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FLUCTUATIONS IN THE OCCUPATION TIME OF A SITE IN
THE ASYMMETRIC SIMPLE EXCLUSION PROCESS

BY CÉDRIC BERNARDIN

Ecole Normale Supérieure de Cachan

We consider the simple asymmetric exclusion process with nonzero drift
under the stationary Bernoulli product measure at density ρ. We prove that
for dimension d = 2 the occupation time of the site 0 is diffusive as soon as
ρ �= 1/2. For dimension d = 1, if the density ρ is equal to 1/2, we prove that
the time t variance of the occupation time of the site 0 diverges in a certain
sense at least as t5/4.

1. Introduction. We are interested here in the variance of additive functionals
of the simple exclusion process. The simple exclusion process (ηt )t≥0 is a
Markov process evolving on the configuration space � = {0,1}Zd

. If η ∈ � is a
configuration, η(x) is equal to 1 or 0 depending on whether the site x is occupied
or not. First, let us fix a finite-range transition probability p(·) on Zd whose
associated mean is denoted by m = ∑

x p(x)x and such that the symmetrization
s(·) = 1

2(p(·) + p(−·)) is assumed to be irreducible. The process (ηt )t≥0 is
described by its generator L, which acts on the local functions f as

(Lf )(η) = ∑
x,y

p(y − x)η(x)
(
1 − η(y)

)(
f (ηx,y) − f (η)

)
(1.1)

and whose associated semigroup is denoted (Tt )t≥0. Here and below ηx,y is the
configuration obtained from η by exchanging the occupation variables η(x), η(y).

Recall that the process is conservative in the sense that no particles are
created or destroyed. In fact, for each density ρ ∈ [0,1], the Bernoulli product
measure νρ over � obtained by placing a particle with probability ρ at each site x,
independently from the other sites, is invariant for the exclusion process (ηt )t≥0.
Moreover, in the symmetric case, p = s, νρ is also reversible. In the sequel, when
we use expressions such as “if the density is ρ,” it means that we will consider the
process (ηt )t≥0 starting from the probability measure νρ .

We are interested here in the variance of the occupation time functional∫ t

0

(
ηs(0) − ρ

)
ds(1.2)

whose characterization is used to prove central limit theorems for additive
functionals. In [3], an invariance principle for additive functionals under diffusive
scaling was established by Kipnis and Varadhan in the symmetric case (for
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which the mean m of p is zero). In [2], Kipnis computes the variance of the
occupation time using the duality properties of the symmetric simple exclusion.
Later Varadhan [12] extended these results in the asymmetric case with mean
m = 0. More recently Sethuraman, Varadhan and Yau [11] prove invariance
principles for the general asymmetric case for dimension d ≥ 3, where transience
estimates could be used. See [9] for a good review and extensions of all these
results.

The remaining problem, then, concerns dimensions 1 and 2 for the asymmetric
case with nonzero mean m. In [9], Sethuraman proves the invariance principle
when f is a local function with finite limiting variance σ 2(f ), which is defined, if
the limit exists, by

σ 2(f ) = lim
t→∞ t−1σ 2

t (f ),(1.3)

where σ 2
t (f ) = Eρ[∫ t

0 f (ηs) ds]2 is the time t variance of the function f , and Eρ is
the expectation with respect to νρ .

He shows that if σ 2(η(0)−ρ) < +∞, σ 2[(η(0)−ρ)(η(1)−ρ)] < +∞ for the
dimension d = 1 and if σ 2(η(0) − ρ) < +∞ for the dimension d = 2, then

σ 2(f ) < +∞ ⇐⇒ Eρ(f ) = 0.(1.4)

From heuristic reasoning about the second-class particle, Sethuraman conjec-
tures that if m �= 0, then σ 2(η(0) − ρ) < +∞ ⇐⇒ ρ �= 1/2 in dimension d = 1,2
and that σ 2[(η(0) − ρ)(η(1) − ρ)] < +∞ for all 0 ≤ ρ ≤ 1 in dimension d = 1
(cf. [9]).

In a recent paper Seppäläinen and Sethuraman [8] prove that, in dimension
d = 1, if ρ �= 1/2, then σ 2(η(0) − ρ) < +∞.

The aim of this paper is to establish some more positive answers to these
conjectures. We prove the following two results:

1. For d = 2 we prove that σ 2(η(0) − ρ) < +∞ if ρ �= 1/2 and m �= 0 (this
extends the result of Seppäläinen and Sethuraman to the two-dimensional
setting).

2. For d = 1, if the density ρ is equal to 1/2 and m �= 0, then σ 2(η(0)−ρ) = +∞
and in fact that, for all ε > 0, there exists a constant Cε > 0 such that

σ 2
t

(
η(0) − ρ

) ≥ Cεt
5/4−ε.(1.5)

The expected best exponent in (1.5) is not 5/4 but 4/3, and, in fact, it is conjectured
that for d = 1, for the total asymmetric exclusion process, the time correlations has
the scaling form (cf. [6])

Eρ

(
ηt (j)η0(0)

) − ρ2 ∼ ρ(1 − ρ)
(
4
(
ρ(1 − ρ)

)1/3
t2/3)−1

× 1
8g′′((j − (1 − 2ρ)t

)(
4
(
ρ(1 − ρ)

)1/3
t2/3)−1)

,
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where the scaling function g is the second moment function of the solution of a
first-order partial differential equation defined in [1].

Recently Yau [13] established that the diffusion coefficient in d = 2 diverges
as (log t)2/3 in the leading order, and Landim, Quastel, Salmhofer and Yau [4]
showed that the diffusion coefficient diverges at least as t1/4 for d = 1 and as
(log t)1/2 for d = 2.

The proof of the two results of this paper is based on the following argument.
Let the generator L be decomposed as L = S + A, where S = (L + L∗)/2

and A = (L −L∗)/2 denote, respectively, the symmetric and antisymmetric parts
of L. Let f be an element of L2(νρ). Since L is a nonpositive operator, for any
λ > 0, we have the following two variational formulas (cf. Lemma 2.1):

〈f, (λ − L)−1f 〉
(1.6) = sup

g

{
2〈f,g〉 − 〈g, (λ − S)g〉 − 〈Ag, (λ − S)−1Ag〉}

= inf
g

{
2〈(f + Ag), (λ − S)−1(f + Ag)〉 + 〈g, (λ − S)g〉},(1.7)

where the supremum and infimum are taken over all local functions g. These two
variational formulas permit us to obtain lower and upper bounds of the Laplace
transform of the time t variance of f by a good choice of test functions. To perform
the calculations we use the duality expansion (as done in [5, 11] for the case d ≥ 3).
A key step, suggested to us by Yau (cf. [7] for the two-dimensional case), is then
to approximate the terms in (1.6) involving S (the generator of the symmetric
exclusion process) with similar terms involving the generator of the corresponding
independent symmetric random walks. In this way the calculations can then be
performed by standard Fourier calculus.

This article is organized as follows. In Section 2, we recall some defini-
tions about the duality of the exclusion process and introduce Hilbert spaces
H1 and H−1. In Section 3, we give results concerning approximations, in H−1, of
the exclusion process by a system of free particles. This approximation is used in
Section 4 to prove the super-diffusive behavior of the occupation time in dimen-
sion 1 with density 1/2 and in Section 5 to prove the diffusivity of the occupation
time in dimension 2 with a density different from 1/2.

2. Recalling the duality of the simple exclusion process. We recall some
definitions concerning duality and the Hilbert spaces H1 and H−1. We fix a
density ρ in (0,1) and note χ(ρ) = ρ(1 − ρ). Let E be the class of all finite
subsets of Zd and let En be the subsets of Zd with n points. For each A ∈ E , let
	A be the local function

	A(η) = ∏
x∈A

(η(x) − ρ)√
χ(ρ)
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and by convention 	∅ = 1. It is easy to check that {	A;A ∈ E} is a Hilbertian
basis of L2(νρ). We will denote by Fn the subspace generated by {	A;A ∈ En}.
The functions of Fn are called functions of degree n.

All elements f of L2(νρ) can be decomposed in the basis {	A;A ∈ E} and we
write

f = ∑
n≥0

∑
A∈En

f(A)	A.(2.1)

Note that the coefficients f(A) depend on the density ρ but we will omit this fact
in the notation since we will always work with a fixed density in the sequel.

Denote by the same symbol 〈·, ·〉 = 〈·, ·〉ρ the inner product on L2(νρ) and the
inner product with respect to the counting measure on L2(E). Note that if f,g are
two elements of L2(νρ), then we have

〈f,g〉 = 〈f,g〉 = ∑
A∈E

f(A)g(A).

We note the L2 norms by ‖f‖2
0 = ‖f ‖2

0 = 〈f, f〉. Let Gn be the subspace generated
by the finite supported functions of degree n and let πn be the projection in L2(E)

on Gn. Note that G1 is just the set of local functions from Zd into R with finite
L2 norm.

For a subset A of Zd and x, y in Zd denote by Ax,y the set defined by
Ax,y = A \ {x} ∪ {y} if x ∈ A and y /∈ A, by Ax,y = A \ {y} ∪ {x} if y ∈ A and
x /∈ A and by Ax,y = A otherwise. Denote by s(·) and a(·) the symmetric and
antisymmetric parts of the transition probability p(·). In the basis {	A;A ∈ E},
we have the following decomposition of the generator L:

(Lf ) = ∑
A∈E

(Lf)(A)	A,

(Sf ) = ∑
A∈E

(Sf)(A)	A,

(Af ) = ∑
A∈E

(Af)(A)	A,

where L = S + A and S = L1, A = (1 − 2ρ)L2 + 2
√

χ(ρ)(L+ − L−), with

(L1
f)(A) = (1/2)

∑
x,y∈Zd

s(y − x)[f(Ax,y) − f(A)],

(L2
f)(A) = ∑

x∈A,y /∈A

a(y − x)[f(Ax,y) − f(A)],

(L−
f)(A) = ∑

x /∈A,y /∈A

a(y − x)f(A ∪ {x}),

(L+
f)(A) = ∑

x∈A,y∈A

a(y − x)f(A − {y}).
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Note that the operators L1 and L2 preserve the degree of functions but that
L+ (resp. L−) increases (resp. decreases) the degree by 1. The operator A has
a unique decomposition of the form

A = ∑
n≥0

(An,n−1 + An,n + An,n+1),(2.2)

where An,m is the operator πmAπn sending any function of degree n onto a
function of degree m.

In the sequel, we will primarily consider functions of degree 1 for which we
will use the notation f(·) = f({·}). Hence we give the following expression of the
operators A11 = (1 − 2ρ)B11 and A12 = 2

√
χ(ρ)B12:

(B11f)(x) = ∑
y

a(y − x)[f(y) − f(x)],
(B12f)({x, y}) = a(y − x)[f(x) − f(y)].

(2.3)

We start with the definitions of some resolvent norms and associated Hilbert
spaces. Recall that L is an operator on L2(νρ) whose symmetric part is S (itself
the infinitesimal generator of the symmetric simple exclusion process with jump
rate s) and antisymmetric part is A. Denote by D(f ) = −〈f,Lf 〉 = −〈f,Sf 〉 ≥ 0
the Dirichlet form of the process. The Dirichlet space H1 is defined by the com-
pletion with respect to the Dirichlet form D , and the associated norm (resp. inner
product) is denoted ‖ · ‖1 = √

D (resp. 〈·, ·〉1). By duality of the simple exclusion
process, the Dirichlet space H1 corresponds to the space H1, which is the comple-
tion of {f :E → R with finite support s.t. 〈f,−Lf〉 < ∞}. The corresponding norm
(resp. inner product) will be denoted ‖ · ‖1 (resp. 〈·, ·〉1).

Let H−1 (resp. H−1) be the dual of H1 (resp. H1) with respect to L2(νρ) [resp.
L2(E)]. This is the Hilbert space generated by the local functions (resp. finite
supported functions) and the norm ‖ · ‖−1 defined by

‖f ‖2−1 = sup
g

{2〈f,g〉 − ‖g‖2
1},

‖f‖2−1 = sup
g

{2〈f,g〉 − ‖g‖2
1},

(2.4)

where the supremum is carried over all local functions g (resp. finite supported
functions g).

By duality of the simple exclusion process, we have of course ‖f‖2
1 = ‖f ‖2

1
and ‖f‖2−1 = ‖f ‖2−1. In the same way, for each λ > 0, we can define the Hilbert
space H1,λ (resp. H1,λ) by completion with respect to the norm ‖f ‖1,λ = (〈f, (λ−
S)f〉)1/2 [resp. ‖f‖1,λ = (〈f, (λ − S)f〉1/2]. Let H−1,λ (resp. H−1,λ) be the dual
of H1,λ (resp. H1,λ) with respect to L2(νρ) [resp. L2(E)]. The H−1,λ-norm (or
H−1,λ-norm) will be denoted ‖ · ‖−1,λ.
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LEMMA 2.1. Let f be a local function and let λ > 0. Then we have the two
variational formulas

〈f, (λ − L)−1f 〉 = sup
g

{2〈f,g〉 − ‖g‖2
1,λ − ‖Ag‖2−1,λ}

= inf
g

{‖f + Ag‖2−1,λ + ‖g‖2
1,λ}.

PROOF. Recall that, for λ > 0, (λ − L)−1 is a bounded operator on L2(νρ).
Let [(λ − L)−1]s denote the symmetric part of (λ − L)−1. A simple computation
shows that [[(λ − L)−1]s]−1 = (λ − S) − A(λ − S)−1A.

Hence, we have

〈f, (λ − L)−1f 〉 = 〈f, [(λ − L)−1]sf 〉
= sup

g

{
2〈f,g〉 − 〈

g,
[[(λ − L)−1]s]−1

g
〉}

= sup
g

{2〈f,g〉 − ‖g‖2
1,λ − ‖Ag‖2−1,λ}.

Using this formula with S in the place of L, we have

‖Ag‖2−1,λ = sup
u

{2〈Ag,u〉 − ‖u‖2
1,λ}.

Hence, we obtain

〈f, (λ − L)−1f 〉 = sup
g

inf
u

{2〈f,g〉 − ‖g‖2
1,λ − 2〈Ag,u〉 + ‖u‖2

1,λ}

= sup
g

inf
u

{2〈f + Au,g〉 − ‖g‖2
1,λ + ‖u‖2

1,λ}

≤ inf
u

sup
g

{2〈f + Au,g〉 − ‖g‖2
1,λ + ‖u‖2

1,λ}

= inf
u

{‖f + Au‖2−1,λ + ‖u‖2
1,λ}.

To prove that the inequality is in fact an equality, consider the functions uλ and gλ

defined by

uλ = (λ − S)−1Agλ

with [[(λ − L)−1]s]−1
gλ = (λ − S)gλ − A(λ − S)−1Agλ

= f.
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Using the definitions of uλ, gλ, it is easy to show that

〈f, (λ − L)−1f 〉 = 〈f,gλ〉 = ‖f + Auλ‖2−1,λ + ‖uλ‖2
1,λ

so that the inequality is an equality and we are done. �

Hence, for f ∈ L2(νρ), we have

〈f, (λ − L)−1f 〉 = sup
g

{2〈f,g〉 − ‖g‖2
1,λ − ‖Ag‖2−1,λ}(2.5)

= sup
g

{2〈f,g〉 − ‖g‖2
1,λ − ‖Ag‖2−1,λ}(2.6)

= inf
g

{2‖f + Ag‖2−1,λ + ‖g‖2
1,λ}(2.7)

= inf
g

{2‖f + Ag‖2−1,λ + ‖g‖2
1,λ},(2.8)

where the supremum and infimum are taken over all local functions g (or all finite
supported functions g).

3. Approximation by free particles. Although we are in dimension 1 or 2,
since the approximation is valid for all dimensions, we give the proof for
dimension d ≥ 1 not necessarily less than 2. We denote by e1, . . . , en the canonical
basis of Rn. If x = (x(1), . . . , x(n)) ∈ (Zd)n = χn and z ∈ Zd , then the notation
x + zej stands for (x(1), . . . , x(j) + z, . . . , x(n)). En can be seen as a subclass of
χn :En = {(x(1), . . . , x(n)) ∈ χn; ∀ i �= j, x(i) �= x(j)}. Recall that the restriction of
S = L1 to Sn is the infinitesimal generator of n particles in symmetric simple
exclusion:

(L1
f)(A) = (1/2)

∑
x,y∈Zd

s(y − x)[f(Ax,y) − f(A)].(3.1)

Here, A ∈ En and f ∈ Sn. The state space of this process (ζt )t≥0 is En. We will
denote by D the Dirichlet form associated with L1.

Consider now n free symmetric particles evolving on Zd . The state space of this

process (xt )t≥0 = (x
(1)
t , . . . , x

(n)
t )t≥0 is χn. The infinitesimal generator of n free

particles with jump rates s(·) is given by

(Lfree
f)(x) = ∑

1≤j≤n

z∈Zd

s(z)[f(x + zej) − f(x)].(3.2)

Here f is a finite supported function on χn. We have an another description of
this process. Consider a Poisson process on R whose jump times are denoted by
T1, . . . , Tk, . . . . At time Tk , a particle is uniformly chosen between the n particles
and this particle jumps of z ∈ Zd with probability s(z).
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We denote by 〈〈·, ·〉〉 (‖ · ‖0,free being the associated norm) the inner product
on L2(χn) defined by

〈〈φ,ψ〉〉 = 1

n!
∑
x∈χn

φ(x)ψ(x).(3.3)

Let Dfree be the Dirichlet form associated with Lfree. If φ is a local function on χn,
then

Dfree(φ) = 1

n!
∑

x∈χn,z∈Zd

1≤j≤n

s(z)[φ(x + zej ) − φ(x)]2.(3.4)

THEOREM 3.1. Let the dimension d and the degree n ≥ 1 be fixed. There
exist some positive constants C1 ≡ C1(n, d) and C2 ≡ C2(n, d) such that for each
finite supported function f on En there exists a symmetric function f̃ on χn with the
following two properties:

C1Dfree(f̃) ≤ D(f) ≤ C2Dfree(f̃)(3.5)

and

C1‖f̃‖0,free ≤ ‖f‖0 ≤ C2‖f̃‖0,free.(3.6)

PROOF. All the estimates depend on the dimension d but in the notation we
will omit the dependence on d of the constants. Let T be the stopping time of the
process (xt )t≥0,

T = inf
{
t ≥ 0/Card

{
x

(1)
t , . . . , x

(n)
t

} = n
}
.

We first prove there exists some positive integer K ≡ K(d), depending only on the
dimension d , such that, for each initial configuration of the process x ∈ χn,

Px

[
T ≤ TKn2

] ≥ αn > 0,(3.7)

where αn is a constant independent of x.
A configuration x = (x(1), . . . , x(n)) ∈ χn will be called good if all the points

of Zd , x(1), . . . , x(n), are distinct. Otherwise it will be called bad. Denote by Gn

the set of good configurations and by Bn the set of bad configurations. In the sequel
we will use the following definition: if x and y are two configurations of χn, then
the distance between x and y, d(x, y), is defined as the infimum of the lengths of
the trajectories Ck(x, y) = [x0 = x, . . . , xk = y], between x and y, of the process
(xt )t≥0. Note that, by irreducibility of s(·), d is well defined, by symmetry of s(·),
d is symmetric and, of course, d is subadditive. We need to prove that, for some
integer K and for any initial configuration, we are able to find a path of length at
most Kn2 so that the final configuration is good.
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Consider all the lines parallel to the basis vector e1 of Rd containing at least
one particle of the configuration x. Denote by L1, . . . ,Lk these lines and by nα

the number of particles on the line Lα so that
∑k

α=1 nα = n.
Let Lα be a fixed line. We call y(1), y(2), . . . , y(kα) the different sites of the

line where there is at least one particle and we assume y
(1)
1 < y

(2)
1 < · · · < y

(kα)
1 .

We denote by mj the number of particles on the site y(j) so that
∑kα

j=1 mj = nα .
Thanks to the irreducibility and translation invariance of the symmetrization,
in K1 steps, we can move a particle from site u to site u + e1. Consequently,
in K1

∑kα−1
i=1 mi(mi+1 + · · · + mkα ) steps, for each j ∈ {2, . . . , kα}, we can move

all the particles on the site y(j) to a site w(j) ∈ Lα such that w
(j)
1 −w

(j−1)
1 = mj−1.

Now, for each j , in K1mj(mj −1)/2 steps, we can move the particles which are on
the site w(j) to the sites w(j),w(j) + e1, . . . ,w

(j) + (mj − 1)e1, with one particle
per site. After all these moves, the particles contained initially on the line Lα are
always on the line Lα but with at most one particle per site: it is done in at most
K1

∑kα−1
i=1 mi(mi+1 + · · · + mkα ) + K1

∑kα

i=1 mi(mi − 1)/2 ≤ 3K1
2 n2

α steps. We do

that for each line and we obtain a good configuration after at most 3K1
2 n2 steps.

It follows that Px[T ≤ TKn2] ≥ αn > 0, where αn is a constant independent
of x. By the Markov property, we obtain Px(T ≥ Tk) ≤ Cnρ

k
n , where ρn ∈ (0,1)

and Cn > 0. In particular, Px-a.s., T is finite. Let us define f̃ on χn by

f̃(x) = Ex[f(xT )](3.8)

for x ∈ χn.
Note that if x ∈ En [i �= j ⇒ x(i) �= x(j)], then f̃(x) = f(x). Consequently, using

the Schwarz inequality and irreducibility of the symmetrization, it is easy to check
the second inequality in (3.5).

The Dirichlet form Dfree(f̃) can be decomposed into three terms:

Dfree(f̃) = 1

n! {S(Gn,Gn) + S(Bn,Bn) + 2S(Gn,Bn)},

where

S(Gn,Gn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Gn−zej )

(
f̃(x) − f̃(x + zej )

)2
,

S(Gn,Bn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

(
f̃(x) − f̃(x + zej )

)2
,

S(Bn,Bn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x) − f̃(x + zej)

)2
.
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The first term is equal to

S(Gn,Gn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Gn−zej )

(
f(x) − f(x + zej )

)2

and so is bounded by KnD(f), where Kn is a positive constant.
For the second term, we have

S(Gn,Bn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

(
f̃(x) − f̃(x + zej )

)2

= ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

(
f(x) − f̃(x + zej )

)2

= ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

[
Ex+zej

(
f(xT ) − f(x)

)]2

≤ ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

Ex+zej

[(
f(xT ) − f(x)

)2]

= ∑
k≥1

∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

y∈Gn

Px+zej
[T = Tk, xT = y](f(y) − f(x)

)2

≤ ∑
k≥1

Cnρ
k
n

∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

y∈Gn

(
f(y) − f(x)

)21d(y,x+zej )≤k

≤ ∑
k≥1

Cnρ
k
n

∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Gn∩(Bn−zej )

y∈Gn

(
f(y) − f(x)

)21d(y,x)≤k+1

since we have seen that Px+zej
(T ≥ Tk) ≤ Cnρ

k
n , where ρn ∈ (0,1) is independent

of x + zej and xTk
= y is possible only if d(y, x + zej ) ≤ k.

Note now that if x and y are two good configurations, then one can find a path
Cp(x, y) = [x0 = x, . . . , xp = y], where p ≤ nd(x, y) and such that the path is
contained in Gn. Hence we get the following estimate:

S(Gn,Bn) ≤ ∑
k≥1

Knρ
k
n

∑
Cp=[x0,...,xp]

(
f(xp) − f(x0)

)21d(x0,xp)≤n(k+1),(3.9)
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where the summation is carried over all the paths Cp = [x0, . . . , xp] contained
in Gn,

S(Gn,Bn) ≤ ∑
k≥1

Knρ
k
n

∑
Cp=[x0,...,xp]

(
f(xp) − f(xp−1) + · · ·

+ f(x1) − f(x0)
)21p≤n(k+1)

≤ ∑
k≥1

Knρ
k
n

∑
Cp=[x0,...,xp]

(
f(xp) − f(xp−1) + · · ·

+ f(x1) − f(x0)
)21p≤n(k+1)

≤ ∑
k≥1

Knρ
k
n

∑
Cp=[x0,...,xp]

p

p∑
j=1

[f(xj ) − f(xj−1)]2.

However, since s is finite-range, there exists a constant An such that, for all
j ∈ {1, . . . , p − 1}, there are at most Anp paths of length p containing the
step [xj−1, xj ]. Using the Schwarz inequality, it is now easy to check that, for
some positive constant Kn, we have

S(Gn,Bn) ≤ KnD(f).(3.10)

There remains the third term. Recall that, in the beginning of the proof, we
proved that, for each configuration x, we are able to find a good configuration
wx such that d(x,wx) ≤ Kn2. When s(z) > 0 then d(x, x + zej ) = 1 so that
d(x + zej ,wx) ≤ Kn2 + 1 ≤ 2Kn2. We have

S(Bn,Bn) = ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x) − f̃(x + zej )

)2

= ∑
1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x) − f̃(wx) + f̃(wx) − f̃(x + zej)

)2

≤ 2
∑

1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x) − f̃(wx)

)2

+ 2
∑

1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x + zej ) − f̃(wx)

)2

= 2
∑

1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x) − f(wx)

)2

+ 2
∑

1≤j≤n

z∈Zd

s(z)
∑

x∈Bn∩(Bn−zej )

(
f̃(x + zej ) − f(wx)

)2
.
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Doing the same work as for the second term, it is easy to see that

S(Bn,Bn) ≤ KnD(f)(3.11)

for a positive constant Kn.
We now have to prove the second set of inequalities concerning the L2 norm.

The right-hand side inequality in (3.6) is evident. For the left-hand side inequality,
we have

‖f̃‖2
0,free = 1

n!
∑
x∈χn

(
Ex[f(xT )])2 = 1

n!
∑
x∈Gn

(f(x))2 + 1

n!
∑

x∈Bn

(
Ex[f(xT )])2

.

The first sum is equal to ‖f‖2
0 and one can rewrite the second term as

1

n!
∑

x∈Bn

(
Ex[f(xT )])2 = 1

n!
∑
k≥1

∑
x∈Bn

y∈Gn

f(y)2Px

[
xTk

= y;T = Tk

]

= 1

n!
∑
y∈Gn

f(y)2
∑
k≥1

∑
x∈Bn

Px

[
xTk

= y;T = Tk

]
≤ 1

n!
∑
y∈Gn

f(y)2
∑
k≥1

∑
xs.t.

d(x,y)≤k

Px[T = Tk]

≤ Kn

1

n!
∑
y∈Gn

f(y)2
∑
k≥1

kdρk
n

≤ K ′
n

1

n!
∑
y∈Gn

f(y)2

= K ′
n‖f‖2

0. �

Let us define the resolvent norms associated with the generator Lfree. The
Hfree

1 and Hfree−1 norms associated with the Dirichlet form Dfree are defined by

‖φ‖2
1,free = Dfree(φ),

‖φ‖2−1,free = sup
ψ

{2〈〈φ,ψ〉〉 − ‖ψ‖2
1,free}(3.12)

and the resolvent norm, ‖ · ‖1,free,λ and ‖ · ‖−1,free,λ are defined by

‖φ‖2
1,free,λ = −〈〈φ, (Lfree − λ)φ〉〉 = Dfree(φ) + λ〈〈φ,φ〉〉,

‖φ‖2−1,free,λ = sup
ψ

{2〈〈φ,ψ〉〉 − ‖ψ‖2
1,free,λ}.(3.13)
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Note here that we do not have necessary equivalence of the Hfree−1 and H−1 norms

because we do not have the equality 〈〈f̃, g̃〉〉 = 〈f,g〉. Nevertheless, let Wn be the
operator defined on L2(χn) by

Wnf(x) = 1x∈Gnf(x).(3.14)

THEOREM 3.2. For each n, there exists a constant C = C(d,n) such that

‖f‖−1,λ ≤ C‖Wn f̃‖−1,free,λ(3.15)

for all finite supported function over En and where f̃ is defined by (3.8).

PROOF. Indeed, we have

‖f‖2−1,λ = sup
g

{2〈f,g〉 − ‖g‖2
1,λ}

= sup
g

{2〈〈Wnf̃, g̃〉〉 − ‖g‖2
1,λ}

≤ C sup
g

{2〈〈Wnf̃, g̃〉〉 − ‖g̃‖2
1,free,λ}

≤ C‖Wn f̃‖2−1,free,λ.

The penultimate inequality follows from Theorem 3.1. �

Hence it is possible to compare the H−1,λ norm of B12f with respect to the
Hfree−1,λ norm of T12f, where T12 is just the operator W2B̃12 and B̃12 is defined by

(B̃12f)(x, y) = (B̃12f̃ )(x, y).(3.16)

A simple computation shows that

(T12f)(x, y) = a(y − x)
(
f(x) − f(y)

)
.(3.17)

Hence, we have

‖B12f‖2−1,λ ≤ C‖T12 f̃‖2−1,free,λ = C‖T12f‖2−1,free,λ(3.18)

by Theorem 3.2 and since f̃ = f for the degree 1 functions f.
Now we give the expressions in terms of Fourier transform of the ‖ ·‖1,free,λ and

‖ · ‖−1,free,λ norms. If ψ is a function of L2(χn) and if ψ̂(s1 · · · sn), si ∈ [0,1]d , is
its Fourier transform, defined by

ψ̂(s1 · · · sn) = 1√
n!

∑
(x1···xn)∈χn

e2iπ(x1s1+···+xnsn)ψ(x1 · · ·xn)

and

L̂freeψ = L̂freeψ̂,
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where

L̂freeψ̂(s1 · · · sn) = −
[

n∑
j=1

θd(sj )

]
ψ̂(s1 · · · sn)

with, for u ∈ [0,1]d ,

θd(u) = 2
∑
z∈Zd

s(z) sin2 (
π(u · z)).(3.19)

Using the Parseval equality, we get

‖ψ‖2
1,free,λ = 1

(2π)nd

∫
(s1···sn)∈([0,1]d)n

(
λ +

n∑
i=1

θd(si)

)
|ψ̂(s1 · · · sn)|2 ds1 · · · dsn

and

‖ψ‖2−1,free,λ = 1

(2π)nd

∫
(s1···sn)∈([0,1]d)n

|ψ̂(s1 · · · sn)|2
λ + ∑n

i=1 θd(si)
ds1 · · · dsn.

4. Superdiffusivity in dimension 1 for the density ρ = 1/2. We prove
that, for dimension 1 and density ρ = 1/2, the occupation time of the site 0
in the general asymmetric simple exclusion process with nonzero mean has a
superdiffusive behavior. Throughout this section, the density ρ is fixed and equal
to 1/2. Let f0(η) = (η(0) − ρ) and recall that the time t variance is defined by

σ 2
t (f0) = Eρ

[∫ t

0
f0(η(s)) ds

]2

.

THEOREM 4.1. For all ε > 0, there exists a positive constant Cε such that, for
large t , we have

σ 2
t (f0) = Eρ

[∫ t

0
f0(η(s)) ds

]2

≥ Cεt
5/4−ε.

To prove this theorem, we first obtain a lower bound for the Laplace transform
of the function σ 2· (f0), which is contained in the following lemma.

LEMMA 4.2. There exists a positive constant c such that, for all λ > 0, we
have

〈f0, (λ − L)−1f0〉 ≥ cλ−1/4.(4.1)

PROOF. By Theorem 2.1 in [10], we just have to prove this lemma for the total
asymmetric exclusion process. In fact, the following estimates could be done for
the general asymmetric exclusion process but the use of this theorem permits us
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to simplify the calculus. Hence, in the sequel, we assume total asymmetry to the
right of the exclusion process.

Remark that f0 = √
χ(ρ)δ0, where δ0 is the characteristic function of the set {0},

is a degree-1 function.
We have

〈δ0, (λ − L)−1δ0〉 = sup
g

{2〈δ0,g〉 − ‖g‖2
1,λ − ‖Ag‖2−1,λ},(4.2)

where the supremum is taken over all finite supported functions g. To obtain a
lower bound, we can restrict this supremum over degree-1 functions. In this case,
since the density is ρ = 1/2, there is a single term in the asymmetric part of the
generator. If g is of degree 1, we have Ag = A12g and we recall that

(A12g)({x, y}) = 0 if |y − x| > 1

and

(A12g)({x, x + 1}) = 1
2

(
g(x) − g(x + 1)

)
.

Thanks to (3.18), we can replace the term ‖A12g‖2−1,λ by β‖T12g‖2−1,free,λ
in (4.2) (β being a positive constant independent of λ), where T12 is the operator
defined by

(T12φ)(x, y) = 0 if |y − x| �= 1,

(T12φ)(x, x + 1) = 1
2

(
φ(x) − φ(x + 1)

)
.

More exactly, with this definition, there exists some constant β such that

〈δ0, (λ − L)−1δ0〉 ≥ sup
φ∈G1

{2〈〈δ0, φ〉〉 − ‖φ‖2
1,λ,free − β‖T12φ‖2−1,free,λ}.(4.3)

Using the Fourier transform, we have to estimate

sup
φ

{
1

π

∫ 1

0
φ̂(s) ds −

∫ 1

0

(
λ + θ1(s)

)|φ̂(s)|2 ds

− β

2

∫
(s,t)∈[0,1]2

(sin(2πs) + sin(2πt))2

λ + θ1(s) + θ1(t)
|φ̂(s + t)|2 ds dt

}
.

(4.4)

It is simple to check that∫
(s,t)∈[0,1]2

(sin(2πs) + sin(2πt))2

λ + θ1(s) + θ1(t)
|φ̂(s + t)|2 ds dt

= 4
∫ 1

0
ds|φ̂(s)|2 sin2(πs)Fλ(s) ds,

(4.5)

where

Fλ(s) =
∫ 1

0

cos2(πu)

λ + 2 sin2(π(u + s)/2) + 2 sin2(π(u − s)/2)
du.(4.6)
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The supremum is taken over all the real local functions φ but it is easy to see
that the supremum is the same if you consider the supremum over real functions
in L2(Z) = S1. Note now that the expression in the variational formula (4.4),
using (4.5), is just the integral of a quadratic expression in terms of φ̂(s).
Consequently, the last supremum (4.4) is equal to

1

4π2

∫ 1

0

du

λ + 2 sin2(πu)(1 + βFλ(u))
(4.7)

and the maximizer is given by

φ̂λ(u) = 1

2π(λ + 2 sin2(πu)(1 + βFλ(u)))
.(4.8)

The maximizer is the Fourier transform of a real function since we have
φ̂∗

λ(1 − s) = φ̂λ(s) (here φ̂∗
λ means the complex conjugate of the function φ̂λ).

For s ≤ 1/2, using the fact that for 0 ≤ x ≤ 1 we have

sin
(

πx

2

)
≥ x and cos

(
πs

2

)
≥ 1√

2
,

we get the following inequalities:

Fλ(s) =
∫ 1

0

cos2(πv)

λ + 4 sin2(πs/2) cos2(πv/2) + 4 cos2(πs/2) sin2(πv/2)
dv(4.9)

≤
∫ 1

0

dv

λ + 4s2 cos2(πv/2) + 2v2(4.10)

≤
∫ 1/2

0

dv

λ + 2s2 + 2v2 +
∫ 1

1/2

dv

2v2(4.11)

≤ C
1√

λ + s2
,(4.12)

where C is a constant independent of s, λ.
Consequently, for some positive constant K , we have∫ 1/2

0

du

λ + 2 sin2(πu)(1 + βFλ(u))

≥
∫ 1/2

0

du

λ + 2π2u2(1 + K/
√

λ + u2 )

= λ−1/4
∫ λ−3/4/2

0

dz

1 + 2π2z2
√

λ + 2π2Kz2(1 + √
λz2)−1/2

with the change of variables z = λ−3/4u.
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Hence we obtain, for sufficiently small λ,∫ 1

0

du

λ + 2 sin2(πu)(1 + βFλ(u))
≥ λ−1/4

∫ 1

0

dz

1 + 2π2(1 + K)z2

≥ Cλ−1/4,

where C is a positive constant independent of λ. This proves Lemma 4.2. �

We now give a lemma which is just a refinement of Lemma 4.5 in [9]. Recall
that we have defined σt(f ) by σ 2

t (f ) = Eρ[∫ t
0 f (η(s)) ds]2. We recall some

notation of [9]. For each t > 0, Tt is the semigroup of the asymmetric simple
exclusion process whose generator is given by L. Let Uf (t) = ∫ t

0 〈Tsf,f 〉ds and
Vf (t) = ∫ t

0 Uf (s) ds = 1
2σ 2

t (f ). Since f is a bounded function, there exists a
constant C such that Vf (t) ≤ Ct2. Moreover, 〈Tsf,f 〉 ≥ 0 by Lemma 2.2 of [9]
so that Uf is nonnegative.

LEMMA 4.3. Let U(t) be a nonnegative function and let V (t) = ∫ t
0 U(s) ds.

Suppose that there exists some constant θ > 0 such that lim supt→+∞ t−θV (t) <

∞. Denote by L(λ) = ∫ ∞
0 e−λsU(s) ds the Laplace transform of U and suppose

that ᾱ(U) = sup{α ∈ [0,1]/ lim infλ→0 λα+1L(λ) > 0} exists. Then for all ε > 0
we have

lim inf
t→+∞ t−(ᾱ+1−ε)V (t) > 0.

PROOF. Let C1 and Cε be positive constants such that for large t and small λ

we have

V (t) ≤ C1t
θ ,

L(λ) ≥ Cελ
−(ᾱ+1−ε).

Note ᾱ(U) = ᾱ and γ = ᾱ − 2ε and suppose that lim inft→+∞ t−(1+γ )V (t) = 0.
Then there exists some subsequence {tn}, tn ↑ ∞, such that V (tn) ≤ t

γ+1
n . Since

L(λ) = λ
∫ ∞

0 e−λsV (s) ds, we have the following inequalities:

Cελ
−(ᾱ+2−ε) ≤

∫ tn

0
e−λsV (s) ds +

∫ ∞
tn

e−λsV (s) ds(4.13)

≤ tγ+2
n + C1

∫ ∞
tn

e−λssθ ds(4.14)

= tγ+2
n + C1λ

−θ−1
∫ ∞
λtn

essθ ds.(4.15)

We now take λ = λn, where Kn = λntn = t
1/µ
n with µ > 1 so that limn→∞ λn = 0

and limn→∞ Kn = ∞. Note that
∫ ∞
x e−ssθ ds ∼x→∞ e−xxθ . Multiplying by
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λᾱ+2−ε and using this remark, we have

Cε ≤ tγ+ε−ᾱ
n Kᾱ+2−ε

n + C′
εK

1+ᾱ−ε
n tθ−ᾱ+ε−1

n e−Kn(4.16)

≤ tγ+ε−ᾱ+(1/µ)(ᾱ+2−ε)
n + C′

εt
(1/µ)(1+ᾱ−ε)+θ−ᾱ+ε−1
n e−t

1/µ
n ,(4.17)

where C′
ε is a positive constant. If µ is sufficiently large, then γ + ε − ᾱ +

(1/µ)(ᾱ + 2 − ε) will be of the same sign as γ + ε − ᾱ = −ε, which is negative.
For a such µ, the last estimate tends to 0 as n goes to infinity so that Cε = 0, which
yields a contradiction. �

In our case, since we have proved ᾱ(Uf0) ≥ 1/4, we obtain that, for all ε > 0,

lim inf
t→∞ t−(5/4−ε)Vf0(t) > 0

and Theorem 4.1 is proved.

5. Diffusivity in dimension d = 2 with density ρ �= 1/2. In this section,
we prove that, for dimension d = 2 and density ρ �= 1/2, the limiting variance
σ 2(f0) = limt→∞ t−1σ 2

t (f0) is finite. We recall that in [9] it is proved that
σ 2(f0) is well defined and that σ 2(f0) = limλ→0〈f0, (λ − L)−1f0〉. Throughout
this section, the density ρ is fixed and different from 1/2.

THEOREM 5.1. If the density is ρ �= 1/2 and the dimension is d = 2, for
the general asymmetric simple exclusion process with nonzero mean, the limiting
variance σ 2(f0) = limt→∞ t−1σ 2

t (f0) is finite.

Since σ 2(f0) = limλ→0〈f0, (λ − L)−1f0〉, we have to prove

sup
λ>0

〈f0, (λ − L)−1f0〉 < ∞.(5.1)

For simplicity of the calculus we will assume that the jumps of the exclusion
process are just nearest neighbors. In fact, one can restrict the study to this case
by Theorem 2.1 of [10]. We adopt the following notation: a(e1) = −a(−e1) = a1,
a(e2) = −a(−e2) = a2, s(e1) = s(−e1) = s1 and s(e2) = s(−e2) = s2. Thanks to
the irreducibility of s(·), s1 > 0 and s2 > 0 and since the mean of p is nonzero,
a2

1 + a2
2 �= 0. Recall that f0 = √

χ(ρ)δ0 is a degree-1 function.
We have the following variational formula:

〈δ0, (λ − L)−1δ0〉 = inf
g

[
2‖δ0 − Ag‖2−1,λ + ‖g‖2

1,λ

]
,

where the infimum is taken over all finite supported functions.
If g is of degree 1, then Ag has the form

Ag = A11g + A12g,
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where

(A11g)(x) = (1 − 2ρ)(B11g)(x)

= (1 − 2ρ)
[
a1

(
g(x + e1) − g(x − e1)

) + a2
(
g(x + e2) − g(x − e2)

)]
and

(A12g)({x, x + e1}) = 2
√

χ(ρ)(B12g)({x, x + e1})
= 2

√
χ(ρ)

[
a1

(
g(x) − g(x + e1)

)]
,

(A12g)({x, x + e2}) = 2
√

χ(ρ)(B12g)({x, x + e2})
= 2

√
χ(ρ)

[
a2

(
g(x) − g(x + e2)

)]
,

(A12g)({x, y}) = 0 if |y − x| �= 1.

Using Theorem 3.2 we have the following inequalities:

inf
φ

[
2‖δ0 − Aφ‖2−1,λ + ‖φ‖2

1,λ

]
≤ inf

φ∈G1

[
2‖δ0 − Aφ‖2−1,λ + ‖φ‖2

1,λ

]
= inf

φ∈G1

[
2‖δ0 − (1 − 2ρ)B11φ‖2−1,λ + ‖φ‖2

1,λ + 8χ(ρ)‖B12φ‖2−1,λ

]
≤ C inf

φ∈G1

[‖δ0 − (1 − 2ρ)B11φ‖2−1,free,λ

+ ‖φ‖2
1,free,λ + 8χ(ρ)‖T12φ‖2−1,free,λ

]
,

where C is a positive constant.
We have

inf
φ∈G1

‖δ0 − A11φ‖2−1,free,λ + ‖φ‖2
1,free,λ(5.2)

= 1

4π2
inf

φ∈G1

{∫
u∈[0,1]2

{ |1 + iγ (u)φ̂(u)|2
λ + θ2(u)

(5.3)
+ (

λ + θ2(u)
)|φ̂(u)|2

}
du1 du2

}
,

where

γ (u) = 2(1 − 2ρ)[a1 sin(2πu1) + a2 sin(2πu2)]
= b1 sin(2πu1) + b2 sin(2πu2)

and we recall that

θ2(u) = 4s1 sin2(πu1) + 4s2 sin2(πu2).



874 C. BERNARDIN

The function φλ realizing the infimum of ‖δ0 − A11φ‖2−1,free,λ + ‖φ‖2
1,free,λ is

given by its Fourier transform:

φ̂λ(u) = iγ (u)

γ (u)2 + (λ + θ2(u))2 .(5.4)

The minimizer is the Fourier transform of a real function since we have
φ̂∗

λ(1 − s1,1 − s2) = φ̂λ(s1, s2).
Moreover, this infimum is then equal to

1

4π2

∫
u∈[0,1]2

(λ + θ2(u))

γ (u)2 + (λ + θ2(u))2
du,(5.5)

and we have

sup
λ>0

∫
u∈[0,1]2

(λ + θ2(u))

γ (u)2 + (λ + θ2(u))2 du < ∞.(5.6)

Indeed, problems happen when θ2(u) = 0 [e.g., u = (0,0), (0,1), (1,0), (1,1)].
Let us examine the problem for (0,0), the others being of the same nature. Near
(0,0) we may make the change of variables x1 = sin(2πu1), x2 = sin(2πu2), and
it is easy to check that there exists some constant C (independent of λ) such that∫

u∈[0,1/4]2

(λ + θ2(u))

γ (u)2 + (λ + θ2(u))2
du

≤ C

∫
x∈V

(λ + x2
1 + x2

2)

(b1x1 + b2x2)2 + (λ + x2
1 + x2

2)2
dx,

where V is a neighborhood of (0,0). Now, using polar coordinates, the problem is
equivalent to finding a uniform bound in λ for∫ 1

0
r dr

∫ π/2

0

λ + r2

(b2
1 + b2

2)r
2 sin2(φ) + (λ + r2)2

dφ.

It is easy to check that this integral is uniformly bounded.
Hence we take this function φλ and, to prove (5.1), it remains to show that

sup
λ>0

‖T12φλ‖−1,free,λ < ∞.

We can compute the Fourier transform of T12φλ and we have(
T̂12φλ

)
(u, v) = − i

1 − 2ρ
[γ (u) + γ (v)]φ̂λ(u + v).

Consequently, we get

‖T12φλ‖2−1,free,λ(5.7)

= 1

4π2(1 − 2ρ)2

∫
(u,v)∈([0,1]2)2

(γ (u) + γ (v))2

λ + θ2(u) + θ2(v)
|φ̂λ(u + v)|2 dudv.(5.8)
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We have to check that the following integral I is finite:

I =
∫
(u,v)∈[0,1]4

γ 2(u + v)

(γ 2(u + v) + θ2
2 (u + v))2

(γ (u) + γ (v))2

θ2(u) + θ2(v)
dudv.(5.9)

We begin with a lemma which will be useful in proving the convergence of the
integral I .

LEMMA 5.2. The function

Jα,β(ε1, ε2)

= (
sin2(πε1) + sin2(πε2)

)
×

[(
α sin(2πε1) + β sin(2πε2)

) + (sin2(πε1) + sin2(πε2))
2

(α sin(2πε1) + β sin(2πε2))

]−2

is integrable in a neighborhood V ⊂ R × R of (0,0) for every value of the
parameters α and β such that α2 + β2 �= 0.

PROOF. First, note that we can assume that V ⊂ R+ × R+ by a change
of signs for α,β . Since we are near 0, we may make the change of variables
x1 = sin(2πε1), x2 = sin(2πε2) and we have∫

V
Jα,β(ε1, ε2) dε1 dε2

≤ C

∫
V

(ε2
1 + ε2

2)(α sin(2πε1) + β sin(2πε2))
2

[(α sin(2πε1) + β sin(2πε2))
2 + (ε2

1 + ε2
2)

2]2
dε1 dε2

≤ K

∫
U

(x2
1 + x2

2)(αx1 + βx2)
2

[(αx1 + βx2)2 + (x2
1 + x2

2)2]2

dx1√
1 − x2

1

dx2√
1 − x2

2

≤ K ′
∫
U

(x2
1 + x2

2)(αx1 + βx2)
2

[(αx1 + βx2)2 + ν(x2
1 + x2

2)2]2
dx1 dx2,

where C,K,K ′ are positive constants and U ⊂ R+ × R+ is a neighborhood
of (0,0).

Assume that U ⊂ [0,1] × [0,1] and use polar coordinates to rewrite this last
integral as follows:∫

U

(x2
1 + x2

2)(αx1 + βx2)
2

[(αx1 + βx2)2 + (x2
1 + x2

2)2]2
dx1 dx2

≤
∫ 1

0
dr

∫ π/2

0
r dφ

(α2 + β2)r4 sin2(φ + φ0)

[(α2 + β2)r2 sin2(φ + φ0) + r4]2

= (α2 + β2)

∫ 1

0
r dr

∫ φ0+π/2

φ0

dφ
sin2(φ)

[sin2(φ) + r2]2
,
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where φ0 is such that α/
√

α2 + β2 = sin(φ0) and β/
√

α2 + β2 = cos(φ0). It is
easy to check the convergence of this last integral and so the lemma is proved. �

LEMMA 5.3.

I =
∫
(u,v)∈[0,1]4

γ 2(u + v)

(γ 2(u + v) + θ2
2 (u + v))2

(γ (u) + γ (v))2

θ2(u) + θ2(v)
dudv < ∞.

PROOF. Let us denote by F(u, v) the function appearing in the integral,

F(u, v) = γ 2(u + v)

(γ 2(u + v) + θ2
2 (u + v))2

(γ (u) + γ (v))2

θ2(u) + θ2(v)
.(5.10)

Since we are just interested in the convergence of this integral, by a trivial
inequality, we can suppose that θ2(u) = sin2(πu1) + sin2(πu2).

Note that the singularities of F correspond to the set

S = {(u, v) ∈ [0,1]4/u + v ∈ A × A},
where A = {0,1,2}.

In fact, many singularities have the same behavior and, by a change of variables,
it is enough to study what happens for F in the neighborhood of u + v = (0,0),
u + v = (0,1), u + v = (1,1), u + v = (0,2). We just give the proof for the
singularity (0,1).

We have hence u1 + v1 near 0 and u2 + v2 near 1.
We suppose that (u, v) ∈ [0,1]4 is such that u1, v1, ε2 ∈ V , u2 + v2 = 1 + ε2.

Here, V is a neighborhood in R of 0. Let us call y1 = u1 − v1 (resp. y2 = u2 − v2)
and, since u1, v1 ∈ V , we will assume that u1 +v1 = ε1, where ε1 ∈ V and y1 ∈ V .
We denote this domain by D.

It is easy to check that

γ (u + v) = b1 sin(2πε1) + b2 sin(2πε2)

and that[
γ (u + v) + θ2

2 (u + v)

γ (u + v)

]2

=
[(

b1 sin(2πε1) + b2 sin(2πε2)
) + (sin2(πε1) + sin2(πε2))

2

(b1 sin(2πε1) + b2 sin(2πε2))

]2

= χb1,b2(ε1, ε2).

We also have

θ2(u) + θ2(v) = 2
[

cos2
(

πy1

2

)
sin2

(
πε1

2

)
+ cos2

(
πε1

2

)
sin2

(
πy1

2

)

+ cos2
(

πy2

2

)
cos2

(
πε2

2

)
+ sin2

(
πε2

2

)
sin2

(
πy2

2

)]
≥ δ(ε1, ε2, v1, v2),
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where δ is a continuous function which is positive if y2 is not in a neighborhood
of ±1 and such that

δ(ε1, ε2, y1, y2) ≥ k
(
ε2

1 + ε2
2 + y2

1 + (y2 ∓ 1)2)
for y2 in the neighborhood of ±1 and where k is a positive constant.

Note therefore that the function 1/δ is integrable on D.
We may rewrite the fourth term as follows:

γ (u) + γ (v) = 2
(
b1 sin(πε1) cos(πy1) − b2 sin(πε2) cos(πy2)

)
= (

b1 sin(2πε1) + b2 sin(2πε2)
) + ρ(ε1, ε2, y1, y2),

where ρ is a bounded function such that

|ρ(ε1, ε2, y1, y2)| ≤ K(ε1 + ε2)
(
ε2

1 + ε2
2 + y2

1 + (y2 ∓ 1)2)
for y2 in the neighborhood of ±1 and where K is a positive constant.

Using this notation, we get the following inequalities:∫
(u,v)∈D

F(u, v) ds dt

≤ C

∫
(ε1,ε2)∈V 2

y1∈V,y2∈[−1,1]

((b1 sin(2πε1) + b2 sin(2πε2)) + ρ(ε1, ε2, y1, y2))
2

χb1,b2(ε1, ε2)δ(ε1, ε2, y1, y2)
dε dy

≤ 2C

∫
(ε1,ε2)∈V 2

y1∈V,y2∈[−1,1]

(b1 sin(2πε1) + b2 sin(2πε2))
2

χb1,b2(ε1, ε2)δ(ε1, ε2, y1, y2)
dε dy

+ 2C

∫
(ε1,ε2)∈V 2

y1∈V,y2∈[−1,1]

ρ2(ε1, ε2, y1, y2)

χb1,b2(ε1, ε2, y1, y2)δ(ε1, ε2, y1, y2)
dε dy

≤ M

∫
(ε1,ε2)∈V 2

y1∈V,y2∈[−1,1]

1

δ(ε1, ε2, y1, y2)
dε dy

+ M

∫
(ε1,ε2)∈V 2

y1∈V,y2∈[−1,1]
Jb1,b2(ε1, ε2) dε dy

since

ρ2(ε1, ε2, y1, y2)

δ(ε1, ε2, y1, y2)
≤ K2

k
(ε2

1 + ε2
2)

(
ε2

1 + ε2
2 + y2

1 + (y2 ∓ 1)2)
for y2 in a neighborhood of ±1 and is bounded otherwise. However, the first
integral in the last inequality is bounded because 1/δ is integrable and the second
integral is finite by Lemma 5.2.
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Then we have proved that
∫
(u,v)∈D F(u, v) dudv < ∞. The study of the other

singularities could be done with comparable estimates. �

This lemma completes the proof of Theorem 5.1. We recall the two following
corollaries established in [9].

COROLLARY 5.4. Assume that the density is ρ �= 1/2, the dimension d is 2
and the mean of p is nonzero. Let f be a local function with mean 0. We have
weak convergence in the uniform topology on C[0,∞) to Brownian motion, with
respect to the initial measure νρ ,

lim
α→∞α−1/2

∫ αt

0
f (ηs) ds = B

(
σ 2(f )t

)
.

PROOF. The proof is a trivial consequence of Lemmas 3.4 and 3.9 and
Theorem 1.1 of [9]. �

COROLLARY 5.5. If the density ρ �= 1/2, dimension d = 2, mean of p is
nonzero, the position of the second-class particle R(t) is νρ -transient.

PROOF. See [9], Section 6 for the proof.
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