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SINGULARITY POINTS FOR FIRST PASSAGE PERCOLATION

BY J. E. YUKICH1 AND YU ZHANG2

Lehigh University and University of Colorado

Let 0 < a < b < ∞ be fixed scalars. Assign independently to each edge
in the lattice Z

2 the value a with probability p or the value b with probability
1 − p. For all u,v ∈ Z

2, let T (u, v) denote the first passage time between
u and v. We show that there are points x ∈ R

2 such that the “time constant”
in the direction of x, namely, limn→∞ n−1Ep[T (0, nx)], is not a three times
differentiable function of p.

1. Introduction, main results. Consider the following simple model of first
passage percolation. E := E(Z2) denotes the edges in the integer lattice Z

2, 0 <

a < b < ∞ are fixed scalars, and � := {a, b}E . For all e ∈ E and ωe ∈ �, P [ωe =
a] = p and P [ωe = b] = 1 −p, where 0 < p < 1. In other words, we assign either
a or b to each edge with probability p or 1−p independently from the other edges.
Denote the product measure on � by Pp and the expectation with respect to Pp

by Ep .
For all u, v ∈ Z

2, let T (u, v) denote the first passage time between u and v.
Formally, T (u, v) is the infimum of

∑
e∈γ we, where γ ranges over all finite paths

in Z
2 from u to v. If x and y are in R

2, we define T (x, y) = T (x′, y′), where x′
(resp. y′) is the point in Z

2 closest to x (resp. y). Any possible ambiguity can be
avoided by ordering Z

2 and taking the point in Z
2 smallest for this order.

Let 0 denote the origin of R
2 and for all x ∈ R

2, let T (x) := T (0, x) be the first
passage time between 0 and x. It is well known by Kingman’s subadditive ergodic
theorem ((1.13) of [9]) that, for all x ∈ R

2, there is a constant µp(x), such that

lim
n→∞

T (nx)

n
= µp(x) a.s. and in L1.(1.1)

When x = (1,0), the limit µ∗
p := µp((1,0)) is called the time constant of

Hammersley and Welsh [8]. Without loss generality, for any x ∈ R
2, we also call

µp(x) the time constant in the direction of x.
In general, physicists believe that most percolation constants should be real ana-

lytic as functions of p, excepting the singularities at the critical case. In particular,
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when ωe only takes value 1 or 0, the behavior of the time constant is similar to
that of the correlation length [1]. Furthermore, the analyticity of the correlation
length, as expected, is proved for all p except for the critical case when d = 2 [2].
Few rigorous results are known for the time constant. Cox and Kesten (Theorem 3
of [4]) show that µ∗

p is continuous with respect to the weak convergence of the
distribution of the passage times, from which it follows that µ∗

p is continuous in p.
With these observations, one might believe that both the correlation length and

the time constant are analytic except for the critical case when ωe takes the val-
ues 1 or 0. Furthermore, one might also expect that the behavior of the time con-
stant in the critical case is similar to the behavior in the case when ωe takes the
values a or b with 0 < a < b. We find here that the analyticity of the latter is not al-
ways true. The main goal of this paper is to show there is a direction for which the
directional asymptotic speed is not three times differentiable in the parameter p.

Recall that the classical grid L for oriented percolation is given by L :=
{(m,n) ∈ Z

2 :m + n has even parity, n ≥ 0}. Thus, L is Z
2 rotated by π/4 and

correctly dilated. Let E(L) be the edges from (m,n) ∈ L to (m + 1, n + 1) and to
(m− 1, n+ 1). To each edge e ∈ E(L), we assign a passage time a > 0 with prob-
ability p and a time b > a with probability 1 −p. Henceforth, let � := {a, b}E(L).

Let
→
pc denote the critical probability for oriented Bernoulli percolation on L.

For all p ∈ (
→
pc,1], consider all paths starting from {(x, y) ⊂ Z

2 :x ≤ 0, y = 0} in
the oriented graph using n type a oriented edges E(L) and let (rn(p), n) denote
the rightmost point (“right-hand edge”) of all such paths. We will often simply
refer to the scalar rn(p) as the right-hand edge. In the super-critical regime p ∈
(
→
pc,1], the rightmost point (rn(p), n) satisfies

lim
n→∞

rn(p)

n
= α(p) a.s. and in L1,(1.2)

as well as a central limit theorem [10]. Here α(p) ∈ (0,1] is called the asymptotic
speed of super-critical oriented percolation on the edges of L. It describes the drift
of the rightmost point at level n.

If p >
→
pc, then the asymptotic shape [the unit radius ball for the norm induced

by the map x → µp(x)] exhibits a flat edge [6], which is related directly to the
possibility of percolating with edges having passage time a. The flat edges of the
asymptotic shaper are in the coordinate directions and are described analytically
by Marchand [12] (see especially Theorem 1.3).

Let p0 ∈ (
→
pc,1) be fixed. For all p ∈ (

→
pc,1), define a time constant in the di-

rection of the critical vector with components α(p0) and 1, that is, set

fp0(p) := lim
n→∞

Ep[T ((α(p0)n,n))]
n

.

It is easy to see (cf. Lemma 3.3 below for details) that if p ≥ p0, then on the
average there is an oriented path between 0 and (α(p0)n,n) consisting of edges
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having passage time a, that is, fp0(p) = a for all p ∈ [p0,1]. Thus, if p 	−→
fp0(p) is three times differentiable at p = p0, then the third derivative must be
zero. However, in what follows, we show there is a constant C > 0 such that, for
all p ∈ (

→
pc,p0), we have

fp0(p) ≥ a + C(p0 − p)2/
(− log(p0 − p)

)
.(1.3)

This is enough to show that p 	−→ fp0(p) is not three times differentiable at p0.
This is our main result, formally stated as follows:

THEOREM 1.1. For all p0 ∈ (
→
pc,1), the function p 	−→ fp0(p) is not three

times differentiable at p = p0.

REMARKS. 1. Hammersley and Welsh conjecture (Corollary 6.5.5 of [8]) that
µ∗

p is concave in p and thus differentiable for almost all p. One might also expect
that p 	−→ fp0(p) is concave and differentiable, but we are unable to show it.

2. Theorem 1.1 can be generalized to include passage times having a common
distribution pδa + (1 − p)U(b), where 0 < a < b, p ∈ [0,1], and U(b) is an inde-
pendent random variable bounded below by b. It is unclear (at least to us) whether
Theorem 1.1 remains true for (i) more general passage times, or (ii) directions
other than (α(p0)n,n). It is also unclear whether the lower bound (1.3) can be
improved to fp0(p) ≥ a + C(p0 − p)/(− log(p0 − p)).

3. A natural problem involves studying the properties of the asymptotic shape
at the end of its flat edge for a fixed p. Our methods do not yield any information
here.

2. Probability bounds for the right-hand edge of super-critical percolation.
The following proposition is of independent interest and provides exponential tail
bounds for the right-hand edge rn(p),p ∈ (

→
pc,1]. We will make critical use of

this estimate in the sequel, but for now we note that Proposition 2.1 should be
compared with the general tail bounds of Kuczek and Crank [11] (Theorem 1,
part 1), who show, for all p ∈ (

→
pc,1] and all 0 < ε < 1, that there are constants

K1 := K1(p, ε) and K2 := K2(p, ε) such that, for all n = 1,2, . . . ,

Pp

[
rn(p) ≥ (

α(p) + ε
)
n
] ≤ K1n

−1/2 exp(−K2n).

PROPOSITION 2.1. For all q ∈ (
→
pc,1], there exists C1 := C1(q) > 0 such that

for all 0 < ε < 1, all p ∈ [q,1], and all n = 1,2, . . . ,

Pp

[
rn(p) ≥ (

α(p) + ε
)
n
] ≤ C1n exp(−ε2n/C1).

The proof of Proposition 2.1 involves consideration of the renewal process aris-
ing by breaking the behavior of the rightmost point rn(p) into independent pieces,
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an approach developed by Kuczek [10]. Our methods require an exponential decay
result on the size of a finite cluster in super-critical oriented percolation [5].

Before proving Proposition 2.1, we require some terminology [10] and a lemma.
Given vertices u and v in L, we say u → v if there is a sequence v0 =
u, v1, . . . , vm = v of points of L with vi := (xi, yi) and vi+1 := (xi+1, yi + 1)

for 0 ≤ i ≤ m − 1 such that vi and vi+1 are connected by an edge with weight a.
Thus, u → v if there is a sequence of oriented edges each with weight a joining u

to v. For A ⊂ Z, let

ξA
n := {x : (x, n) ∈ L and ∃x′ ∈ A such that (x′,0) → (x, n) for n > 0}.

As in [10], denote the event that there exists an infinite oriented path of a edges
starting from (x, y) by �

(x,y)∞ . We let ξ ′
0 := ξ

(0,0)
0 := {0} and set

ξ ′
1 :=

{
ξ

(0,0)
1 , if ξ

(0,0)
1 �= ∅,

{1}, otherwise,

and define inductively, for all n = 1,2, . . . ,

ξ ′
n+1 :=




{x : (x, n + 1) ∈ L and

(y, n) → (x, n + 1) for some y ∈ ξ ′
n}, if this set is nonempty,

{n + 1}, otherwise.

We have suppressed the dependence of ξ ′
n on p for notational convenience. Note

that ξ ′
n is a subset of the integers between −n and n. Let

r ′
n(p) := sup{x :x ∈ ξ ′

n}.
On {ξ (0,0)

n �= ∅}, we have equivalence between r ′
n(p) and the right-hand edge

rn(p). A vertex (x, n) ∈ L is said to be a percolation point if and only if the
event �

(x,n)∞ occurs. Let

T1 := inf{n ≥ 1 : (r ′
n, n) is a percolation point},

T2 := inf{n ≥ T1 + 1 : (r ′
n, n) is a percolation point},

...

Tm := inf{n ≥ Tm−1 + 1 : (r ′
n, n) is a percolation point},

where we make the convention that inf ∅ = ∞. Define

τ1 := T1, τ2 := T2 − T1, . . . , τm := Tm − Tm−1,

where τi := 0 if Ti and Ti−1 are infinite. (Note that Ti and Ti−1 are finite with
probability one.) Also define

X1 := r ′
T1

, X2 := r ′
T2

− r ′
T1

, . . . ,Xm := r ′
Tm

− r ′
Tm−1

,
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where Xi := 0 if Ti = ∞ and Ti−1 = ∞. The points {(r ′
Ti

, Ti)} are called break
points [10] since they break the behavior of the right-hand edge into i.i.d. pieces
when the origin is a percolation point. Kuczek (Theorem on page 1324, [10])
proved that, conditional on �

(0,0)∞ , {(Xi, τi)} are i.i.d. with all moments. More-
over, for all q ∈ (

→
pc,1], there exists a positive constant C2 := C2(q) such that, for

all p ∈ [q,1] and all t ≥ 1,

Pp[τ1 ≥ t] ≤ Pp

[
ξ

(1,1)
t−1 �= ∅, (1,1) �→ ∞] ≤ C2 exp(−t/C2),(2.1)

where the last inequality is as in [5], Section 12.
If we set

Nn := sup

{
m :

m∑
i=1

τi ≤ n

}
,

then rNn+1 is the location of the right-hand edge at the first “regeneration point”
after time n. By considering |rNn+1 − rNn | and |rn − rNn |, it easily follows that∣∣rNn+1 − rn

∣∣ ≤ 2τNn+1(2.2)

(see page 1331, [10] for details).
To prove Proposition 2.1, we make use of the following probability measure

on �:

P̄p[·] := Pp

[·|�(0,0)∞
]
.

Let Ēp denote the expected value with respect to P̄p . If the event {rn(p) ≥ (α(p)+
ε)n} occurs for a particular configuration ω ∈ � of edges, then it also occurs for
any configuration ω′ whose a edges are a superset of the a edges in ω. Thus, the
event {rn(p) ≥ (α(p) + ε)n} is increasing. Similarly, �

(0,0)∞ is an increasing event
so that, by the FKG inequality,

Pp

[
�(0,0)∞

]
Pp

[
rn(p) ≥ (

α(p) + ε
)
n
] ≤ Pp

[
rn(p) ≥ (

α(p) + ε
)
n,�(0,0)∞

]
,

that is, to say,

Pp

[
rn(p) ≥ (

α(p) + ε
)
n
] ≤ P̄p

[
rn(p) ≥ (

α(p) + ε
)
n
]
.

LEMMA 2.1. Let q ∈ (
→
pc,1]. There exists C3 := C3(q) such that for all 0 <

ε < 1, all p ∈ [q,1], and all n = 1,2, . . . ,

P̄p

[
τNn+1 ≥ εn

] ≤ C3n exp(−εn/C3).(2.3)

We defer the proof of Lemma 2.1 and instead show how it implies Proposi-
tion 2.1. For convenience, we put α := α(p) and rn := rn(p).
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PROOF OF PROPOSITION 2.1. By the definition of Nn and (2.2) we have, for
all 0 < ε < 1 and all n = 1,2, . . . ,

Pp[rn ≥ (α + ε)n] ≤ P̄p[rn ≥ (α + ε)n]
≤ P̄p

[
rNn+1 + 2τNn+1 ≥ (α + ε)n

]
≤ P̄p

[
rNn+1 ≥ (α + ε/2)n

] + P̄p

[
τNn+1 ≥ εn/4

]
.

By Lemma 2.1 and since α ≤ 1, the above is bounded by

≤ P̄p

[
X1 + · · · + XNn+1 ≥ α(1 + ε/2)n

] + C3n exp(−εn/4C3).(2.4)

Put κ := κ(p) := Ēp[τ1] and note that κ ≥ 1 by definition of τ1. For n ≥ κ , let
m := �n

κ
(1 + ε/4)
, where, for all x ∈ R, �x
 denotes the greatest integer less than

or equal to x. It follows that the above is less than or equal to
m∑

i=1

P̄p[X1 + · · · + Xi ≥ α(1 + ε/2)n] + P̄p[Nn + 1 ≥ m + 1]

+ C3n exp(−εn/4C3).

Denote the first two terms in the above inequality by I and II. For simplicity,
we put Yj := κ − τj . Thus, by definition of κ ,

II := P̄p[Nn + 1 ≥ m + 1] = P̄p

[
m∑

j=1

τj ≤ n

]
= P̄p

[
m∑

j=1

(κ − Yj ) ≤ n

]

≤ P̄p

[
m∑

j=1

Yj ≥ κ(n/κ + εn/4κ − 1) − n

]

= P̄p

[
m∑

j=1

Yj + κ ≥ εn/4

]
.

By Markov’s inequality, for all r > 0,

II ≤ exp(rκ) exp(−rεn/4)Ēp exp

(
r

m∑
j=1

Yj

)
.(2.5)

Since Ēp[Y1] = 0 and since all moments of Y1 exist, it follows that, for all p ∈
[q,1], there exists C4 := C4(q) such that log Ēp[exp(rY1)] ≤ C4r

2 if r < r0 :=
r0(q). Thus, for r < r0(q), we obtain

II ≤ exp(rκ − rεn/4 + C4mr2).

If we let r := εκ/C and increase C if necessary, then it follows that there exists
C5 := C5(q) such that, for all 0 < ε < 1, all n ≥ κ and p ∈ [q,1],

II ≤ C5 exp(−ε2n/C5).(2.6)
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Increasing the value of C5 if necessary, we see that (2.6) holds for n ∈ [1, κ] as
well.

Now we bound term I . By Lemma 1 of [13], we know α = ĒpX1/κ and thus,
by definition of m, we have, for all 1 ≤ i ≤ m,

Ēp[X1 + · · · + Xi] = iĒpX1 ≤ n
ĒpX1

κ
(1 + ε/4)

= αn(1 + ε/4).

Thus,

I ≤
m∑

i=1

P̄p

[
i∑

j=1

(Xj − ĒpXj ) ≥ αn(1 + ε/2) − αn(1 + ε/4)

]

=
m∑

i=1

P̄p

[
i∑

j=1

(Xj − ĒpXj ) ≥ αεn/4

]
.

Since |Xj | ≤ |τj | for all j ≤ i, where i ≤ m ≤ 2n, we may follow the approach
used for the bound (2.6) to conclude that there exists C6 := C6(q) such that, for all
0 < ε < 1, p ∈ [q,1], and all n = 1,2, . . . ,

I ≤ C6n exp(−ε2n/C6).(2.7)

Recalling that

Pp[rn ≥ (α + ε)n] ≤ I + II + C3n exp(−εn/4C3)

and applying the bounds (2.6) and (2.7), we obtain Proposition 2.1 as desired. �

Now it remains to show Lemma 2.1.

PROOF OF LEMMA 2.1. By definition of Nn, we have, for all 0 < ε < 1, all
p ∈ (

→
pc,1], and all n = 1,2, . . . ,

P̄p

[
τNn+1 ≥ εn

] =
∞∑
i=1

P̄p[τi+1 ≥ εn,Nn = i]

=
∞∑
i=1

P̄p

[
τi+1 ≥ εn,

i∑
k=1

τk ≤ n,

i+1∑
k=1

τk > n

]

= ∑
j≥εn

∞∑
i=1

P̄p

[
τi+1 = j,

i∑
k=1

τk ≤ n,

i∑
k=1

τk > n − j

]
.
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Under the measure P̄p, the {τi} are independent and, thus, the above equals

∑
j≥εn

P̄p[τi+1 = j ]
∞∑
i=1

P̄p

[
i∑

k=1

τk ≤ n,

i∑
k=1

τk > n − j

]

≤ ∑
j≥εn

P̄p[τi+1 = j ] ∑
i≤2n/κ

P̄p

[
i∑

k=1

τk ≤ n,

i∑
k=1

τk > n − j

]

+ ∑
i>2n/κ

P̄p

[
i∑

k=1

τk ≤ n,

i∑
k=1

τk > n − j

]

:= I + II.

Let us bound II. Notice that if i > 2n/κ , then iκ − n > iκ/2, so we have

P̄p

[
i∑

k=1

τk ≤ n

]
= P̄p

[
i∑

k=1

(κ − τk) ≥ iκ − n

]
≤ P̄p

[
i∑

k=1

(κ − τk) ≥ iκ

2

]
.

By the methods used to obtain (2.6), there exists C7 := C7(q) and C8 := C8(q)

such that, for all p ∈ [q,1] and all n = 1,2, . . . ,

II ≤ ∑
i≥n/κ+n

C7 exp(−i/C7) ≤ C8 exp(−n/C8).(2.8)

Let us bound term I . The second factor in I is bounded by the number of sum-
mands showing that

I ≤
(

2n

κ

) ∑
j≥εn

P̄p[τ1 = j ] ≤ 2nP̄p[τ1 ≥ εn],

since κ ≥ 1. Combining this with (2.1) shows that there exists C9 := C9(q) such
that, for all 0 < ε < 1, all p ∈ [q,1], and all n = 1,2, . . . ,

I ≤ C9n exp(−εn/C9).

Lemma 2.1 now follows from (2.8) and the above inequality. �

3. Auxiliary lemmas. The proof of Theorem 1.1 rests on the upper bound
for the right-hand edge of supercritical percolation (Proposition 2.1), as well as a
lower bound for first passage times, given in the upcoming Proposition 4.1. Be-
fore proving the latter, we require six straightforward lemmas. Our first lemma
gives a way to prove the asserted nondifferentiability of fp0 , where we recall that

p0 ∈ (
→
pc,1) is fixed once and for all. Let log denote the natural logarithm. For the

remainder of the paper, we fix q ∈ (
→
pc,p0).
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LEMMA 3.1. Suppose h : [0,1] → R
+ satisfies h(p) = 0 for all p ≥ p0. If

there exists δ := δ(q) > 0 such that, for all p ∈ [q,p0),

h(p) ≥ δ(p0 − p)2

log(1/(p0 − p))
,(3.1)

then h′′′(p0) does not exist.

PROOF. We use elementary calculus. If h′′′(p0) did exist, then necessarily
h′′′(p0) = h′′(p0) = h′(p0) = 0. It follows that |h′′(p)| = |h′′(p) − h′′(p0)| ≤
|p0−p| if |p−p0| is small enough. For such p, we have |h′(p)| = | ∫ p

p0
h′′(u) du| ≤∫ p0

p |h′′(u)|du ≤ (p0 −p)2, that is, h′(p) grows at most like a quadratic in p0 −p.
Similarly, h(p) grows at most like a cubic in p0 − p for |p − p0| small enough.
This is a contradiction. �

To show that the function fp0 of Theorem 1.1 satisfies the conditions of
Lemma 3.1, we will need several more lemmas and a proposition.

LEMMA 3.2. For all p ∈ (
→
pc,p0], we have α(p0) − α(p) ≥ 2(p0 − p).

PROOF. See [5], page 1006, display (12). �

LEMMA 3.3. fp0(p) = a for all p ∈ [p0,1].

PROOF. By the central limit theorem of Kuczek (Corollary 1 of [10]), with
probability 1 − o(1), there exists an oriented path γ of n type a edges, starting
at 0 and terminating at a point (x, n), where α(p0)n < x. Similarly, reversing the
orientation of the edges, with probability 1 − o(1), there exists a path γ ′ of n

type a oriented edges, starting at (α(p0)n,n) and terminating at a point (s,0),
where s ≥ α(p0)n. The paths γ and γ ′ intersect at some point Q ∈ Z

2. Let γ1 be
the restriction of γ between 0 and Q; let γ ′

1 be the restriction of γ ′ between Q

and (α(p0)n,n). Let γu be the union of γ1 and γ ′
1. Then γu is an oriented path

0 → Q → (α(p0)n,n) consisting exclusively of n type a edges showing that

T
(
(α(p0)n,n)

) = an(3.2)

on a set with probability 1 − o(1). Since n−1T ((α(p0)n,n)) is bounded by b, the
conclusion follows. �

We will adhere to the following terminology throughout. Given a path γ in the
lattice L, T (γ ) denotes its weight

∑
e∈γ ωe, where P [ωe = a] = p,P [ωe = b] =

1 − p. We let P (α(p0)n) denote all paths (oriented or not) γ : 0 	→ (α(p0)n,n)

in the lattice L whose weight equals the first passage time T ((α(p0)n,n)). [If
x ∈ R, then we adopt the convention that the path γ : 0 	−→ (x, n) denotes the path
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between 0 and (�x
, n).] If p ∈ (
→
pc,p0], then T (γ ), γ ∈ P (α(p0)n), will tend to

exceed an, since typically, under Pp , the edges in γ required to link 0 with points
to the right of (α(p)n,n), for example, (α(p0)n,n), will not all have weight a.

Consider δ := δ(q) ∈ (0,1/2) with a value to be specified later. For all p ∈
[q,p0], let Pn := Pn(p0,p, δ) ⊂ P (α(p0)n) be the (possibly empty) subset of
P (α(p0)n) consisting of paths γ whose weight satisfies

T (γ ) ≤ an

(
1 + δ(p0 − p)2

log(1/(p0 − p))

)
.

Thus, Pn �= ∅ is the event that the first passage time T ((α(p0)n,n)) is bounded

above by an(1 + δ(p0−p)2

log(1/(p0−p))
). We will show in Proposition 4.1 below that the

probability of Pn �= ∅ is exponentially small, but first we require a few more lem-
mas. Recalling that

→
pc< q < p0 < 1 and p ∈ [q,p0], we will henceforth assume,

without loss of generality, that q is close enough to p0 to guarantee that

aν

log(1/(p0 − p))
≤ 1 and log

(
1

p0 − p

)
> 1.(3.3)

LEMMA 3.4. If γ ∈ Pn, then γ ⊂ [−2n,2n] × [−n,2n].

PROOF. It suffices to show that if γ ∈ Pn, then γ has at most 2n edges. Since

δ < 1/2 and (p0−p)2

log(1/(p0−p))
< 1, it follows that if γ ∈ Pn, then T (γ ) < 2an. Since

every edge in γ has weight at least a, it follows that γ has at most 2n edges. �

Given γ ∈ P (α(p0)n), an edge e := ((x1, y1), (x2, y2)) belonging to γ is
termed “repeated” if the horizontal strip R × [y1, y2] contains at least one other
edge in γ and to the left of e. Edges e ∈ γ are called “sub-optimal” if either e has
weight b or if e is repeated. Roughly speaking, paths γ ∈ Pn cannot use many sub-
optimal edges. Edges e := (u, v) are considered to be closed line segments in R

2

in the sense that e contains its endpoints {u} and {v}.

LEMMA 3.5. Let ν := (min(b − a, a))−1. If γ ∈ Pn, then there are at most

k := k(p,p0, n) :=
⌊

aνδ(p0 − p)2n

log(1/(p0 − p))

⌋
(3.4)

sub-optimal edges in γ .

PROOF. Each sub-optimal edge in γ contributes an extra cost of at least
min(b − a, a). �

Recalling that
→
pc < q < p0 < 1 and p ∈ [q,p0], we will henceforth assume,

without loss of generality, that q is close enough to p0 to guarantee that (3.3) holds
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and that k ∈ [0, n
10 ]. Given γ ∈ Pn, project all sub-optimal edges in γ onto the

x-axis. The projection forms a possibly empty collection of closed intervals on the
x-axis which may overlap. However, when the projection is nonempty, the union
forms a collection of disjoint closed intervals I1(γ ), I2(γ ), . . . , Ij (γ ) called the
x-trace τx(γ ) of γ ∈ Pn. The intervals in τx(γ ) have integral endpoints and belong
to [−2n,2n] by Lemma 3.4. Here j ∈ N cannot exceed the number k of sub-
optimal edges; if k = 0, then there is no x-trace. Note that distinct paths γ ∈ Pn

may have identical x-traces.

DEFINITION 3.1. For all 1 ≤ j ≤ k, let T x
j denote the collection of all

x-traces consisting of j disjoint subintervals.

Next, given γ ∈ Pn, remove all edges in γ whose projection onto the x-axis is
a proper subset of τx(γ ) (some such edges may be oriented and have weight a).
What remains are called the optimal edges in γ ; such edges are necessarily ori-
ented up edges with weight a. By definition, these edges collectively form a
sequence of disjoint paths γ1, γ2, . . . , each consisting of oriented edges having
weight a. We call γ1, γ2, . . . , “optimal paths.” Note that optimal paths lie in
[−2n,2n] × [0, n].

Observe that the γi, i ≥ 1, are contained in the horizontal strips R × [yi, y
′
i],

where yi and y′
i denote the y coordinates of the initial and terminal points of γi ,

respectively.
We project all optimal edges in γ onto the (vertical) y-axis. The projection

yields a collection of intervals I ′
1(γ ), I ′

2(γ ), . . . , which we call the y-trace τy(γ )

of γ . Each interval in τy(γ ) is a subset of [0, n].

DEFINITION 3.2. For all 1 ≤ j ≤ k, let T
y

j denote the collection of all
y-traces consisting of j subintervals.

Given γ ∈ Pn, we call the set of intervals τxy := {Ii(γ )}j1
i=1 ∪ {I ′

i (γ )}j2
i=1 the

xy-trace of γ . The collection of xy-traces will provide a convenient combinatorial
way to upper bound the probability that Pn �= ∅. Since the number of optimal
paths differs from the number of disjoint intervals in the x-trace by at most one,
it follows that |j1 − j2| ≤ 1. We say that τxy is an xy-trace of cardinality j if
j1 ∨ j2 = j. Considering the three cases j1 = j2, j1 = j2 − 1, and j2 = j1 − 1, we
see that the collection of all xy-traces of cardinality j has the representation

Tj := {(Ii, I
′
i )

j
i=1 : Ii ∈ T x

j , I ′
i ∈ T

y
j }

∪ {(Ii, I
′
i )

j
i=1 : Ii ∈ T x

j−1, Ij = ∅, I ′
i ∈ T

y
j }

∪ {(Ii, I
′
i )

j
i=1 : Ii ∈ T x

j , I ′
i ∈ T

y
j−1, I

′
j = ∅}.
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Since elements of T x
j and T

y
j have integral endpoints, Lemma 3.4 implies that

cardT x
j ≤ (4n

2j

)
. Notice that the elements of T

y
j have integral endpoints which

may coincide (they coincide if there is an integer i such that y′
i = yi+1). The

elements of T
y

j can be coded by their endpoints {(yi, y
′
i)}ji=1, so that, for ex-

ample, the sequence 1,2,2,5,7,8 denotes the following three intervals on the
y-axis: I ′

1 := ((0,1), (0,2)), I ′
2 := ((0,2), (0,5)), I ′

3 := ((0,7), (0,8)). Clearly,
T

y
j ≤ (2n

2j

)
. Since clearly

(2n
2j

) ≤ (4n
2j

)
for 1 ≤ j ≤ k, we deduce the crude bound:

LEMMA 3.6. For all 1 ≤ j ≤ k, we have cardTj ≤ 3
(4n
2j

)2
.

4. Lower bounds for first passage times. Recall that q and p0 are fixed
scalars satisfying

→
pc< q < p0. By Lemma 3.3, we have fp0(p) − a = 0 for all

p ∈ [p0,1]. It remains to show that fp0 − a satisfies inequality (3.1). We do this
by showing that the first passage time T ((α(p0)n,n)) is bounded below by

an

(
1 + δ(p0 − p)2

log(1/(p0 − p))

)
,

with overwhelming probability for p ∈ [q,p0]. Recalling the definition of C1 in
Proposition 2.1, we have the following:

PROPOSITION 4.1. For all p ∈ [q,p0] and all n = 1,2, . . . ,

Pp[Pn(p0,p, δ) �= ∅] ≤ C1n
2 exp

(−(p0 − p)2n/4C1
)
.

Before proving Proposition 4.1, we first show how it implies that fp0 − a satis-
fies the conditions of Lemma 3.1. We have, for all p ∈ [q,p0],

fp0(p) := lim
n→∞

Ep[T ((α(p0)n,n))]
n

≥ lim inf
n→∞

Ep[T ((α(p0)n,n))1Pn=∅]
n

≥ a + aδ(p0 − p)2

log(1/(p0 − p))

by Proposition 4.1 and since T ((α(p0)n,n)) ≤ bn. Since δ > 0, then together with
Lemma 3.3, this shows that fp0 − a satisfies the conditions of Lemma 3.1, con-
cluding the proof of Theorem 1.1.

Roughly speaking, Proposition 4.1 holds for the following reasons. If

T ((α(p0)n,n)) is small [i.e., bounded above by an(1 + δ(p0−p)2

log(1/(p0−p))
)], then the

shortest travel time path cannot have too many sub-optimal edges. The path to
(α(p0)n,n) is thus nearly an oriented path with only a edges. However, with such
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edges, an oriented path will typically only reach (α(p)n,n), where α(p) < α(p0).
The estimate of the probability of the complement of such an event is handled by
Proposition 2.1 and some combinatorial estimates.

We note here that if T ((α(p0)n,n)) could be bounded above by an(1 +
δ(p0−p)

log(1/(p0−p))
) with high probability, then our proof would show that p 	→ fp0(p) is

not two times differentiable at p = p0. We are unfortunately unable to show such
a bound.

To prove Proposition 4.1, we introduce some terminology. Given l = 1,2, . . . ,

say that a path γ has rightward displacement of l if the difference between the
x-components of the terminal and initial points of γ equals l. For all integral
m ∈ [n − k,n], ε > 0, and p ∈ [q,1], let D(n,m,p, ε) ⊂ � denote the event that
there exists an optimal path beginning at 0 containing m edges, and with rightward
displacement at least (α(p) + ε)n. Proposition 2.1 implies, for all p ∈ [q,1] and
all n = 1,2, . . . ,

Pp[D(n,m,p, ε)] ≤ Pp

[
rm ≥ (

α(p) + ε
)
n
]

≤ C1m exp(−ε2m/C1)(4.1)

≤ C1n exp(−ε2n/2C1)

since 9n
10 ≤ m ≤ n. We are now ready to provide the following:

PROOF OF PROPOSITION 4.1. Let p ∈ [q,p0] and suppose Pn �= ∅. For any
γ ∈ Pn, let dopt(γ ) be the total rightward displacement by the optimal edges in γ .
In other words, dopt(γ ) is the combined length of the projection of the optimal
edges in γ onto the x-axis. Equivalently, dopt(γ ) is the difference between the
rightward displacement of γ and the sum of the lengths of the intervals in the
x-trace τx(γ ). For any γ ∈ Pn, we clearly have dopt(γ ) ≥ α(p0)n − k, that is,

dopt(γ ) ≥ α(p0)n −
⌊

aνδ(p0 − p)2n

log(1/(p0 − p))

⌋

≥ α(p)n +
(

α(p0) − α(p)

2

)
n

+
{(

α(p0) − α(p)

2

)
n − aνδ(p0 − p)2n

log(1/(p0 − p))

}
.

By Lemma 3.2, the term inside the braces exceeds n(p0 −p)(1− aνδ(p0−p)
log(1/(p0−p))

),
which by (3.3) is nonnegative. Therefore, for all γ ∈ Pn,

dopt(γ ) ≥ α(p)n +
(

α(p0) − α(p)

2

)
n ≥ α(p)n + (p0 − p)n.

Let P ′
n denote all (not necessarily oriented) paths in the lattice L beginning at 0

and ending at a point (m,n),m ∈ N, with an xy-trace having cardinality at most k.
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We thus have

Pp[Pn �= ∅] ≤ Pp[∃γ ∈ P ′
n :dopt(γ ) ≥ α(p)n + (p0 − p)n]

= Pp[∃γ ∈ P ′
n :dopt(γ ) ≥ α(p)n + (p0 − p)n, τxy(γ ) = ∅]

+
k∑

j=1

Pp[∃γ ∈ P ′
n :dopt(γ ) ≥ α(p)n + (p0 − p)n, τxy(γ ) ∈ Tj ],

since P ′
n is the disjoint union (over T in Tj and j ∈ {1,2, . . . , k}) of paths in L

beginning at 0 and having an xy-trace T for some T ∈ Tj and some 1 ≤ j ≤ k. By
additivity, the above equals

Pp[∃γ ∈ P ′
n :dopt(γ ) ≥ α(p)n + (p0 − p)n, τxy(γ ) = ∅]

(4.2)

+
k∑

j=1

∑
T ∈Tj

Pp[∃γ ∈ P ′
n :dopt(γ ) ≥ α(p)n + (p0 − p)n, τxy(γ ) = T ].

Consider a fixed xy-trace T ∈ Tj . Every such trace T is uniquely defined by a

set of deterministic points {(Pi,P
′
i )}2j

i=1, where (Pi,P
′
i ) ∈ L,1 ≤ i ≤ 2j, are the

endpoints of j optimal paths.
By independence and invariance by translation, the probability that there exists

an optimal path between (P1,P
′
1) and (P2,P

′
2) and a second optimal path between

(P3,P
′
3) and (P4,P

′
4) equals the probability that there exists an optimal path join-

ing 0, the point (P2 − P1,P
′
2 − P ′

1) and the point(
(P2 − P1) + (P4 − P3), (P

′
2 − P ′

1) + (P ′
4 − P ′

3)
)
.

More generally, the probability that there exist optimal paths joining (Pi,P
′
i )

and (Pi+1,P
′
i+1), for all 1 ≤ i ≤ 2j − 1, is bounded by the probability that there

exists an optimal path between 0 and (
∑2j−1

i=1 (Pi+1 − Pi),
∑2j−1

i=1 (P ′
i+1 − P ′

i )).

Any such path has a total of N := ∑2j−1
i=1 (P ′

i+1 − P ′
i ) edges, where N ∈ [n −

k,n − 1]. Thus, for each 1 ≤ j ≤ k, and each T ∈ Tj , each summand in (4.2)
is bounded by the probability that there is an optimal path with N edges with
rightward displacement at least α(p)n + (p0 − p)n, that is, by the probability
of D(n,N,p,p0 − p). Similarly, the first probability in (4.2) is bounded by the
probability of D(n,n,p,p0 − p). It follows by Lemma 3.6 and (4.1) that (4.2)
becomes

Pp[Pn �= ∅] ≤ C1n exp
(
−(p0 − p)2n

2C1

)
(4.3)

+ 3C1n

k∑
j=1

(
4n

2j

)2
exp

(
−(p0 − p)2n

2C1

)
.
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To conclude the proof of Proposition 4.1, it suffices to show that, for all
1 ≤ j ≤ k, (

4n

2j

)2
≤ exp

(
(p0 − p)2n

4C1

)
.(4.4)

To do this, we will make use of ([7], Corollary 2.6.2)(
u

v

)
≤ exp

(
uH

(
v

u

))
, u, v ∈ N,

where, for all x ∈ (0,1),

H(x) := −x logx − (1 − x) log(1 − x).

Thus, for all j = 1,2, . . . , k := �aνδ(p0 − p)2n/ log( 1
p0−p

)
, we have

(
4n

2j

)
≤

(
4n

2k

)
≤ exp

(
4nH

(
k

2n

))
,(4.5)

where the first inequality holds since k ≤ n/10.
There is x0 ∈ (0,1) such that if x ∈ (0, x0), then −(1 − x) log(1 − x) ≤

− log(1 − x) ≤ −x logx, showing that, for all x ∈ (0, x0), we have

H(x) ≤ 2x log
1

x
.

By choosing δ := δ(q) so small that aνδ < x0, we guarantee that k/2n < x0.
Since x log 1

x
is increasing on (0,1), we obtain

H

(
k

2n

)
≤ aνδ(p0 − p)2

log(1/(p0 − p))
log

(
2n

�aνδ(p0 − p)2n/ log(1/(p0 − p))

)

≤ aνδ(p0 − p)2

log(1/(p0 − p))
log

(
4 log(1/(p0 − p))

aνδ(p0 − p)2

)
,

since x
�y
 ≤ 2x

y
for x, y ≥ 1. Simple algebra shows that the above equals

aνδ(p0 − p)2

log(1/(p0 − p))

[
log log

(
1

p0 − p

)
+ log

(
4

aνδ

)
+ 2 log

(
1

p0 − p

)]

< 3aνδ(p0 − p)2 + aνδ(p0 − p)2 log
(

4

aνδ

)

using −∞ < log log t ≤ log t for t > 1 and log( 1
p0−p

) > 1. Choosing δ := δ(q) ∈
(0,1/2) so small that aνδ log( 4

aνδ
) ≤ (aνδ)1/2, we get

H

(
k

2n

)
≤ 4(aνδ)1/2(p0 − p)2.(4.6)
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Substituting (4.6) into (4.5) and squaring, we obtain, for all 1 ≤ j ≤ k,(
4n

2j

)2
≤ exp

(
32(aνδ)1/2(p0 − p)2n

)
.

Recalling that C1 depends only on q , we may choose δ := δ(q) > 0 even smaller if
necessary to ensure that 32(aνδ)1/2 < 1/4C1, thus, showing (4.4). Proposition 4.1
follows. �
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