H, B,: H — L(H) be a sequence of mappings such that
B,, are weakly continuous and for all n e Nand z,y € H,
|Fn(2) — Fa(y)l < Liz - yl,
|S()[Ba(2) = Ba()]ly < LIS(®)llzlz — I
and for all z and t > 0,
lim |Fp(2) - F(2)| =0 and lim [IS(#)[Ba(2) — B(2)]ll2 = 0.
Let X, (-, x) be the solution of the equation
a7 dX,=(AX,+ F,(X,))dt+ B,(X,)dW, X,(0) = x.
Then forall T > 0 and x € H,
lim sup E|X,(¢,x) — X(t,x)2=0.

n—>00 <4< T

PROOF. For given T' > 0 and A > 0 let %1, denote the space of all
predictable processes Z:[T,T + A] x Q — H such that

1/2
1ZIlirs = sup EIZ@)P) " <oo.

T<t<T+A

Obviously (¥ 7.a,l|| - |llTa) is a Banach space. For arbitrary Z € #'ra, t €
[T, T+ A] and ¢ € L%2(Q, F7,dP; H) set

/T,A(f,Z)(t)=S(t—T)f+/TtS(t—S)F(Z(S))dS
+ ft S(t — s)B(Z(s)) dW(s),
/(n) (f,Z)(t)—S(t—T)§+f S(t—s)Fn(Z(s))ds

+f S(t — 8)B,(Z(s)) dW(s).
T

By the hypothesis £ and £, () are well defined mappings with values
in # 1, and for all ¢ and Z, /(") (¢,Z) converges to Fra(€,Z) in K 14.

Moreover, it is easy to check that for every T > 0 there exist Ag > 0 and a
constant ¢ < 1 such that forall T < T, ¢, Z, Z and n € N,

NLET.80(€:Z) = F100(& Z)llIT 80 < €l Z = ZllI7,a05

WL TN (& Z) = £33, (& 2)llIT a0 < clllZ — ZlIz,a,-

Thus by the local inversion theorem (see [5]), for all T and A, (1) and (17)
have the unique solutions X(-,x) and X,(-,x) in % 7 and

lim X,(-,x) = X(,,x) in Hra,
n—oo

which is the desired conclusion. O



172 S. PESZAT AND J. ZABCZYK

Acknowledgments. The authors would like to thank Professor G. Da
Prato for discussions leading to the formulation of condition (B.1).

REFERENCES

[1] CARMONA, R. (1980). Infinite dimensional Newtonian potentials. Probability Theory on Vec-
tor Spaces II. Proc. Blazejewko 1979. Lecture Notes in Math. 828 30-43. Springer,
Berlin.

[2] CHOW, P.-L. and MENALDI J.-L. (1990). Exponential estimates in exit probability for some
diffusion processes in Hilbert spaces. Stochastics 23 377-393.

[3] DoOB,dJ. L. (1948). Asymptotic property of Markoff transition probability. Trans. Amer. Math.
Soc. 64 393-421.

[4] DA PrATO, G., ELWORTHY, K. D. and ZABCZYK, J. (1992). Strong Feller property for stochastic
semilinear equations. Stochastic Anal. Appl. To appear.

[5]1 DA PrATO, G. and ZABCZYK, J. (1992). Stochastic Equations in Infinite Dimensions. Cam-
bridge Univ. Press.

[6] DA PrRATO, G. and ZABCZYK, J. (1991). Smoothing properties of transition semigroups in
Hilbert spaces. Stochastics Stochastics Rep. 35 63-717.

[7] Gross, L. (1967). Potential theory on Hilbert space. J. Funct. Anal. 1 123-181.

[8] KHAS'MINSKI, R. Z. (1960). Ergodic properties of recurrent diffusion processes and stabiliza-
tion of the solutions to the Cauchy problem for parabolic equations. Theory Probab.
Appl. 5 179-196.

[9] MASLOWSKI, B. (1988). Strong Feller property for semilinear stochastic evolution equations.
Stochastic Systems and Optimalization. Proc. Jablonna 1988. Lecture Notes in Control
and Inform. Sci. 136 210-225. Springer, Berlin.

[10] MASLOWSKI, B. (1989). Uniqueness and stability of invariant measures for stochastic differ-
ential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 85-114.

[11] MASLOWSKI, B. (1992). On probability distributions of solutions of semilinear SEE’s. Report
73, Matematicky Ustav, Ceskoslovensk4 Akademie Vé&d.

[12] MUELLER, C. (1992). Coupling and invariant measure for the heat equation with noise.
Preprint.

[13] SOWERS, R. (1992). Large deviation for the invariant measure of a reaction-diffusion equa-
tion with non-Gaussian perturbations. Probab. Theory Related Fields 92 393—421.

[14] SOWERS, R. (1991). New asymptotic results for stochastic partial equations. Ph.D. disserta-
tion, Dept. Mathematics, Univ. Maryland.

INSTITUTE OF MATHEMATICS INSTITUTE OF MATHEMATICS
UNIVERSITY OF MINING AND METALLURGY POLISH ACADEMY OF SCIENCE
MICKIEWICZA 30 SNIADECKICH 8

30-059 KRAKOW 00-950 WARSZAWA

PoLAND PoLAND



