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SOME NEW CLASSES OF EXCEPTIONAL TIMES
OF LINEAR BROWNIAN MOTION

BY SANJAR ASPANDIIAROV AND JEAN-FRANGOIS LE GALL

Université Paris VI

We study certain classes of exceptional times of a linear Brownian
motion (B,, ¢ > 0). In particular, we consider the set K~ of all instants
t € [0,1] such that the value B, of the Brownian motion at time ¢ is
greater than its mean value over all intervals [s,t], s < t. We also study
the subset K of K- of all instants ¢ such that in addition B, is greater than
the mean value of B over the intervals [¢,s], ¢ < s < 1. We compute the
Hausdorff dimension of K-, K and some other related sets of exceptional
times. These results are closely related to a recent work of Sinai motivated
by the analysis of solutions to the Burgers equation with random initial
data. The proofs involve studying suitable approximations of the sets K~
and K, and deriving precise estimates for the probability that a given time
¢ belongs to these approximations. A delicate zero—one law argument is also
needed to prove that the lower bound on the dimension of K holds with
probability 1.

1. Introduction. The aim of this paper is to study certain sets of excep-
tional times of linear Brownian motion. Throughout this work, we consider a
linear Brownian motion (B;, ¢ > 0) such that By = 0 a.s. under the probabil-
ity measure P. We are mainly interested in the following three random closed
subsets of [0, 1]:

1 t
K-=1{te[0,1]; t—_s/ B, du < B;, for everyse[O,t)},

1 t
K=1te[0,1]; Z—.s:/ B, du < By, for everyse[O,t)U(t,l]},

1 t
K =1te[0,1]; T——s/ B, du < By, for every s € [0,1)

and ;-l—t/ B, du > By, for every s ¢ (t,l]}.
-t

For t € [0,1], ¢ belongs to K~ if and only if the value of B at time ¢ is greater
than its mean value over all intervals [s,¢], s € [0,¢). In the case of K, we
also require B; to be greater than the mean value over all intervals [¢,s],
s € (t,1]. Finally, K’ contains the instants ¢ such that B; is greater than the
mean value of B over all intervals [s, ¢t], s € [0, ¢), and smaller than the mean
value over all intervals [¢,s], s € (¢,1].
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It is easy to check that, for every fixed ¢ € (0,1], P(¢ € K~) = 0 (note that
0 € K~ by definition) and a fortiori, P(¢ € K) = P(t € K') = 0. Indeed, t € K~
if and only if, for every s € [0, ¢],

fs BYdu >0,
0

where Bgf) = B;— B;_, is a Brownian motion started at 0 and run on the time

interval [0, ¢]. An application of the zero—one law immediately shows that this
event has probability 0. In this sense, we say that K—, K and K’ are sets of
exceptional times.

On the other hand, it is also very easy to check that K~ contains nonzero
times and K is nonempty. In fact, K~ obviously contains the set

H= [te [0,1], B, = sup B, ).
s<t
By a famous theorem of Lévy, the set H is distributed as the zero set of B on
the time interval [0, 1], so that its Hausdorff dimension is 1/2, by a theorem
of Taylor (1955). Similarly, K contains the (a.s. unique) instant p € [0, 1] such
that

B, = sup B;.
s€[0,1]

For reasons that will appear later, it is not so easy to exhibit an element of
K'. Note that K’ would contain any time ¢ such that B, = SUPg<s<; Bs =
inf;<s<1 B,. However, such times almost surely do not exist, by the nonexis-
tence of increase points of linear Brownian motion. One may interpret the
definition of the elements of K’ as a weakened form of the definition of an
increase point.

We now state the main result of the present work, which shows in particular
that K~ and K are in a sense much bigger than H and {p}, respectively. We
denote by dim A the Hausdorff dimension of a subset A of R.

THEOREM 1. We have

dim K- = %, a.s.,
dim K = %, a.s.,
dmK' <3, as,

and
P(dimK' = 1) >0,
P(K'=@) > 0.

The same identities hold if the weak inequalities in the definition of K-, K
and K’ are replaced by strict inequalities.
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Our original motivation for Theorem 1 came from the recent work of Sinai
(1992). Let us first present a more geometric interpretation of the sets K, K~
and K’ that will allow us to make the connection with the results of Sinai
(1992). For every ¢ > 0, set

t
W, =f B, ds.
0

Note that the tangent line to the curve ¢t — W, at ¢ = t; is given by the line
t - Wy, + (¢ —to)B;,. As a consequence, ¢y € K’ if and only if the whole curve
(Wy, 0 <t < 1) lies above this tangent line. Similarly, ¢y € K~ if and only
if the curve (W;, 0 < ¢ < ty) lies above the tangent line at ¢y and ¢; belongs
to K if, in addition, the curve (W;, ¢y < t < 1) lies below this tangent line.
Theorem 1 implies in particular that the set of times where the tangent line to
the curve (W,, 0 < ¢ < 1) intersects the curve at only one point has dimension
1/2.

Sinai (1992) considered a related problem motivated by the statistical anal-
ysis of discontinuities of solutions of the Burgers equation with random initial
data. Sinai replaced the Brownian motion B by a Brownian motion with drift
B: = B; + t, which makes it possible to work on the time interval [0, c0),
instead of [0, 1]. Precisely, Sinai considered the set S of all positive times g
such that the tangent line at ¢, to the curve ¢ — fot Bsds, t > 0 intersects
this curve at only one point. The main theorem of Sinai (1992) states that
the Hausdorff dimension of S is almost surely equal to 1/2 [the arguments of
Sinai (1992) are not quite complete, as the proofs of some basic lemmas have
been postponed to a forthcoming publication]. This is clearly related to our
Theorem 1, although none of the results can be deduced from the others. Our
arguments are quite different from Sinai’s approach.

The present work is organized as follows. In Section 2, we introduce the
main notation and we establish certain preliminary estimates. We use in par-
ticular an explicit formula for the distribution of hitting times for the process
W, which was recently derived by Lachal (1994). In Section 3, we obtain the
upper bound for the Hausdorff dimension of the sets K~, K and K'. To this
end, we use the estimates of Section 2 to bound the probability that K~ or K
intersects a given interval [a, b]. In Section 4, we prove that the lower bound
for the Hausdorff dimension holds with positive probability. We use the stan-
dard technique of constructing a random measure supported on the random
set and applying Frostman’s lemma. This random measure is constructed as
a limit of the normalized Lebesgue measure on suitable approximate sets of
K~, K and K', in the spirit of Le Gall (1992). We also verify that our results
remain unchanged if one replaces the weak inequalities in the definition of
K, K and K’ by strict inequalities. Finally, in Section 5, we complete the
proof of Theorem 1, using in particular a suitable zero—one law to prove that
the lower bound holds with probability 1 for K~ and K. This is straightfor-
ward for K~, but much more delicate in the case of K. In that case, we need
some precise information on the behavior of the Brownian path near the time
p of its maximum over [0, 1]. This information is provided by a decomposition
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theorem of the Brownian path on the time interval [0, 1] due to Denisov [see
Biane and Yor (1988)].

2. Notation and preliminary estimates. We start by defining suitable
approximations of the sets K=, K and K’'. For every ¢ € [0,1/2] and for
aecl0,1-¢],bees 1], we set

t
K, ,=1tela+e,1]; / B, du < (t — s) By, foreveryse[a,t—e]},

S
K, = te[O,b—a];/t B,du < (s—1t)B;, foreveryse[t+e,b]},

87

S
= te[O,b—-e];/ B,du > (s—1t) By, foreveryse[t—l—s,b]}.
t

We also set
- + / - *
Kﬁ,a,b - Ks,a n Kg,b’ Ks,a,b = Ka‘,a n Ke,b
and .
— — + —+ . ’
KB = KS,O’ Ka‘ = Ks,l’ K: = :,1’ K€ = Ke,O,l; KE - Ks,O,l'

In agreement with the notation of Section 1, we then take K~ = K;, K* =
K¢, K* =K}, K = Kj and K' = K.

We denote by |A| the Lebesgue measure of a Borel subset A of R and by
() the canonical filtration of B.

Recall that we have defined W, = f(f B;ds. The pair (W, B;) is a Markov
process with values in R?. It will be convenient to consider this Markov process
starting at any fixed point (x, y) of R2. To this end, we slightly modify the
previous definitions by assuming that on our basic probability space there is
a collection of probability measures (P, ,,(x,y) € R?) such that Py = P and
for every (x, y) € R%, we have the following under Py,

1. The process (B;) is a linear Brownian motion started at y.
2. W, =x+ [§ By ds.
In other words, the law of (B;, W;; ¢ > 0) under P, , coincides with the law
of (y + ve,x + yt + fot vsds; t > 0), where y is a linear Brownian motion
started at 0. Unless otherwise stated, the subsequent statements hold under
the probability measure P = Py .

We then introduce the following random times. For T' > 0, we set

Tp=sup{t €[0,T]; W; =0},
tp =inf{t > T; W, =0},
T=r1¢ =inf{t > 0; W, =0}

with the usual conventions inf @ = +00 and sup@ = —oo. Finally, it will be
useful to denote by (B;) a linear Brownian motion started at 0 independent
of B under the probability P.
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The next three propositions will play a crucial role in the proof of Theorem 1.

PROPOSITION 2. (a) For every fixed t € (0,00),

N g2 /1\2

(b) There exists a positive constant c; such that, for every t, ¢ € (0,00),
£\ V4
2) (—) P(tt>1t)<cy.
e

REMARK. The exact value of the limiting constant in (1), or the value of «
in the next proposition, is not really important for our purposes.

PROOF OF PROPOSITION 2. (a) If 0 < & < ¢, we have, from Lachal [(1994),
Corollaire 2, formule 2-(ii)],
P(tf>t)=P(1; <¢)

3\*? , (®dz ,, [E\ (% do ‘30
= | — - —_— — — —-36/2
(2) s /(; . e K0<4z 8) A me ,
where Ko(u) is the modified Bessel function of index 0. Set A = (¢/¢)1/2. The

change of variables 6§ = n2/(3A), z = u/(4A) gives

) V3u _m2
3) @P(Tj>t)=\/%/o ‘i_”exp(ﬁ>go(u)/o dn exp(%)

According to Abramowitz and Stegun [(1965), pages 375-378], we have

4) Ko(u)z,lé% e (1+0w™) asu— oo,
5) Ko(u)=log%+0(l) asu — 0.

This allows us to use dominated convergence to pass to the limit A — oo in
the right-hand side of (3). The proof of (a) is then completed by the following
formula [Abramowitz and Stegun (1965), page 486, formula 11.4.22]:

o 2
/ Ko@) gy = 2—3/2F(l) .
0 4

u

(b) The stated bound is trivial if ¢t < ¢. If ¢t > &, we have A > 1 and we can
use (3) to get

VAPt > t) < A Ko(uw)
¢ T~ V2rsJo Ju ’

where the last integral is finite by (4) and (5). O
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PROPOSITION 3. Let 0 <a <b <1 and a = (33/2/8752)'(1/4)2
(a) For every fixed t € (a,b),

o

. ~1/4 -—y___ %
(6) 21_1)1(1)8 P(teK_,)= (t—a)l/%’

lln(l) 8_1/2 P(t € Ke,a,b) = lll'% 8_1/2 P(t € K;,a,b)
(7 2

_ a
C (t—a)VAb— )

(b) There exists a positive constant cg, independent of a,b, such that, for
every (t,¢) € (a,b) x (0,1/2],

F—a\ V4
®) ( 8“) P(tc K;,) < cs,
(t —a)V4(b — t)/4 (t—a)4(b —t)/* ,
9) s1/2 P(t € Ke,a,b) = £1/2 P(t € Ka,a,b)
< C3. ‘

PROOF. (a) We first observe that, on the set {W, < 0}, we have B,+ > 0,
P-a.s. It follows easily (by using the strong Markov property and the zero—one
law if B+ = 0) that

7t =inf{t > &, W; =0} =inf{t > ¢, W, > 0}, P-a.s.on {W, <0}.
Hence, for ¢t > a + ¢,
PVsele,t—al, Wey<0)=P(W, <0, szt—a)=%P(T:Zt—a)

by an obvious symmetry argument.
Then, for ¢t > a + ¢,

t
P(teK_,) = P(V sela,t— s],/ B,du < (t—s)Bt>
P Vse[e,t—a],/s(Bt_v—Bt)dvso)

0

=P Vse[e,t—a],/sB’vdsz>
0

$P(rf >t—a).
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Similarly, using the independence of 1ncrements of Brownian motion, we
have, fora+e <t <b-—g,

Pte K.qp) = (teKM,P(Vue[t+e,b], / (BU—Bt)dv§0‘$)>
t

=P(te K;a)P(Vse[s,b—t], /SB’Udvso)
’ 0
=31P(teK,,)P(rf=b—1t)

—1P(rt 2 t—a)P(rt = b—1).
Exactly the same argument shows that
P(te K, ;)= 1P(7+ >t—a)P(rt>b—t)=P(t € K, ap).

The desired result follows from the previous formulas and part (a) of Proposi-
tion 2.

(b) The bounds of (b) follow from the previous formulas and part (b) of
Proposition 2. O

PROPOSITION 4. There exists a positive constant cg such that, for 0 < s <
t<land e €(0,1/2],

i ) c3 £1/2
(10) Plse K5, te Ko) = iy oy
C3 &
(11) P(s € Kg, te Ka) =< 31/4(t _ 3)1/2(1 _ t)1/4>
(12) P(seK,, teK,) < i

sUA(t — §)12(1 — )4

PROOF. Let us start with the bound (10). Suppose first that s > ¢ and
t —s > &. Then, using again the independence of increments of Brownian
motion, we have

P(seK_, teK))

§E<seK;, P(Vue[s,t—e], /QB,,—BdesO‘.%))
=P(seK;)P<Vue[s,t—s], /t(Bv—Bt)dv50>

=P(seK,)P(te K,),

and the desired bound follows from (8). If ¢ — s < &, we simply bound

1/4
P(seK,,teK,)<P(seK;)<P(se KZ)(,:S)
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and we use (8) once again. Similarly, if s < &, we use
o\ V4
P(se K_,teK_;)<P(teK}) < (;) P(te K}).

This completes the proof of (10).
Let us now turn to (11). We first assume that s > ¢, t—s>2sand 1—¢ > &.
Then, by the independence of increments,

P(seK,, te K,)<P(se KE’Oy(t.'_s)/Q, te Kgy(t+s)/2y1)
= P(s € K, t+5)2) P(t € K (t15)/2,1)

and the bound (11) follows in this case from (9). The remaining cases are
treated very easily. For instance, if ¢t — s < 2¢, we write

P(se K., teK.,)<P(seK,, teK})
— P(se K;)P(te K?)

9p \ 12
sP(seK;)P(teKj)(t_s> :

and we use (8) together with the bound

e \M4
+
P(tEKa)_<_02(1_t>

that follows from (8) and an obvious time-reversal argument.
The proof of (12) is exactly similar to that of (11). O

We finish this section with a technical lemma that plays a crucial role in
the upper bounds of the next section. Recall that v denotes the first hitting
time of 0 by W.

LEMMA 5. There exists a positive constant c4 such that, for every x > 0
and every T > 1,
(13) Poo(r>T)<ces TV4H1+ Vx).

PROOF. Note that P, ,(7 > T) is a monotone increasing function in both

variables x, y on (0,00) x (0, 00). It is therefore enough to prove (13) for x > 1.
A scaling argument then gives

Pastr = T) = Prag(r> ) = Pua(7> 35):
X x

The proof of Lemma 5 will be complete if we can check the existence of a
constant c5 such that, for every a > 0,

(14) Pii(t>a)<cs a 14,
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Clearly, we may restrict our attention to a > 2. Now observe that
1
P<B1> 1, f B.ds > 1)=c>0.
0
Hence using Proposition 2(b) and the Markov property of the process (W, B;),
we have
cia™V* > P(1}f > a) > E(Liw,-1, Bi>1) Pw,B, (T > a—1))
> E(L(w,>1, B>1) Pr1i(7 > a — 1))
=cPii(r>a—-1),

and the desired result (14) follows immediately. O
3. Upper bounds on the Hausdorff dimension.
PROPOSITION 6. We have dim K~ < 2, dimK < } and dim K’ <, P-a.s.

The proof of Proposition 6 relies on the following lemma, which is inspired
by Lemma 6 in Evans (1985).

LEMMA 7. For every a < b, denote by F,; the o-field generated by the
increments of the process B on the time interval [a,b]: Fop = 0(By —B,, u €
[a,b]). Then, for every a,b € (0,1) with a < b, 1 — b > b — a, there exists an
F o p-measurable random variable U,y such that

(15) P(K™N[a,b]#D| Fp) < (b—a)/* U,y
and
(16) E(U2,) < c(1—b)""2,

where cg is a positive constant independent of a,b.

PROOF. Fixa,bec(0,1) witha <b,1-b>b—a.If KtN[a,b] #J, there
exists some £y € [a, b] such that, for every s € [b,1],

B, du < (s —to) By,.

to

Hence, we have, for every s € [b,1],
(b~t) inf B, +/b B, du < (s —to) By,
and also

(b—a) (inf B, — supBu) +/ B, du < (s —b) sup B,.
[a,b] [a,b] b [a,b]
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Now set BZ = By, — By, so that B? is a Brownian motion independent of 7.
If n = sup(, ) By — inf(ap) By, we get

P(K*N[a,b]l# D | F)

s=b
5P(V8€[b,l],/ Bbdu—(b—a)n
0

- (s=b)(sup B~ By) < 0\%)

s—b

< P(Vse 6,11, [ (B;—mdu—(b—a)nsO\%)
0

= P—(b—a)n,—n(v CRS [0> 1- b], Ws =< O)

= P_(p-ayn,—n(T0 = 1= b).

By the symmetry and the scaling property of the process (W, B;), the last
probability is equal to

1-b
Py_a)-129,(6-a)1729 (To e -~ a)-

We take U, p = (b—a) Y4p,5((b—a)"/2n), where @a5(y) = Py y(10 > (1-0)/
(b — a)). Obviously, U, is Fp-measurable, and it only remains to check the
moment condition (16).

By scaling, (b — a)"V2n has the same distribution under P as ¢ =
sup(o,1] By — inf(o,1] By. Let ps(y) denote the probability density of . Then,
by Lemma 5,

o0 1-b)\?
E(Ug,b) = (b — a)-l/2/(; pg(y)Py,y(TO > B——a> dy

o /1 A\1/2
<dG-a 2 [T(355) 1+ vR ) dy

<cg(1—b)'?

because the variable £ has moments of any order. This completes the proof of
Lemma 7. O

PROOF OF PROPOSITION 6. We first consider K~. Let a,b € (0,1) with a <
b,1—-b>b-a. By Lemma 7,

b—a>1/4

P(K*N[a,b] #@) < (b~ a)"* EUay) < ¢ (1 —b

Suppose in addition that @ > b —a. For 0 < ¢ < 1, let B, = B;_; — By, so
that B is also a Brownian motion started at 0 under P, on the time interval
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[0,1]. Let Kt be defined as K+ but with B replaced by E_ Then ¢ belongs to
[a,b]N K~ if and only if 1 — ¢ belongs to [1 —b,1 —a] N K*. Hence

_\1/4
P(K™N[a,b]#@) = P(K*N[1-b,1-a] #@) < ci/? (%) :

The desired upper bound on dim K~ will now follow from this inequality by
standard arguments. For every n > 1, let A, be the set of all subintervals of
[0,1] defined by

i—1 1 .
Q:L= [2_n"2_,l']’ 1'=1’--"2n~

Fix a constant ¢ € (0,1/2). Notice that, for n sufficiently large and [a, ] € A,
the condition [a,b] N [c,1 — c] # & implies @ > ¢/2, b < 1 — ¢/2. Then, by
Fatou’s lemma and the previous bound,

2"
E (hm inf 2—3n/4 Z 1(K‘ﬂ[c,1—c]ﬁQf#Q)>

n—->oo i=1
2"
< liminf 274 3" P(K~ N[c¢,1—c]N Q} # @)
2",
< liminf 279/ L@ nie1-cize P(K™ N QY # D)
-1

n—oo
1=

Zn
< liminf 27374 3" g/ (c/2)~ V4 277/

n—oo o1
< OQ.

We conclude that

2"
lim inf 2737/4 Z 1(K‘ﬂ[c,1-—c]ﬁQ:‘#g) < 00, P-a.s.

n—>oo i1
which, by the very definition of Hausdorff dimension, implies that
dim(K N[¢,1—-¢]) <3/4 as.

Since this holds for every ¢ > 0, the proof of the statement concerning K~ is
complete.

We now turn to the proof of the second statement of Proposition 6. Let
0<a<b<1withb—a <an(1-b). Notice that the event { K~ N[a,b] # &}
is Fp-measurable. We have, from Lemma 7,

P([a,b]N K" NK* # @) < E(L(apjnk-22)P([a,b] N K+ £ & | Fp))

< (b-a)"* E(\(apink-+2) Uap)-
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We then use the same time-reversal argument as in the beginning of the proof.
By applying Lemma 7 to B, with an obvious notation,
P([a,b]n K" NK*™ #Q)
<(b- a)1/4 E( 1([1~b,1—a]ﬁ[?+;é®) Uap)
=b-a)"EU,p P((1-b,1-alnK*#F| o(B,;,0<t<1-a))
=< (b - a)l/Z E(Ua,b ﬁl—a,l-—b)
< (b— )2 (E(U2,) B(U3,,.4)"
<cg(a(1—0))" " (b—a)'/%

In the sEcond equality, we used the fact that U, is & ,p-measurable, hence
also o(B;, 0 <t <1 — a)-measurable. We have thus obtained

P([a,b]N K # @) < cg(a(1-b))"Y* (b —a)''.

The proof of the upper bound on dim K is now completed by the same
standard arguments that we have used to bound dim K~. The proof of the
upper bound for dim K’ is exactly similar (clearly, the statement of Lemma 7
also holds when K™ is replaced by K*). O

4. Lower bounds on the Hausdorff dimension.

PROPOSITION 8. We have
P(dimK~ >2)>0, P(dimK=>1)>0, P(dimK >1)>o0.

PrROOF. We will first obtain the statement concerning K. For every ¢ €
(0,1/2), let w, be the (random) finite measure on [0, 1] defined by

Ma(A) = 8~1/2 |K£ n A|,

for any Borel subset A of [0,1]. Then u, is a random variable taking values
in the set .#; of all finite measures on [0, 1]. The space .# is a Polish space
for the weak convergence of finite measures. For every ¢ € (0,1/2), the law of
W is a probability measure on .#.

By Proposition 3,

“2 1 ! dt

E(ue([0,1)) =7 [" Pt e K)dt <2 [ o,
so that the quantities E(w.([0,1])) are uniformly bounded. As a simple con-
sequence of Lemma 4.5 of Kallenberg (1983), it follows that the laws of the
random measures u. are relatively compact (for the weak topology on the set
of all probability measures on .#;).

Let (&,) be a sequence strictly decreasing toward 0, and let €([0,1],R) de-
note the space of all continuous functions from [0, 1] into R, equipped with the
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topology of uniform convergence. For every n, introduce the random variable
{™ taking values in .#f x €([0,1],R) defined by

{" = (Me,, (B,0 <t =<1)).

Obviously the laws of (™ are also relatively compact. Hence, by extracting a
suitable subsequence, we may assume that they converge to a certain prob-
ability law on .#¢ x €([0,1],R). By Skorokhod’s representation theorem, we
may find on a certain probability space a sequence

"= (p", (B},0<t<1))
and a variable
(= (p>, (BP,0<t=<1))

in such a way that, for every n, {* has the same distribution as {”* and " con-
verges almost surely to {*. Notice that the processes B”, B® are linear Brown-
ian motions started at 0. We denote by K(B>) [respectively, by K., (B")] the
random closed set defined in the same way as K (respectively,.as K., ) by
replacing the Brownian motion B by B® (respectively, by B"). Since (" has
the same distribution as (", we have also

p"(A) =&, |K,,(B") N Al,

for any Borel subset A of [0,1], a.s. In particular, the measure u" is almost
surely supported on K, (B").

LEMMA 9. The random measure u™ is a.s. supported on K(B>).

PROOF. By the definition of K(B), it suffices to show that, for every n > 0,
y >0,

*B>®d
am M°°({t<1—n, sup it——“——li>B§°-{—y})=0
t+m<s<l s—t
and
'B®d
(18) ,u°°({t>n, sup M>B;’°+y})=0.
O<s<t—-n t—

We prove only (17), since the proof of (18) is identical. We fix  and y and set
*B>®d
Gy ={e<1-m sup LFEEL Byl
t+mn<s<l s—t
Notice that G(7, y) is an open set. Hence,

(19) p2(G(n,y)) < liminf u™(G(n, 7)) as.
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However, for every n, the measure u" is a.s. supported on K, (B") and, in
particular, on
*B*d
{t €[0,1—¢,], sup f’—"—u < B;‘}.

t+en<s<l s—1

From the a.s. uniform convergence of B" toward B, it follows that a.s. for
n sufficiently large, G(7, v) does not intersect the support of u". The desired
result (17) then follows from (19). O

LEMMA 10. For every v € [0,1/2), there exists a constant c(,) such that, for

every ¢ € (0,1/2),
(d L(dt
(// pe(ds) o (dt) )) .
[0,1]2 |z — s]

PROOF. We use the bound (11) to get

we(ds) po(dt) el P(seK,, te K,)
(././o 11 |t — s|” ) //O<s<t<1) (t—s) dsdt

<9 dsdt
€3 f/ (0<s<t<1) 81/4(t - S)V+1/2(1 - t)1/4’

and it is easy to verify that the latter integral is finite. O

We can now come back to the proof of Proposition 8. First observe that
the measures u ® u” also converge a.s. to u® ® u®. Since u” has the same
distribution as u,,, it follows from Lemma 10 that

(// u>(ds) M°°(dt)> - liminfE</ Man(ds)ﬂan(dt)> < ()

It —s|¥ n—oo [t —s|¥
Thus,
(20) /f (d:i;;v(dt) <00 a.s.

On the other hand, if we take v = 0 in Lemma 10, we obtain that the sequence
w™([0,1]) is bounded in L2-norm. Hence, this sequence is uniformly integrable
and we have

B(u™((0,1])) = Jim B(u"([0,1])) = Jim [ e p(s e K, ) dt

Lt dt
=a /0 FA(1 — )14

by (7), using (9) to justify dominated convergence. We get in particular that
P(u*® #£0)>0.

Using Lemma 9, we get that the compact set K(B*) supports a measure
Moo, Which is nontrivial with positive probability and such that the bound (20)
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holds for every v € [0,1/2). By the classical Frostman lemma, this implies
that dim K(B*) > 1/2 with positive probability. Since the compact sets K
and K (B*) have the same distribution, the second statement of Proposition 8
follows.

The proof of the third statement is exactly the same. The proof of the state-
ment concerning K ~ is also similar, with some obvious changes: The auxiliary
measures u. are defined by

pe(A) = e V4K N Al

We use again Proposition 3 to get the relative compactness of the laws of
. In the analogue of Lemma 10, we replace the condition v € [0,1/2) by
v € [0,3/4) and we use the bound (10) for the proof. O

We will now strengthen Proposition 8 by showing that this result remains
valid if we take a more restrictive definition of the sets K~, K and K'. Pre-
cisely, we denote by K~ (respectively, K and K’) the random sets obtained by
replacing the weak inequalities in the definition of K~ (respectively, of K, K’)
(cf. Section 1) by strict inequalities.

PROPOSITION 11.  The results of Propositions 6 and 8 remain valid if K-,
K and K’ are replaced by K~, K and K’, respectively.

_PROOF. It is obvious that the upper bounds of Proposition 6 also hold for
K-, K and K'. We will show that the lower bound for K in Proposition 8 also
holds for K. The same argument can be applied to K~ and K'.

Recall the notation of the proof of Proposition 8. We will check that, for
every & € (0,1/4),

21) ,uoo({te[O,l—é), B = sup 1 /sBzodu}>:O.
t

t+o<s<1 8 — 1

The same argument applies to the processes B" and B™ reversed at time 1
[i.e., to the processes (B}_, — B}) and (B{°, — B{°)] and implies that

1 t
22) Mw({te(a,u, BX = sup / deu}):o.

0<s<t-8 L — S
By using (21) and (22) for a sequence (8,) decreasing to 0, we get that
p®(K(B*\K(B*®))=0 a.s.
Therefore, u*° is a.s. supported on K(B>), and the same argument as in

the end of the proof of Proposition 8 implies that dim K > 1/2 with positive
probability.
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It remains to prove (21). We fix 6 € (0,1/4). For ¢t € [0,1 — 28], we set

I"= sup [ (B'—BMdr,

t+28<u<1Jt
u
I = sup (BY — By)dr.
t+28<u<1Jt

Let g be a continuous function with compact support from R into [0,1], and
let & be a continuous function from [0, 1] into [0, 1], such that k(¢) = 0 if and
only if £ > 1 — 28. Recall the almost sure uniform convergence of B" toward
B*, the almost sure weak convergence of u" toward u* and the fact that the
sequence u"([0,1]) is bounded in the L2-norm. It follows easily that

@3  E( / u>(de) h(t) g(IF)) = lim E( [ w(dt) h(t) g(I})).
On the other hand,

1/2 1
. E( f w(de) h(t) g(I7)) = &, [0 dt h(t) E(1x,, () g(I}))

1
< 3;1/2/0 dth(t)E(lKg"",M(t)g(I?))’

0.

where K Z,,,O,t 15 = Ko, 04+5(B"), with an obvious notation. We may write I} in
the form

t+6 u
"= sup ([ (B?—B?)dr+/ (B?—B?)dr).

t+26<u<1\Jt 48
Then, since the event {t € K 0Lt +5) is measurable with respect to o (B}, u <
t + 8), we can apply the Markov property at time ¢ + & to get

E(lg,, (08U}) = E(1ks | () Ea,p,(g( sup  W.))),

o d<usi—(t+8)

where a,; = “+%(Br — Br)dr, b,; = B" . — B" and we use the notation
5 t r t ) t+6 t

introduced in Section 2 for the process (W;) and the probability measures
P, . We have, therefore,
E(lgr . (0gI})) < P(te K} 4..5) ¥(t),

where

(¢) = sup E,, su W.)).
ll/ a,be% b(g(agugl—lzurs) ))
Hence, from (23) and (24), we obtain
1
E(/,u""(dt) h(t)g(I‘t”)) < 1i£ni£f/0 dt h(t) y(t) &7 V2 P(t € K7 4 115)

1
< 025—1/4/ dt k() p(t) ¢4
0
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by Proposition 3. Now consider a decreasing sequence ( g,) such that g,(0) =1
and gp(x) = 0 if |x| > 1/p. Denote by ¢, the associated function . We claim
that, for every ¢ € [0,1 — 28],

lim | ¢,(t) = 0.
b= R

This follows from the fact that the density under P,p of sups1_(;457 Wu
is bounded by a constant independent of a,b (to verify this property, write
sup[s1-(+5)] Wu = Ws + V, then observe that the variables W5 and V are
conditionally independent given B;s and that the conditional density of W is
bounded independently of a, b). Then, using dominated convergence,

E( [ u=(dt) h(t) Lur—)) = lim | B( / p>(dt) h(t) g,(I7))

p—>00

1
< lim | ¢y 6~V f dt h(t) ,(8) £V
0

=0.
The desired result (21) follows, with & replaced by 26. O

5. Zero-one laws for K~ and for K. In this section, we complete the
proof of Theorem 1 by checking that the lower bounds for dim K~ and dim K
in Proposition 8 and their analogues for K~ and K obtained in Proposition 11
hold almost surely. It is of course sufficient to treat the case of the sets K~
and K.

PROPOSITION 12.  The lower bounds dim K~ > 3/4 and dim K> 1/2 hold
almost surely.

PROOF. We first treat the case of K~. This case is a very simple application
of the classical zero—one law for linear Brownian motion. For every L € (0, 1],
set

~ t -
K"L={te[0,L]; v sel0,t), -t-%—s[ Budu<B,}=K‘n[0,L].

Let (L) be any sequence strictly decreasing to 0. An obvious scaling argument
shows that K —L» has the same distribution as L, - K~. In particular, the sets
{dim K—I» > 3/4} all have the same probability, which is also P(dim K~ >
3/4). Since these sets form a decreasing sequence,

P( ﬁ{dim K-l > 3/4}) = P(dim K~ > 3/4) > 0,

n=1

by Proposition 11. However, by the zero—one law, the event

ﬁ{dim K~ > 3/4}

n=1
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must have probability 0 or 1. Hence, it has probability 1, which gives the
desired result for K. ~

We now turn to the analogous result concerning K. The proof will be sig-
nificantly more difficult, because we cannot use the classical zero—one law.
Instead, we need a kind of zero—one law for the behavior of the Brownian
paths near their maximum on the time interval [0, 1]. Roughly speaking, the
decomposition theorems of Williams (1974) suggest that the behavior near
the maximum can be described by two independent three-dimensional Bessel
processes, to which a suitable zero—one law can be applied. The precise for-
mulation of this idea will require certain details that are developed below.

We start with some notation. Note that K c (0, 1) a.s. For every n > 0, set

_ . 1t 1 !
K“”:IteKﬂ(O,l), ;/ B,du < B, —n and ﬁ/ Budu<Bt—77}'
0 - t

Notice that, if (n,) is a sequence decreasing to 0, K is (a.s.) the countable
union of the sets K,

Let R = (R;, t > 0) be a three-dimensional Bessel process started at 0 [in
short, a Bes3(0) process, see, e.g., Revuz and Yor (1991), Chapter XI]. Let R’
be another Bes3(0) independent of R. The process U = (U, t € R) defined by

~R;, ift>0,
Ue= {—R’_t, ift <0,

will be called a two-sided Bes3(0) process. If Z = (Z;, ¢t € R) is a continuous
process indexed by ¢ € R, we define

K(Z)= {t eR; Vse(—o0,t)U(to0), S—lt /sZudu < zt}.
- t

Finally we also recall the notation introduced in Section 1: p is the almost
surely unique time in [0, 1] such that B, = supy( ;] B:.

LEMMA 13. Let 6 € (0,1/2) and n > 0. There exists a process (Z;, t € R),
defined possibly on an enlarged probability space, such that the law of Z is
absolutely continuous with respect to the law of the two-sided Besg(0) process,
and the following property holds a.s.:

{t—p; te KWN[51-8]} c(K(Z)N[6—p,1-6—pl)C{t—p; teK]}.
We postpone the proof of Lemma 13, which is basically an application of a
decomposition theorem for the Brownian path, and we complete the proof of

Proposition 12. By Proposition 11, we may choose 8§ € (0,1/2) and 7 > 0 so
small that

P(dim (K™ n[8,1-8]) > 1/2) > 0.
The first inclusion of Lemma 13 then implies that

P(dim(K(Z)N[-1,1]) > 1/2) > 0.



EXCEPTIONAL POINTS OF BROWNIAN MOTION 1623

Since the distribution of Z is absolutely continuous with respect to that of the
process U previously defined, we have also

P(dim (K(U)N[-1,1]) > 1/2) > 0.
The point is that by the scaling properties of the Bess(0) process, the quan-
tity
P(dim(K(U)N[-a,a]) > 1/2) > 0

is independent of the choice of a > 0. If (a,) is a sequence decreasing to 0, we
have, therefore,

P( ﬁ {dim (K(U) N [~an,an]) > 1/2}) > 0.
n=1
We claim that the event
H = () {dim (R(U) N [~an,an)) = 1/2)
n=1

must have probability 0 or 1. Let us briefly justify this claim. For every b > 0,
set

Ap = sup{t > 0, R, = b}, » =sup{t >0, R, =b}.

Then H is measurable with respect to &, = o(U;, —Aj < ¢ < Ap). Now notice
that A, | 0 as b | 0, and that the process (R,,+:—b,t > 0) is a Bes3(0) process
independent of &5, by a well-known property of Bes3(0) processes [see, e.g.,
Revuz and Yor (1991), Proposition 3.9, page 236]. A slight modification of the
proof of the standard zero—one law for Brownian motion shows that the o-field
Mps0 b is trivial, which gives the claim.

We conclude that H has probability 1. Using the fact that the law of Z is
absolutely continuous with respect to that of U, we have also

dim(K(Z)N[-a,a]) > 1/2, Ya>0, a.s.
Then, the second inclusion of Lemma 13 shows that
dimK >1/2 as.on{8<p<1-—35}
To complete the proof, it suffices to note that P(6 < p<1—-68)411asé | 0. O

REMARK. The previous argument gives the more precise statement
dim(IZﬂ[p—a,p%—a])z%, Ya>0, as.
PrROOF OF LEMMA 13. We first recall a decomposition theorem for the
Brownian path due to Denisov, in the form stated in Biane and Yor [(1988),

Théoréeme 10]. Let (X,) and (X7}) be the two processes indexed by ¢ € [0,1]
defined by

X,t =(1- P)_l/z(Bp - Bp+(1—p)t)’
Xy = P_l/z(Bp — Bp—pt).
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Then X' and X" are two independent Brownian meanders, which are also
independent of p. According to Biane and Yor [(1988), Théoreme 3], we also
know that the law of the Brownian meander is absolutely continuous with
respect to the law of the Bes3(0) process considered on the time interval [0, 1].
Therefore, using the scaling property of the Besg(0) process, we obtain that
the law of the triple (p, (B, — B(,4t)a1)t=0, (B, — B(p—t)v0)e=0) is absolutely
continuous with respect to the law of (p, (R; /\(l—p))tzo’(R/t//\p)tEO)’ where R’
and R” are two independent Bes3(0) processes, independent of p.

For x > 0, denote by @, the law of a three-dimensional Bessel process
(Rt)t>0, wWith Ry = x. For a > 0, let L, = sup{¢ > 0, R; = a} (supd = 0)
and denote by Q¢ the law of the process (R;);>o conditional on the event
{a L, < 67n}. Notice that this event has positive probability, so that Q¢ is
(obviously) absolutely continuous with respect to Q.

Set M = B, — inf[( 1] B;. By enlarging the probability space if necessary,
we may introduce a pair of processes (Y’,Y”) such that the conditional distri-
bution of (Y’,Y"”) knowing (B;)o<¢<1 is Q%’IP_BI ® Q%’i. We then set

V,t=[B,,—B,,+,, if0<t<1—p,

’t_(l_p), ift>1-p,

V,,_{B,,—B,,_,, if0<t<p,
t = Y//

t—p> if t > p.

Notice that, if A, = sup{¢t > 0,Y; = M}, A}, =sup{t >0, Y, = M}, we have
M), < né and M)}, < né by construction.

By using the fact that Q% « @, for every a > 0, x > 0, together with
the previous observation on the law of the triple (p, (B, — B(,+t)a1)=0, (B, —
B(,-1)v0)t=0), one easily checks that the law of the pair (V’, V") is absolutely
continuous with respect to the law of two independent Bes3(0) processes.

We take

g _ |~V ift=0,
‘Tl -vr,, ift<o,

It only remains to verify the two inclusions of Lemma 13. The second one is
clear because Z; = B,;— B, for every ¢t € [—p,1— p]. The first one will follow
from our construction and, in particular, from the conditioning used to define
V' and V”. Let t € K N[8,1— &]. We have to verify that, for u # ¢,

1 e

p
i) Zeds<Ziy=B.-B,

Consider the case u > ¢ (the case u < t is symmetric). If u € (¢,1], the result
is immediate:

fu_p Z.ds = f“(BS _B,)ds < (u—t)(B; — B,),
t t

-p
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because ¢ € K™ c K. Note that, for u = 1, the definition of K™ gives a little
more:

fl_p Z.ds = /I(BS—B,,)ds < (1-t)(B;—B,)—(1—t)n < (1-t)(B,—B,)—bn.
t t

-p

Then, if u > 1,

u—p 1-p u—p
f sts=f Z.ds+ Z.ds
t t—p

—p 1-p
u-1
<(1—t)(Bt—Bp)—8n—/ Y.dr
0
<(1-t)(B:—B,)—n—(u—-1-Ny)+ M

s(l—t)(Bt—Bn—an—(u—l—%") (B, B,)
+

o)
< (u—t)(B;— B,) — 6n+ M"(B,, — By
< (u—t)(B; - B,),

which completes the proof. O

The different assertions of Theorem 1 follow from Propositions 6, 8, 11 and
12, except for the fact that P(K' # &) > 0. This fact can be easily derived as
follows. Let & € (0,1/8). The event

(25) —e—t<B;<e—t, vtel0,1],
has positive probability. However, if (25) holds, we have, for ¢ € [0,1/2],

1

1 1
1_—t./t Budu58—§(1+t)<—a—t§Bt

and, fox: tel1/2,1],
t
—1—/ Buduz—e——t—>a—tth.
tJo 2

This shows that K’ = & whenever (25) holds.

Note, however, that K’ # & as soon as By > 0. In fact, K’ contains any
time ¢y € (0,1) such that W;, = inf[ 17 W, and such a time clearly exists a.s.
on {B; > 0}. This suggests the following plausible conjecture.

CONJECTURE.

dim K' = % a.s. on {B; > 0}.
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