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CROSSING VELOCITIES AND RANDOM LATTICE
ANIMALS

By ALAIN-SOL SZNITMAN
ETH-Zentrum

We consider a Brownian motion in a Poissonian potential conditioned
to reach a remote location. We show that for typical configurations the
expectation of the time H to reach this goal grows at most linearly in the
distance from the goal to the origin. In spite of the fact that H has no
finite exponential moment, we derive three exponential estimates, one of
which concerns the size of a natural lattice animal attached to the
trajectory of the process up to the goal.

Introduction. We consider in this paper a Poissonian potential on R¢,
d > 2, obtained by translating a given fixed shape function W(-), which is
bounded, nonnegative and measurable with compact support, at the points x;
of a Poissonian cloud configuration w = ¥;8, . We assume that W is not a.s.
equal to zero and denote by P the law of the Poissonian cloud with fixed
intensity » > 0, on the space ) of simple pure point measures w on R

We study in this article a Brownian motion in the Poissonian potential
conditioned to reach a remote location. Our aim is to derive controls on the
time it takes our conditioned process to “reach its goal.”

We let P, stand for the Wiener measure starting from x, and we let Z.
stand for the canonical process on C(R,, R?). For y € R¢, a “remote location,”
the conditioned process is described by the measure

N 1 H
(I1.1)  Py(dw) = WI{H < w}exp{—fo V(Z(w),w) ds}PO(dw),
where V(x, w) = L,W(x —x,;) = [W(x — x")w(dx’) is the Poissonian poten-
tial, H is the entrance time of Z. into the “goal,” the closed ball of radius 1
around y, and u(0) is the normalizing constant. In other words, H is the
“time to reach the goal,” our main object of interest in the present work. Let
us mention that the dependence on y, w is dropped from the notation. In a
slightly formal way, the conditioned process is a Brownian motion feeling up
to time H a drift which depends on the cloud structure

Vu
(12) dZs=st+ T(ZS) ds, 0<s<H,
ZO = 0,
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CROSSING VELOCITIES 1007

provided for z € R?, in a consistent way with (I.1),
(1.3) u(z) =ey(z,y, w),
and with the notation of [6],

(I4)  ex,y,0) = Ex[exp{—foH()\ + V)(Z,, ») ds}, H < |,

for A>0, x,y €R?, weQ,if His as above. That is, 0 < u()) < 1 is the
V(-, w) equilibrium potential of B(y,1) which formally satisfies

1Au—~Vu=0 onB(y,1)°,

(15) u=1 on B(y,1),
u =0 atinfinity (for typical configurations).

We show here that the conditioned process reaches its goal with a nondegen-
erate velocity, in the sense that (see Theorem 2.2)

when d > 2, there exist k(d,v,W) € (0,%) such that

(1.6)

P-a.s. limsup EO[H] < k(d,v,W).

yo® I I

The difficulty in proving (I.6) comes from the occurrence within the cloud of
big empty pockets where the conditioned Brownian motion “almost looks like
a usual Brownian motion.” For instance, in dimension 2, using scaling
arguments, the expected time to exit a circular pocket is comparable to the
surface of the pocket and in fact, for arbitrarily shaped pockets, no more than
a universal constant times the surface of the pocket, by a general result of
Cranston and McConnell [1]. Of course in such large pockets, the conditioned
process tends to have a vanishing velocity, which endangers our claim (I1.6).

Moreover, a companion difficulty when working with the crossing time H
is the fact that any exponential moment of H under P0 is infinite for typical
cloud configurations. As we shall explain further below, we palliate this lack
of integrability with an exponential estimate of a different kind concerning
the size of a certain random lattice animal attached to the process. Let us
mention that a similar estimate to (I.6) holds in the one-dimensional case and
follows from the ergodic theorem together with the controls derived in
Theorem 2.6 of [6].

The estimate (I.6) has a natural application to the study of certain Lya-
pounov exponents we introduced in [6]. These Lyapounov coefficients a,(x),
A >0, x € RY, satisfy

1
%)) P-a.s.,for M > 0, lim sup —|— loge,0,y, w) — a,(y)l =
y== g<rem |Vl
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We know from [6] that the nonnegative function a,(x) is jointly continuous,
defines a norm on R? for fixed A and is concave increasing for fixed x. From
(1.6) follows the differentiability at the origin of A — a,(x), for x € R? (see
Corollary 2.3).

This point has an interesting consequence on the study of the asymptotic
behavior of “quenched Brownian motion with a constant drift A in the
Poissonian potential V(-, »)”; see Section 3 for precise definitions. As follows
from our results in [6] and [7], this model exhibits a transition between the
small drift and large drift regimes. There is a certain critical threshold for |A|
which is in general direction dependent and can be expressed in terms of the
norm (). Below this threshold, the process has “zero velocity,” and above
this threshold the process has “positive velocity.” In fact, much more is
known and we refer to Section 3 for precise statements. As we show here the
transition occurs with a “jump in the velocity,” which above the critical
threshold is no less than 1/k, where « is the constant from (1.6).

Let us now explain how the paper is organized. In Section 1 we derive our
key exponential estimates. We chop R? into large cubes of size [, [ large but
independent of |y|. To simplify things there are essentially two types of cubes:
cubes which receive points of the cloud and cubes which do not (the true story
is somewhat more complicated). We derive, on one hand, in Theorem 1.1 and
Proposition 1.2, exponential estimates on the time spent up to time H by the
process in cubes receiving a point of the cloud. We show that a suitably small
exponential moment of this time does not grow faster than geometrically in
|yl. Intuitively, the cubes which receive a point of the cloud are unpleasant for
the process which is “near obstacles” in such cubes.

On the other hand, we introduce the random lattice animal ./ on Z¢, made
of the labels of cubes visited by the process up to time H. We show in
Theorem 1.3 that a suitably small exponential moment of the size of . does
not grow faster than geometrically in N. Ideas there are in the spirit of the
work of Cox, Gandolfi, Griffin and Kesten [2] and Fontes and Newman [3].
For typical cloud configurations, a large || implies that & meets a nonvan-
ishing fraction of cubes receiving a point of the cloud. This is an “unpleasant
experience” for the process and the extent to which it is “unpleasant” is
quantified by a suitable supermartingale introduced in the proof of Theorem
1.3.

In Section 2, we prove (I.6) in Theorem 2.2. The main task is to control the
time spent in empty cubes. We use Harnack’s inequality together with our
exponential controls on the size of &. The two-dimensional situation presents
additional difficulty and in fact we explicitly use a result of Fontes and
Newman [3] in this case.

In Section 3 we discuss the applications to quenched Brownian motion
» with a constant drift in the Poissonian potential.

1. Exponential estimates. Our objective in this section is to prove the
exponential estimates mentioned in the Introduction. These exponential esti-
mates are of two kinds. Roughly speaking, one type of estimate is concerned
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with the time spent by the process in the vicinity of obstacles, and another
type of estimate with the size of the random lattice animal made of blocks (to
be defined below) visited by the process.

We keep here the notation from the Introduction. When A is a closed
subset of R?, d > 2, H, denotes the entrance time of Z in A, whereas for U
an open subset of R¢, T, is the exit time of Z. from U. We let a = a(W) > 0
stand for the smallest number such that W(-) = 0 outside B(0, a). When
z € R?, we write

(1.1) B(z) = B(z,1),

for the closed ball of radius 1 around =z.

Let us now introduce the paving of R¢ which comes in the definition of the
random lattice animal and of the notion of vicinity of obstacles. For ¢ € Z¢,
we consider the cube of size [ and center Iq:

l . o1
(1.2) C(q)={zERd:—ESZ‘—lq‘<§,i=1,...,d}.
Here I(d, v, a) > 8a is a large enough number such that
(1.3) Y 99p (1, v) < o,
n=1

where p,(l,v) stands for the probability that a binomial variable with
parameters n and p = 1 — exp{ — v({¢/4%)} takes a value smaller than n /2.
That such a choice of [ is possible follows from standard exponential esti-
mates on the binomial distribution with success probability p close to 1. Let
us now explain the meaning of (1.3).

The factor 99" = (39)?" represents a (rough) upper bound on the number of
animals I (i.e., finite connected sets) on Z¢, of size n, containing 0, when the
adjacency relation of two sites g, ¢’ in Z¢ is defined via

lg —q'll= sup lg'—¢q"I<1.
i=1,...,d
To see this, one uses a spanning tree of I' with n vertices and n — 1 nearest
neighbor edges, and one constructs a nearest neighbor path starting at 0 of
length at most 2n “walking around the spanning tree”; see Lemma 1 of Cox,
Gandolfi, Griffin and Kesten [2] and Harris [4].

The quantity 99"p,(I, v) is then an upper bound on the P-probability that

there exists an animal I" containing 0, of size n and such that

Y 1{the open cube of side length //4 centered
(1.4) g€l .
at lq receives a point of w} < n/2.
Let us incidentally mention that the random lattice animal, which we later

on associate with Z, corresponds in contrast to (1.4) to the usual adjacency
relation on Z%, where q, q' are adjacent if ©¢_,lq’ — ¢'}| < 1.
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Let us introduce some more notation. For y € R?, we partition the collec-
tion of boxes C(q), ¢ € Z¢, into three disjoint classes indexed by %, %,, %;.
The dependence on y is dropped from the notation. Define

(15) &3 ={qg€23q" €2%]lq’ —qll<3and C(q') N B(y) # ¢}.

Hence &5 is the class of boxes “neighboring the goal B(y)”;

(1.6) Gy = {q €74\ &5: a)( U C(q’)) = O}.
q':llg’—qll<1

That is, ¢ € Z¢\ &; is in &, if no neighboring box of C(q), C(q) included,
receives a point of the cloud w. Finally the remaining boxes, not in &; and
“neighboring the obstacles” are indexed by the class

(1.7) &) = {q €7\ %;: a)( U C(q')) > 1}.
q':llg—q'l<1
Accordingly, we define for i = 1,2, 3,
(1.8) H=Y ["1z,C(q))ds.
qs®,"0

That is, H; is the time spent by the process in boxes indexed by the class &;
until it reaches B(y). We are now ready to state the first exponential
estimate as the following theorem.

THEOREM 1.1. There exist y,(d,v,W) > 0 such that, for y € R% and
weE, B

' X 1
(1.9) Ey[exp{y,H,}] < ZL—(—O_)-
[see (I1.1) and (1.3) for the definition of u(-)].

PrOOF. We express Z¢ as the disjoint union

z¢= U 529+1,
and for I € {0,...,4}?, we define

110  #,=%NnGZ+D and H = YL ['UZ C@)ds.
' q€?; | 0

To prove (1.9) it clearly suffices to prove an analogous statement for each
H,;, I<A{0,..., 4}, We now keep such an I fixed. We define the open set O
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which is the pairwise disjoint union of open cubes of side length 5/ centered
at points in 517¢ + I,

0
(11) o- U [ U cw@),
qebz%+1 'q':llg' —qll<2
and the closed set A contained in O,
(1.12) A= U C(q9).
qEB

We now define two increasing sequences of stopping times of the natural
right continuous filtration %, on C(R,,R?). These stopping times describe
the successive returns to A and departures from O of the process:

R, =inf{s > 0,Z, € A} <,
(1.13) .
D, =inf{s >R,,Z, € O} <,

and by induction, letting 6,, ¢ > 0, stand for the canonical shift on C(R,, R9),

R,.1=Ry°0p +D, <, n>1

D,,,=D;°6p +D, <,
so that

0<R,<D;< - <R, <D, < -,

these inequalities, except for the first one, being strict as soon as the left
member is finite. We now have, on {H < «},

el

11 H, =Y [""uz,ehds - ¥ (fDlAHl(ZS cA) ds)oOR .
i=1 RNH i=1\70 '

D,AH

We now define

(1.15) ci(d,v,W) = sup Ezexp{—fTUW(Zs - x) ds} <1,
0

llzll<l/2
llxll<81/2
where
0
(1.16) U=( U C(q)) .o

llgll<2

‘At this point we use the fact that a < I /2 (in fact, a < /8 for later use) and
- therefore the obstacle attached to x does meet U and is, in fact, strictly
within U. We now pick y(d, v, W) > 0 small enough that

(1.17) E,[exp{yTy}] —1+¢; <1 forz e R™



1012 A.-S. SZNITMAN
It now follows from (1.14) that
u(0) Eo [exp{ vH,, 1}]

(1.18) -
<E, exp{'yz (D, /\H)°9R,AH_f V(Z,, w) ds},H<oo .
0

i>1

Now for £ > 0,

k+1
Eo[exp{y Y (D, ANH)oO0g g — fHV(Zs, w) ds}, H<»
0

i=1

k+1 D.. AH
< Eg|exp{y 2 (D, /\H)°9R,AH_f " V(Zs,w)ds},
i=1 0

Dy AH<®
(1.19) kit J

i=1

= Eo[exp{y i (DyAH)o0p g — LRk+1AHV(Zs, ®) ds},
Ry ANH <o,
EZRk+1AH[eXp{7D1 ANH - fODIAHV(Zs, w) ds}”.
Now when H < and H<R, ,,
(1.20) EZRIM/\H[exp{'yD1 ANH - ,[ODIAHV(ZS, v) ds}] _1

On the other hand, when R, ; < H, then Zg,., ~u €A, and therefore there

exists g €%, ; C &5 such that Z, .y € C(q) It follows that whenever
C(g") N B(y) #* ¢, llg’ — qll > 4; see (1.5). Consequently, when R,,, <H,
Ag-a.8. Dy < H and the left member of (1.20) now equals

EZRk+1[exp{'yD1 - Pv(z,, w) ds}]

ZRy 4

< EZR“l[ele] -1+ Esz+1[eXP{—j;)D1V(Zs’ w) ds}]
< EZRk l[e')’Dl] - 1 + Cl < 1,

combining (1.15) and (1.17) since one of the cubes neighboring C(q) receives a
ppint of the cloud. Therefore, the left member of (1.19) is smaller than

k
Eo[exp{'yz (Dl AN H)OOR,-/\H - kaAHV(Zs, (.0) ds} Dk A\ H < OO]
i=1 0

and by induction is smaller than 1.
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Using Fatou’s lemma, the left member of (1.18) is smaller than 1, and this
proves (1.9) as explained above. O

The second exponential estimate is more straightforward:

PROPOSITION 1.2. There exist y4(d, v, W) > 0 such that for large enough
lyl, for any o € Q,
(1.21) Eo[exp{y3H3}] < m
ProoF. Denote by A the closed ball B(y, L), where L = 4Yd 1 + 1. Then
from (1.5), A contains U, ¢,C(g). Moreover, for |y| > L, vy> 0,

u(0) B, [exp{yH,}] < lzislyllliLEz[exp{'yj;) "1(z, e 4) ds}].

Now when d > 3, using scaling and translation invariance, the last expres-
sion is smaller than

sup [exp{yL2[0°°1(zs e B(0,1)) ds}].

It is classical that there exists y,(d) such that when yL? < y,(d) the last
expression is finite and, in fact, smaller than 2 if y,(d) is chosen small
enough. This proves (1.21) when d > 3, with y; = y,/L?*. When d = 2, one
picks an open ball O, centered in y, containing A, large enough so that
(1.22) P,[H<T,] =% whenzeA.

Then one introduces the successive returns to A and departures from O, as
in (1.13). For |y| > L, z with |z —y| = L and y > 0, we have

| Ez[exp{y[o"'uzs cA) ds}]

(1.23) - B
< Y E|R,<Hc< Rk+1,exp{y Y Do BRI}l.
k=1 j=1
Pick y small enough so that
(1.24) supE,[exp{yD,}] -1+ § < 3.
ze0

Then for 2 > 1,

k
Ez Rk <H,exp{'y E DIOORJ}]

j=1

k-1

R, < H,exp{y Y. Do ORj}Esz[eXP{YDﬂ]l
j=1

[ =E2

4
=< §E2

E-1
R, <H,9XP{7 Y. Dy BRJ}

J=1




1014 A.-S. SZNITMAN

Now when £ > 2,

k-1
-
Jj=1

EZ

k-2
= Ez[Rk—l < HanP{Y Y Do OR,}Esz_l[eXP{YDJ, D, < H]]
Jj=1

Using (1.24) and (1.22), on R,_, < H,
E, _l[exp{'yDl}, D, <H]| < 3.
Therefore the above expression is smaller than

k-2
k-
R, < H,exp{'y Y D1°9R,” < (%) !

Jj=1

1
§Ez

by induction. We now find that
Ez[exp{'nyl(Zs €A) ds}] < %E(%)k_l =2.
Y 1
" This proves (1.21) when d = 2. O

As already mentioned in the Introduction, we cannot hope for an exponen-
tial estimate in the spirit of Theorem 1.1 or Proposition 1.2 in the case of H,
defined in (1.8). We shall instead derive our exponential estimate on the total
number of cubes visited by the process Z. up to time H. To this end, we
define

(1.25) | s#(w) = {q =2 Hg,, <H},

where again we dropped the dependence on y in the notation. Observe that
the path Z. goes from one box to another box through “faces” and not

“corners” because the set of points in R? with at least two coordinates of the
form [/2 + Z1 is polar. Now P -a.s. H is finite and, therefore,

(1.26) Py-a.s. #/(w) is a lattice animal of Z¢ containing 0,

where we use the standard adjacency relation for which q, g’ are adjacent if
flg' —q"l < 1.

Let us briefly explain the strategy underlying the proof of an exponential
estimate under P, on the size of &. The idea is to exploit (1.3) and (1.4), so
that for typical configurations » and large |¥], the number of occupied sites
in &/ represents a nonvanishing fraction (> 1) of l]. On the other hand,
‘using exponential controls in the spirit of the proof of Theorem 1.1, one has
exponential bounds under PO on the number of occupied cubes visited by Z.
and, therefore, on |«|. Let us also mention that our exponential estimate do
not hold when P, replaces PO, even when d = 2.



CROSSING VELOCITIES 1015

THEOREM 1.3. There exists a set Q of full P-measure and yo(d,v,W) > 0
such that, for o € Q,

(1.27) sup (u(0) Ey [exp{y|#1}]) <

(|| denotes the cardinality of ).

ProOF. We define the successive times of travel of Z. at || || distance 3//4:

3l
= = inf 7 -

Si+1=S1°OSi+Si fOI‘iZl.

Observe that Zg and Zg | lie in neighboring boxes C(q) for the neighboring
relation ||g — q’lI < 1. Moreover during the time interval [Zs Zs,, ] 1>0,Z,
cannot visit more than 3¢ distinct boxes C(q). Therefore, if we define

(1.29) A(w)={qe7?,3i20,Z5,5€C(q)},

then & is Iso-a.s. a || || lattice animal on Z¢ (with obvious meaning) and

" (1.30) Pyas. |l < 3%

It therefore suffices to prove an analogous estimate to (1.27) with &/ replaced
by &. From the discussion preceding (1.4), we can pick a set Q of full
P-measure such that

for w € 0, there is n(w) so that for n > no(w)and I' a || ||
(1.81) lattice animal containing O, with [T|=n, I, rHe(qg +
( 1/8,1/8)) =1} > n/2
[in other words, for I" as above, (1.4) does not hold].

From now on we fix a given w € Q) and consider y € R To derive an
exponential estimate on |&7|, we shall use a suitable supermartingale. How-
ever, we still need to introduce some more notations. We define the function
Oc(+) on R? via

Oc(z) =1, ifthe unique ¢ € Z¢ such that z € C(q) is not in &,

(1.32) and is “occupied,” that is, w(lq +(—1/8, l/8)d) >1
= 0, otherwise.
We also introduce x(d, v, W) € (0,1) via

exp{—foS‘W(zs ~ x) ds}

(1.33) x(d,v,W)= sup E,
lzll<i/2
‘ llxll<l/8

where we now use [/2 + /8 + a < 3l/4 since 8a <[ so that the obstacle is
strictly within || || distance 3//4 from z.
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If 7, s , m > 0, denotes the o-field associated to the &, stopping time S,
we define the sequence of 53 s, variables as

M, =1,
(1.34) o

m—

M, = n —OC(ZsL)l(SL+1<H)exp{ _fosmAHV(Zs, ) ds} for m> 1.

Our next step is to show that

(1.35) (M,,) 5o is an &, ;m supermartingale under P,.

Indeed, for n > 0,

EyM,,|75 | = [M (1(3 > H) + 1(S,, < H)y 0@s)MSner<H)

Xexp{_/(Sl/\H)o 03m+S”IV(Z, w) ds})lgg ]
S m

m

= Mm(l(sm >H)+ 1(S,, <H)

X Eg, [x‘0°‘z°’1‘sl<’“ eXp{—f My (2, 0) ds}]).
m 0
Observe that when Zg € U, c,C(q), Py, -a.s. Oc(Zg,) = 0 and
m qEB;
(1.36) E,, [X‘OC(Z°)1(31<H’ exp{ —f 1AHV(ZS, w) ds}]
" 0

On the other hand, when Zg ¢ U ,.,C(q), P, -as., S; < H, so that (1.36)
holds again by (1.33). This proves that E [Mm+1|57 s, ] <M, and therefore
(1.35). Using Fatou’s lemma, we see that

1<E[M,] > Eo[ nX—0c<Zs,>1(S,+1<H>
i>0

(1.37)
Xexp{—/;)HV(Zs, ) ds}, H < »f.

If n, denotes the integer from (1.31) corresponding to w, then Iso-a.s.,
either || < n,
. 1 1\¢
(1.38) or |l¥l<2) 1{ow|llg+ ( 38 >1
- qed

< 2( Y 0c(Zg)1(S,;,, <H) + I%,I),

i>0
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Therefore, from (1.30),

E‘O[exp{ - log(%)lﬂl}] < Eo[exp{— log( - )WI}]

and using (1.37) and (1.38),

= uo (¥,

from which our claim (1.27) follows. O

2. Nonvanishing of asymptotic crossing velocities. The main object
of this section is to show that for typical cloud configurations, EO[H ] grows
asymptotically linearly with |y|l. The proof of this result will rely on the
exponential estimates derived in the previous section. Our main task in this
section is the control of the time spent by the process in boxes C(g) with
q € %,, that is, essentially in the “holes” within the cloud. As we shall
explain below, we shall derive such controls with the help of the exponential
estimate on the size of the random lattice animal . in Theorem 1.3, and
Harnack’s inequality.

First we need some notation. We define for y € R¢, 2,2z’ € R%, s >0,
w e (),

2.1) r(s,z,z2',0) =p(z,2")E; ,.|exp{ — SVZ,w duj, H>s|,
Yy s 2,2 u

where ps(z z') is the Brownian trans1t10n density and 5 . is the Brownian
bridge 1n time s from z to z'. When z or 2z’ belongs to B(y), then
r(s,z,2',w) = 0. So r, is the transmon subdensity of Brownian motion in
the P01sson1an potential killed when entering B(y). We also define
r(s, z, z', w) analogously, except that we omit the condition H > s in the
Brownian bridge expectation. In other words, r is the transition subdensity of
Brownian motion in the Poissonian potential.
The corresponding Green’s functions are

gy(z,z’,w) = fwry(s,z,z’,w) ds,

(2.2) °
g(z,2', w) =f r(s,z,z',w)ds.

0

Of course, when d > 3,

g,(z,2',0) <g(z,2', ») <g%z,2',w)

2.3 ®
( ) =f p,(z,2") ds as defined.
0

In dimension 2, we know from [6], (1.36) and (1.37) that on a set of full P
probability, g(z,z’, w) < «, for z #+ 2.



1018 A.-S. SZNITMAN

We omit the proof of the following lemma which is classical and follows
straightforwardly from the strong Markov property of Wiener measure.

LEMMA 2.1. Let C be a closed subset of R,
A H A A H
(2.4) Eo[f 1(Z, €C) ds] = EO[HC <H,E, [[ 1(Z, € C) ds”,
0 1’0

and for z € R¢,

(2.5) E‘z[fOHuzs e C) ds] = u—(l—z—)—fcgy(z, 2)u(z') dz’,

where u(-) is defined in (1.3).
We are now going to state the main result of this section.

THEOREM 2.2 (d > 2). There is a set Q of full P probability and
k(d, v,W) € (0,%) such that, for o € Q,
1

(2.6) limsup —E,[H] < «.

P Tyl

PrOOF. With the notations of (1.8), we know that H = H, + H, + H,.
Moreover, from (1.9), (1.27) and the estimate (I.7) in the case A = 0, on a set
of full P-probability,

1/lyl

2.7 lim sup E [exp{y —}] < limsup( ) = exp{ sup « (e)},
yo® 0 ! |y| y—>® u(O) |e|=1 °

. imsup E,|exp{ys— ;| < limsup | —— = exp{ sup a4(e },
y— o 0 3 |y| yo® u(O) lel=1 0

Therefore our claim will follow once we prove an estimate analogous to (2.6)
with H replaced by H,. Observe that, as follows from Lemma 2.1,

2.9 EJH, = Y Eo[Hﬁ(q) <H,

g,(Zy, ; 2)u(z) dz].
9c?, ) (¢

1
u(ZHU(q)) j@(q

Now when ¢ € %,, it follows from (1.6) that no point of the cloud o falls in
* the box C(g) and its neighboring boxes. Moreover, neither C(q) nor its
neighboring boxes intersect B(y). Since a <1/8, V(-, w) = 0 on the homo-
thetic of C(g) with ratio 3/2 and center ql. Consequently, u(z) =
E [exp{— [EV(Z,, w) ds}, H < ] is a positive harmonic function on the inte-
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rior of this set which contain C(¢). From Harnack’s inequality we can find a
constant K(d) such that

(2.10) when y € RY, w € Q,q €F,, 2,2' € Clg), u(2)/u(z') < K(d).

Inserting in (2.9), we obtain

(2.11) E [H,] < 2 K(d)By[Hgp, < H] supfc( g,(z,2', w)dz'".

qEF, @
In dimension d >3, from (2.3) together with supg,/z,)8°(2,2)dz" =
const(d, ) < », we see that

(2.12) EJ[H,] <C(d,v,W)-EJ[l«I]

and our claim (2.6), with H replaced by H,, now follows from (1.27) and (1.7)
in the case A = 0. This finishes the proof of (2.6) when d > 3.

Let us now discuss the two-dimensional situations. We introduce in this
case for g € 79, W, the possibly empty “cluster of unoccupied sites in 7%
which contain g. That is, W, is the connected component attached to g of
sites ¢’ € Z¢ with Oc(q'l) = 0; see (1.32) for the definition, with the usual
adjacency relation on Z%: ¢ ,|q! — gi| < 1. When Oc(ql) = 1 (q is occupied),
then W, is empty.

In fact from (1.3) and the discussion following (1.3) the probability that a
site g € 74 is empty, that is, exp{—vi¢/4%}, is nonpercolating for the stan-
dard site percolation problem on Z¢ Therefore, on a set Q; of full P
probability the sets W, ¢ € 7%, are all finite.

From the descnptlon of &,, all ¢’ with [lg’ — gll < 1 belong to W, when
q € %,. We also define, for ¢ € Z¢, the open set

(2.13) 0= (qfler C(q’)) : .

Consider now some fixed w € Q; and g € %,. Introduce as in Section 1 the
successive returns to C(q) and departures from 0,,sothat0 <R, <D; <R,
<+ <R,<D,< - <o, Pras., for z € R?, since O, is bounded when
w € Q. Then for z € C(q),

e e
ol ten| s ral

(2.14)

MelMs

£ [/R ;+Dyo 6p, (Z EC(q) exp{ fV(Zu,w) du} ds]
e

IA

E, xp{—fo V(Z,, ) du}EZRi[fODll(Zs eé(q)ds)”.

i=1
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However, when z € C(q),

E,[D,] = Ez[Toq] = (2/A—A/2(Oq))IOg(Ex[eXP{%)‘—A/z(Oq)Toq”)’

provided A_, ,5(O,) denotes the principal Dirichlet eigenvalue of —A/2 in
O,. Now by (1.18) of [ 5] (see also Cranston and McConnell [1] Lemma 2.1), the
above quantity is smaller than const(d = 2)/A_, ,,(0,) < const(d = 2)|0,l,
using Faber Krahn’s inequality in the last step. Therefore, for z € C(q),

(2.15) f g(z,2',w)dz’ < const- ) E,|exp —fRiV(Zs, w) dst|lO,l,
(@) i=1 0 ’

where the constant is “numerical” and is independent of v, W, y, w, q.
Now for i > 1,

Ez[exp{—joR““V(zu, ) du}]

R S Py S |

Now P,ias. we can find ¢' € Z¢ with O(q']) =1 and Z, € C(g"). As
already pointed out, we necessarily have |lg — q’|| = 2. Therefore,

EZDi[exp{—];)RlV(Zu, ) du}] < EZDi[exp{—];slV(Zu, o) du}] <x
with the notations of (1.28) and (1.33). Using induction,
Ez[exp{—fORiV(Zu, ) du}] <x'"! fori>1land z € C(q).
Therefore, when q €%, and z € C(q),

[C( g(z,2',0)de’ <C(d =2,v,W)|O,l =C'(d =2,v,W)IW,L

Inserting in (2.11), we find

EJH,] <C(d=2,v,W)E, Z W, I]
(2.17)
i qEMIWqI : Wl].

Since unoccupied sites are nonpercolating, from Theorem 4 of Fontes and
Newman [3], we have

=C(d =2, V,W)EO[

' ’ 1
(2.18) P-a.s. limsup sup — ). [W,| = const(v,l) <,
n—o |£|u@n 9
Oe

where % runs over lattice animals containing O.
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It is easy to argue that when y tends to infinity,
inf{l/(w)l; w € Co(R,,R?) with H(w) < oo}
tends to infinity (in fact linearly with |y[). Therefore, on a set of full P-mea-
sure,
(2.19) for large |yl, E [ H,] < const(d = 2, v, W) E,[l«1].
We then conclude as in (2.12). This finishes the proof of Theorem 2.2. O

We now give an application of Theorem 2.2 to the control of the derivative
at 0 of A € [0,%) = a,(x), for x € R%

COROLLARY 2.3 (d > 2). For x € R, the function A € [0,0) - a,(x) € R,
is differentiable at 0. If k(d, v, W) denotes the constant in (2.6),

(2.20) sup ay(e) < k
lel=1

(for the one-dimensional version of this result, see Theorem 2.6 of [6)).

PrOOF. Recall that ,(*) is a norm on R Therefore, it suffices to consider
e € RY, with |e| = 1. Then since A — a,(e) is concave and increasing, ag(e) =
lim, 1 n(a;,,(e) — ay(e)).

Now for fixed n, by (1.7),

n(al/n(e) - 0‘0(3))

n
- 1\17129 ﬁ(—log e1,n(0, Ne, ) — log ey(0, Ne, w)) (P-a.s.)

n

. 1/n H
1\1/1-1310oN-/;) EO[Hexp{ /0()\+V)(Zs,w)ds},

[H < w]/e,\(O,Ne, w) dA.

The function A — —log e,(0, Ne, w) is concave on [0,%), and the expression
inside the integral decreases in A. Consequently, the last term in smaller
than

1
lim sup —EO[Hexp{—fHV(ZS, ) ds}, H < | [ey(0, Ne, )
N-ox N 0
= limsupE,| —
N-ox 0 N

and claim (2.20) now follow's from Theorem 2.2. O

3. Application to quenched Brownian motion with a constant drift
in a Poissonian potential. We shall now discuss the consequences of
Corollary 2.3 on the asymptotic behavior of quenched Brownian motion with
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a constant drift 2 among Poissonian obstacles. By this we mean the path
measures on C(R,, R?) defined for ¢t > 0 and w € Q through

1 t
A= - | V(Z ds Pl

@b = g exp| = [V(Z,, ) ds)Pd(aw)

(3.1) 1
- exp{h 2, - ['V(2,, ) ds}PO(dw),

N 0

provided P} is Wiener measure with a constant drift 4 and S}, S o, are the
respective normalizing constants. In the absence of drift (A = 0), we simply
write @, ,. We shall now recall results from [6] and [7] which show that a
transition of regime takes place as one goes from small values of & to large

values of A.
We introduced in [6] the rate function

(3.2) I(x) = sup(ay(x) — A)
A=0

and the direction dependent critical threshold
(3.3) c(e,d,v,W) =inf{ay(x), x-e > 1}, when e € R? with [e| = 1.

When W is rotationally invariant, «(-) is rotationally invariant as well and
c(,d, v, W) is independent of the direction. We know from Theorem 3.1 of [6]
and Theorem 3.1 of [7] that on a set Q of full P-measure, for A € R,

Z,/t satisfies a large deviation principle with rate function
(34) I™(x)=1I(x) —h-x+sup,(h-y—1I(y)),under @, as t — o,
(when h =0, I" =1I);

if h = |hle and |h| < c(e,d,v, W), Z,/(log t)_2/d satisfies a
large deviation principle with rate function ay(-) under Q{t »
ast — oo,

In particular, Z,/(¢(log £)~*/%) — 0 in @/, probability as ¢ — c.

36 When & = |hle with |h| > c(e,d, v, W), if F is a small enough
(86)  neighborhood of 0 in RY, lim, , .(1/¢)log Q% ,(Z, € tF) < 0.

The statements (3.4)—(3.6) describe a transition from a “subballistic regime’
to a “ballistic regime,” as |k| crosses the critical value c(e, d, v, W). We also
introduced in (2.30) of [6] the star-shaped (at the origin) compact set K,

(3.5)

¢

(3.7) K={veR? ay(v) <1},
and showed in (2.31) and (3.12) of [6] that

(3.8) K={xeR% I(x)= ag(x))
and

P-a.s. for |h| > c(e,d, v, W), for any compact subset F of K°

3.9
(3.9) lim, ,.(1/t)log Q ,(Z, € tF) < 0.
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Of course (3.8) and (3.9) become truly interesting when K is nondegenerate
and, for instance, has nonempty interior. This was shown to be the case in the
one-dimensional situation in Theorem 2.6 of [6]. When K has nonempty
interior, (3.9) and (3.5) predict a “jump in the velocity” at the crossing of the
critical value. Our main contribution here is to be able to treat the d = 2
situation.

THEOREM 3.1. Let d > 2 and k denote the constant from (2.6). Then
(3.10) K> B(0,1/k)
and if v* = inf{lv|, v € K9} = 1/,

P-a.s., for |h| > c(e,d,v,W) and v < v*,

(3.11) 1
lim 7 log @ ,(1Z,l < vt) < 0.
t—>

Proor. Now (3.10) is an immediate application of (2.20) and (3.7), and
(3.11) follows from (3.9). O -
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