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CHARACTERIZATION OF THE CUBIC EXPONENTIAL FAMILIES
BY ORTHOGONALITY OF POLYNOMIALS

By ABDELHAMID HASSAIRI AND MOHAMMED ZARAI
Sax University

This paper introduces a notion of 2-orthogonality for a sequence of
polynomials to give extended versions of the Meixner and Feinsilver char-
acterization results based on orthogonal polynomials. These new versions
subsume the Letac—Mora characterization of the real natural exponential fam-
ilies having cubic variance function.

1. Introduction. Let F = {P(m, F),m € Mp} be a natural exponential
family (NEF) on the real line parameterized by its domain of the medps
If Vr(m) denotes the variance of the probability distributié(m, F), then
the mappingn — Vg (m) is called the variance function of the family. The
importance of the variance function stems from the fact that it characterizes the
family F within the class of all natural exponential families. Furthermore, for
many common NEFs the variance function takes a very simple form. Morris
(1982) describes the class of real NEFs such that the variance function is a
polynomial function of degree at most 2 in the mean. Up to affine transformations
and powers of convolution, this class includes the normal, Poisson, binomial,
negative binomial, gamma and a sixth family called hyperbolic cosine and nothing
else. The Morris class of quadratic NEFs has received a deal of attention in
the statistical literature and many interesting characteristic properties have been
established. We will be concerned here only with the properties based on the
notion of orthogonal polynomials. A remarkable characteristic result is due to
Meixner (1934) [see also Letac (1992)]. It characterizes the distribujiofer
which there exists a family ofi-orthogonal polynomials with an exponential
generating function. These distributions generate exactly the Morris class of NEFs.
A second characterization is due to Feinsilver (1986), who shows that a certain
class of polynomials naturally associated to a NER-srthogonal if and only if
the family is in the Morris class. In the present paper, we will be concerned with
the class of real natural exponential families having cubic variance function (i.e.,
a variance function which is a polynomial of degree less than or equal to 3). In
fact, Letac and Mora (1990) have extended the work of Morris by classifying all
real cubic natural exponential families. They have added to the Morris class six
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2464 A. HASSAIRI AND M. ZARAI

other types of NEFs which may be obtained from the Morris class by the action
of the linear groupGL(R?) [see Hassairi (1992)]. The best known among such
families is the Inverse-Gaussian family. Our aim is then to extend to the Letac—
Mora class of cubic NEFs the different characterizations established for the Morris
class and based on orthogonal polynomials. We show in fact that the cubicity of
the variance function is characterized by a property of orthogonality which will
be called the property of 2-orthogonality. Tresult is interesting in its own right

and seems potentially very useful for asymptotic expansions and approximation. In
Section 2, after a review of exponential family theory, we specify some facts about
the Feinsilver sequence of polynomials associated to a NEF; in particular, we show
that the generating function of this sequence converges in a heighborhood of 0. In
Section 3, we state and prove our main result concerning the characterization of
the Feinsilver sequence of polynomials corresponding to a distribution generating
a cubic natural exponential family by a property similar to orthogonality. We also
show that this sequence is characterized by a four-term recurrence relation, while,
as it is well known, a sequence of orthogonal polynomials satisfies a three-term
recurrence relation. In Section 4, we first determine the families of 2-orthogonal
polynomials with exponential generating function. [The families with a formal
exponential generating function are sdammes called in the literature Sheffer
polynomials of type 0; see Sheffer (1939) and Rainville (1960).] This leads to
another characterization of the Letac—Mora class of cubic NEFs which may be
considered as the extension to this class of the Meixner characterization.

2. Exponential families and associated polynomials. We need first to
review some facts concerning natural exponential families and to introduce some
notations. Ifu is a positive Radon measure on the real [tyeve denote by

L,©)= /Rexp(ex)u(dx) <400

its Laplace transform, and we denote Byw) the interior of the convex set
D(n) =1{0 e R; L, () < oo}. M(R) will denote the set of measurgssuch that
O () is not empty ande is not concentrated on one point.ifis in M(R), we
also denote

k. (0) =logL, (), 0 eOu),

the cumulate function gf.
To eachu in M(R) and 6 in ®(u), we associate the following probability
distribution onR:

(2.1) PO, n)(dx) =exp@x —k,(0))n(dx).
The set
F=Fu)={P©®,n);0 €O}
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is called the NEF generated by If . andu’ are in M(R), thenF () = F(u')
if and only if there existsa, b) in R? such thatu'(dx) = explax + b)u(dx).
Therefore, ifu is in M(R) andF = F (),

Br ={u € MR); F(u') = F}

is the set of basis of'.
We have, for alb in ®(u),

dn
(2.2) WL“(Q) = /Rx" exp@x)u(dx) < +oo,
and consequently, all the momentsifo, u) are finite. In fact,
d}’l
2. ——L = "p .
(2.3) @ da o ® [ 3" P®. @) < oo

The functionk,, is strictly convex and real analytic. Its first derivativg
defines a diffeomorphism betweed () and its imageMp. Since k;L(G) =
JrxP (0, n)(dx), MF is called the domain of the meansof The inverse function
of k/’L is denoted byy,, and, settingP (m, F) = P (y(m), ), the probability ofF
with meanm, we have

F={P(m,F);meMrp},

which is the parameterization &f by the mean.
The density ofP (m, F) with respect tqu is

(2.4) fu(x,m) =exp{y, (m)x —k, (¥, (m))}.

Form in Mg, we denote

(2.5) Vi (m) =f (x —m)?P(m, F)(dx).
R

Then

(2.6) Vir(m) = kJ) (Y (m) = (], (m)) ™,

and, the mapn — Vr(m) is called the variance function of. It entirely
characterizes the NEF; that is AifandF’ are two NEF such thatg (m) = Vg (m)
on a nonempty open set includedify N My, thenF = F’.

Consider now a real natural exponential fam#y and takeu = P (m,, F)
with m, fixed in M. The densityf, (-, m) of P(m, F) with respect tou is still
given by (2.4) withf, (-, m,) = 1. Itis easily verified by induction on in N that
there exists a polynomiat, in x of degree: such that

n

(27) aanM(xvm):Pn(xvm)fM(xvm)
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and

(2.8) Pyia(x, m) =y, (m)(x —m) Py (x,m) 4+ Ryy1(x, m),

whereR,, 11 is a polynomial inx of degree< n + 1. In particular, we have that
(2.9) P,(x,m)=1 and Pi(x,m)= W;L(m)(x —m).

We now make a useful observation through the following theorem whose proof
will be given in Section 5. For the sake of simplification, we set

(2.10) P,(x) = P,(x,m,).

THEOREM 2.1. Let F bea NEF on R and let u be a fixed probability in F
with mean m,. Let P, (x) be the polynomials defined by (2.7). Then

(m —my)"
> )

neN

isan entire seriesin L2(u) of nonzero radius of convergence.

It should be remarked that there exists- O such that, for alkz in Jm, — r,
m, + r[ and for allx in R,

(2.11) futr.my =3 1 p .

neN

To conclude this section, we mention that in many interesting situatijnsan
be calculated by mean of the Faa di Bruno formula

kil ky! )

n!

wherek = k1 + --- + k, and the sum is taken for all integets > 0 such that
k14 2ko + -+ -+ nk, =n. Thatis, if we denote

2® (x) = [(W (m)x = kyu (Y ) ]y,

nt (8PN g™
Py(x) = Z k]_!"'kn!< 1! ) ( n! )

g+ 2kg+-oA nky =n

then

with k; in N, for1< j <n.
The most famous example in this topic is the inverse Gaussian distribution with
parameters 12 andp > 0 defined by

2
w(dx) = \/%X—WZ exp(—%)]l]o,+oo[(x) dx.
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The NEF generated by belongs to the Letac—Mora class. In fact, a standard
computation shows thab (i) =] — oo, O andk, (0) = —p/—20. If F = F(u),
thenMr =10, +o0l, ¥, (m) = —p?/2m? and Vi (m) = m3/ p?.

For allm, € Mg, we have

nl (2 1\ /n+1 1\
o) = LR B ) R N
k1+2k2-|;+nkn=n kal-- k! mg mg mg+2 mg+1

3. Characterization of the cubic familiesin the Feinsilver way. As pointed
out in the Introduction, any real cubic natural exponential family can be obtained
from a quadratic family via the action of the linear groBp(R?). For instance,
the quadratic natural exponential families & have been characterized by
Feinsilver (1986) as the ones for which the polynomigjéx) are u-orthogonal.
In this section we show that the polynomiats(x) associated to a cubic natural
exponential family have also a characterizing property of orthogonality which will
be called the property of 2-orthogonality.

DEFINITION 3.1. Letu be a measure oR such that/ |x|"u(dx) < oo for
all n € N. A family (Q,),en Of polynomials orR is u — 2-orthogonal if, for allz
andg inN*, [ 0,,(x) Q4 (x)u(dx) =0 whenn > 2g, and/ Q, (x)(dx) =0.

Next we give our first main result.

THEOREM 3.1. Let F be a NEF on R and let © be an element of F
with mean m,,. Consider the polynomials (P,),cn defined by P, (x) = %fu (x,
m)|m=m,. Then the three following statements are equivalent:

() The polynomials (P,),cn are u — 2-orthogonal.
(i) F iscubic.
(i) Thereexist real numbers (a;)o<; <3 such that, for all n > 2,
X Py(x) = azA3 Py_2(x) + n(az(n — 1) + 1) P, _1(x)
+ (na1 +my) Pp(x) + ao Ppy1(x),

with A?l =n(n — 1)(n — 2). Furthermore, in this case we have

Vi(m) = az(m — my)® 4 ax(m — my)% + ar(m — my) + ay.

To help in the proof of this theorem, let us give in Table 1, for each of the
six types of NEF orR with polynomial variance function of degree 3 [see Letac
and Mora (1990)], the sequence Bfm,,, F) — 2-orthogonal polynomial®, (x)
defined by its recurrence relation far, = 1.
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TABLE 1
Type my Induction relations
Inverse Gaussian with paramejee 1 1 Py(x) =1,
VE(m) = (m —mg)2 + 3mo(m — my)? Pi(x)=(x - 1),
+3m§(m —mygp) +m(3, Po(x) =x2 —6x + 3,
Pry1(x)=(x—3n -1 Py(x)
—n(3n — Z)Pn—l(x)
— A3P,_o(x), n>2
Strict arcsine with parameter= 1 1 P,(x)=1,
VE(m) = (m —mo)2 + 3mo(m — my)? Pi(x) = 3(x = D),
—‘,—(3m§+1)(m —mo)—l—mg—i—mo Py(x) = %(x2—5x+3),
Pui1(¥) = 3[(x — 4n — 1) Py (x)
—nBn—2)P,_1(x),
— AZP,_2(0)],
n>?2
Takéacs with parametegs= 1 anda = 1 1 P,(x)=1,
Vi (m) =2(m —my)3 Pi(x) =3 - D),
+ (Bmy 4 3)(m — my)? Pp(x) = 25(x? — 15¢ + 8),
+ (6m2 + 6y + 1) (m — mo) Pyy1(x) = 3[(x — 131 — 1) P, (x)
X (2m3 + 3m2 4+ m,) —n(9n —8)Py_1(x)
—2A3P, 2(0)],
n>?2
Large arcsine with parameteps= 1 1 Py(x) =1,
anda=1 Pi(x) =3 - D),
VE(m) = 20m —m)3 Py(x) = g1 (x2 — 13x + 3),
+ (6mp +2)(m —my)? Pur1(0) = §l(x — 110 — 1) P, (x)
+ (6m2 + 4my + 1) (m — my) —n(8n—T7)Py_1(x)
+6m3 + 2m2 +m, —2A3P, ()],
n>2
Ressel with parameter=1 1 Py(x) =1,

VE(m) = 2(m — mg)3 + (6my + 3)(m — mo)?
+ (6m§ +6my + 1) (m —my)
X (Zm(?; + 3m§ + my)

Abel with parametep = 1
VE(m) = (m — mo)> + (Bmy + 2)(m — my)?
+ (Smg +4dmy + 1) (m — my)
X (mg + Zm(% +myp)

Pi(x)=3(x—1),
Py(x) = i—Ll(x2 —7x+4),
Pyi1(X) = S[(x — 51 — D Py (x)
—n(dn —3)P,_1(x)
— AZP,_2(0)],
n>2
Py(x)=1,
Pi(x)=F(x—1),
Py(x) = {5(x? — 15¢ + 8),
P2 (0) = S[(x — 81— Py (x)
—nGn—-4P,_1(x)
— A3 Py_2(0)],
n>2
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PROOF OFTHEOREM 3.1. (i) = (ii). Equation (2.11) allows us to claim the
existence of > 0 such that, for allz in the intervallm, — r, m, + r[ and for allx
in R,
(m —my)"
fulx.m)y=>Y" T”Pnoc).
neN
If, for (m,m’) € (Jm, — r, my, + r[)?, we set

(38.1) g(m, m/) = exp{ku (W (m) + W (m/)) - ku(w (m)) - k/J. (W (m/)) },
then thew — 2-orthogonality of the polynomial&?,) and Theorem 2.1 imply that

g(m, m') = / e m) fu G m'e(dox)

(m —m,)? (m' —my)
= X

= A P, (x) Py (x)pu(dx)
nlg!

n,qeN

_ q I n
—1y Y SR [ p o)

n,qeN*

_ q I _ n
14 3 eIl [ ) By ()

141
qeN*,nel(g+1)/2,2g—-1] g

Taking the derivative of (3.1) with respectio, we get, for all(m,m’) € (Jm, —
r,my +r)?,

W ) (K., (¥, m) + Y (m')) — KL, (W (m))) g (m, )

= > q ang(m —mp) = 1(m' —m,)",
q>1,nel(q+1)/2,29—1]

(3.2)

With ang = iy [ Pa(6) Py () 1(d).
Makingm = m, in (3.2), then, since,, (m,) =0, we get

W,Q (mo)(m/ —my) = all(m/ —my).
This is true for alln’ € lm, — r, m, + r[; then
a11= ¥, (mo).

Again we take the derivative of (3.2) with respectt@nd we letn = m,. We get,
forall m’ in \m, —r,m, +r|,

Yl (mo)(m' —m,) + azy(Ve(m') — Vi (m,)) + aZy(m' — mo)?

= 2a(m’ — m,)? + 2apa(m’ —my,)°.
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Therefore,
Vi(m') = 2a5fazs(m’ —my)® + (2az2 — a2pagf(m' —m,)?
011 W//(mo)(m —my) + Vi(m,).

This implies thatVy is cubic onlm, —r, m, +r[ and, by extension, we obtain that
F is a cubic NEF.
(i) = (iii). From (i), there exist real number®;)o<; <3 such that
Vi = as(m —my)® + az(m — my)? + ay(m — m,) + a,.

On the other hand, we know that there existss 0 such that, for allm €
Im, —r,m, +r[and forallx e R,

) WP () = exp{V. (m)x — ki, (W, () ).

neN
Denotingd = v, (m), this may be written as

(3.3) expix) = (Z(k,;(e)— o) Pulx ))exp{k ).

neN
Taking the derivative with respect &of (3.3) gives

xexpox)=> ’;( )( (m —mo)" k] (0) + (m — m,)"K (0)) explky, (6)},
neN :

which is equivalent to

=y ”(x) (n(m —mo)""Yk],(©) + (m — my)"m)

neN
=> P (x)( > ag(m —m )" — m)" M my(m — my)" )
neN ’ k=0

By identification, we get
xPy(x) =azn(n —1)(n — 2) P,_2(x)
+n(az(n — 1) + 1) P,_1(x) + (nay + my) Py (x) + ap Pyy1(x),

and (iii) is proved.
(>iif) = (i). The result is easily obtained if we verify the three following facts:

(@) Foralln e N*, [ P,(x)u(dx) =0
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(b) There exist real numbe@’q such that, for alk, g € N* verifying n > 2q,

XIP(x) =B Poog)+ > B P),
n—2q+1<s<n+q

whereg? , =0ifn=2q Vg e N*,
(c) There exist real numbeta,)o<,<, such that

P,(x) =a,x" + Z ogx?.
0<g=n-1

Proof of (a). We first observe that

[ 5 e mypa(@n) = pm [ (= m) fute.mypea)

= 4m) [ (x=m) P, F) ()
=0.

Since, for alln, we have

an
/‘ fulr, m)‘u(dX) = [ 1Pt =m0l e, et

om"
= [1PG = m) [P, F)) < 40,

[see (2.3) and (2.7)], then

3 [ o [ 9"
/—{wfu(x,m)}u(dx) = %/ Ju(x, myp(dx).

om om"
Hence we obtain that, for all € N*, [ %fu(x, m)u(dx) = 0. This, form =m,,
gives [ P,(x)u(dx) =0.

Proof of (b). We can write (iii) as

(3.4) XPy(x) =B Pua()+ > BS1P(x),
n—1<s<n-+1
whereg? | = azn(n — 1)(n — 2.
For a fixedn in N*, let us show by induction that, for ajl in N* such that
2q <n,we have

(3.5) XIP(x) =B Po2g)+ Y M NEST
n—2q+1<s<n-+q

whereg?  =0if n=2g.
Forg = 1, it is nothing but equality (3.4).



2472 A. HASSAIRI AND M. ZARAI

Suppose now that (3.5) is true fgrand that 2¢ + 1) < n. Then we have
x9tp,(x) = x(x9 Py(x))

=gt Pa2g)+ D B A B)
n—2q+1<s<n+q

= ﬂS,q[ﬂ,?,n_zan-zq-xx) + > ﬂ;’_zq,lPsmx)}

n—2q—1<s'<n—2q+1

+ 5i,q[ﬂg,1Ps—z(X)+ > ﬁjﬁf/qpsﬁ(x)}

n—2q+1<s<n+q s—1<s"<s+1

= aspl ,AS oy Pu-2q+1) () + > By 411 Ps(x).
n—2(g+D+1<s<n+qg+1

Hence there exisig, . ;) such that

XITP () =8P i1 Pa2g)+ Y By Pi(x),
n—2q+1<s<n-+q

wherep? . =a3spl A3 ,, andgy 1 =0if n=2(q+1).

Proof of (c). SincePyi(x) = m(m — my), it is easy to show by induction
that

1
P(x)=———x"+ agx?,
" (VE(my)y Osg,_l !

and this concludes the proof[]

4. Characterization of the cubic familiesin the Meixner way. This section
is devoted to the characterization of the 2-orthogonal polynomial® omith
exponential generating function.

We say that the generating function of the sequence of polynongialss
exponential if there exist > 0 and two real analytic functions andb defined
on]—r,r[suchthat, foralkin]—r, r[,

Z}’l
(4.1) Y. On(0)= =expla(d)x +b(2)}.

n.

neN
Families (Q,/n!) satisfying (4.1) are considered in the literature under the

name of Sheffer polynomials of type 0; see Sheffer (1939) and Rainville [(1960),
Chapter 13]. Actually they are slightly more general since convergence in a
neighborhood of 0 is not required and (4.1) is considered as an identity between
formal series ir.
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THEOREM 4.1. Let F be a NEF on R and let « be an element of F with
mean m,. upposethat (0,),en isafamily of 4 — 2-orthogonal polynomials such
that Q,, is of degree n. Then the generating function of (Q,,),en is exponential if
and only if thereexistst € R* such that, for all n € N,

On(x) =1" Py (x),
where (P,) is defined by (2.7).
Inthiscase, a(z) = ¥, (tz +m,) and b(z) = —k, (¥, (a(2)).
PROOE UptoQ, = 0,/0,, We can supposg, = 1.

« Is obvious.
= There exist > 0 such that, foralk ] —r,r[,

/( 3 Qn(X)%)M(dX) ~ / ( 3 Qn(x)Qo(x)%>M(dX)

neN neN
= [ 2,
=1
On the other hand, writing the generating functior( @f,) as in (4.1), we have

/ ( ) Qn(X)%)M(dX) - / expla(2)x + b(2)}(dx)

neN
= explk,(a(z)) + b(2)}.

Hence
(4.2) b(z) = —ky(a(z)).
Proceeding similarly, we have that

(4.3) /( > Qn(x)Ql(x)i_r;)M(dx) = </ Q1(X)2M(dX))z.

neN

ThenQ1 is a polynomial of degree 1 in. Therefore there exisise R* andv € R
such that

(4.4) O1=ux+v.
Since/ Q1(x) Q,(x)u(dx) = [ Q1(x)u(dx) =0, we geth = —um, and

f 01(x)?u(dx) = / u?(x — m)(x —my)pu(dx) = u?Vr(m,).
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Furthermore, using (4.2)—(4.4), we get
( / Ql(x)zu(dX))z = [ expta@x + (@)} 101 (d)
=uf@—mw®ﬂMD—MWQMMwm

- u/(x — my) P(a(z), p)(dx)
= ulk, @(2)) — m,),

and we deduce that
u?V(mo)z = ulk) (a(z)) — mo).

Thereforek), (a(z)) = uVr(mo)z + m,, thatis,a(z) = ¥, (uVr(m,)z + m,) and

t=uVgr(@m,).
Finally, we obtain

Z Qn(x)%=fp,(x,Vp(m0)uz+m0). -

neN

COROLLARY 4.1. Let F bea NEF on R and let i be an element of F with
mean m,. Then there exists a family of u — 2-orthogonal polynomials with an
exponential generating function if and only if F is cubic.

ProOOF Follows easily from Theorems 3.1. and 4.1]

5. Proof of Theorem 2.1. This section is devoted to the proof of Theorem 2.1.
Let x be a fixed real number. The function — f,(x,m) is real analytic
in the interval M. Therefore, there exist an open setof C containingMpg,
an open setU of C containing® (i) and analytic functiong/; and k1 such
that y1|pm, = ¥, kilow =k, and Y1 () C U. For all x € R, the function

2> fi1(x, z) = explxy¥1(z) — k1(¥1(z))} is analytic ons2.
Since Oc ®(u) andm, € Mg, there existv > 0 andr > 0 such that:

() [—a,a] C O);
(i) the open diskD(m,,r) C Q;
(i) ¢2(D(@my, 1)) C DO, 3);
(iv) V1= (¥}~ has no zeroiD(m,,r).

Let us show that the functiofi(z) = f1(-, z) is well defined and continuously
differentiable fromD (m,, r) into L2(w).
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Since

+00
/_ |1, 2P (dx)

—+00 . -
- f explx (¥1(2) + V1@ ) — (ke (¥1(2)) + (P2 ()
andé = y1(2) + Y1) €[22, 2] € O(y), then

—+00 2
/_ | f1x, 2) 2 (dx) < +o0,

o0

andg¢ is well defined.
For the differentiability, ifz,, is in D(m,, r), then(a%fl)(-, Z,) IS an element of

L?(n) because
x—2z|?

/_J:o Vi(2)

We will verify that ALet)=AC20) 0 f (. 7) converges to 0 i2(u) when/:
converges to 0, that is,

5.1) lim = [ h w2
(5.1) hinoﬁ_/_oo f1(x,z0 +h) — f1(x,20) — (a—zfl)(X,Zo)

Writing the Taylor formula with integral remainder,

exp{x(¥1(z) + ¥1(2) ) ju(dx) < +o0.

2
u(dx) =

1
F(h) — £(0) — hf'(0) = h2/0 (L= u) " (zo + uh) du,

(5.1) is equivalent to
2

1 e, 152
(5.2) ;','Lnoﬁ/_oo h ’/O S 1 2o+ ) (L= ) du| u(dx) =

But we have that

_ 2 _ /
X z) @+ Z)Vl(Z)]fl(x,Z).

82
9219 = [(mz) V2(2)

Then 53—122f1(x, Zo + h)/ f(x,z,+ h) is a second-degree polynomial inwhose
coefficients are continuous in It is then bounded in all compagt| < 4,. Hence

2
‘ 5 f1(x, zo+h)’<|ax +bx +cle®*  with |6, |<§.

This with the dominated convergence theorem implies that
+00 2
lim ‘

d
am u(dx)

/ 1- M) fl(x Zo +uh)du

+oo 2
_/ ‘/ (1—u> fl(x zo)du| p(dx) < +oo,
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and (5.2) follows.
Henceg is continuously differentiable and so it is analytic Drim,, r) and, in
particular, if

+00 1/2
b= ([ PPu@n) = 1Pz

o0

— n .
theny,, cn by 2" has nonzero radius of convergence.
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