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CONDITIONAL PROPAGATION OF CHAOS AND
A CLASS OF QUASILINEAR PDE’S!

By WEIAN ZHENG
University of California—Irvine

We consider conditional propagation of chaos and use it to solve a
class of quasilinear equations of parabolic type. In addition, we construct
a class of continuous stochastic processes associated with the above non-
linear equations. Our method imposes fewer smoothness conditions on the
coefficients and allows a degenerate nonlinear weight before a divergence
form operator. We hope this probabilistic approach will introduce a better
microscopic picture for understanding some Stefan type problems.

1. Introduction. We are interested in the following equation in R%(d <3):

O bwmun ) un =3 2 [aif(x u(x%, £) ——u(x t)]
’ ’ Jt ’ o 9x; ’ ’ 3xJ ’

with the initial condition u(x,0) = uo(x). This class of PDE’s has important
applications in the study of heat conduction, where some phase transitions are
involved [29]. The famous Stefan problem [5, 6] can be reduced to its special
case where a¥(.,-) is a constant matrix and b(-,-) is discontinuous (see [13],
(9.6), page 497). Let us denote

p(x,u) = u’1</0u b(x, v)dv), @’ (x,u) = p~l(x,u)aV(x,u).
Then
J J
b(x,u) = a—l;[up(x,u)] = p(x,u)+ ugap(x,u)-
Thus, (1) becomes
d J
u(x’ t)a_tp(x’ u(x’ t)) + P(x, u(xy t))ﬂu(xy t)

(2)

o~ —ij a
) ; a_xi[”(x’ u(x, ))a" (x, u(x, t>>3;;wx,t)].

We construct in this paper a continuous process with density function

u(x,t)p(x, u(x,t))
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1390 W. ZHENG
with respect to Lebesgue measure which solves (2) with given initial value
3) h(x) = uo(x) p(x, ug(x)).

Once the process is constructed, we also get a solution to (1). When p(x,u) is a
constant, (2) is reduced to the usual divergence form operator. The conditions
we impose on the coefficients follow:

CONDITION A. The function b(x,u) is measurable in (x,u) and b(:,u) is
continuous at the point © = 0 in u. There is a constant 1 < A < co and a
continuous function y(x) > 0 with [ y(x)dx < A~'/2 such that

(4) 0< b(’ '), A_1/2')/(-*:) < aij(', ) < Al/z'}’(x) a.e.
and
—1/2 Jo b(x,v) dv 12 _ Jo'b(x,v)dv
(B) A7 Fy(x) < T = A y(x), 1 b <1 ae. x.

CONDITION B. The function a¥(x, 1) is continuous in u and measurable in
(x,u).

CONDITION C. We have 0 < A(x) < A, fh(x)dx =1 and

/h(x)log h(x)dx < oo, /log('y(x))h(x)dx > —00.

REMARK 1. The restriction on the weight b is quite weak. In fact, b(-, -) may
be unbounded and discontinuous when u # 0. However, under those assump-
tions, we may deduce immediately that p(x,u) and @¥(x,u) are continuous
in u and

(6) A <@, <A, ATV 2y(x) < p(s,-) < AVZy(x).

From our assumptions, we deduce also that y has a strictly positive lower
bound on each bounded set.

REMARK 2. Since ugp(x,uo) is a strictly increasing and continuous func-
tion with zero initial value in ug, uo(x) and A(x) are in one-to-one correspon-
dence, so the conditions imposed on A(-) can be easily translated to conditions
on uo(-). .

Denote by u = £(x, v) the inverse function of v = up(x,u) and define

q(x,v) = p(x, £(x,v)),  gY(x,v) =a(x, £(x,v)).
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Then (2) becomes

a(x, up(x,u»%u(x,t) +uq(x,up(x, 1)
d

=2

ij

Our method mainly follows from Kac [10, 11] and McKean [17, 18]. It can
be described simply as follows. Consider K diffusion processes in R? with
the same coefficients depending on their instant frequency function of those
K processes. When K — oo, we expect that the frequency function around
a point x at time ¢ tends to the common d-dimensional marginal density
function u(x,t) which solves (7). In the last decade, there have been a lot
of fruitful studies along this direction [8, 9, 19, 21, 23, 24]. There are two key
steps in that approach: (1) the tightness of laws of constructed diffusions when
K — oo and (2) the law of large numbers (the density of frequency function
converges to the marginal density). In this paper, for the sake of handling
the density functions more easily, we do not use the empirical process [9].
So our tightness results are separated into two stages: tightness results for
diffusions with differentiable coefficients and frequency function when K — oo
and tightness results for limit processes obtained from the first stage when
the frequency function tends to the density function and coefficients become
nondifferentiable.

We give first an integrated gradient estimate which will be carried through
Section 5 to get a second stage tightness result and the convergence of density
functions. The tightness of the laws of the corresponding diffusion processes
follows from that estimate. So the main problem is just to identify the limit
processes. We use the law of large numbers to do that. The standard path
is to prove the asymptotic independence of the d-dimensional diffusion pro-
cesses, which is called the propagation of chaos. We usually need quite strong
technical assumptions in order to prove rigorously the propagation of chaos.
However, if we use the conditional independence of interchangeable random
variables given their permutable o-field [2], we can get a conditional propa-
gation of chaos result immediately. Finally, we use again a tightness result for
marginal distributions to get the desired limit process. We do not know much
about the limit process yet. When the coefficients and the solution u(-,-) are
all smooth, it is not difficult to see that the process constructed here is a dif-
fusion process in the sense of Stroock and Varadhan. When b(-, -) is constant,
the theory of (time-dependent) Dirichlet forms [7, 22, 16] gives us an efficient
tool to handle the process. However, the process we construct in this article
has a time-dependent weight in front of the divergence form. Further study of
the limit process may help us to understand better, in a pathwise sense, the
-Stefan problem.

)

2 [q(x,up<x, gz, up(, ) s uz, )|
X; ax;

2. A gradient estimate. To simplify our notation, we assume d = 1 in
the following discussions unless otherwise specified until Section 5. The reader
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may check easily that our arguments do not depend on the dimension. So let
g(,) = g¥(,-) and q(-,-) be two measurable functions. Let us impose an
additional condition for the moment (we will get rid of it in Section 5). Denote
by C? the class of continuous functions with bounded derivatives up to the
second order. Assume that

(8) q(x,v) € C, g(x,v) e C2.
Take 0 < ¢ < 1. Define «,(x) as a smooth function in R! such that:

1. k,(x)=1when |x] <eand 0 < k.(x) <1,V x.
2. k,(x) =0 when |x| > & + &2.
3. k.(x) is a decreasing function of |x|.

Denote V(e) = [ k.(x)dx,

K .
© £ (x) = g(xi, Ekﬂ‘r;éa)c;{— xi) )
and
K K
(K)o _ C Yhor Kelxp — xi))
i fafe, Sstrna)

Let WEK) be a K-dimensional standard Brownian motion. Suppose that
X f,K) =(X g’Il{), X I(:If()) is the solution of the following stochastic differential
equation

1 7
A dXyi =28/ (X dW,] + iz -[a® (X0 g (X)) dt
t 2

with the initial density A(x;)---h(xg) with respect to Lebesgue measure.
Denote by H(K, y, s, x) its transition density with respect to the invariant
measure ¢gX(x)dx. Then

H(K,%,0) = [ H(K,y,t,)h(y1) - h(yx) dys - dyx

gives the density function of X; with respect to the invariant measure. The
generator is given by

1 LI : d
(K) — A PN ¢ 9] (K)ey 2|
Zz z o [q (x)g; (x)o"xi]

i

" Therefore,

(12) %H(K, x,t)= O H(K, x,t).
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Since X EK ) may be approximated by a sequence of differences of forward mar-
tingales and backward martingales with uniformly bounded brackets, X; is
conservative (see [26] for details), so

%fH(K, 2,8)g%®) (x) dx = 0.
Therefore,

/ H(K, x,0)log H(K, x,0)¢®)(x) dx

—fH(K,x, T)log H(K, x, T)qg®)(x) dx

T
- —/ f %[H(K, %, T —s)log HK,x,T — 5)]1g%) (x) dx ds
0

T
=_// [logH(K,x,T—s)%H(K,x,T—s)q(K)(x)dx] ds
0
(13) T g
—// [—H(K,x,T—s)]dsq(K)(x)dx
0o |dt
T
= —f /logH(K,x,T—s),/(K)H(K,x,T—s)q(K)(x)dxds
0

_ T -1 J (K)
= E H(K,x,T —s) H(K,x,T—s)gi (x)
— Jo ox;

J
9x;

By the fact that xlogx > x — 1 and [(H(K,x,T)q'®)(x)dx) = 1 we get

x ¢ (x)—H(K,x,T — s)dxds.

H(K,x,T)log H(K,x,T) > (1 +log</ H(K, x,T)q(K)(x)dx)>
X (H(K,x, T) - / H(K,x,T)q(K)(x)dx)

— H(K,x,T) - / H(K,x,T)q'®)(x) dx.
Integrating both sides with respect to ¢/X)(x)dx, .

/ H(K,x,T)log(H(K,x,T)q'® dx

> /H(K,x, T)q(K)(x)dx—/H(K,x, T)q(K)(x)dx</ q<K>(x)dx>

> 0.
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The last inequality is from the fact that
/q‘K)(x)dx < fﬂsup p(xi,u)dx; < Hf A2y(x;)dx; < 1.
i ou i

Thus, by (13),

K T
S [ [ H KT -9 HE, 2, T - 5)g g ()
i=1 0 3x,

J
x;

< /H(K,x,O)logH(K,x,O)q(K)(x)dx

X H(K,x, T —s)dxds

= /]—.Ih(xi)log((q“’“(x))‘lI'"[h(xi))azx1 o odxg

K —
k[ log(q(xl, Zkﬂ",‘é’)“;{ xl)))h(xn~-h<xK>dx1-~-de

+ th(xl)log h(x1) dx

< -—K/log()\_l/z'y(xl))h(xl)dxl + K/h(xl)logh(xl)dx

K

< _
-2

log A — K/log('y(xl))h(xl) dxi + Kf h(x1)log h(x1) dx:.

By symmetry,

T
B [ (#(&,X(5,9) L b L Hds]
0

0x; Lo9x;

J
9x;

T K
= [ [H K %T -9 HK,%T - )8 g ()
0

i.H(K,x,T—s)dxds

(14)

X

< f h(x1)log h(x1) daxy + %logA - / log(y(x1))A(x1) dx1.

r

3. Tightness results. It is well known that the Markov property will be
preserved for time-reversed process. The following lemma gives the genera-
tor for the time-reversed process. Its homogeneous version was in the very
essential part of Nelson’s stochastic machanics [20, 27].
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LEMMA 1. Let g = (g¥(x,t)) and q(x,t) be twice differentiable functions.
Suppose that X, is a Markov diffusion process with time-dependent generator

J
x

jtf = Zq_l(xy t)a
i,J

(a0, 1]
J

i

and initial probability H(x,0)q(x,0)dx. Then the instantaneous distribution
of X is given by H(x,t)q(x,t)dx, which satisfies the following equation:

/] J

Moreover, the time-reversed process X r_; has the generator

(16) th=/T_tf+2Z

i,J

d ij 9
¢9x,-10gH(x’T t)g(x, T t)axjf.

PRrROOF. The existence of the density function H(.,#) is well known. Equa-
tion (15) follows easily from integration by parts. So let us just prove (16).
Denote by (,/g") the square-root matrix of (g¥). Then it is easy to check that
the law of X; is given by the stochastic differential equation

J

. 9 y
dX,; =) 2"2/g" (X, t)dW,; + Y q (X, t)af[Q(Xt, t)g’ (X, t)]dt.
7 J

For any £, n € C2 and ¢ > s,

Hm(t — s) " E[(£(X,) — £(X5))(n(X:) = n(X,))]

=2ZE<

J i a
(X )gY (X976

Thus,
E_I)I;(t — ) 'E[E(Xr-s)(n(X1—t) — (X 7-5))]
=1im{(t - $) ' E[£(X 1-1) (n(X 1) = n(X 1-))]

—(t =) 'E[(&(X1-1) — E(X7-0))(n(X1y) — n(X1-5))]}
= _E[f(XT—s)jT—sn(XT—s)]

J i J
_ 2ZJ:E( 5 n(XT_s)gJ(XT_s)a—xjaxT_s)),
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However, from the integration by parts formula,

9 i 4
%E[EW(XT—s)g J(XT_s)a—xjf(XT_s):}

- g/(%n(x)gif(x)%E(x))H(x, T —s)q(x, T —s)dx

a y 9
=- {V_‘;/ f(x)(a—mn(x)gJ(x)ﬁjH(x,T — s))q(x’ T —s)dx

N O e 2 [ B T = 5)da
i,J J 4

= - B[ e (- (X0 (Xr-) o g HXr o T =) |
»J g

J
&xj
- E(f(XT—s)jT—tn(XT—s))’

so we get the conclusion. O

Now let us continue the discussion of the previous section. Since we assume
in (8) that the coefficients are continuously differentiable for each fixed K, we
have the decomposition

(K) (K)
Xt,i - Xo,i

’ K K
=ft Zf;le(Xs,i—Xs,j)(qa())—l(x : Zﬁl"s(Xi,i)'Xg,j)))
o N2l

KV(s) KV(s)
x 2 (K)(X ‘ ZﬁlKe(Xif)_Xg)))
aul? 70 KV(e)
K (K) (K)
x g®( x; 2j=1 KS(Xs’i — X )):} ds
i,8) KV(S)
K (K) (K)
an | /t(qm)_l(X Tihiee( Xy —Xs,j))
o S, KV(&)
Ol (x. Zﬁl"e(ng)—Xi?))
ax |1\ KV(e)
, K (K) _ y(K)
: v g (x,, e Kol ~ X ))]ds
' ’ KV(e)

t YK k(X XY
(K) . j=17¢& 8,1 S,J i
+'/(; \j 2g (XS,L’ KV(&‘) ) dWs
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For the time-reversed process we have by Lemma 1,

(K) (K)
XT—t,i - XT,i

K (K) (K)
= 2/t H1g® (X<K) . Tjerke(Xryi — X1oy,)) 2 Hds
o T-s,i? V(e)K 9x;

N /‘ ZJK:l K (X7-si— XT—s,j)( (K))-1
A V(o) ?

K K

SR, )

X T—s,i> KV(e)

K (K) (K)
x i[q"“(XT_ XX — Xroy)
u E%) KV(E)
K (K) (K)
(18) « g(K) (XT . Zj:]_ KE(XT—S,L' - XT—s,j) ds
—8,0 KV(E)
K (K) (K)
N /t(q(]())—l (XT—s . 21 Ke(XT—s,i - XT—s,j)v
0 KV(e)
K K
% i[q(K)(X i ZJK=1K€(X(T—)s,i_X(T—)s,j)
Ix T-s,is KV(S)
K (K) (K)
y g(K)(XT - Xjn Ko (X gy “XT—s,j)> ds
b KV(e)

, SE e (X g
288 Xp_g;, == i —5I2 ) dWE.
+/0 \J 8 ( T—s,i KV(e) ) s
From (17) and (18) we get, under the initial probability H(K, x,0)q'®)(x) dx,
a new decomposition (see also [14, 15]):

¢ ZK— KE(X(K) _ X(K)) P

xB) _ xE) _ _ f -1 (K)( (k) Zh=1KelXop —25i7)) 9
t,i 0,i 0 H g Xs,z 4 V(S)K o"xins
t T —

L e awa -3 [ 26 (X aW
(19) 0 T—t
K (K) (K)

__ /t H_lg(K) X(K) Zk=l Ks(Xs,k - Xs,i ))'i'HdS

0 s’ V(e)K ax;

1 & 172k &K
V +§Mt,i _E(MT,i —MT—t,i)’

" where W, is a Brownian motion for the forward filtration, W, is a Brownian
motion for the backward filtration, M 515 ) is a martingale for the forward fil-
tration and M glf ) is a martingale for the backward filtration. We can easily
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verify that
[7]A, 0,
0

(5]

1 14

= dt =2E/ |8 (X () 2 ]52,\7‘

E

and

dt|=2E / |8 E(xB))? ds]52/\T.

|l )
B
0 dt

N

So the bracket processes of the two martingales that appear in (19) have
uniform L2 bounded derivatives. We may also find from (14) that the finite
variational part of (19) has uniform L? bounded derivatives. Thus we deduce
that (see [27, 12, 25]) all three parts of (19) are tight sequences in law on
C([0,T] — R). Therefore, {X( )}, is also tight on C([0, T'] — R*) for fixed ¢.

Furthermore, we deduce [28] that { X, M{%, %}, is tight on C([0,T] >
R® x R® x R™).
Denote the derivative of «, as «/,. Then

1 Z <K) (K) 1 Z ko(X (K) (()1?)

=%Z/0 K (XE — XE)a(uE) - m K
J
1 /
L [T (0, - XU, )1 - %)
1 , _
"EZ/O[ (XE - x BN H g " Hds
J l
t
+l2/ [k,(X0 - XN H g™ —H ds
K j xj

E|:/0TK dt]

(20 < g B2 g A1) s + G oA

(- XL

- [ o)z da ) supio, )
So the law of (1/K) YK, k(X% — X{%)) is also tight (when K — o) and
the limit processes are still continuous [27]. A similar conclusion holds for
(ZK=1 K. (X5 — X5;))/(KV(g)). Let us take a weakly convergent subse-
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quence, still denoted as

it 2 ti ?

(K) (K) ’
XK ) G Zfil ke (X3, — X)) Z}il K (Xsi — Xs,j)
T-ti KV(e) ’ KV(e) K,

and denote its limit in law as
{Xei Myiy, My_yi Ny, Ny},

Using Skorohod’s theorem, we may realize the convergent subsequence and
its limit on the same probability space such that with probability 1 the conver-
gence happens uniformly in ¢ € [0, T']. So we pass to the weak limit through
the integral with respect to time (see [12] or [27] for details) in (17) and get

¢ J
Xy — Xo, =/0 q_lN;,iE[qg(Xs,i,Ns,i)] ds

¢ 9 t
[ a7 lag(Xois Noi)Vds + [ \/28(X i, Nog) AW,
0 ax 0

Similarly we deduce by (14) and (18) that there is a process @, such that (see
[27] for details)

(21

¢ ¢ )
Xptj— Xri= 2‘/(; Qs,i ds +f0 q‘lN’ _s,iﬁ[qg(XT—s,i, NT—s,i)]ds
¢ J
22) + [ a7 lag(Xrsi, N1_si)]ds
0 ax

t —
+ [ V2e(Xrosis Noos) dW..
0 .
and, by (19),

t
Xpogi— Xpi=1 / 28(Xsi, Noy) dW,
(23) 0

t — t
1 [ V28(Xr-as, Nr_os) aW. — [ Quds.
0 0

From [27], we know that the inequality (14) is preserved through the weak
limit, so

i |
E[/ |Qs|2 d3:| =< ||g||oo(/ h(xl)log h(xl)dxl

0
(24)
+§log A [ logly(xa))h(xr) 3 ).
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4. Conditional law of large numbers. From symmetry of {X;;};, when

J <K,
o [Eed ) a1

JV(e) KV(FJ)
1 J
T J2K2V2(¢) {K2 szZ:zE (Xglz{) - XE?)"&(X%) - XE,II:))]
Jj= =
J
+ K2 Zl E[Ks(O)Kg(Xg,Ii() - Xﬁf?)]
J=
2 & (K) (K) (K) (K)
X;kX;E[ X Xt,j )KS(Xt,i - Xt,k )]
J=2 k=
X K K
+J? ;E[KE(O)K,,.(X;,. ) _ X;’,g)]

20K Y B (X0 - X (X - X ()]
J=2 k=2

K
~20K 3 E[k.(0)s (X% — X)]

- 2JKZ E[k,(0)k, (X5 - Xﬁfj.))]}
J_
= ﬂK_zlvz(_g_){(KzJ + J2K — 2JK(J + K))E[k.(0)x, (XY — X{5))]
+(K%(J —1)+ J?(K —1) —2JK(J — 1))
x E[(x.(X{Y - X{5)°]
+(K3(J —1)(J = 2)+ J*(K — 1)(K — 2)
—2JK(J —1)(K —2))
x B[r. (X5 - X5k (X() - X3}

The right-hand side gives a uniform estimate. Letting K — oo, we deduce
that there is a function C(g,J) such that C(e,J) - 0 when J — oo and

Yoy ke(Xei — X1 j) 2
JV(e)

(25)’ EI:‘Nt,i - ] < C(s,d).

Now let us identify the limit process (21). Denote 2" = C([0,T] — R39).
Then {Y:}r = {(Xer): (Myp)e (My1):}r are random variables taking their
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values in the Polish space 2°. Recall [2, 3] that {Y .}, are interchangeable if the
joint distribution on every finite subset of n of these random variables depends
only upon n and not the particular subset, n > 1. A mapping 7 = (71, 72,...)
from the set .# of all positive integers onto itself is called a finite permutation
if 7 is one-to-one and w; = k for all but a finite number of integers. Let @
denote the set of all finite permutations 7 and let #* be the class of Borel
subsets of 2’® and Y = {Y};. Define 7Y = {Y ,} for 7 = {m;}. Then

~ ={YYB): Be #®, P[Y " Y(B)A(#Y) Y(B)]=0, V7 e Q}

is called the o-algebra of permutable events of Y.

THEOREM 1. Suppose that {Y 1}, are interchangeable. Then they are condi-
tionally independent and identically distributed given ./. Furthermore, there
exists a regular conditional distribution, say P, for Y = {Y 1} given ./ such
that for each w € Q) the coordinate random variables Y of the probability
space (2", #B>, P*) are independent and identically distributed.

PROOF. The proof is just the same as Theorem 7.3.2 and Corollary 7.3.5
of [2]. The only necessary change is to replace the real line R in the original
proof by 2°. O

Moreover, we have the following lemma.

LEMMA 2. Let f be a measurable function on 2. If the f(Y ;) are mutually
independent, then {f(Y ;)}; is independent of /.

PrROOF. Denote Z; = f(Y;). Then the {Z;} are independent, so by the
strong law of large numbers, K~! Zf‘;l IAN(Z;,) > P(Z;, € A)as. If Q € .7,
then

1 K
E(Qa(Z0) = Jim E( Y @lu(Z)
K-> K =1
= E[QP(Z; € A)]
=P(Q)P(Z; € A). o
Under the conditional probability, we deduce from the strong law of large

numbers that there is a function v(e, x, ¢) such that

YK ke(x — X4) _ EC(k.(x — X4i))
V(o) — v(e, x,t) = V(o)

(26)
, Thus, by (25),

27) N:i=v(s, Xy,t) = V‘l(s)/Ks(&,i —x)u(x,t)q(x,v(s, X4,,t)) dx.
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By Lemma 2, {W,;}; are independent of ., so from (22) we have, under P*,
Xr_4i— X1

¢ d
— [ a7/ (e, Xroses T = 57 [ag(X s 0(e, Xrois T = ))1ds

28) C t
+ /0 g7 = @8(X 1oy (&, X1-0i, T = 5)] ds +2 fo Qr_s; ds

t —
+ [ V28(Xr—si, Nr_os) dW..
0

We are interested in finding the precise form of @;. From interchangeability,
it is sufficient to consider the case i = 1. By (21) we deduce that, under P,

t d
Xi1— Xo1= / L q(Xo1, v(e, Xo1,8)8(Xo1, (e, Xa1,8)) ] ds
(29) 0 Jx

t
+ [ V28(Xo1,0(e, X)) V..
0
From Lemma 1, the time-reversed process should have the decomposition
t 1 0
X1 - Xra = [ ¢ [a(Xr-s1,0(e, X702, T~ 5)
X g(XT—s,l, U(S, XT—S,].’ T - 3))] ds

t
+2 [ @) gL u(Xp_1, T —5)ds
: 0 ax

t —
2g(Xp_s1,v(e, X7_51,8)) dWs,
+[0 [g( 7-51,0(&, X1_51,1))

where u“(-,.) is the density function.
By comparing the above equation with (28), we deduce that

J
(30) Qr—:= (uw)_lgﬁuw(XT—t,l, T -1),

sall I

U ’ 1
(31) < ||g||oo<[ h(x1)log h(x1) dxy + 3 log A

so from (24),

a a
(u“)‘lgau“’(XT_s,l, T —s)

-/ log(y(xl))h(mdxl).
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Thus we can find at least an w(e) such that (28) and (29) hold and

gl ]

< nguw< [ bz log h(z) dxs + 5 Tog A | log(wxl))h(xl)dxl).

a
(uw)"lgruw(XT—s,l)
Xi
(32)

The right-hand side is independent of ¢. We also have the forward and back-
ward decomposition as in [14]:

1 1, - _
Xi1— Xo1= ‘Z‘Mt,l - E(MT,I —Mr_s))

(33) :
/O(u ) ga u?(Xr-s1, T —s)ds.

Its density function satisfies

3 3
—_—y @ [0} _l
;40 0) +ut(x, 0) - log q(x, vie, 2, £))

(34) P P
=q M, v(e, x, t))—[g(x, v(e, x,t))q(x, v(e, x,8)) —u®(x, t)]-
Jx x

Applying the integration by parts formula, we deduce for any pair 0 < ¢; <
t2 < 0o and any f € C},

/f(x)u“(x, t2)q(x,v(e, x,t2)) dx

— [ P, g, (e, x, 1) dx
(35) "
=/ f_f(x)Q(x, U("J,x,s))g(x,v(«‘«',x,s))
t Jx

X i—u"’(x, s)dxds.
ax
We select w(e) and write u®(x,¢) as u(x,t) in the following discussion.

5. Second stage tightness result. For each pair a¥(x,u) and b(x,u)
satisfying Conditions A—C, we may find a sequence of a},(x,«) and a sequence
of b,,(x,u) satisfying the following conditions: '

, CONDITION D. Conditions A—C hold for a%(x,u) and b, (x,u). Further-
more,

B 1o bm(x,v) dv

(36) L= o)

<1l—— ae. x.
m
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CONDITION E. a(x,u) and b,,(x,u) approach a”(x, ) and b(x,%) in the
following sense: For each r > 0,

/ sup|6f{;(x,u)—6ij(x,u)ldx+ sup |[pm(x,u) — p(x,u)|dx — 0.
|

x|<r u lx|<r u
CONDITION F. The induced gf{;(x, v) and g, (x, v) satisfy (8).

Let us first fix m and drop the subscript m to simplify the notation. Then
the following lemma is true.

LEMMA 8. Use the notation of the Introduction. Assume there is a constant
¢ > 0 such that

37 ll—% <l—c fora.e. x.
Then
(38) “’—q‘ <(1-d®Y)

Jau

PROOF. From the definitions in the Introduction,
(39) v=§&(x,v)q(x,v).
Take the derivative with respect to v on both sides:
1= £(x,0) = q(x,v) + q(x, V)~ £(x,v).
av Ju

So

4 _ 1_Q(x7 v)(é‘/é‘v)f(x, U)
%) = &(x,v)

Let us differentiate on both sides of the following equality with respect to u:

E(x,up(x,u)) =u.

Then we get

dE( dp
% (u2P -1
v (u ou + p)

Thus
9 9 -1 1
j_@£+ﬁ

v\ du - blx,u)’
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Therefore,

17

< l1-c¢
(?vq

~ &(x,v)

 b(x, £(x,v))

= l(l f’(_x’M)/(f(x,v))

Take ¢ = 1/n in the previous section. We only consider the marginal distri-
bution of X ;. Then we get a sequence of diffusions { X{'} with corresponding
density functions {u,(x,¢)} that solve (34). Let us show that sequence is still
tight and its density function gives the solution to (7).

Let 0 < r < oo be a constant. Denote B(r) = {x; |x| < r}. By (32) and the
fact that q(x,t) is bounded from below on each B(r) by a positive constant,
we have

2
dsdx < oco.

d T 9 4
(40) C, = supZ[B(r)/o Y u,/?(x,s)

nog=1

Define on [0, T'] x B(r) a Hilbert space #(") with the norm

d T
(r) _
@n f1tr = J ;fg()fo

Then we have the following lemma. We do not need the additional assump-
tion (8) in the proof of its first conclusion, and we do not need the assumption
(86) in the proof of (42). Since its proof is standard (see [4]) and quite long, we
leave it to the Appendix.

J
9x;

2
f(x,s) dsdx+/}3(ﬁ£T|f(x,s)|2dsdx.

LEMMA 4. There is a subsequence un,)(x,t) and u(x,t) such that for each
r>o0, u,lﬁe)(x,t) converges weakly in #7 to uV/?(x,t) with [] [|ul>?dxdt <
oo and

42) /0 ! /B (r)\,/u,,(k)(x, t) — Valx, t)\5 dxdt — 0.

If we assume further that (37) holds, then

@ [,

Now let us explicitly write the subscript m. For each fixed m, we have a
limit function 2™ (x, t) = lim,_ . 4™ (x, ) according to the previous lemma.

dxdt — 0.

v("'{(}’;j’ x’t) - u(x’ t)p(x’ u(x’ t))
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Passing to the limit in (35),

[ F()u™ (2, £2) P (x, u™ (x, t2)) dix
- [ £(2)u™ (x, t1) pm (2, u™ (x, 1)) dx
- / F()u™ (x, t2) g (2, ™ (x, t3) pra (2, u™)) dx

- f F)u™ (2, £1) @ (2, (x, £1) P (2, ™)) dx

d ot
= 1‘/;1 /ﬂxi f(x)Qm(x,u (x,s)pm(x’u ))

i,j=

3 P
x g9 (x,u™ (x,8) pm(x, u(’"’))gu(”‘)(x,s)dx ds
J

d 2 ..
= th /(,i.f(x)pm(x,u“”’(x,s))aiz,(x,wm)(x,s))

i,j=1

J
x —u™(x,s)dxds.
ox;

From (40) and Lemma 4, it is easy to see that

d T
su
mp ; -/B(r) /(;

Repeating the proof for the first part of Lemma 4 (the only difference is that
we use perturbed p,, to replace g), we deduce that u'™ has a convergent
subsequence. By passing to the limit in (44), we deduce

2
dsdx < co.

0
(), )12
0x;

ff(x)u(x,tz)p(x,u(x, tz))dx—/f(x)u(x,tl)p(x,u(x, t1))dx

d to -
@ =X [ [ o @ pteutns)a(x, u(x,9)

i,j=1

X iu(x,s) dxds.
ox;

Furthermore, we deduce from (33) and (31) that (see [27] and [14]) there is
a measurable process G; = (G,,;) with E[[] |G,|?ds] < oo such that

1 t o
(46) Xt,j—Xo,,-=/0 Gy jds+1(My; — Mo ;) — Y(Mr; — Mr_y ),
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where M, is a forward martingale and M, is a backward martingale. We may
conclude our discussion with the following theorem.

THEOREM 2. Under Conditions A-C, there is a continuous process X; =
(X,j) with decomposition (46) such that its density function u(x, t) with respect
to p(x,u(x,t))dx satisfies (1) and u'’? € #.

APPENDIX
PROOF OF LEMMA 4. Step 1. From (40), u,l/ 2 (-,-) is contained in a bounded
ball in # (. Since # () is reflexive, the bounded ball in #(") is weakly com-
pact. So we can find a weakly convergent subsequence, still denoted as u,(x, ¢),
such that u, converges weakly to some u € #(.

Step 2. Our next goal is to show for fixed r,

T
7 / / iy (%, 8) — w(ax, )| dx dt — 0.
0 B(r)
Denote
' 1
U(s,x,n,t) = f ks(x — ¥)qn <y, v(;, ¥ t)) dy
and

u,(8,x,t) = U4, x,n,t) / ks(x — y)u,(y, t)qn(y, v(%, y, t)) dy.

Then we can easily prove (see [1, 14, 25]) by equicontinuity of the processes
(33) that
(48) |un(8,x,8) — un(8,x,8)| < O(t—s),

where O(t — s) — 0 when (¢ — s) — 0. The quantity O(¢ — s) is independent
of x and n but depends on 5. We have also

|un(3, X, t) - un(x, t)l

ks(y) 1 .
U(a,x,n,t)un(x y,t)qn(x—y,v(n,x y,t>>dy

. ‘ 1
‘ - ———U(gsg(cy,)l 5 Un(x,t)qn (x -9 v(;,x -9, t)) dyl

_ k) v (1 ))
< [ 508D pun(x = 3,0) — unwOlan(x = 10712 = ) )
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1 d
_ ke(y) —un(x —0y,t)d6 qn<x - y,v(%,x —y, t)) dy
Ka(y) 9| Lt — 03, 0| an(x = 3 0( 25— 3,¢) ) dody
U(s,x,n,t) Jo ax " 4)149n UL ,
26K 1 5 1

The last inequality is because «5(y)|y| < 26«s(y). Thus

T
f / |un(8,x,t) —u,(x,t) dxdt
0 B(r)

_28ks(y) [ 9
f [Bm U(s,x,n,t) Jo _“n(x—f’y,t)
X qn(x - v(%,x -, t)) dodydxdt

<25)"* max [v(x)]/ // e

xeB(r+8) U(s,x,n,t)
d
x/ —un(x—0y,t)|dxdydodt
B(r)| 9x

dxdt

T 1/2
<2502 max [y(x)] / (f dx)
xeB(r+39) 0 B(r+38)

1/2
x</ un(x,t)dx) dt
B(r+39) .

T
<200 max [y()] [ ([ u;1<x,t>‘iun(x,t)
o \JB(r+9) dx

xeB(r+8)

J
—un(x,t
—otn(x,1)

T
(49) <28A2 max [y(x)] fo /B )

xeB(r+6)

0
—u;
ax

2 1/2
dx) dt

1/2
)tl/4( min
x xeB<£+a)[7(x)])

2
3/4
<28\ xergg}ia)[v(x)](x gl(lrﬁ )[y(x)]) Cris,

. where the constant C,,s is from (40).

We may also easily verify that for each fixed ¢ and 8, u,(6,x, t) together
with its derivative are bounded uniformly in n. So by (48), (49) and the Arzela—
Ascoli theorem, there is a subsequence which converges uniformly to some
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continuous u (6, x, t). If we still denote this subsequence as u,(-,-), then
T
f f lum(x,t) — un(x,t)| dx dt
0o JB(r)
T
< [ [ lun(e,t) — un(8,%,0) dx dt
o JB(r)

T
+[ / lun(s’x’t)_um(a,x,t)ldxdt
0 B(r)
(50) .
* /o -/B(r) |um (8, %,8) — um(x,¢)| dx dt

< 462%* max [y(x)]( min ['y(x)])_l/2C s
- x€B(r+6) xeB(r+8) ™

T
+// |un(8,2x,t) — um(8,x,t)| dxdt
0 B(r)

When n A m is sufficiently large, the last term is smaller than 66C. We use

a diagonalization argument and Step 3 with 8 = 1, 1, ,... to obtain a subse-

quence, also denoted {u,#)(-,-)}, such that (47) holds.

Step 3. From (47), it is easy to see that {\/un)(:,) } converges to {v/u(:,-) }

a.e. Therefore, for each 0 < £ < 1,

(51) /OT /B(r)‘,/un(k)(x,t) —+/ u(x,t)'z_s dxdt — 0.

For each 1 < g < B, denote by B the Sobolev conjugate of 2 — £. When ¢ is
sufficiently small, 8 > 5. Let 6 > 0 be the solution of

1 6, 1-0
q 2-¢&¢ B

By Holder’s inequality,

/oT L()’W —Vu(z,t)[ dxdt
- /oT /B(,JW ~Vu(x,t) lq“q(l_” dx dt
[T el
L7 Wt - Vit [ axar]

By the Gagliardo—Nirenberg—Sobolev inequality ([4], page 138), the second
factor on the right-hand side is bounded, so we deduce (42) from (51).
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Step 4. Now we are going to show (43) under the additional assumption
(87). We still denote n(k) as n. Take derivatives on both sides of the equation:

1 1 1
(52) v(;,x,t) = V‘1<;) f Ki/n(x — y)un(t,y)q<y,v(;,y, t)) dy.

Then we get from the integration by parts formula,
()
—u| —,x,1¢
dx \n
1 b 1
= V—l(;)/'(l/n(x - y)@un(t,y)q<y,v(;,y, t)) dy
1 b 1
-1( = _ o - d
+V (n>fxg(x y)un(t,y)ayq(y,v<n,y,t>> y
1 J J 1 av
-1( = _ o v - 274
+V <n>f'<s(x y)ayun(t,y)avq(y,v(n,y,t))ay y.

(=)
—vu| —, x,t
Jx \n

So

< V"l(i)fm/n(x—y)l—un(t y)‘ (y, < 'Y )) dy
+V"1(i)/xl/n(x—y)un(t y)‘—q(y, < ' Y ) l
+ V*(%)/Kl/n(x—y)un(t,y)lﬁq<y,v(%,y, t))l j—; dy.

Thus, take the integral with respect to I V~1(1/n)u,(x,t)q(x,v(1/n,x,t))
x dx on both sides:

f un(x,t)q(x,v(l,x,t))‘iv<l,x, t)
B(r) n dx n
5/ v(s,y,t)liun(t,y)lq<y,v(l,y,t»dy
B(r) ay n
* B(r)v<%’y’t)u(t’y)l%q(y’v<%’y’t))‘dy
- +/ un(y,t)v(l,y, t)liq<y,v(l,y, t))‘ %0
B(r) n vy, n

dy
1 J 1
S[ v("’y,t)’_un(t,y)IQ(yﬂ)(_’y’t))dy
B(r) n ady n

dy
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+ v(1 t)u(t )‘i ( v(l t)))d
B0 n,y, Yy ﬁyq Y n’y’ y
1 d 1
+f un(y’t)(l_C)Q(y’v<_’y7t))l_ ( » Y >‘dy
B(r) n ay

The last inequality is from Lemma 3. That is,

c/ Un(x,t) xlet 3v1xt
B(r) n ’ q ’ n’ ’ ax n’ b
1 0 1
5/ v(—,y,t)‘—un(t,y)q(y,v<—,y,t))‘dy
B(r) n ay n
1 J 1
+ U(—,y,t)un(t,y)(—(I(y,U(‘J’J)Ndy
B(r) n dy n

The right-hand side is uniformly bounded in n by Steps 1-3. Now we have

. %[un“’“v(l’x’ ]
<[} om0 o (o)
A (n’ 1) a0

5] me un(x,t)—v(l,x,t)

/ /B(r) (n )ic un(,1)

Thus we deduce that d/dx[v(1/n,x,¢)u,(x,t)] is bounded in L;. Repeating
Steps 1-3, there is a subsequence v(1/n(k),x,t)u,rx)(x,¢) converging in Lj
([4], page 146) to some n(x,¢). Thus we deduce that

1 y n(x,t)
(am™1) = vt

whenever u(x,t) # 0. Therefore,

1 1
v(%’x’t) = /Kl/(n(k))(x — YUn)(y, t)q(y, v(;(—la, Y, t)) dy

n(x,t)
- u(x, t)q(x, m, t)

Sihce v(1/n,-,t) is bounded in L, it is easy to see that, for almost all (x, t),
n(x,t) = 0 when u(x,¢) = 0. Hence

dx

dxdt

dxdt

dxdt

dxdt

dxdt.

n(x,t) = u2(x,t)q<x, n(x’t))

u(x,t))’
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Therefore,
n(x’ t) = u2(x’ t)p(x’ u(x’ t))’

as v = &(x,v)q(x,v) has a unique solution ¢(x,v). O
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