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We consider an arbitrary one-dimensional conservative particle system
with finite-range interactions and finite site capacity, governed on the
hydrodynamic scale by a scalar conservation law with Lipschitz-continuous
flux h. A finite-size perturbation restricts the local current to some maximum
value φ. We show that the perturbed hydrodynamic behavior is entirely
determined by φ if inf(h;φ) is first nondecreasing and then nonincreasing,
which we believe is a necessary condition.

1. Introduction. It is known that scalar conservation laws of the form

∂tρ + ∂xh(ρ) = 0(1)

arise as hydrodynamic limits of asymmetric conservative particle systems under
Euler time scaling. See, for example, [22] for a celebrated result and [16] for a
survey of related literature. Equation (1) and the related particle systems can be
viewed as simplified models for a variety of physical phenomena, such as traffic
flow [7]. How is (1) modified by a local perturbation of dynamics representing
traffic perturbation, for example, a bottleneck? The simplest model was introduced
in [12] as a one-dimensional totally asymmetric simple exclusion process (TASEP)
where a slow bond has jump rate α ∈ [0; 1) instead of 1. We shall refer to this
model as TASEP(α). This and related models have attracted sustained interest
in the probability and physics literature over the last years; partly, because they
provide examples of phase transition in one-dimensional systems with short-range
interactions. See, for example, [18] for a similar ZR(α) model in the case of the
zero-range process, [25] for a TASEP(α) with parallel update, [20] for a TASEP
with a slow second-class particle.

Stationary response of TASEP(α) to blockage was investigated numerically by
Janowski and Lebowitz [12] and analytically by Schütz [25] for parallel update; the
latter being exactly solvable as opposed to the former. The common picture is that
the perturbation sets a maximum value φ for the current through the bottleneck,
which entirely determines the behavior of the system. Density values that violate
this bound are replaced by a unique jam (i.e., a decreasing shock) with current φ.
More recently, Jensen [13] determined the optimal perturbation of TASEP that
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stabilizes a given stationary decreasing shock (where optimal is meant in relative
entropy cost).

Blockage hydrodynamics were first studied for ZR(α) by Landim [18].
However, the response of this system is different from those considered here,
because of infinite site capacity and increasing flux. The latter property has the
simplifying consequence that the perturbation is not felt by the left-hand side of
the system; one also benefits from explicit knowledge of invariant measures for the
perturbed system. The hydrodynamic profile of TASEP(α) was obtained in [28] by
the variational coupling technique due to Seppäläinen (see, e.g., [27] for a detailed
introduction thereto), thanks to specific features of the model: the Lax-Hopf
formula for (1) when the flux is concave (or convex), echoed by a corresponding
microscopic formula for TASEP(α). Due to those particular properties, it is not
clear how one-dimensional blockage behavior generically depends on the flux,
model and perturbation; and how a unifying formulation (if any) can be given. In
general, the flux is not concave (or convex), so there is no variational representation
as in [28]; then the problem is entirely new, as one does not even know how to
define a candidate hydrodynamic profile. Still for concave flux, the system may
not admit a microscopic variational representation, for example, for models with
partially asymmetric jumps or jump rates depending on the configuration (see, e.g.,
[27]); in that case the result of [28] still yields a candidate for hydrodynamics, but
a different approach is required for the proof. The same problem occurs even for
TASEP under certain more general perturbations than TASEP(α), for example, for
a slow bond with state-dependent jump rate (see the third remark in Section 2.5).

In this paper we provide a unified, model-independent approach that does
not require convexity and variational coupling, but a much weaker monotonicity
assumption for the positions of labelled particles. This assumption contains,
in particular, all nearest-neighbor systems for which (1) is known. Variational
coupling was shown [24] to be equivalent to a stronger form of monotonicity.
Though the problem and approaches are different, the situation is somewhat
comparable to [23], where the absence of variational coupling raises a challenging
problem. Another difficulty here is that, to the best of our knowledge, there is
no existing theory in PDE literature to describe the kind of hydrodynamics we
find. Thus, part of our new results is the construction of such a theory, which we
hope may be interesting in itself. We consider an arbitrary one-dimensional system
ruled by (1), with Lipschitz-continuous flux h ≥ 0, defined on [0;K], such that
h(0) = h(K) = 0. K is the maximal density imposed by finite site capacity. Our
main result is that the perturbed hydrodynamics is entirely determined by h and
the maximal current φ, if inf(h;φ) is first nondecreasing and then nonincreasing.
This is equivalent to φ ≤ φ∗, where φ∗ is the infimum “genuine” (see Section 2.2)
local minimum of h, or φ∗ = suph is there is no such local minimum. We believe
that for φ > φ∗, the behavior of the system is no longer determined by the single
parameter φ. Note that φ is not explicit for a given perturbation, because, in



BLOCKAGE HYDRODYNAMICS 807

general, invariant measures are not known for the perturbed system, even if they are
for the unperturbed system. The problem is somewhat comparable to [28] and [23],
where the whole flux is unknown, for lack of information about steady states.
Nevertheless, the whole range 0 ≤ φ ≤ φ∗ can be covered by a physically natural
family of perturbations.

Without convexity and variational representation, an interesting problem is
to characterize the hydrodynamic profile. It is known that (1) has no strong
solutions in general; besides, choosing from the infinity of weak solutions with
given Cauchy datum requires an additional entropy condition to select the physical
solution, called the entropy solution. This solution describes the hydrodynamics
of the unperturbed system. We shall see that the microscopic perturbation does
not modify the hydrodynamic equation (1), as the system still selects a weak
solution thereto; but it does modify the choice of the relevant solution. We prove
that the hydrodynamic limit is characterized by a modified entropy condition that
specifies a new set of admissible shocks at the bottleneck. It may alternatively
be viewed as a special kind of boundary condition. For this condition we prove
original existence and uniqueness results. We only require Lipschitz continuity of
the flux, which is the standard condition for well-posedness of (1) in Kružkov’s
theory [17]. In the present paper where φ ≤ φ∗, the condition depends only on φ.
It states that densities or shocks with current greater than φ should be replaced
by a decreasing shock with current φ. As opposed to TASEP(α), there may be
several such shocks if h has flat segments or local minima with value φ. We believe
that, for φ ≤ φ∗, this modified entropy condition is the only one that induces a
maximal current φ; while for φ > φ∗, there should be an infinity of such entropy
conditions. This suggests (as mentioned above) that the behavior of the system
cannot be determined only by φ in the latter case.

The paper is organized as follows. In Section 2 we define the framework, state
the main results and discuss three classes of examples: nearest-neighbor attractive
systems, nearest-neighbor ASEP with speed change and nearest-available neighbor
ASEP. In Section 3 we introduce the modified entropy condition and state
properties of the corresponding solution; as an illustration, we explicitely construct
Riemann solutions. In Section 4 we state comparison lemmas that will be the basis
for proving hydrodynamics. Section 5 is devoted to the proof of the hydrodynamic
behavior. The main idea is to compare the perturbed system with suitable free
systems on either side of the perturbation; the key ingredient is a coupling lemma
(Lemma 4.6), which states that for given dynamics on a half-line, the macroscopic
profile is entirely determined by the incoming flux. Existence and uniqueness for
modified entropy conditions are proved in Section 6, which may at first be skipped
by the reader mainly interested in particle systems. There we rely on material from
conservation laws theory (see [10, 17, 29]) with some original ideas. Lemma 6.4,
though technically elementary, is conceptually crucial, as it both explains well-
posedness of the modified entropy condition and the restriction φ ≤ φ∗.
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2. The framework and results.

Set notation. N
�,R

∗,R
+,R

+∗
,R

−,R
−∗, respectively, denote the sets of

positive integers and nonzero (resp. nonnegative, positive, nonpositive, negative)
real numbers.

The configuration space. We consider particle systems on the one-dimensional
lattice Z, with at most K particles per site. Particles are labelled increasingly from
left to right, and we denote by σ(n) the position of the particle with label n.
If for some n ∈ Z, there is no more particle to the right (left) of σ(n), then
we set σ(m) = +∞ (−∞) for every m > n (m < n). We denote by Ed the
set of such configurations σ = (σ (n), n ∈ Z), called distinguishable. They will
always be denoted by σ or τ . We write σ ≤ τ iff σ(n) ≤ τ (n) for every n ∈ Z.
For a configuration σ(τ ), we denote by η(x) (ζ(x)) the number of particles
at site x. We denote by Eu = {0, . . . ,K}Z the set of configurations η = (η(x),

x ∈ Z), called undistinguishable. We write η ≤ ζ iff η(x) ≤ ζ(x) for every x ∈ Z.
For every y ∈ Z, the space shift τy is defined respectively on a distinguishable
configuration σ and an undistinguishable configuration η by τyσ (n) = σ(n) − y

and τyη(x) = η(x + y).

REMARK. The set of admissible configurations could be defined more
generally by the v-exclusion condition introduced in [24]. In this case the maximal
current configuration η∗ defined in Section 2.2 should be replaced by the one
defined in [24], but the rest of our arguments would be unchanged.

Throughout the paper the word “system” will have various meanings: (i) the
random dynamics specified by a graphical construction or a generator as explained
below; (ii) a particular process η. = (ηt , t ≥ 0) or σ. = (σt , t ≥ 0) governed by
such dynamics; (iii) when considering hydrodynamic scaling limits, a collection
(ηN

. ,N ∈ N
∗) of such processes, where N is the scaling parameter and ηN

. =
(ηN

t , t ≥ 0). In the latter case, to reduce notation, we denote the system by [η] (not
to be confused with η without brackets, which denotes a particular configuration).
The relevant interpretation will always be clear from the context and notation. We
now introduce a graphical construction to define general conservative dynamics
on Z with bounded interaction range and transition rates.

2.1. The graphical construction.

The probability space. We shall construct random particle dynamics on a
product probability space 
 × 
′. Space 
 is a “dynamical” space of random
events that entirely determine the evolution of the system from a given initial
configuration; 
′ is an auxiliary space used to randomize initial configurations.
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The space 
′ and its underlying probability measure need not be specified but
should be “large enough” so that any probability measure on Ed or Eu can be
realized as a random variable on 
′. We now proceed to the definition of 
.

Let U denote an arbitrary measurable space endowed with some finite
nonnegative measure µ. We define a system of clocks as a locally finite countable
sum ω(dt, dx, du) of Dirac measures on R

+∗ × Z × U such that ω({(t, x, u)}) ∈
{0; 1} for every (t, x, u). ω({(t, x, u)}) = 1 means that a clock rings at site x

and time t producing some “threshold” value u. (t, x, u) will be called an event
relative to ω. The “dynamical” probability space 
 will be the set of ω’s equipped
with the filtration (Ft , t > 0), where Ft is the σ -field generated by the mappings
ω �→ ω((0; t] × S × U) for finite subsets S of Z and measurable subsets U of U.
The underlying probability measure, denoted by P, is such that ω is a Poisson
measure with intensity λR+∗(dt)λZ(dx)µ(du), where λ denotes the counting
measure or the Lebesgue measure. For t > 0 and x ∈ Z, we define a time shift θtω

and a space shift τxω as follows: θt forgets events prior to time t and resets the
time origin to t , while τxω sets the space origin at x.

Construction of dynamics. We consider a collection T of conservative,
uniformly finite-range transformations η �→ T x,uη on Eu with the following
interpretation: whenever an event (t, x, u) occurs, the current particle configuration
η is replaced with T x,uη. For simplicity T itself will be called a transformation. By
uniformly finite-range, we mean that there is some r ∈ N (the interaction range)
independent of x,u such that T x,u only acts on sites x − r to x + r without looking
at other sites. By conservative, we mean that the total number of particles in these
sites is unchanged under T x,u. It follows that, if the configuration η is congested
on [x − r;x + r], that is, η(y) = K for every y ∈ [x − r;x + r], then T x,uη = η.
The transformation T may be defined on distinguishable configurations in a unique
way that does not affect the positions of labelled particles outside [x − r;x + r]
and maintains increasing labels to the right among particles within [x − r;x + r].
For simplicity, we shall still write T x,uσ for this transformation. We define the
random evolution of a system on 
 × 
′ by the update rule following an ω-event
(t, x, u):

ηt (ω,ω′) = T x,uηt−(ω,ω′), σt (ω,ω′) = T x,uσt−(ω,ω′),(2)

where η0(ω,ω′) = η0(ω
′) and σ0(ω,ω′) = σ0(ω

′) are random initial states defined
on 
′. Note that, since all processes are constructed on 
 × 
′, simultaneously
evolving systems are coupled in a natural way by using the same system of clocks.

REMARK. It takes some care to give sense to (2) in infinite volume, as ω has
infinitely many events in any bounded time interval; but this can be done by finite-
volume approximations, using locality of interactions. Besides, to prove that a
certain property holds for η at all times, it is enough to prove it for ω’s with finitely
many events in bounded time, which allows considering successive events.
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The process (ηt , t ≥ 0) defined by (2) is Markov with generator

Lf (η) = ∑
x∈Z

∫
U

[f (T x,uη) − f (η)]µ(du).(3)

Note that different transformations T may lead to the same generator. The
transformation T is called order-preserving if σ ≤ τ implies T x,uσ ≤ T x,uτ

for every x ∈ Z and u ∈ U; see Section 2.5 for a discussion of this property.
A transformation T̃ is said to be slower than T , if T̃ x,uσ ≤ T x,uσ for every x ∈ Z,
u ∈ U and σ ∈ Eu. A local perturbation of T is another transformation T̃ such
that T̃ x,u = T x,u for every u ∈ U and x ∈ Z such that |x| > D, where D ∈ N is the
perturbation range.

2.2. Main results. We consider a system defined by some transformation T

and a local perturbation T̃ thereof. We make the following assumptions.

ASSUMPTION 2.1. T and T̃ are order-preserving, and T̃ is slower than T .

The second part of the above assumption means that the perturbation tends to
slow down rigthward motion of particles. We next formulate assumptions on the
hydrodynamic behavior of the unperturbed dynamics. To this end, let us first recall
standard definitions. Let N ∈ N

∗ denote the scaling parameter, that is, the inverse
of the macroscopic intersite distance. To every configuration η, we associate the
empirical measure at scale N defined as a (locally finite, nonnegative) measure

αN(η, dx) = N−1
∑
y∈Z

η(y)δy/N (dx)(4)

on R. We say a random sequence of configurations ηN has density profile ρ(·)
as N → ∞, where ρ(·) is a [0;K]-valued Borel function on R, if the random
measures αN converge in probability to the deterministic measure ρ(·) dx

as N → ∞; here and in the sequel, the space of locally finite measures on R is
equipped with the topology of vague convergence. Density profile on a subinterval
of R is defined by considering the restricted empirical measures. We say the
system [η] has hydrodynamic profile ρ(·, ·) [resp. initial density profile ρ0(·)],
where ρ(·, ·) [resp. ρ0(·)] is defined on R

+ ×R (resp. R), if ηN
Nt has density profile

ρ(t, ·) [resp. ρ0(·)] for every t ≥ 0 (resp. for t = 0).

ASSUMPTION 2.2. The unperturbed hydrodynamic behavior under Euler
time scaling is given by the entropy solutions to a scalar conservation law with
nonnegative, Lipschitz-continuous flux h defined on [0;K]:

∂tρ(t, x) + ∂xh
(
ρ(t, x)

) = 0.(5)

Precisely, for every measurable initial profile ρ0, every system [η] governed by T

with initial density profile ρ0 has hydrodynamic profile ρ(·, ·), where ρ(·, ·) is the
unique entropy solution to (5) with initial datum ρ0.
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REMARK. The above assumption means that, for every ρ0, the hydrodynamic
limit must hold for any initial sequence with profile ρ0. This might seem restrictive.
In fact it will be seen (second remark in Section 2.5) that, due to order-preservation,
it is equivalent to assume the hydrodynamic limit for some initial sequence with
profile ρ0.

h(ρ) is the stationary particle flux for a system with uniform density ρ; as a
result we have h(0) = h(K) = 0 (see Lemma 5.5). We refer to [17] and [30] for
standard definitions and properties of entropy solutions. Lipschitz continuity is the
natural regularity assumption for existence and uniqueness of entropy solutions
to (5). The assumption h ≥ 0 means that the macroscopic motion of particles is to
the right. However, we do not need the latter assumption on microscopic motion,
that is, our results also cover systems with both leftward and rightward particle
jumps, but positive mean drift.

We set h∗ = suph and define φ∗ as follows: φ∗ = h∗ if h has no genuine local
minimum, otherwise φ∗ is the infimum of genuine local minima of h. By genuine
local minimum we mean a value h(ρ) that is the minimum of h on [ρ1;ρ2], with
0 < ρ1 < ρ < ρ2 < K , h(ρ1) > h(ρ), h(ρ2) > h(ρ). It is not difficult to show that
φ∗ is itself a genuine local minimum of h. Denote by η∗ the configuration that is
full up to site 0 and empty to the right of 0. A simple subadditive argument (see
Section 5) shows that the deterministic limit

φ = lim
t→∞ t−1φt ∈ [0;h∗](6)

exists P-almost surely, where φt denotes the rightward current through 0 up to
time t in the perturbed system starting from η∗. This current value φ can be
interpreted as the maximum current value through x = 0 for the system under the
perturbation T̃ ; we shall also call it the critical current. It is shown in Corollary 4.4
that every value φ ∈ [0;h∗] corresponds to possible perturbations.

Our results assert that the hydrodynamic behavior of the perturbed system
is simply determined by φ if φ ≤ φ∗ or, equivalently, if inf(h;φ) is first
nondecreasing and then nonincreasing. First, in order to describe this behavior,
we state a new result relative to (5). In Section 3 we shall assign to each maximum
current value 0 ≤ φ ≤ φ∗ a modified entropy condition for weak solutions to (5).
Two equivalent forms will be given: one is based on a modified set of admissible
discontinuities (Definitions 3.1 and 3.2) and is a rather natural formalization of the
idea that current values above φ are forbidden. The other definition is more general
and relies on modified Kružkov entropies (Definition 3.3). A corresponding weak
solution will be called a φ-entropy solution.

THEOREM 2.1. For every φ ∈ [0;φ∗], there exists a unique (up to a null subset
of R

+∗ × R) φ-entropy solution ρ with given measurable initial datum ρ0(·).
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For φ < h∗, the selected solution generally differs from the usual entropy
solution that describes the unperturbed system. Following is the main result of
this paper.

THEOREM 2.2. Assume φ defined by (6) lies in [0;φ∗]. Then the perturbed
hydrodynamic behavior is given by the φ-entropy solutions to (5). Precisely, for
every measurable initial profile ρ0, every perturbed system [η] with initial density
profile ρ0(·) has hydrodynamic profile ρ(·, ·), the unique φ-entropy solution to (5)
with initial datum ρ0(·).

REMARK. The above result means that the perturbed hydrodynamic limit
holds for any initial sequence that achieves any given density profile.

When φ∗ = h∗, that is, h has no genuine local minimum (which includes,
e.g., all concave h), the hydrodynamic limit follows from Theorem 2.2 for
any local perturbation. If φ∗ < h∗, that is, h has genuine local minima, the
hydrodynamic limit follows from Theorem 2.2 only for perturbations strong
enough to have φ ≤ φ∗. For instance, we may consider a family of order-preserving
local perturbations Tα indexed by α ∈ [0; 1], such that the maximum current
φα is continuous and nondecreasing w.r.t. α, with φ0 = 0 and φ1 = h∗. This
construction is always possible irrespective of the model, see Section 2.4. Define
α0 = sup{α ∈ [0; 1] :φα ≤ φ∗}, so that φα0 = φ∗, α0 = 1 iff φ∗ = h∗ (i.e., h has
no genuine local minimum), α0 > 0 if φ∗ > 0. By Theorem 2.2, the hydrodynamic
behavior of Tα for 0 ≤ α ≤ α0 is given by the φα-entropy solution.

Further issues. A natural and challenging question is the existence and
characterization of the hydrodynamic limit in the region φ∗ < φ < h∗, when h has
at least one genuine local minimum. One may further relax the assumption h ≥ 0
and consider perturbations that do not act in a definite direction. In these cases
knowledge of the maximal current φ is no longer sufficient to define a unique
entropy condition. Hydrodynamics should be described by a more general class
of modified entropy conditions that do not depend on a single parameter. Next,
we believe that the order-preservation assumption could be somehow weakened.
The point is that a weaker version of it is always true for attractive processes
with irreducible jumps, as proved recently by Bramson and Mountford [6]. This
would allow, for example, to relax the nearest-neighbor assumption in Example 1
in Section 2.3; Example 3 could also be extended to encompass k-step exclusion
processes with nonnearest-neighbor jump kernels (see [11]).

2.3. A review of examples. We now discuss some examples of systems that
satisfy Assumptions 2.1 and 2.2. Examples of corresponding order-preserving
perturbations, that cover the whole range 0 ≤ φ ≤ φ∗, will be given in Section 2.4.
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In the sequel b(n,m) will be a bounded nonnegative function, defined for n,m ∈ N,
with the following properties:

b is a nondecreasing (resp. nonincreasing) function of n (resp. m),(7)

b(0,1) = 0.(8)

The standard notation ηx,y for x, y ∈ Z, x 	= y, denotes the configuration obtained
from η after a particle has jumped from x to y.

EXAMPLE 1 (Nearest-neighbor attractive processes). Here we make the
additional assumptions that b is restricted to n,m ∈ {0, . . . ,K}, where K is the
maximum number of particles per site and

b(K,K) = 0.(9)

Let 0 ≤ q < p be two real numbers. We consider the process with infinitesimal
generator given by

Lf (η) = ∑
x∈Z

pb
(
η(x), η(x + 1)

){f (ηx,x+1) − f (η)}

+ ∑
x∈Z

qb
(
η(x), η(x − 1)

){f (ηx,x−1) − f (η)}.
(10)

The graphical construction can be obtained as follows. We set U = {−1; 1} ×
(0; supb) and µ = µ1 ⊗ µ2, with µ1 = pδ1 + qδ−1 and µ2 the Lebesgue measure
on (0; supb) and define T x,uη as follows, where u = (u1, u2) ∈ U: T x,uη =
ηx,x+u1 if u2 ≤ b(η(x), η(x + u1)), T x,uη = η otherwise. Assumption (7) implies
that T is attractive, that is, η ≤ ζ implies T x,uη ≤ T x,uζ . Thus, T is also order-
preserving by Proposition 2.1 in Section 2.5. Assumption 2.2 has been verified in
the following cases:

1. Misanthrope processes. For these systems additional properties of b imply
existence of product invariant measures [8], and the validity of Assumption 2.2
follows from [22] (see also [4] for a constructive proof ), with an explicit h ∈ C∞.
Moreover q < p implies that h is positive on (0;K), so φ∗ > 0. Several examples
are reviewed in [2] and [4]. For instance, here is a natural generalization of ASEP
for which the flux has no genuine local minimum and, thus, Theorem 2.2 holds
for any value of φ: let f be a nondecreasing function defined on {0, . . . ,K},
with f (0) = 0 < f (K) = 1, and set b(n,m) = f (n)(1 − f (m)). Then we have
h(ρ) = (p − q)F (ρ)(1 − F(ρ)), where F(ρ) is an increasing, smooth function
with F(0) = 0 < F(K) = 1. For ASEP we have f (n) = n∧1 and F(ρ) = ρ. Note
that in the latter case h is concave, but this may not hold for more general f .

2. Nearest-neighbor asymmetric K-exclusion process. This is the system
defined by b(n,m) = 1n>01m<K , with K ≥ 2 (K = 1 being the exclusion process).
Assumption 2.2 was verified in [23]; however, for q 	= 0 it is only known that
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h is Lipschitz continuous with h ≥ 0 and, thus, φ∗ ≥ 0. In the totally asymmetric
case q = 0, Assumption 2.2 was verified earlier in [26] and the flux proved to be
also concave, so Theorem 2.2 holds for any value of φ. In this case the original
dynamics satisfies a variational coupling and, when the perturbed dynamics still
does, Theorem 2.2 should also follow from the approach of [28]; however,
our approach allows more general perturbations that do not necessarily admit a
variational coupling (see the third remark in Section 2.5).

EXAMPLE 2 (ASEP with speed change). Here we make the assumption that
there exists some r ∈ N such that

∀n,m ∈ N, b(n,m) = b(n ∧ r,m ∧ r).(11)

Site capacity is 1, and the jump rate of a particle depends increasingly (decreas-
ingly) on the distance to the next (previous) particle in the corresponding direction:
such “rational behavior” is always implied, in a more general sense, by order-
preservation (see Section 2.5). Let

d1(x, η) = inf{y > x :η(y) = 1} − x − 1,

d−1(x, η) = x − sup{y < x :η(y) = 1} − 1.

The generator of the process is given by

Lf (η) = ∑
x∈Z

pη(x)b
(
d1(x, η), d−1(x, η)

){f (ηx,x+1) − f (η)}

+ ∑
x∈Z

qη(x)b
(
d−1(x, η), d1(x, η)

){f (ηx,x−1) − f (η)}.
(12)

Here ASEP is recovered as the special case b(n,m) = (n ∧ 1). The graphical
construction can be obtained as follows. Let p, q , U and µ be as in Ex-
ample 1. We define T x,u as follows: T x,uη = ηx,x+u1 , if η(x) = 1 and u2 ≤
b(du1(x, η), d−u1(x, η)), T x,uη = η otherwise. T has finite-range r because
of (11). Though order-preservation can be shown as a simple consequence of
assumption (7), these systems are not attractive outside of ASEP. However, a gen-
eralization of the particle-hole correspondence used in [18] leads to the following
statement: if the inverted version of (10) (i.e., with p and q exchanged) is governed
by the entropy solutions to (5), with −h instead of h, then (12) is governed by the
entropy solutions to

∂tρ + ∂x

[
ρh

(
1

ρ
− 1

)]
= 0.(13)

As a result, Assumption 2.2 is valid for (12) whenever it is for (10). However,
it is important to note that, despite the correspondence with (10) for the
translation-invariant system, local perturbations of (12) cannot be reduced to local
perturbations of (10), because a site in the latter is mapped onto a particle in the
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former. Therefore, in order to deal with perturbations of (12), it is crucial for our
approach not to rely on attractiveness.

When b belongs to the “misanthrope” class, we again have h ∈ C∞ and h > 0
on (0; 1) for q < p, so φ∗ > 0. Here are two physically interesting examples.
First, b may be any nondecreasing function of n only, with b(0) = 0 < b(1);
for p = 1, this is a stochastic version of the so-called “optimal velocity (OV)
models” from traffic-flow theory (see, e.g., [7]), where each car adjusts its speed
increasingly from its distance to the one ahead. Next, the “kinetic Ising model”
is introduced in [14] and also studied in [21]. This corresponds to p = 1 and
b given by b(n,m) = 1 + δ for n ≥ 2 and m ≥ 1, b(n,0) = 1 + ε for n ≥ 2,
b(1,m) = 1 − ε for m ≥ 1 and b(1,0) = 1 − δ, where |δ| ≤ 1 and ε ∈ [0; 1).
In addition, to satisfy (7), we require ε ≥ δ. δ accounts for the asymmetry of h

(h is symmetric w.r.t. ρ = 1/2 for δ = 0), while ε measures particle repulsion.
For TASEP we have ε = δ = 0. As ε increases, the flux first exhibits a change
of convexity to the right of its maximum, and then a second maximum appears
for large densities, with a genuine local minimum φ∗ inbetween (see [21]). In the
latter case, Theorem 2.2 holds only for φ ≤ φ∗.

EXAMPLE 3 (Nearest-available neighbor ASEP). Let k ∈ N
∗ be given. We

consider a new generalization of ASEP where a particle chooses a direction and
moves to the first empty site in this direction, provided the jump does not exceed
k sites. In the context of traffic flow, this may be interpreted as overtaking with
prescribed limited visibility. The generator is of the form

Lf (η) = ∑
x,y∈Z

p(y − x)η(x)
(
1 − η(y)

)

×
max(x,y)−1∏

z=min(x,y)+1

η(z){f (ηx,y) − f (η)}
(14)

for some nonnegative function p(·) defined on Z, with the convention that the
empty product is equal to 1. We assume that (i) the support of p is finite,
(ii) p(1) + p(−1) > 0 and (iii) p(y) ≤ p(x) if 0 < x ≤ y or y ≤ x < 0. This
class of dynamics is partly related to k-step exclusion processes introduced in [11].
Namely (14) contains all k-step exclusion processes with nearest-neighbor kernels:
this corresponds to the case when p(x) is the probability that a nearest-neighbor
random walk starting from 0 reaches x in at most k steps without returning to 0
inbetween. When p is not of the latter form, the system is not a k-step exclusion
process; on the other hand k-step exclusion processes with nonnearest-neighbor
kernels do not belong to the class (14). Below we give a graphical construction
that is attractive under assumption (iii); thus, T is also order-preserving by
Proposition 2.1 in Section 2.5. For any p satisfying (i), product Bernoulli measures
are stationary for L; if in addition (ii) and (iii) are satisfied, one can show, as
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in [11], that they are extremal among translation invariant stationary measures.
Hence, the validity of Assumption 2.2, follows from [22] or [4], and the flux is
given by

h(ρ) =
k∑

i=1

i[p(i) − p(−i)]ρi (1 − ρ).(15)

It is not difficult to show that every q : Z → R
+ with finite support is of the

form q(·) = p(·) − p(−·) for some p(·) satisfying (i)–(iii) above. Thus, every
polynomial flux vanishing at 0 and 1 can be obtained by a proper choice of p.
The nearest-neighbor totally asymmetric k-step exclusion process corresponds to
p(x) = 1 if 1 ≤ x ≤ k, 0 otherwise. It is shown in [4] that the resulting flux has a
single inflection point, hence, no genuine local minimum, since h(0) = h(1) = 0.
Thus, Theorem 2.2 is valid for every value of φ. More complex behavior is
easy to construct. Allowing maximum jump range 3, one may obtain h(ρ)

positive on (0; 1), with degree 4, two inflection points, and either (a) no genuine
local minimum or (b) two local maxima and a genuine local minimum φ∗ > 0
inbetween. In the latter case, perturbed behavior follows from Theorem 2.2
whenever φ ≤ φ∗.

An attractive graphical construction of (14) can be defined as follows. We set
U = {−1; 1} × (0; supx p(x)), µ = µ1 × µ2, with µ1 = δ1 + δ−1 and µ2 the
Lebesgue measure on (0; supx p(x)). Then we define T x,uη as follows, where
u = (u1, u2). Let y(x,u1, η) denote the first η-empty site to the right (left) of x

if u1 = 1 (u1 = −1). We set T x,uη = ηx,y(x,u1,η) if η(x) = 1 and u2 ≤ p(y(x,u1,

η) − x), otherwise T x,uη = η. We leave the reader to check that attractiveness
follows from assumption (iii) for p(·).

2.4. Particular perturbations. In this section, we construct a model-
independent one-parameter family of order-preserving local perturbations Tα ,
where α ∈ [0; 1], with the following properties: for α = 0 there is total blockage,
that is, particles can never jump over x = 0 to the right; for α = 1 there is no per-
turbation; more generally, Tα is slower than Tβ for α ≤ β . Moreover, Tα reduces
to TASEP(α) when the original dynamics is TASEP and is a natural generalization
thereof for more general dynamics (see examples below). This construction will
also play an important role in the proof of Theorem 2.2 in Section 5.

We first define a conservative transformation T0 which forbids particles jumping
over 0 to the right. If there is no label i such that σ(i) ≤ 0 < T x,uσ (i), we simply
set T

x,u
0 σ = T x,uσ . Otherwise, let n denote the highest such label; for all labels

i > n, we set T
x,u

0 σ(i) = T x,uσ (i). For labels i ≤ n, we define T
x,u

0 σ(i) from
right to left, so that at each step the configuration-admissibility constraint

T
x,u

0 σ(i) ≤ min
(
T

x,u
0 σ(i + 1);T

x,u
0 σ(i + K) − 1

)
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be respected. It is easy to see that this is guaranteed if we set T
x,u

0 σ(n) = 0 and
then let traffic perturbation propagate inductively to the left according to the rule

T
x,u

0 σ(i) = min
(
T x,uσ (i);T

x,u
0 σ(i + 1);T

x,u
0 σ(i + K) − 1

)
(16)

for i < n. In fact, T
x,u

0 σ is the maximal configuration σ ′ such that σ ′ ≤ T x,uσ

and σ ′(n) = 0: drivers seek the smallest deceleration compatible with the initial
blockage. Though this transformation is defined on distinguishable configurations,
it is not affected by a shift of labels. Thus, it can be defined on undistinguishable
configurations. T0 is a local perturbation of T , since for x /∈ (−r; r] no particle
may cross 0 to the right under T x,u. The point of the construction is that it still
yields an order-preserving tranformation with uniformly finite range r . The first
property follows immediately by induction from (16). The second one may seem
less obvious, because a blockage might a priori propagate infinitely to the left.
However, another easy induction from (16) reveals that

min(T x,uσ ;σ) ≤ T
x,u

0 σ ≤ T x,uσ.(17)

From this one may easily infer that, if T x,u has finite range r , the same
holds for T

x,u
0 . To define the partial blockage Tα , we enrich U by setting

U′ = (0; 1) × U. U′ is equipped with the measure λ(0;1) ⊗ µ. We extend T (and
likewise T0) to the enriched space by setting T x,(θ,u) = T x,u for u′ = (θ, u) ∈ U′.
Then we set T x,u′

α σ = T
x,u
0 σ (resp. T x,u′

α σ = T x,uσ ), if θ > α (resp. θ ≤ α).
Clearly, Tα is an order-preserving local perturbation of T with range r , Tα is slower
than Tβ for α ≤ β , and T1 = T . Corollary 4.4 shows that the maximum current φα

for Tα is a nondecreasing, Lipschitz-continuous function of α, with φ0 = 0 and
φ1 = h∗.

Let Lα denote the generator associated with Tα via (3). It is easy to see
that Lα = (1 − α)L0 + αL1. An interesting property of this construction is
that, although a given L may be obtained from different transformations T ,
Lα depends only on L and not on the choice of the underlying T . This follows
from the fact that T

x,u
0 η = γ (η,T x,uη) for some intrinsic mapping γ independent

of T , x and u. As an illustration, we may apply the construction to the systems
in Section 2.3. In (10) and (12), Lα is obtained by replacing p with αp for
x = 0. In (14), whenever x ≤ 0 < y, one should replace f (ηx,y) − f (η) with
(1 − α)[f (η1,y) − f (η)] + α[f (ηx,y) − f (η)].

2.5. Remarks on order-preservation. We end this section by discussing some
aspects of order-preservation. In particular, we consider its connection with
attractiveness and variational coupling, two properties that have been used
extensively to verify Assumption 2.2 for a variety of systems.

A physical interpretation. Compare the reaction of a driver at a given site
to a given event, in two different environments σ and τ , assuming σ ≤ τ . This
inequality means that the driver sees more space ahead of him and less space
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behind in environment τ . Order preservation implies that he will move further
to the right, that is, with higher (signed) “speed,” in the latter environment. We
may view such behavior as rational.

The initial configuration problem. Assume two systems [η] and [ζ ] are
governed by the same order-preserving transformation, and (i) [η] and [ζ ] have
a common initial density profile (ii) [η] has some hydrodynamic profile ρ(·, ·).
Then it follows easily from Lemma 5.3 that [ζ ] has hydrodynamic profile ρ(·, ·).
Lemma 5.3 is merely the scaling limit of Corollary 4.1, itself a simple consequence
of order-preservation. This explains the remark following Assumption 2.2. Thus,
for all examples considered in Section 2.3, the hydrodynamic limit (both
unperturbed and perturbed) holds under the assumption of a density profile at
time 0, without any further hypothesis on initial configurations.

Order-preservation and variational coupling. The existence of a variational
coupling was shown in [24] to be equivalent to the so-called strong monotonicity
property, which implies order-preservation. In the context of our graphical
construction, strong monotonicity means that

T x,u inf(σ, τ ) = inf(T x,uσ,T x,uτ ),

where the infimum of two labelled configurations is defined labelwise. This
property is much more restrictive than order-preservation because it necessarily
implies flux concavity, but also appears (as observed in [27]) to rule out partially
asymmetric systems and sytems with configuration-dependent jump rates. For
instance, there is no known variational coupling for the examples of Section 2.3,
when they do not reduce to a totally asymmetric K-exclusion process. Note
that the unperturbed system may admit a variational coupling, but the perturbed
version may be merely order-preserving: consider, for example, the extension of
TASEP(α), where the jump rate from 0 to 1 is modified to b(d1(0, η), d−1(0, η)),
with the notations and assumptions of Section 2.3 (Example 2), and b ≤ 1. Due
to monotonicity assumptions on b, the perturbed TASEP is still order-preserving,
but does not admit a variational coupling for nonconstant b, though the original
system does; thus, the perturbed hydrodynamics cannot be established here by the
approach of [28].

Order-preservation and attractiveness. Here we establish a connection
between attractiveness and order-preservation for a wide class of transforma-
tions; recall from Section 2.3 (Example 1) that the transformation T is said to
be attractive if it is nondecreasing w.r.t. undistinguishable configurations, that is,
T x,uη ≤ T x,uζ for every x ∈ Z and u ∈ U whenever η ≤ ζ . We consider trans-
formations with the following properties in the undistinguishable representation:
(i) T x,uη differs from η by at most one particle jump. (ii) For given (x,u) there is
a single allowed jump direction, that is, right or left (but the jump size may vary
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with η). (iii) A jumping particle can only move to the nearest available site to its
right or left. Note in (i) that a single η-jump, in case of overtaking, involves sev-
eral labelled particles’ jumps in the distinguishable configuration, as labels must
increase to the right. We call nearest-available neighbor those transformations that
satisfy (i)–(iii). This is a natural extension of the usual nearest-neighbor property:
for the latter a particle may not jump more than one step to its right or left. For
instance, the nearest-available neighbor ASEP (Example 3 in Section 2.3) with
k ≥ 2, is a nearest-available neighbor, but not nearest-neighbor system. The reader
may easily check that all other examples in Section 2.3 are nearest-available neigh-
bor systems.

PROPOSITION 2.1. Let T be an attractive, nearest-available neighbor trans-
formation. Then T is order-preserving.

PROOF. Since x and u are fixed, we shall simply write T for T x,u, and assume,
for example, that particles jump to the right. We consider σ ≤ τ and wish to derive
T σ ≤ T τ from attractiveness. Since τ ≤ T τ , this is immediate if T η = η. We thus
assume that T η = ηx,x+y , where x + y is the first available site for η to the right
of x; this implies that sites x + 1 through x + y − 1, inclusive, are η-congested.
Here is the corresponding distinguishable transformation: letting n denote the label
of the σ -particle at x with highest label, T σ is defined by moving labels n + iK ,
0 ≤ i < y, one step to the right.

CASE 1. x = σ(n) < τ(n). It follows easily that σ -particles labelled n + iK ,
where 0 ≤ i < y, are strictly behind τ -particle with the same labels. Hence,
T σ ≤ τ ≤ T τ .

CASE 2. τ (n) = σ(n). Since σ ≤ τ , this implies η(x) ≤ ζ(x). We first prove
that the undistinguishable transformation then takes a ζ -particle at x to the nearest
available site for ζ . We consider η′ = min(η, ζ ), where the minimum is defined
sitewise. By attractiveness, we must have T η′ ≤ T η. Since η′(x) = η(x) and an
η-particle leaves x, this forces an η′ particle to leave x to the nearest available
site x + y′ for η′, where 0 < y′ ≤ y. But σ ≤ τ implies that η′(z) = ζ(z) for
x + 1 ≤ z ≤ x + y′, so x + y′ is also the first available site to the right for ζ . Since
by attractiveness we must have T η′ ≤ T ζ , it follows that a ζ particle must be taken
from some site z ≤ x to x + y′.

We next claim that this implies T σ ≤ T τ . Indeed, the only labels affected by T

are n+ iK , where 0 ≤ i < y. But σ(n) ≤ τ (n) implies that σ(n+ iK) = τ (n+ iK)

for 0 ≤ i < y′, for which labels both the σ and τ particles are moved; while
σ(n + iK) < τ(n + iK) for y′ ≤ i < y, for which labels only the σ -particle is
moved, but cannot overtake the τ -particle. �

3. Definition and properties of φ-entropy solutions. In this section we
recall standard facts about entropy solutions, define the notion of φ-entropy
solution, and state some related properties useful for the sequel.
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3.1. Entropy solutions. We recall Kružkov’s definition [17] of entropy weak
solutions to (5). Defining the Kružkov entropies ϕ(ρ; c) = |ρ − c| and the
associated entropy flux ψ(ρ; c) = sgn(ρ −c)(h(ρ)−h(c)), we say a [0;K]-valued
Borel function ρ on R

+∗ ×R is an entropy solution to (5), if and only if Kružkov’s
entropy inequalities

∂tϕ(ρ; c) + ∂xψ(ρ; c) ≤ 0(18)

hold in distribution sense on R
+∗ × R for every c ∈ [0;K]; this implies (5), as can

be seen taking c = 0 and c = K . It is known [17] that there is a unique (up to a
null subset of R

+∗ × R) entropy solution assuming a given ([0;K]-valued, Borel)
initial datum ρ0(·) on R in the sense

ess lim
t→0

∫ b

a
|ρ(t, x) − ρ0(x)|dx = 0 ∀a, b ∈ R,(19)

where ess lim means that the limit holds along some total subset of R
+∗. If

ρ(·, ·) has left/right hand limits ρ(t,0±) := limx→0± ρ(t, x) for a.e. t > 0, we may
separately consider condition (18) on R

+∗ × R
∗ (that is away from x = 0), and

its trace along the line x = 0. From differentiation theory in distribution sense,
validity of entropy condition (18) on the whole space, (i.e., on R

+∗ × R) for every
c ∈ [0;K], is equivalent to the simultaneous two conditions:

(E1) Condition (18) holds away from x = 0 (i.e., on R
+∗ × R

∗).
(E2) For a.e. t > 0, the “boundary” pair (ρ(t,0−), ρ(t,0+)) satisfies

ψ(ρ+; c) ≤ ψ(ρ−; c) ∀ c ∈ [0;K](20)

with ρ± = ρ(t,0±) [the exceptional set in (E2) can be made independent of c, as
ψ is continuous w.r.t. c]. Such pairs (ρ−, ρ+) will be called admissible or entropic.
A geometric formulation of (20) is

h(ρ−) = h(ρ+) and the chord between ρ− and ρ+ on the graph
of h lies below (resp. above) the graph if ρ− ≤ ρ+ (resp. ρ− ≥ ρ+),

(21)

where “below” (resp. “above”) is meant in the wide sense, that is, the chord and
graph may coincide. The first condition h(ρ+) = h(ρ−) in (21) expresses mass
conservation along the line x = 0; if it were satisfied alone, we would only know
that the conservation law (5) holds in weak sense on the whole space. The second
condition in (21) is the usual Oleinik’s entropy condition.

Though the entropy solution is only defined a.e., it has a representative with
some regularity properties:

PROPOSITION 3.1. The entropy solution with Cauchy datum ρ0(·) = ρ(0, ·)
has a representative ρ such that: (i) ρ ∈ C0(R+;L1

loc(R)); (ii) if ρ0 has locally
bounded space variation, so does ρ(t, ·) for every t > 0.
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In the sequel, we implicitely consider such a representative. One of the main
properties of the entropy solution is stability w.r.t. initial datum.

PROPOSITION 3.2. Assume ρ1, ρ2 are entropy solutions with initial data ρ1
0 ,

ρ2
0 . Define

t �→ �(t) :=
∫ y−V t

x+V t
|ρ1(t, z) − ρ2(t, z)|dz(22)

for 0 ≤ t ≤ (y − x)/(2V ), where �(0) is defined by setting ρi(0, x) = ρi
0(x),

and V is the Lipschitz constant of h. Then �(·) is a nonincreasing function. In
particular, if ρ1

0 and ρ2
0 coincide a.e. on [x;y], then ρ1 and ρ2 coincide a.e. on

[x + V t, y − V t] for every t ∈ [0; (y − x)/(2V )].

We end up recalling the explicit construction of Riemann solutions, that is, when
the initial datum is of the form

Rρ−,ρ+ := ρ−1R−∗ + ρ+1R+∗(23)

(see [5], or [4] for a more general result). We leave alone the obvious case
ρ+ = ρ− = ρ, where the solution has stationary uniform density ρ. Assume, for
instance, that ρ− > ρ+ and denote by h̃ the upper convex envelope of h on the
interval determined by ρ±. h̃ is a concave function and there exists a nonincreasing

function h̃′ such that h̃ has left (resp. right) hand derivative h̃′(ρ−) [resp. h̃′(ρ+)]
at every ρ ∈ [0;K]. Denote by v∗ and v∗ the minimum and maximum of h̃′(ρ±).
Finally, define h̃′−1 as a right-hand inverse of h̃′ on [v∗, v∗]; such an inverse is
defined uniquely except on an at most countable set of values of v. By extension,
set h̃′−1(v) = ρ− for v < v∗ and h̃′−1(v) = ρ+ for v > v∗. It can be shown that

h̃′−1(v−) = sup
{
ρ ∈ [ρ+;ρ−] :h(ρ) − vρ = sup

[ρ+;ρ−]
h(·) − v.

}
,

h̃′−1(v+) = inf
{
ρ ∈ [ρ+;ρ−] :h(ρ) − vρ = sup

[ρ+;ρ−]
h(·) − v.

}
.

(24)

For the case ρ− < ρ+, define h̃ as the lower convex envelope (then h̃ is convex and
h̃′ is nondecreasing) and exchange ρ+ with ρ− and inf with sup in (24). See [4]
for a proof of (24) and an application to hydrodynamics.

PROPOSITION 3.3. The Riemann problem starting from ρ0 = Rρ−,ρ+ has the
self-similar entropy solution ρ(t, x) given by ρ(t, vt) = h̃′−1(v).
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3.2. Definition of φ-entropy solutions. We would like to specify how a
maximum authorized current, 0 ≤ φ ≤ φ∗, through the origin modifies the
collection of entropy conditions (18). Because the perturbation is only at the
origin, the corresponding solution should still satisfy (18) away from x = 0, plus
some condition at x = 0. The effect of current restriction will be to modify the
admissibility condition (20) in (E2). Before defining the new condition, we need
to slightly weaken the definition of boundary limits ρ(t,0±) to take into account
possible flat segments of h.

For two density values r, ρ ∈ [0;K], it is easy to see that the following
properties are equivalent: (i) ψ(r; c) = ψ(ρ; c) for every c ∈ [0;K] and (ii) h is
constant on the closed interval defined by r and ρ. When these equivalent
properties are satisfied, we say that r and ρ are equivalent modulo h, and we
write r = ρ mod. h. Admissibility of the pair (ρ−, ρ+) is unchanged if we
replace ρ± with equivalent densities modulo h. Hence, we may extend the notion
of admissibility to a pair (ρ−, ρ+) of densities modulo h, where a density value
modulo h is an equivalence class modulo h (i.e., a maximal closed interval on
which h has constant value). Obviously h(·), ψ(·; c) and ordering relations can
be defined on densities modulo h. We say a real-valued function f defined on R

has a right limit f (x+) = ρ+ modulo h, where ρ+ is a density value modulo h, if
limy→x+ d(f (y), ρ+) = 0, where d(f (y), ρ+) is the distance from point f (y) ∈ R

to interval ρ+; the notion of left limit is defined similarly. With this weakened
notion of limit, it is sufficient in condition (E2) above (20) to assume limits
ρ(t,0±) in modulo h sense. We now define our modified notion of admissibility.

DEFINITION 3.1. We say the modulo h pair (ρ−;ρ+) is φ-admissible (or
φ-entropic), if either: (i) (ρ−, ρ+) is entropic with h(ρ+) = h(ρ−) ≤ φ or
(ii) ρ+ < ρ− and h(ρ+) = h(ρ−) = φ.

The above definition is valid because it indeed depends only on the modulo h

class of ρ±. We shall call φ-admissible (resp. φ-critical) every density value ρ

such that h(ρ) ≤ φ [resp. h(ρ) = φ]. We, respectively, denote by ρφ and ρφ the
smallest and greatest φ-critical density. The assumption φ ≤ φ∗ implies that the
graph of h lies above φ on the interval [ρφ;ρφ] [as in (21), “above” is meant in
the wide sense]. Then condition (21) implies the following: (i) all pairs (ρ−, ρ+)

such that h(ρ+) = h(ρ−) = φ are φ-entropic, and (ii) a φ-entropic pair (ρ−, ρ+)

is nonentropic iff h(ρ+) = h(ρ−) = φ, ρ+ < ρ− and ρ+ 	= ρ− mod. h; such pairs
are called critical shocks. When φ = h∗, (in which case we must have φ∗ = h∗, i.e.,
h has no genuine local minimum) there is no critical shock, and φ-admissibility
is equivalent to admissibility. When φ < h∗, (ρφ,ρφ) is a critical shock and
the maximal one, that is, for every other critical shock (ρ−, ρ+) we must have
ρφ ≤ ρ+ < ρ− ≤ ρφ . Now, for a [0;K]-valued Borel function ρ on R

+∗ × R with
limits ρ(t; 0±) modulo h for a.e. t > 0, we set the following definition:
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DEFINITION 3.2. We say ρ is a φ-entropy solution, if : first, the entropy
inequality (18) holds outside x = 0 for every c ∈ [0;K]; next, the pair (ρ(t,0−),

ρ(t,0+)) modulo h is φ-admissible for a.e. t > 0.

In order to consider more general solutions without boundary limits, we can
turn the admissibility condition at x = 0 into a modified Kružkov condition. In the
spirit of [2], [3] and [9], we consider entropy inequalities of the form

∂tϕ
(
ρ(t, x); r(t, x)

) + ∂xψ
(
ρ(t, x); r(t, x)

) ≤ 0(25)

on R
+∗ × R for a large enough set of admissible stationary solutions r(t, x) =

r(x). Here we only assume ρ is a [0;K]-valued Borel function.

DEFINITION 3.3. We say ρ is a φ-entropy solution, if : (i) entropy condi-
tion (18) holds outside x = 0 for every c ∈ [0;K], (ii) (18) holds on the whole
space for φ-admissible densities c and (iii) (25) holds on the whole space for the
critical shock profile r(x) = Rρφ;ρφ

(x) [with the notation introduced in (23)].

The idea behind this definition is that the entropy condition is entirely
determined by admissible densities and the maximal critical shock (ρφ;ρφ). In
Section 6 we prove existence and a.e. uniqueness of a φ-entropy solution with
given Cauchy datum in the sense (19) (Theorem 2.1) and equivalence of both
definitions when limits modulo h exist at x = 0. Note that c = 0 and c = K are
always φ-admissible for every φ ≥ 0 and, thus, eligible in (ii); hence, a φ-entropy
solution is still a weak solution to the conservation law (5).

3.3. Properties and particular solutions. In order to prove the hydrodynamic
limit, we shall not directly use the definition of a φ-entropy solution, but some of
its properties, together with the explicit knowledge of certain solutions. We begin
with analogues of Propositions 3.1 and 3.2.

PROPOSITION 3.4. The φ-entropy solution with initial datum ρ0 has a
representative ρ such that: (i) ρ ∈ C0(R+;L1

loc(R)); (ii) if ρ0 has locally bounded
variation, limits ρ(t, x±) modulo h exist for every t > 0 and x ∈ R.

Compared to statement (ii) of Proposition 3.1, the above statement (ii) only
ensures limits modulo h, but this will be sufficient for our purpose. As already
mentioned for entropy solutions, we implicitely consider such a representative.

PROPOSITION 3.5. Assume ρ1, ρ2 are φ-entropy solutions with initial data
ρ1

0 , ρ2
0 . Define �(t) and V as in Proposition 3.2. Then �(·) is a nonincreasing

function. In particular, if ρ1
0 and ρ2

0 coincide a.e. on [x;y], then ρ1 and ρ2 coincide
a.e. on [x + V t, y − V t] for every t ∈ [0; (y − x)/(2V )].
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We now describe some particular φ-entropy solutions. First, we give an explicit
construction for Riemann initial datum ρ0 = Rρ−,ρ+ . Due to translation-invariance
breaking, we restrict to Riemann conditions around 0: only in this case does the so-
lution retain a simple form, though an explicit—but quite involved—construction
remains possible for an arbitrarily located step. In order to construct the explicit
φ-entropy solution for the Riemann problem, we introduce the following nota-
tions. Given some density r and initial profile ρ0, we denote by ρ(r; t, x) [resp.
ρ(t, x; r)] the entropy solution whose initial datum equals r for x < 0 (x > 0)
and ρ0(x) for x > 0 (x < 0). Note that if ρ0 is a Riemann datum, ρ(r; t, x) and
ρ(t, x; r) are also Riemann solutions and can still be constructed from Proposi-
tion 3.3.

PROPOSITION 3.6. Assume φ ≤ φ∗, φ < h� and

0 ≤ ρ+ < ρφ and ρφ < ρ− ≤ K.(26)

Then the φ-entropy solution ρ with initial datum ρ0 = Rρ−,ρ+ exhibits the critical
shock (ρ(t,0−) = r−, ρ(t,0+) = r+) at all times and is given by

ρ(t, x) = ρ(r+; t, x)1R+∗(x) + ρ(t, x; r−)1R−(x),(27)

where

r+ = ρφ if ρ+ ≤ ρφ,

r+ = sup{ρ ≤ ρ+;h(ρ) = φ} if ρ+ > ρφ,

r− = ρφ if ρ− ≥ ρφ,

r− = inf{ρ ≥ ρ−;h(ρ) = φ} if ρ− < ρφ.

(28)

Outside the range (26) for ρ±, the φ-entropy solution coincides with the usual
entropy solution. In particular, if we start from a constant profile with density
ρ = ρ− = ρ+, the φ-entropy solution will differ from the entropy solution and
develop a critical shock iff ρφ < ρ < ρφ or, equivalently, h(ρ) > φ.

We shall define the fundamental solution as the one arising from initial
datum RK;0. This solution plays an important role in the proof of hydrodynamics.
By Proposition 3.6, the fundamental solution exhibits the maximal critical shock
(ρφ;ρφ) around 0 at all times.

PROOF OF PROPOSITION 3.6.

CASE 1. (26) fails: it is then easy to see from (24), Proposition 3.3 and
the condition φ ≤ φ∗ that the entropy solution ρ to the Riemann problem has a
φ-entropic pair (ρ(t,0−), ρ(t,0+)) at x = 0 and is thus also the φ-entropy
solution.
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CASE 2. (26) holds. Then φ ≤ φ∗ implies that (r−; r+) given by (28) is a
critical shock. (24), Proposition 3.3 and φ ≤ φ∗ imply that ρ(r+; t,0+) = r+ and
ρ(t,0−; r−) = r−. Hence, ρ(t,0±) = r± and ρ has the φ-critical shock (r−, r+)

at the boundary. The entropy solutions ρ(r+, ·, ·) and ρ(·, ·, r−) satisfy (18) on
R

+∗ × R for every c ∈ [0;K] and converge in the sense (19) as t → 0 to their
Cauchy data; the latter coincide with ρ0, respectively, for x > 0 and x < 0. Thus,
ρ satisfies (18) away from x = 0 for every c ∈ [0;K] and converges to ρ0 as t → 0
in the sense (19). �

We end up with stationary solutions useful for the sequel.

LEMMA 3.1. Let the initial datum ρ0(·) be piecewise constant modulo h, that
is, there is a partition of R into finitely many intervals, such that the image of the
interior of each interval is contained in a class modulo h. We call “boundary point”
any point on the boundary of one of the intervals. Then ρ0 induces the following:

(i) a stationary entropy solution iff the pair (ρ0(x
−), ρ0(x

+)) modulo h is
entropic for every boundary point x;

(ii) a stationary φ-entropy solution iff the pair (ρ0(x
−), ρ0(x

+)) modulo h is
entropic for every boundary point x 	= 0, and the pair (ρ0(0−), ρ0(0+)) modulo h

is φ-entropic.

PROOF. Set ρ(t, x) = ρ0(x). By uniqueness of the entropy (or φ-entropy)
solution with initial datum, it suffices to check that ρ is an entropy (or φ-entropy)
solution. On any open space interval of the partition, (18) obviously holds as an
equality, since the time derivative vanishes and ψ(ρ; c) is constant. Thus, we are
reduced to checking admissibility of boundary pairs. �

4. Preliminary material for hydrodynamics. The section is organized as
follows. In Section 4.1 we prove comparison lemmas and properties of the
particle current. In Section 4.2 we prove existence and properties of the critical
macroscopic current.

4.1. Comparison lemmas.

Preliminary definitions. r (resp. D) will denote a common interaction (resp.
perturbation) range for all transformations T or perturbations T̃ , T̂ considered
in the sequel. We shall say that a system η. (or σ.) has the same dynamics as a
system ζ. (or τ.), if they are governed by the same local transformation, and that η.

(or σ.) is slower than ζ. (or τ.), if η. is governed by a slower transformation than ζ..
We define the cumulative distribution function (c.d.f.) of a particle configuration η



826 C. BAHADORAN

with origin at 0 by

F(x;η) =
x∑

u=1

η(u) if x > 0,

F (x;η) = −
0∑

u=x+1

η(u) if x < 0,

F (0;η) = 0.

For a configuration with finitely many particles to the left, we define the c.d.f. with
origin at −∞ by

G(x;η) = ∑
u≤x

η(u).

Defining n(x;σ) as the largest label n ∈ Z such that σ(n) ≤ x, it is easy to see
that F(x;η) = n(x;σ) − n(0;σ). Similarly, denoting by nmin(σ ) the label of the
leftmost σ -particle, we have G(x;σ) = n(x;σ) − nmin(σ ). In particular, assume
the two configurations σ , τ are labelled in such a way that n(0;σ) = n(0; τ ) = 0,
which we call the labelling with origin at 0. Then it follows easily that, for k ≥ 0,

σ(·) ≤ τ (· + k) ⇐⇒ F(·; ζ ) ≤ F(·;η) + k.(29)

The same property holds for G if the leftmost particle is labelled 0 in both
configurations. The quantity

�(σ,σ ′) = n(0, σ ) − n(0, σ ′)(30)

is exactly the current of particles through x = 0, that is, the algebraic number of
particles newly to the right of 0, when the configuration has changed from σ to σ ′.
The current may be defined intrinsically as a function of the undistinguishable
configurations η and η′ if the latter have finitely many particles on one side, for
example, to the right,

�(η,η′) = ∑
x>0

η′(x) − ∑
x>0

η(x).(31)

Otherwise, it is not possible, in general, to define a current �(η,η′) intrinsically,
for the result depends on the path followed by the distinguishable system in
between. However, this can be done if η′ results from running a finite-range
dynamics, defined by (2), on some time interval. In this case, choosing a
distinguishable representation σ of η determines the resulting representation σ ′
for η′, and (30) does not depend on the choice of σ . In particular, if η′ = T x,uη or
η′ = T̃ x,uη, we have

�(η,η′) =
max(x+r;0)∑

y=1

η′(y) −
max(x+r;0)∑

y=1

η(y)(32)
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with the convention
∑0

y=1 = 0. In this case, it is not difficult to see that

|�(η,η′)| ≤ Kr.(33)

We end up defining trajectories Xx
t and Y x

t , t ≥ 0, that represent the fastest
propagation of microscopic discrepancies from x ∈ Z. This should be viewed as
the microscopic analogue of Propositions 3.2 and 3.5. We set Xx

0 = Y x
0 = x and

define the dynamics as follows. Let X = Xx
t− and Y = Y x

t− . At time t , X (resp. Y )
moves 2r steps forward (resp. backward) if an event occurs in [X−r;X+r) (resp.
(Y − r;Y + r]). Under P, the number of jumps of Xx

t and Y x
t are Poisson processes

with intensity 2r .

LEMMA 4.1. Assume η. and ζ. share the same dynamics, and their initial
configurations η0 and ζ0 coincide on the space interval [x;y] for some x, y ∈ Z

such that y − x ≥ 2r . Define τx,y = inf{t > 0 :Y y
t − Xx

t < 2r}. Then, for every
t ∈ [0; τx,y], ηt and ζt coincide on the space interval [Xx

t ;Y
y
t ].

PROOF. Proving that the property is unchanged by a new event amounts to
proving the following: assume η and ζ coincide on [X;Y ] with Y − X ≥ 2r ; then,
for every u ∈ U, T̃ z,uη and T̃ z,uζ coincide on [X + 2r;Y ] if z ∈ [X − r;X + r),
on [X;Y − 2r] if z ∈ (Y − r;Y + r], and on [X;Y ] if z /∈ [X − r;X + r) ∪ (Y −
r;Y + r]. This follows easily from the fact that T̃ z,uη depends and acts only on
the restriction of η to [z − r; z + r]. �

The following lemma is an obvious consequence of order-preservation.

LEMMA 4.2. Assume σ. is slower than τ., and σ0(·) ≤ τ0(· + k) for some
k ∈ N. Then we have σt(·) ≤ τt (· + k) for every t > 0.

The next lemma means that two systems which (in some “weak” sense) are
microscopically close at time 0 remain so at later times. This will later imply
in the hydrodynamic scaling limit (see Lemma 5.3) that two systems which are
macroscopically close at time 0 in the weak topology remain so at later times.

LEMMA 4.3. If η. and ζ. share the same dynamics, then

sup
x≤y

∣∣∣∣∣
y∑

z=x

ηt (y) −
y∑

z=x

ζt (y)

∣∣∣∣∣ ≤ 2 sup
x≤y

∣∣∣∣∣
y∑

z=x

η0(y) −
y∑

z=x

ζ0(y)

∣∣∣∣∣,
sup
x∈Z

[G(x;ηt ) − G(x; ζt )] ≤ sup
x∈Z

[G(x;η0) − G(x; ζ0)],

sup
x∈Z

|G(x;ηt) − G(x; ζt )| ≤ sup
x∈Z

|G(x;η0) − G(x; ζ0)|,

for every t ≥ 0, where in the second inequality we assume η0 and ζ0 have finitely
many particles to the left.
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PROOF. Let k denote the right-hand side of the first inequality. If k = +∞,
there is nothing to prove. Otherwise, label σ0 and τ0 with origin at 0. Since
by assumption |F0(·;η0) − F0(·; ζ0)| ≤ k, (29) and Lemma 4.2 imply τt (· −
k) ≤ σt (·) ≤ τt (· + k) for every t ≥ 0; hence, for every subinterval I ⊂ Z,
|∑x∈I (ηt (x) − ζt (x))| ≤ 2k, and the result follows by definition of the c.d.f. For
the second inequality, we give leftmost particles label 0 at time 0. By the G-version
of (29) we have τ0(·) ≤ σ0(· + k), and this remains at time t by order preservation.
But at time t we still have nmin = 0 for σt and τt , so we can use the rightward
implication in (29) to recover the inequality for c.d.f.’s. Finally, the third inequality
follows from the second one applied to (η., ζ.) and (ζ., η.). �

With the help of Lemma 4.1, we obtain the following local version of
Lemma 4.3.

COROLLARY 4.1. Let x ≤ 0 ≤ y in Z, and τx,y be as in Lemma 4.1. Then, for
every t ∈ [0; τx,y],

sup
Xx

t ≤x′≤y′≤Y
y
t

∣∣∣∣∣
y′∑

z=x′
ηt (z) −

y′∑
z=x′

ζt (z)

∣∣∣∣∣ ≤ 2 sup
x≤x′≤y′≤y

∣∣∣∣∣
y′∑

z=x′
η0(z) −

y′∑
z=x′

ζ0(z)

∣∣∣∣∣.

PROOF. Define the initial configuration ζ ′
0 as equal to ζ0 inside [x;y], and

η0 outside. The result follows immediately from applying Lemma 4.3 to ηt and ζ ′
t

and Lemma 4.1 to ζt and ζ ′
t . �

A simple reformulation of Lemma 4.2 shows that we can use c.d.f. comparison
at time 0 to compare currents through x = 0 at later times.

LEMMA 4.4. Assume η. is slower than ζ.. Then

sup
t≥0

(
�(η0, ηt ) − �(ζ0, ζt )

) ≤ max
(

0; sup
x∈Z

(
F(x; ζ0) − F(x;η0)

))
.

PROOF. Let k denote the right-hand side of the inequality. If k = +∞, there is
nothing to prove. Otherwise, choose the initial distinguishable representatives σ0
and τ0 labelled with origin at 0. By (29), we have σ0(n) ≤ τ0(n + k) for every n;
thus, by Lemma 4.2, σt (·) ≤ τt (·+k). It follows that n(0;σt) ≥ n(0; τt)−k, which
implies �(η0, ηt ) ≤ �(ζ0, ζt ) + k. �

Exactly as in Corollary 4.1, we can state a local version of the above lemma.

COROLLARY 4.2. Assume x ≤ −2r + 1 and y ≥ 2r in Z. Define

τ ′
x,y = inf{t > 0 :Xx

t > −2r + 1 or Y
y
t < 2r}.
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Then, for every t ∈ [0; τ ′
x,y],

�(η0, ηt ) − �(ζ0, ζt ) ≤ max
(

0; sup
x−1≤z≤y

(
F(z; ζ0) − F(z;η0)

))
.

PROOF. Define ζ ′
0 as in the proof of Corollary 4.1. Applying Lemma 4.4 to

ηt and ζ ′
t , the problem reduces to proving that

�(ζ0, ζt ) = �(ζ ′
0, ζ

′
t ) for t < τ ′

x,y.(34)

By Lemma 4.1, we know that ζt and ζ ′
t coincide between sites Xx

t and Y
y
t

inclusive. Let us show that this implies (34). By induction, the problem reduces to
proving that, if ζt− and ζ ′

t− coincide bewteen sites −2r − 1 and 2r inclusive, then
�(ζt− , ζt ) = �(ζ ′

t− , ζ ′
t ). This is a consequence of the following claim: if η and ζ

coincide on the space interval [−2r + 1; 2r], η′ = T̃ x,uη and ζ ′ = T̃ x,uζ , then
�(η,η′) = �(ζ, ζ ′). Indeed, if x ≤ −r or x ≥ r + 1, then �(η,η′) = �(η,η′) = 0
by (32). Otherwise, −r + 1 ≤ x ≤ r ; then, T̃ x,u only acts on the space interval
[x − r;x + r] ⊂ [−2r +1; 2r]; since η and ζ coincide on the latter interval, so will
η′ and ζ ′; the result then follows from (32). �

We now turn to the property which is really the core of our approach to proving
Theorem 2.2. Let us measure closeness of configurations on the right of x = 0 by
comparing c.d.f.’s restricted to the right of 0,

S(η, ζ ) = sup
x∈Z : x≥1

x∑
y=1

(
η(y) − ζ(y)

)
.(35)

Introduction of a related functional seems to date back to [1]. Now, assume
η. and ζ. are governed by any two local perturbations T̃ and T̂ of T . In Lemma 4.5
we prove the following: if η. and ζ. are initially close microscopically to the right
of 0, and their particle currents through 0 are close, then they remain close to the
right of 0. Like Lemma 4.3, this statement will have a macroscopic analogue in the
hydrodynamic scaling limit (see Lemma 5.2).

LEMMA 4.5. There exists a constant M = M(K, r,D) > 0 such that for
every t ≥ 0,

S(ηt , ζt ) ≤ max
(
M;S(η0, ζ0)

) + sup
s;0≤s≤t

[�(ηs, ηt ) − �(ζs, ζt )].(36)

A similar statement holds on the left of x = 0, with an obvious re-definition
of S and a possibly different M . As in Corollaries 4.1 and 4.2, we can give a
local formulation: to this end, define a local version Sz of S for each z ∈ Z such
that z ≥ 1, by restricting the supremum in (35) to 1 ≤ x ≤ z.
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COROLLARY 4.3. For every 0 ≤ t ≤ τ ′−∞,y and y ≥ 2r ,

SY
y
t
(ηt , ζt ) ≤ max

(
M;Sy(η0, ζ0)

) + sup
s;0≤s≤t

[�(ηs, ηt ) − �(ζs, ζt )](37)

with the same constant M as in Lemma 4.5; τ ′−∞,y is defined as τ ′
x,y in

Corollary 4.2, formally setting x = −∞, that is, removing the condition on Xx
t .

We omit the proof of the corollary, which follows from the lemma in a similar
way as Corollaries 4.1 and 4.2. The proof of Lemma 4.5 amounts to studying how
S is modified by the transformations T̃ and T̂ after each new event.

LEMMA 4.6. There exists a constant M = M(K, r,D) > 0 with the following
property: set η′ = T̃ x,uη, ζ ′ = T̂ x,uζ . Then

S(η′, ζ ′) ≤ max
[
M;S(η, ζ ) + �(η,η′) − �(ζ, ζ ′)

]
.(38)

LEMMA 4.7. Let f and δ be right-continuous, piecewise constant functions
defined on R

+. Assume we have

f (t) ≤ max[M;f (t−) + δ(t) − δ(t−)](39)

for every t ≥ 0; then, for every t ≥ 0,

f (t) ≤ max[M;f (0)] + sup
s : 0≤s≤t

(
δ(t) − δ(s)

)
.(40)

Lemma 4.5 is an immediate consequence of the above two lemmas, where
f (t) = S(ηt , ζt ) and δ(t) = �(η0, ηt ) − �(ζ0, ζt ). The proof of Lemma 4.7 is
an elementary induction between t− and t , where t denotes the latest update time.
The main step is to prove Lemma 4.6.

PROOF OF LEMMA 4.6. We prove the statement with M = 3K(r +max(r;D)).

CASE 1. Assume that x ≤ −r . Then η and η′ are not modified on the right
of 0, so S(η′, ζ ′) = S(η, ζ ); on the other hand, (32) implies that �(η,η′) =
�(ζ, ζ ′) = 0, so (38) follows easily.

CASE 2. Now, assume we have x ≥ max(r,D) + 1. In this case, the
perturbations are not felt: η′ = T x,uη and ζ ′ = T x,uζ . Again, by (32), we have
�(η,η′) = �(ζ, ζ ′) = 0; we are going to prove that

S(η′, ζ ′) ≤ max
(
0;S(η, ζ )

)
.(41)
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We label σ and τ particles with origin at 0. Because x ≥ r + 1, the following
is true for both systems between the initial and final states: labelled particles on
the right of 0 are the same, and particles up to site 0 inclusive are untouched. On
the other hand, S depends only on particles to the right of 0. Therefore, when
evaluating S(η, ζ ) and S(η′, ζ ′), we do not modify the result if we consider that
σ and τ coincide for labels n ≤ 0; of course, so will σ ′ and τ ′. This way, we can
write

S(η, ζ ) = sup
x>0

(
F(x,η) − F(x, ζ )

) = sup
x∈Z

(
F(x,η) − F(x, ζ )

)

and the same holds for η′ and ζ ′. Let k = max(0;S(η, ζ )). By (29), we have
τ (·) ≤ σ(· + k). Because T is order-preserving, we still have τ ′(·) ≤ σ ′(· + k).
But σ ′ and τ ′ are still labelled with origin at 0; thus, using (29) again, we get

S(η′, ζ ′) = sup
x>0

(
F(x,η′) − F(x, ζ ′)

) = sup
x∈Z

(
F(x,η′) − F(x, ζ ′)

) ≤ k.

CASE 3. Finally, let −r +1 ≤ x ≤ max(r,D). In this case, local modifications
of η and ζ on the right of 0 can only affect sites 1 to max(r,D) + r inclusive. It
then follows easily from the definition of S that

|S(η, ζ ) − S(η′, ζ ′)| ≤ 2K
(
r + max(r,D)

)
.

Hence, (38) is immediate if inf[S(η, ζ );S(η′, ζ ′)] ≤ K(r + max(r,D)). We
therefore assume that inf[S(η, ζ );S(η′, ζ ′)] > K(r + max(r,D)). This implies
that the suprema in S(η, ζ ) and S(η′, ζ ′) cannot be reached in the interval
[1; r + max(r,D)]. Hence, there exists some y > max(r,D) + r such that

S(η, ζ ) =
y∑

z=1

(
η(z) − ζ(z)

)
,

S(η′, ζ ′) =
y∑

z=1

(
η′(z) − ζ ′(z)

)
.

It follows from (32) and max(r,D) + r ≥ x + r that

S(η′, ζ ′) − S(η, ζ ) = �(η,η′) − �(ζ, ζ ′)

which implies (38). �

4.2. Subadditivity and the critical current. In this section we prove existence
of a critical current by means of a subadditive argument and state some related
properties. In the sequel we shall denote by η∗ the configuration defined by
η∗(x) = K if x ≤ 0, η∗(x) = 0 if x > 0. This configuration has the fundamental
property that

F(·;η∗) ≤ F(·;η) for every other configuration η.(42)
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Lemma 4.4 then implies that the current through x = 0 is maximal for the system
starting from η∗. In the following lemma this system, as it has a deterministic
initial state, is viewed on 
 alone rather than 
 × 
′.

LEMMA 4.8. Let η. be governed by T̃ , and η0 = η∗. Then there exists
0 ≤ φ ≤ h∗ such that

lim
t→∞ t−1�(η∗, ηt ) = φ, P-a.s.(43)

PROOF. Let φt = �(η∗, ηt ). First, we claim that φt is integrable. To see this,
observe that φt is bounded by a Poisson process, namely

φt ≤ Krω
(
(0; t] × (−r; r] × U

)
,

where the coefficient Kr follows from (33). Next, since the Poisson measure
P is stationary and ergodic under time shift, (43) will follow from Kingman’s
subadditive theorem [15] if we prove that φ is subadditive with respect to time
shift θ , that is, φt+s(ω) ≤ φt(ω)+φs(θtω). Since φt+s = φt +�(ηt , ηt+s ) we must
prove that the second term on the right-hand side above is bounded by φs(θtω). To
this end, we introduce a new system (ζτ , τ ≥ t) starting at time t , with ζt = η∗,
and still governed by the same T̃ . It follows from (42) and Lemma 4.4 that
�(ηt , ηt+s) ≤ �(ζt , ζt+s) = φs(θtω). �

The following lemma will be useful to compare critical currents from different
perturbations. For two local perturbations T̃1, T̃2 of T , we denote by U

T̃1,T̃2
the

complement of the set of u ∈ U for which T̃
x,u
i coincide for every x.

LEMMA 4.9. Assume that the local perturbations T̃1, T̃2 satisfy (43) with
asymptotic currents φi . Then |φ1 −φ2| ≤ 4r(2D+1)µ(U

T̃1,T̃2
). Moreover, φ1 ≤ φ2

if T̃1 is slower than T̃2.

PROOF. The second statement is an immediate consequence of Lemma 4.4,
which implies that �(η∗, η1

t ) ≤ �(η∗, η2
t ), where ηi

t evolves according to T̃i . To
prove the first statement, consider

Nt(ω) = ω
(
(0; t] × [−D;D] × U

T̃1,T̃2

)
,(44)

which, under P, is a Poisson process with intensity (2D + 1)µ(U
T̃1,T̃2

). The result
will follow from the law of large numbers for Nt and the inequality

|�(η∗, η1
t ) − �(η∗, η2

t )| ≤ 4rNt,(45)

which we now prove. To this end, considering (30), it is enough to prove that

σ 1
t (· − 4rNt) ≤ σ 2

t (·) ≤ σ 1
t (· + 4rNt).(46)
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Denote by (tk, xk, uk) the sequence of events in ω up to time t , where 1 ≤ k ≤ n

and 0 < t1 < · · · < tn ≤ t . We prove inductively that (46) holds at times tk ,
1 ≤ k ≤ n. Assume it holds at time tk . Since

σ i
tk+1

= T̃
xk+1,uk+1
i σ i

tk
, Ntk+1 − Ntk = 1{|xk+1|≤D,uk+1∈U

T̃1,T̃2
},

the problem reduces to proving that

σ 1(· − k) ≤ σ 2(·) ≤ σ 1(· + k),

σ ′i = T̃
x,u
i σ i i ∈ {1; 2},

implies

σ ′1(· − k − 4rε) ≤ σ ′2(·) ≤ σ ′1(· + k + 4rε)(47)

with

ε = 1{|x|≤D,u∈U
T̃1,T̃2

}.

This is proved by considering the following three possible situations. First, we
may have |x| > D; in this case, the perturbation is not felt, and the same order-
preserving transformation T x,u is applied to both σ i ; thus, we still have σ ′1(· −
k) ≤ σ ′2(·) ≤ σ ′1(· + k) and (47). Next, assume |x| ≤ D and u /∈ U

T̃1,T̃2
; then both

T̃
x,u
i are just the same order-preserving transformation, and the previous argument

holds. Finally, assume |x| ≤ D and u ∈ U
T̃1,T̃2

, so that ε = 1. By definition of r , no
particle may jump more than 2r sites back or ahead. Therefore,

σ ′2(·) ≤ σ 2(· + 2r) ≤ σ 1(· + k + 2r) ≤ σ ′1(· + k + 4r)

and, similarly, σ ′2(·) ≥ σ ′1(· − k − 4r).
�

We apply Lemma 4.9 in the following context. To the local perturbation T̃ of T ,
we can apply the construction of Section 2.4 that yields an increasing family T̃α of
perturbations of T̃ such that T̃0 is a total blockage and T̃1 = T̃ . We denote by φ̃α

the value of φ arising from T̃α .

COROLLARY 4.4. α �→ φ̃α is a nondecreasing, Lipschitz-continuous function
of α ∈ [0; 1], with φ̃0 = 0 and φ̃1 = φ.

PROOF. Nondecreasingness follows from the first part of Lemma 4.9, since
T̃α is increasing in α. Lipschitz continuity follows from the second part of the
same lemma and definition of T̃α . Finally, φ̃0 = 0 because under T̃0 no particle
ever jumps to the right of 0; and φ̃1 = φ because T̃1 = T̃ . �
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5. Proof of the hydrodynamic limit. The section is organized as follows.
First, in Section 5.1 we state scaling limit versions of the comparison results from
Section 4.1. These will serve as the basis for the sequel. Then the hydrodynamic
limit is established in three main steps: in Section 5.2, for the “fundamental”
system starting from configuration η∗ defined in Section 4.2; in Section 5.3,
starting from a Riemann profile; eventually in Section 5.4, from an arbitrary initial
profile.

5.1. Comparison results in scaling limit form. In the sequel, notations
ϕ

N,[η]
t := N−1�(ηN

0 , ηN
Nt ) and α

N,[η]
t := αN(ηN

Nt , dx), respectively, denote the
rescaled current and empirical measure for a system [η], with αN and � defined
in (4) and (30). To begin with, here is a preliminary technical result.

LEMMA 5.1. (i) The sequence of processes ϕN,[η] is tight w.r.t. the topology of
local uniform convergence, and any limit in law is a random process ϕ[η] with a.s.
Lipschitz-continuous paths. (ii) The sequence of processes αN,[η] is tight w.r.t. the
topology of local uniform convergence, and any limit in law is a random process
α[η] with a.s. continuous paths.

PROOF. Let Jt = ω((0; t] × (−r; r] × U). (Jt )t>0 is a Poisson process,
and (33) implies

∣∣ϕN,[η]
t − ϕN,[η]

s

∣∣ ≤ KrN−1(JNt − JNs)(48)

for 0 < s < t , from which (i) follows easily. To prove (ii) we observe that

α
N,[η]
t

(
(0;x]) − α

N,[η]
0

(
(0;x]) = ϕ

N,[η]
t (0) − ϕ

N,[η]
t (x),(49)

where ϕ
N,[η]
t (x) is defined as ϕ

N,[η]
t , but considering the current through site [Nx]

instead of 0. Hence, by (i) the sequence of real-valued processes αN,[η]
. ((0;x])

is tight w.r.t. local uniform convergence for every subinterval (0;x] ⊂ R. This
implies that the sequence αN,[η] is tight w.r.t. uniform local convergence, as the
topology generated by intervals (0;x] for measures is stronger than the vague
topology. By (i) the limiting process α[η] is such that α

[η]
t ((0;x]) is uniformly

Lipschitz continuous in t for every x ∈ R, which implies continuity in the vague
topology. �

Conventions used in the sequel. From now on random processes ϕ[η] and α[η]
will always denote arbitrary subsequential limits in law for the processes ϕN,[η]
and αN,[η] as N → ∞. Statements like “Let α[η] (or ϕ[η]) be an arbitrary limit. . .”
will not be repeated systematically. When simultaneously considering such limits
for different systems [η], [ζ ], . . . , these limits must be understood as joint limits,
that is, (α[η], ϕ[η], α[ζ ], ϕ[ζ ], . . . ) is an arbitrary subsequential limit in law for the
sequence (αN,[η], ϕN,[η], αN,[ζ ], ϕN,[ζ ], . . . ). When successively introducing such
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limits, it will be implicit that we each time consider a further subsequence along
which the latest limit exists jointly with all previous ones. This is possible thanks
to Lemma 5.1 and will not be repeated in the sequel.

Lemmas 5.2–5.4 will be the key arguments in the proof of Theorem 2.2. As
they are easy scaling limits of Corollary 4.3, Corollaries 4.1 and 4.2 (combined
with Lemma 5.1), we omit their proofs. In these lemmas, r is the constant defined
at the beginning of Section 4.1. “For every t” means a.s. with an exceptional set
independent of t . This will always be true in the sequel for α and ϕ limiting
processes, and we shall omit to mention “a.s.”

LEMMA 5.2. Let [η] and [ζ ] be governed by two ( possibly different) local
perturbations of the same transformation, and y ∈ R

+∗. Then, for every 0 ≤ t ≤
y/(2r),

sup
x : 0≤x≤y−2rt

(
α

[η]
t ([0;x]) − α

[ζ ]
t ([0;x]))

≤ sup
x : 0≤x≤y

(
α

[η]
0 ([0;x]) − α

[ζ ]
0 ([0;x]))

+ sup
s : 0≤s≤t

[(
ϕ

[η]
t − ϕ[η]

s

) − (
ϕ

[ζ ]
t − ϕ[ζ ]

s

)]
,

(50)

and a similar statement on the negative half-line, with y < 0 and suprema over
y ≤ x ≤ 0 and y + 2rt ≤ x ≤ 0 in (50).

LEMMA 5.3. Let [η] and [ζ ] have the same dynamics, and x, y ∈ R with
x < y. Then, for every 0 ≤ t ≤ (y − x)/4r ,

sup
x+2rt≤x′≤y′≤y−2rt

∣∣α[η]
t ([x′;y′]) − α

[ζ ]
t ([x′;y′])∣∣

≤ 2 sup
x≤x′≤y′≤y

∣∣α[η]
0 ([x′;y′]) − α

[ζ ]
0 ([x′;y′])∣∣.(51)

If, in addition, there exists a deterministic constant C > 0 such that∑
x∈Z

(
ηN

0 (x) + ζN
0 (x)

) ≤ CN ∀N ∈ N
∗,

then, for every t ≥ 0,

sup
x∈R

∣∣α[η]
t

(
(−∞;x]) − α

[ζ ]
t

(
(−∞;x])∣∣

≤ sup
x∈R

∣∣α[η]
0

(
(−∞;x]) − α

[ζ ]
0

(
(−∞;x])∣∣.(52)

LEMMA 5.4. Let [η] and [ζ ] have the same dynamics, and x, y ∈ R with
x < 0 < y. Then, for every 0 ≤ t ≤ τ ′(x, y) := inf(−x, y)/(2r),∣∣ϕ[η]

t − ϕ
[ζ ]
t

∣∣ ≤ sup
x≤z≤y

∣∣α[η]
0 ([0; z]) − α

[ζ ]
0 ([0; z])∣∣.(53)



836 C. BAHADORAN

REMARK. In practical use of the above lemmas, [η] will be a system whose
hydrodynamic limit we want to establish, and [ζ ] will be a system with known
hydrodynamic limit. Hence, α[ζ ] and ϕ[ζ ] will be uniquely determined limits,
namely the hydrodynamic profile and current of [ζ ]; combinations of the three
lemmas with different suitably chosen [ζ ]’s will show that α[η] is uniquely
determined, thus, establishing hydrodynamic limit for [η]. In most cases only
profile properties of [ζ ] will be used: then by the second remark in Section 2.5,
we only need to specify the initial density profiles of [ζ ]; the sequence of initial
configurations can be chosen in any arbitray way (e.g., deterministic) achieving
the desired profile.

We end up with a result showing that knowledge of the hydrodynamic limit for
the unperturbed system implies that of the macroscopic particle current.

LEMMA 5.5. Let [η] be governed by T , with initial density profile ρ0. Then,
for every t > 0, ϕN,[η] converges in probability to∫ t

0
h
(
ρ(s,0−)

)
ds =

∫ t

0
h
(
ρ(s,0+)

)
ds(54)

as N → ∞, where ρ is the entropy solution to (5) with initial datum ρ0.

Note that the limits in (54) always make sense because the entropy solution
has locally bounded space variation at positive times. An immediate byproduct of
Lemma 5.5 is that h(K) = 0. Indeed, consider the unperturbed system governed
by T , starting from a totally congested configuration. By Assumption 2.2, the
hydrodynamic profile is uniformy equal to K . Since particles do not move, the
current is always 0, hence, the result.

PROOF OF LEMMA 5.5.

Step 1. First, we assume ηN
0 has finitely many particles to the right; then this

remains true at time t . (31) and Assumption 2.2 imply that ϕ
N,[η]
t converges in

probability to
∫
x>0 ρ(s, x) dx − ∫

x>0 ρ(0, x) dx as N → ∞. That this is equal to
(54) follows from integrating (5) over x > 0.

Step 2. The assumption on ηN
0 is relaxed. We consider another system [η′]

with the same dynamics, but initial configurations η′N
0 defined by removing all

ηN
0 -particles for x > aN , where a is a large constant. By Assumption 2.2, η′ has

density profile ρ′, the entropy solution to (5) with initial datum ρ′
0 = ρ01(−∞;a]. By

Lemma 4.1, ηN
Nt and η

′N
Nt coincide up to site YNa

Nt , and thus, their density profiles

ρ and ρ′ coincide for x ≤ a − 2rt . By Step 1, ϕ
N,[η′]
t converges as N → ∞ to (54)

with ρ′ instead of ρ, but this does not change the result if t < a/(2r). Lemma 5.4,
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with arbitrary x and y = a, now implies that (54) holds for t < a/(2r), and the
result follows from choosing arbitrarily large a. �

5.2. Hydrodynamic limit for the fundamental system. In the sequel we
denote by [η∗] the “fundamental” system with deterministic initial configurations
ηN = η∗ independent of N , where η∗ is the fundamental configuration defined in
Section 4.2. We prove the following particular case of Theorem 2.2.

LEMMA 5.6. The system [η∗] has hydrodynamic profile ρ∗(·, ·), where ρ∗ is
the fundamental φ-entropy solution defined below Proposition 3.6.

PROOF. Let α[η∗] be a subsequential limit. We must show that α
[η∗]
t =

ρ∗(t, ·) dx for every t > 0. We know by Proposition 3.6 that ρ∗(t, x) = ρ(ρφ, t, x)

for x > 0; recall from Proposition 3.6 that ρ(ρφ, ·, ·) denotes the entropy solution
with initial profile ρ0(·)1R+∗ + ρφ1R−∗ , with here ρ0 = RK,0. Let [ηr ] be a
system with initial density profile ρ0(·)1R+∗ + ρφ1R−∗ ; by Assumption 2.2,
[ηr ] has hydrodynamic profile ρ(ρφ, ·, ·). By Proposition 3.6, we have ρ∗(t,0+) =
ρ(ρφ, t,0+) = ρφ . Hence, by Lemma 5.5, ϕ

[ηr ]
t = th(ρφ) = tφ for every t > 0.

We also know by Lemma 4.8 that ϕ
[η∗]
t = tφ for every t > 0. Since initial density

profiles of [η∗] and [ηr ] coincide on R
+∗, we conclude from Lemma 5.2 with

a sequence of y’s growing to ∞ (and an exceptional set valid for the whole
sequence) that α

[η∗]
t coincides with α

[ηr ]
t = ρ(ρφ, t, ·) dx on R

+∗ for every t > 0;

hence, α
[η∗]
t = ρ∗(t, ·) dx on R

+∗. The same argument can be used on R
−∗,

by comparing [η∗] to an unperturbed system [ηl] with hydrodynamic profile
ρ(·, ·, ρφ). �

5.3. Hydrodynamic limit for initial admissible Riemann profiles. For every
pair (ρ−;ρ+) modulo h, let Rρ−;ρ+ denote the set of profiles ρ(·) such that
ρ(x) ∈ ρ− for a.e. x < 0 and ρ(x) ∈ ρ+ for a.e. x > 0. Such profiles are called
Riemann profiles modulo h. By Lemma 3.1, any profile ρ(·) ∈ Rρ−;ρ+ , with
(ρ−;ρ+) an φ-admissible pair modulo h, is a stationary φ-entropy solution. We
now prove Theorem 2.2 for such initial profiles.

LEMMA 5.7. Assume [η] has initial density profile ρ0 ∈ Rρ−;ρ+ , with
(ρ−;ρ+) an φ-admissible pair modulo h. Then (i) [η] has stationary hydrody-

namic profile ρ0(·). (ii) The rescaled current ϕ
N,[η]
t converges in probability to

th(ρ±) for every t > 0.

The proof will be split into different cases in Sections 5.3.1–5.3.3, according
to the values of ρ− and ρ+. In each case we prove that α

[η]
t = ρ0(·) dx and

ϕ
[η]
t = th(ρ±) for every t > 0, where (α[η], ϕ[η]) is an arbitrary subsequential

limit.
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5.3.1. The maximal critical shock profile. We assume ρ0 = Rρφ;ρφ
. Fix some

A > 0 and ε > 0. Since ρ∗ is self-similar, that is, ρ∗(t, x) = ρ∗(1, x/t), with
ρ∗(·,0−) = ρφ and ρ∗(·,0+) = ρφ , we can choose τ > 0 large enough, so that

sup
t>0,|x|≤A

|ρ∗(τ + t, x) − ρ0(x)| ≤ ε.(55)

Let [ζ ] denote a system such that ζN
0 has the same distribution as η∗

Nτ . By Markov
property ζN

Nt has the same distribution as η∗
N(τ+t) for every t ≥ 0. In particular,

ζN
Nt has density profile ρ∗(τ + t, ·) by Lemma 5.6. Now apply (51) with x = −A

and y = A. Using α
[η]
0 = ρ0(·) dx, α

[ζ ]
t = ρ∗(τ + t, ·) dx and (55), we find

sup
|x|,|y|≤A−2rt

∣∣∣∣α[η]
t ([x;y]) −

∫ y

x
ρ0(z) dz

∣∣∣∣ ≤ 6Aε

for every t < A/(2r); letting ε → 0 and then A → +∞ (i.e., taking a common

exceptional set for sequences of ε’s and A’s), we conclude that α
[η]
t = ρ0(·) dx

for every t > 0. Now we apply (53). To this end observe that ϕ
[ζ ]
t = tφ, because,

by Markov property, ϕ
N,[ζ ]
t has the same distribution as ϕ

N,[η∗]
τ+t − ϕ

N,[η∗]
τ , and the

latter converges in probability to (τ + t)φ − τφ = tφ by Lemma 4.8. Thus, (53)
yields |ϕ[η]

t − tφ| ≤ Aε for t < A/(2r). Again, letting ε → 0 and then A → +∞,

we find that ϕ
[η]
t = tφ for every t > 0.

5.3.2. φ-admissible pairs with critical current value. We assume that ρ± are
critical densities modulo h. Consider the approximating initial density profile

ρε
0(x) = Rρφ;ρφ

(x)1(−ε;ε)(x) + ρ0(x)1(−ε;ε)c (x).

By Lemma 3.1, ρε
0 is a stationary φ-entropy solution because it is piecewise

constant modulo h and exhibits three successive boundary pairs modulo h:
(ρ−;ρφ) at x = −ε, (ρφ;ρφ) at x = 0, (ρφ;ρ+) at x = ε. The first pair is entropic:
indeed, ρ− ≤ ρφ because ρφ is the largest critical density; and if ρ− < ρφ , the
chord between ρ− and ρφ must lie below the graph of h, as h(ρ−) = h(ρφ) = φ

and h has no local minimum with value smaller than φ. The third pair is entropic
for similar reasons. Finally, the second one is φ-entropic, since it is the maximal
critical shock.

Step 1. Let us first consider a system [ζ ] with initial density profile ρε
0(·). We

want to prove that [ζ ] has stationary hydrodynamic profile ρε
0, and ϕN,[ζ ] con-

verges in probability to th(ρφ) = th(ρφ) = tφ for every t > 0. By Markov
property, it is enough to show it for t ≤ τ with some τ > 0. We consider τ :=
ε/(2r) and prove that (i) α

[ζ ]
t = ρε

0(·) dx, (ii) ϕ
[ζ ]
t = tφ, for any t ≤ τ and for any

subsequential limit. Consider the initial profile ρ
ε,r
0 := ρε

0(·)1R+∗ + ρφ1R−∗ . ρε
0 is
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now a stationary entropy solution because, as compared to ρε
0 , only the entropic

pair (ρφ,ρ+) at x = ε remains. Let [ζ r ] be an unperturbed system with initial den-
sity profile ρ

ε,r
0 (·); by Assumption 2.2, [ζ r ] has stationary hydrodynamic profile

ρ
ε,r
0 (·), and by Lemma 5.5 we have ϕ

[ζ r ]
t = th(ρφ) = tφ for every t > 0. Let also

[ζ ′] be a system with initial profile Rρφ;ρφ
. By Section 5.3.1 applied to [ζ ′] and

Lemma 5.4 applied to [ζ ] and [ζ ′] with a sequence of y’s growing to ∞, we have

ϕ
[ζ ]
t = ϕ

[ζ ′]
t = tφ for t ≤ τ ′(−ε,+∞) = ε/(2r) = τ . Since initial density profiles

of [ζ ] and [ζ r ] coincide on R
+∗, Lemma 5.2 implies that α

[ζ ]
t coincides with α

[ζ r ]
t

on R
+∗ for t ≤ τ , so α

[ζ ]
t = ρε

0(·) dx on R
+∗ for t ≤ τ . For the negative half-line,

we use similar arguments with ρ
ε,l
0 := ρε

0(·)1R−∗ + ρφ1R+∗ .

Step 2. Since α
[η]
0 = ρ0(·) dx, and by Step 1 α

[ζ ]
t = ρε

0(·) dx for every t > 0,
Lemma 5.3 yields

sup
x+2rt≤x′≤y′≤y−2rt

∣∣∣∣α[η]
t ([x′;y′]) −

∫ y′

x′
ρε

0(z) dz

∣∣∣∣ ≤ 4Kε

for any x < y and t ≤ (y − x)/4r ; letting x → −∞, y → +∞ and ε → 0, we
obtain α

[η]
t = ρ0(·) dx for every t ≥ 0. Finally, we apply Lemma 5.4 to [η] and [ζ ]

with arbitrarily small x and large y. By Step 1 we have ϕ
[ζ ]
t = tφ for every t > 0,

so we get |ϕ[η]
t − tφ| ≤ Kε for every t > 0, and letting ε → 0, we find ϕ

[η]
t = tφ

for every t > 0.

5.3.3. φ-admissible pairs below critical current. We assume (ρ−;ρ+) is an
entropic pair such that h(ρ+) = h(ρ−) < φ. Note that in this case, by Lemma 3.1,
ρ0(·) is both a stationary entropy solution and a stationary φ-entropy solution. By
Corollary 4.4, there exists some β ∈ [0; 1) such that φ̃β = h(ρ±). We introduce
two systems [η1] and [ηβ ], with the same initial configurations as [η], repectively,
unperturbed and governed by T̃β .

[η1] has stationary hydrodynamic profile ρ0(·) by Assumption 2.2; moreover,

by Lemma 5.5, ϕ
N,[η1]
t converges in probability to th(ρ±) for every t > 0. On the

other hand, since h(ρ±) = φ̃β , ρ± are critical densities for the perturbation T̃β .
Thus, by Section 5.3.2, [ηβ ] has stationary hydrodynamic profile ρ0(·) and

ϕ
N,[ηβ ]
t converges in probability to th(ρ±) for every t > 0. Observe that ηβ is

slower than η and η is slower than η1; and all three have the same initial
configurations. Thus, by Lemma 4.4,

ϕ
N,[ηβ ]
t ≤ ϕ

N,[η]
t ≤ ϕ

N,[η1]
t

for every t > 0. It follows that

ϕ
[η]
t = ϕ

[ηβ ]
t = ϕ

[η1]
t = th(ρ±)(56)
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for every t > 0; thus, ϕ
N,[η]
t converges in probability to th(ρ±). Now Lemma 5.2

and (56) imply that α
[η]
t and α

[η1]
t coincide both on R

+∗ and R
−∗ for every t > 0,

hence, α
[η]
t = ρ0(·) dx for every t > 0; thus, [η] has stationary hydrodynamic

profile ρ0(·).

5.4. Hydrodynamic limit for general initial profiles. The proof is divided into
two steps. First, we prove that Theorem 2.2 holds for small times when ρ0 is locally
as in Lemma 5.7.

LEMMA 5.8. Assume ρ0 has the following form: there exist ε > 0, and
(ρ−;ρ+) a φ-admissible pair modulo h, such that ρ0(x) ∈ ρ− for −ε < x < 0
and ρ0(x) ∈ ρ+ for 0 < x < ε. Let [η] be a system governed by T̃ with initial
density profile ρ0. Then for every t < min(ε/V, ε/(2r)) (with V defined in
Proposition 3.2), ηN

Nt has density profile ρ(t, ·) as N → ∞, where ρ is the
φ-entropy solution with intial datum ρ0.

PROOF. Consider initial profiles ρr
0 and ρl

0 such that ρr
0 (resp. ρl

0) coincides

with ρ0 for x > 0 (x < 0) and ρr
0(x) ∈ ρ+ (ρl

0(x) ∈ ρ−) for x < 0 (x > 0). We
denote the corresponding entropy solutions by ρr(t, x) and ρl(t, x). Finally, for
t < ε/V , define ρ(t, x) as ρr(t, x) for x > 0 and ρl(t, x) for x < 0. We now
prove that, on the time interval [0; ε/V ), ρ is the φ-entropy solution starting
from ρ0. First, observe that (i) ρr

0 = ρ+ (ρl
0 = ρ−) modulo h on (−ε; ε), (ii) a

modulo h-constant profile is a stationary entropy solution by Lemma 3.1, and
thus, (iii) by Proposition 3.2, ρr(t, x) = ρ+ (ρl(t, x) = ρ−) modulo h for t < ε/V

and |x| < ε − V t ; hence, the modulo h-pair (ρ(t,0−);ρ(t,0+)) is φ-entropic.
Next, on either side of 0, ρ coincides with an entropy solution, which implies
that it satisfies (18) away from 0 for every c ∈ [0;K]. Finally, ρ(0, ·) = ρ0(·),
and ρ(t, ·) → ρ(0, ·) locally in L1 for t → 0 because the entropy solutions ρr/ l

converge to their initial data in the sense (19). The conclusion then follows from
uniqueness and Definition 3.2.

Consider a subsequential limit (α[η], ϕ[η]). Let [ζ ] be a system with the same
dynamics as [η] and a modulo h-Riemann initial density profile ρ′

0 ∈ Rρ−,ρ+ such

that ρ′
0 coincides with ρ0 on (−ε; ε). Then Lemma 5.4 shows that ϕ

[η]
t = ϕ

[ζ ]
t

for every t < ε/(2r), while by Lemma 5.7 we have ϕ
[ζ ]
t = th(ρ±) for every

t > 0. Next, let [ηr ] be an unperturbed system with initial density profile ρr
0.

By Assumption 2.2 and Lemma 5.5 we have ϕ
[ηr ]
t = th(ρr (t,0±)) = th(ρ±)

for t ≤ ε/V . Lemma 5.2 then implies that α
[η]
t coincides with α

[ηr ]
t on R

+∗ for
every t < ε/(2r). Hence, the restriction of α

[η]
t to R

+∗ is ρ(t, ·) dx for every
t < min(ε/V, ε/(2r)). The same result can be proved on R

−∗ by considering [ηl]
with initial density profile ρl

0. �
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We are now ready to conclude the proof of Theorem 2.2.

Step 1. We first restrict to the following situation: [η] is a system with initial
density profile ρ0(·), where ρ0 has locally bounded variation and finite integral,
and ∑

x∈Z

ηN
0 (x) ≤ CN ∀N ∈ N

∗(57)

for some deterministic constant C > 0. The system being conservative, (57) still
holds at later times. Let α[η] be a subsequential limit. Because of (57), α

[η]
t is a

finite nonnegative measure for every t ≥ 0. Set

E(t) := sup
x∈R

∣∣∣∣α[η]
t

(
(−∞;x]) −

∫ x

−∞
ρ(t, z) dz

∣∣∣∣,
where ρ(·, ·) denotes the φ-entropy solution with initial datum ρ0(·); note that, by
mass conservation in (5), ρ(t, ·) has finite integral, and thus, E(·) is a.s. finite. We
want to prove that a.e. path of E(·) is identically zero. Note that E(·) has a version
with a.s. Lipschitz-continuous paths. It follows on the one hand, from the obvious
relation

α
N,[η]
t

(
(−∞;x]) = α

N,[η]
0

(
(−∞;x]) − ϕ

N,[η]
t (x),

combined with Lemma 5.1, where ϕ
[N,η]
t (x) is as in (49); on the other hand, from

the relation ∫ x

−∞
ρ(t, z) dz =

∫ x

−∞
ρ0(z) dz −

∫ t

0
h
(
ρ(s, x±)

)
ds,

which holds because ρ is a weak solution to (5); recall that, since ρ0(·) has locally
bounded variation, ρ has limits modulo h at x by Proposition 3.4. Since E(0) = 0
a.s. by construction, it is enough to prove that with probability one we have E′ ≤ 0
a.e. To each s > 0 and ε > 0, we associate the following: (i) A modulo h-Riemann
profile Rs defined as follows: for x > 0 (resp. x < 0), Rs(x) is the projection
of ρ(s, x) on the modulo h class ρ(s,0+) [resp. ρ(s,0−)]; here, projection
on a closed interval I is meant in usual sense, that is, the closest point in I .
(ii) A delayed system [ηs,ε] whose evolution begins only at macroscopic time s;
this means that [ηs,ε] is a collection of processes (ηs,ε)N. = ((ηs,ε)Nτ , τ ≥ Ns);
the initial configuration (ηs,ε)NNs(ω,ω′) is fixed at time Ns, and the evolution (2)
restricted to events ω occuring after this time. We impose that the sequence
(ηs,ε)NNs has density profile

ρ
s,ε
0 (·) = ρ(s, ·)1(−ε;ε)c + Rs(·)1(−ε;ε)

as N → ∞, and, moreover, that the initial configurations (ηs,ε)NNs satisfy (57) with
a new constant C; this is possible because ρ(s, ·) has finite integral equal to that
of ρ0(·), and thus, ρ

s,ε
0 (·) has finite integral.
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Denote by (ρs,ε(t, x), t ≥ s), the φ-entropy solution to (5) with datum ρ
s,ε
0 at

time s. For t ≥ s, the triangle inequality yields

E(t) ≤ E
s,ε
1 (t) + E

s,ε
2 (t) + Es,ε(t),(58)

where Es,ε is defined as E, but with α[ηs,ε ] (resp. ρs,ε) instead of α[η] (resp. ρ),
and

E
s,ε
1 (t) = sup

x∈R

∣∣α[η]
t

(
(−∞, x]) − α

[ηs,ε]
t

(
(−∞, x])∣∣,

E
s,ε
2 (t) = sup

x∈R

∣∣∣∣
∫ x

−∞
ρ(t, z) dz −

∫ x

−∞
ρs,ε(t, z) dz

∣∣∣∣.

By Lemma 5.8, there is a constant C = C(V, r) > 0 [different from the one in (57)]
such that α

[ηs,ε ]
t = ρs,ε(t, ·) dx for s ≤ t ≤ s + Cε. Thus, for such times t we have

Es,ε(t) = 0. On the other hand,

E
s,ε
2 (s + Cε) ≤

∫
R

|ρ(s + Cε,x) − ρs,ε(s + Cε,x)|dx

≤
∫

R

|ρ(s, x) − ρ
s,ε
0 (x)|dx := e(s; ε),

(59)

note that e(s; ε) is nonrandom and, by construction of ρs
0, limε→0 e(s; ε)/ε = 0

for each s > 0; the second inequality follows from Proposition 3.5. Finally,

E
s,ε
1 (s + Cε) ≤ E

s,ε
1 (s) ≤ E(s) + Es,ε(s) + E

s,ε
2 (s)

≤ E(s) + e(s; ε),
(60)

where the first inequality follows from Lemma 5.3 (with an exceptional set
independent of s) because ηN

Ns and (ηs,ε)NNs satisfy (57), and the second one
follows from the triangle inequality. We conclude from (58)–(60) that, for every
ε > 0, a.e. realization of E(·) satisfies E(s+Cε) ≤ E(s)+2e(s; ε) for every s > 0.
We can choose a common exceptional set for all ε’s in a vanishing sequence. Thus,
almost every realization of E satisfies E′ ≤ 0 almost everywhere.

Step 2. Now [η] has initial density profile ρ0(·), assumed only measurable.
Let α[η] be a subsequential limit. For ε > 0, let ρε

0 satisfy the assumptions of
Step 1 and approximate ρ0 in the sense

∫
|x|≤1/ε |ρ0(x) − ρε

0(x)|dx ≤ ε; denote

by ρε the corresponding φ-entropy solution. Consider a system [ζ ] satisfying (57)
with initial density profile ρε

0 . It is now easy to conclude that α
[η]
t = ρ(t, ·) dx for

every t > 0, by using (i) (51) in Lemma 5.3, (ii) α
[ζ ]
t = ρε(t, ·) dx from step one

and (iii) Proposition 3.5 for ρ(t, ·) and ρε(t, ·).
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6. Existence and uniqueness of the φ-entropy solution. This section is
devoted to the proofs of Theorem 2.1 and Propositions 3.4 and 3.5. We shall need
the more general framework of measure-valued (m.v.) solutions to (1); see, for
example, [10]. m.v. solutions are Young measures; we recall that a ([0;K]-valued)
Young measure ν on R

+∗ × R is a weakly measurable mapping (t, x) �→ νt,x(dρ)

whose values are probability measures on [0;K]. The Young measure ν reduces
to a Borel function ρ(t, x) iff νt,x = δρ(t,x) a.e.; we then say it is “of Dirac form.”

M.v. entropy solutions in the Kružkov sense and m.v. φ-entropy solutions in the
sense of Definition 3.3 are defined by applying the following rule to (18), (19)
and (25): for a Young measure νt,x , instead of a function ρ(t, x), replace any
expression of the form F(t, x, ρ(t, x)) by the mean value

∫
F(t, x, ρ) dνt,x(ρ).

We also extend the definition of limits modulo h to a Young measure as follows:
we say the (Dirac) limit νt,x+ = δρ+ exist, where ρ+ is a density modulo h,
if limy→x+

∫
d(ρ,ρ+) dνt,y(ρ) = 0, where d(ρ,ρ+) is the distance from point

ρ ∈ [0;K] to interval ρ+; we similarly define the left limit νt,x− = δρ− . We say
the Young measure ν is a m.v. φ-entropy solution in the sense of Definition 3.2, iff
it satisfies (18) in the m.v. sense outside x = 0 for every c ∈ [0;K], and has limits
νt,0± = δρ(t,0±) modulo h for a.e. t > 0, such that the pair (ρ(t,0−), ρ(t,0+))

modulo h is φ-admissible for every t > 0.

6.1. Restricted uniqueness and equivalence of definitions. Here we want to
prove the following result.

PROPOSITION 6.1. For m.v. φ-entropy solutions with boundary limits νt,0± =
δρ(t,0±) modulo h for a.e. t > 0: (i) Definitions 3.2 and 3.3 are equivalent.
(ii) A solution with given initial datum [in m.v. sense of (19)] is unique and of
Dirac form. (iii) For two such solutions νi

t,x = δρi (t,x), �(t) defined in (22) is
nonincreasing on a total subset of (0; (y − x)/(2V )). (iv) In particular, if the
νi have initial data ρi

0 in the sense of (19) that coincide a.e. on [x;y], then
ρi coincide a.e. on the set {(t, z) : 0 < t < (y − x)/2V ;x + V t < z < y − V t}.

In the title we speak of “restricted” uniqueness because one has to assume
existence of boundary limits. General uniqueness in the sense of Definition 3.3
will be proved in Section 6.3. The standard uniqueness proof for entropy solutions,
due to Kružkov [17], and extended to m.v. solutions by Szepessy [29], relies on
two lemmas. The first one states that two Young measures satisfying entropy
inequalities (18) satisfy a “coupling” entropy inequality. The second one shows
that the coupling entropy inequality implies a L1 contraction inequality, which
immediately yields uniqueness. We recall these two results below; the former is
given in a slightly more general form needed in the sequel (but which follows
from exactly the same proof as the original lemma).



844 C. BAHADORAN

LEMMA 6.1. Assume that for each i ∈ {1,2}, Ci is a subset of [0;K] and νi

a Young measure supported a.e. on Ci . Assume further that 
 is an open subset of
R

+∗ ×R such that ν1 (resp. ν2) satisfies (18) on 
 for every c ∈ C2 (resp. c ∈ C1).
Then the coupling entropy inequality

∂t

[∫
ϕ(ρ1;ρ2)ν1

t,x(dρ1)ν2
t,x(dρ2)

]

+ ∂x

[∫
ψ(ρ1;ρ2)ν1

t,x(dρ1)ν2
t,x(dρ2)

]
≤ 0

(61)

holds in distribution sense on 
.

Inequality (61) is the m.v. form of (25) with ν1 and ν2 instead of ρ and r .

LEMMA 6.2. Assume (61) holds on (0; ε) × R for some ε > 0. Given x < y,
define �(t) as in (22), but in m.v. form, that is,

�(t) =
∫ y−V t

x+V t

∫
|ρ1 − ρ2|ν1

t,x(dρ1)ν2
t,x(dρ2) dx.

Then �(t) is nonincreasing on a total subset of (0; (y − x)/2V ) ∩ (0; ε). If, in
addition, νi have initial data ρi

0 in m.v. sense of (19), then 0 can be added to
the former subset, with �(0) evaluated by setting νi

0,x = δρi
0(x). In particular, if

ρi
0 coincide on [x;y] then, a.e. on the set {(t, z) : 0 < t < min(ε; (y − x)/2V );x +

V t < z < y − V t}, νi coincide and are of Dirac form.

In the φ-entropy case, (18) is only available for all c on R
+∗ × R

∗. Therefore,
Lemma 6.1 yields (61) on R

+∗ × R
∗ for two m.v. φ-entropy solutions. To

establish (61) on R
+∗ × R we need to prove its trace along x = 0. Define

J (ρ−
1 , ρ+

1 ;ρ−
2 , ρ+

2 ) = ψ(ρ+
1 ;ρ+

2 ) − ψ(ρ−
1 ;ρ−

2 ).

Note that this function can be defined on densities modulo h, as it does not depend
on particular representatives. From differentiation theory in distribution sense, we
have the following:

LEMMA 6.3. Assume ν1 and ν2 satisfy (61) on R
+∗ × R

∗ and have limits
νi
t,0± = δρi (t,0±) modulo h for a.e. t > 0. Then (61) holds on R

+∗ × R iff

J (ρ1(t,0−), ρ1(t,0+);ρ2(t,0−), ρ2(t,0+)) ≤ 0 for a.e. t > 0.

The next lemma shows (statement 1) that the above trace condition is, indeed,
satisfied. Statement 2 will be used to establish equivalence of definitions in
Proposition 6.1. Note that, if we seek to extend Definition 3.1 to φ > φ∗,
statement 1 remains valid but statement 2 fails. The interpretation is that specifying
a maximum current no longer determines a unique entropy condition: when
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φ > φ∗, admissibility in the sense of Definition 3.1 is only one among other
admissibility criteria producing solutions with maximal current φ, whereas it is
the only one when φ ≤ φ∗.

LEMMA 6.4.

1. J (ρ−, ρ+; r−, r+) ≤ 0 whenever (ρ−, ρ+) and (r−, r+) are φ-admissible.
2. The pair (ρ−, ρ+) is φ-admissible if and only if : (i) J (ρ−, ρ+; c, c) ≤ 0 for

every φ-admissible density c, and (ii) J (ρ−, ρ+;ρφ,ρφ) ≤ 0.

PROOF. 1. Since J (ρ−, ρ+; r−, r+) = J (ρ−, ρ+; r−, r−) + J (r−, r+;ρ+,

ρ+), it is enough to show J (ρ−, ρ+; c, c) ≤ 0 for a φ-admissible pair (ρ−, ρ+)

and a φ-admissible density c. Assume first that (ρ−, ρ+) is entropic; then,
by (20), J (ρ−, ρ+; c, c) ≤ 0 holds even for every c ∈ [0;K]. Now, if (ρ−, ρ+)

is φ-entropic, but not entropic, we must have h(ρ±) = φ and ρ+ < ρ−; thus,
J (ρ−, ρ+; c, c) ≤ 0 if c is an admissible density because then h(c) ≤ φ = h(ρ±).

2. That φ-admissibility implies (i) and (ii) follows from the first part of the
proof, since (ρφ;ρφ) and (c; c) are φ-admissible pairs. We now prove the converse
implication. First, taking c = 0 and c = K in (i) shows that h(ρ+) = h(ρ−). Next,
(ii) implies that h(ρ±) ≤ φ. Indeed, assume we have h(ρ±) > φ. Then, ρ± both
lie in the interval (ρφ;ρφ), which implies J (ρ−, ρ+;ρφ,ρφ) > 0, in contradiction
with (ii). We are left with the following cases. Either h(ρ±) = φ, in which
case (ρ−;ρ+) is φ-entropic. Or, h(ρ±) < φ. Then (ii) imposes sgn(ρ+ − ρφ) ≥
sgn(ρ− − ρφ). Combined with h(ρ±) < φ, this implies either ρ+ = ρ− < ρφ , or
ρ+ = ρ− > ρφ , or ρ− < ρφ < ρφ < ρ+. (ρ−;ρ+) is obviously φ-admissible in
the first two cases, and it is in the third one because φ ≤ φ∗ implies that the chord
determined by ρ± lies below the graph of h. �

PROOF OF PROPOSITION 6.1. (i) Let ν be a m.v. φ-entropy solution with
limits νt,0± = δρ(t,0±) modulo h. Both Definitions 3.2 and 3.3 imply that ν satisfies
entropy inequalities (18) on R

+∗ × R
∗ for every c ∈ [0;K], and, thus, also (25)

with r(·) = Rρφ,ρφ
(·), as Rρφ,ρφ

(·) is constant on R
+∗ and R

−∗. It remains to show

that (18) with φ-admissible c and (25) with r(·) = Rρφ,ρφ
(·), extend to R

+∗ × R

iff the modulo h boundary pair (ρ(t,0−);ρ(t,0+)) is φ-admissible. This follows
from Lemma 6.3 [with ν1 = ν, and ν2

t,x = δR
ρφ,ρφ

(x) or ν2
t,x = c], and statement

(ii) of Lemma 6.4.
(ii), (iii) and (iv): Let νi , i ∈ {1; 2}, be m.v. φ-entropy solutions with limits

νi
t,0± = δρi(t,0±) modulo h. By Lemma 6.1, νi satisfy the coupling entropy

inequality (61) on R
+∗ × R

∗. This inequality extends to R
+∗ × R by Lemma 6.3

and statement (i) of Lemma 6.4. The rest then follows from Lemma 6.2. �
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6.2. Existence of a φ-entropy solution with limits modulo h at x = 0. We now
prove existence of a φ-entropy solution satisfying Propositions 3.4 and 3.5, when
the initial datum ρ0 has locally bounded variation. To this end we construct the
φ-entropy solution as a limit by smoothing out the singularity at x = 0 as follows.
Let α(·) denote a smooth function strictly monotonous on either side of 0, with
minimum value α(0) = φ/h∗ and maximum value α(x) = 1 for |x| ≥ 1, and
αε(x) = α(x/ε). We consider the spatially heterogeneous conservation law

∂tρ + ∂x[αε(x)h(ρ)] = 0.(62)

Note that the maximum current at x = 0 is αε(0)h∗ = φ. We denote by ρε(t, x)

the unique entropy solution to (62) with initial datum ρ0(·).

REMARK ON SPATIALLY HETEROGENEOUS CONSERVATION LAWS. In Sec-
tion 3.1 we considered conservation laws without space dependence. Kružkov’s
theory also incorporates such dependence. In the case of (62), entropy inequalities
write

∂tϕ
(
ρε(t, x); c

) + ∂x

[
αε(x)ψ

(
ρε(t, x); c

)]
+ sgn

(
ρε(t, x) − c

)
∂xα

ε(x)h(c) ≤ 0
(63)

and the coupling entropy inequality (61) for two entropy solutions ρε , rε writes

∂tϕ(ρε; rε) + ∂x[αε(x)ψ(ρε; rε)] ≤ 0.(64)

Proposition 3.1 is still valid, and Proposition 3.2 holds with the same V in-
dependent of ε, as this is a uniform Lipschitz constant for αε(x)h(·).

We want to prove the following result:

PROPOSITION 6.2. (i) As ε → 0, ρε converges in C0(R+;L1
loc(R)) to a

φ-entropy solution ρ ∈ C0(R+;L1
loc(R)) of (5) with initial datum ρ0(·) and limits

ρ(t,0±) modulo h for every t > 0. (ii) Two solutions constructed in this way from
initial data ρ1

0 , ρ2
0 with locally bounded variation satisfy Proposition 3.5.

The proof of Proposition 6.2 relies on two lemmas. To begin with we must show
that the collection (ρε, ε > 0) is sequentially relatively compact in some sufficient
topology. We shall have to consider convergence in the sense of Young measures.
We recall that a sequence (ρn, n ∈ N) of Borel functions on R

+∗ × R is said to
converge to Young measure ν as n → ∞ iff

lim
n→∞

∫
F

(
t, x, ρn(t, x)

)
dt dx =

∫
F(t, x, ρ) dνt,x(ρ) dt dx(65)

for every smooth, compactly supported function F on R
+∗ × R × R. This more

generally implies (65) if F is compactly supported, and there is a total subset S
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of R
+∗ × R such that F is continuous at (t, x, ρ) for every (t, x) ∈ S and ρ ∈

[0;K]. If the ρn are uniformly bounded, convergence to a Young measure νt,x =
δρ(t,x) of Dirac form is equivalent to convergence to ρ locally in L1(R+∗ × R).
The following lemma relies on uniform estimates for time and space continuity
modulus; it will be proved in Appendix.

LEMMA 6.5. The collection (ρε, ε > 0) is sequentially relatively compact
w.r.t. convergence in the sense (65), and any limiting Young measure ν has a
representative with limits νt,x± = δρ(t,x±) modulo h for every t > 0 and x ∈ R,
where ρ(t, x±) are densities modulo h. Moreover, we have the uniform estimate∫

I
|ρε(t + δ;x) − ρε(t, x)|dx ≤ Cδ ∀ t ≥ 0, δ > 0, ε > 0(66)

for every bounded interval I ⊂ R, where the constant C depends only on I , h

and ρ0, and we set ρε(0, x) = ρ0(x).

Estimating (66) will be necessary to show a posteriori convergence in the
stronger topology of Proposition 6.2. The next lemma is conceptually crucial: we
show that the maximal critical shock profile arises as a limit of (62). Namely,

LEMMA 6.6. There exists a sequence of continuous functions rε(x) such that
rε is a stationary entropy solution to (62), and rε → Rρφ;ρφ

locally in L1(R)

as ε → 0.

PROOF. For λ ∈ [0;h∗], we define the following inverse functions for h:

r−(λ) = sup{ρ ∈ [0;K] :h(ρ) = λ},
r+(λ) = inf{ρ ∈ [0;K] :h(ρ) = λ},(67)

and define r(x) for x ∈ [−1; 1] by

r(x) = r+
(

φ

α(x)

)
if x > 0,

r(x) = r−
(

φ

α(x)

)
if x < 0.

(68)

By construction, r is a decreasing function with r(−1) = ρφ and r(1) = ρφ , which
we extend outside [−1; 1] by setting r(x) = ρφ (resp. ρφ) for x < −1 (resp. x > 1).
This way we have α(x)h(r(x)) = φ for every x ∈ R. Therefore, rε(x) = r(x/ε) is
a stationary weak solution of (62) converging to Rρφ;ρφ

locally in L1. The crucial
point is that our construction indeed provides a stationary entropy solution to (62).
This follows from the following property of r : at every point of discontinuity
x ∈ (−1; 1) of r , the density values r(x−) > r(x+) determine a horizontal chord
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entirely above the graph of h. This implies that all decreasing discontinuities in rε

are entropic. �
PROOF OF PROPOSITION 6.2. Let ν be some subsequential limiting Young

measure for ρε as ε → 0. By Lemma 6.5, ν has boundary limits modulo h

at x = 0. We shall prove that ν is a m.v. φ-entropy solution with initial datum ρ0(·).
Proposition 6.1 will then imply the following: (i) ν is of Dirac form: νt,x =
δρ(t,x), thus, proving existence of a φ-entropy solution ρ; (ii) ρ is independent
of the subsequence, and thus, the whole sequence ρε converges to ρ locally in
L1(R+∗ × R); the sharper local convergence in C0(R+;L1

loc(R)) then follows
from (66).

First, we check that ν satisfies (19) in m.v. sense. The following technical point
is left to the reader: because of (66), ρε converges to ν in a stronger sense than (65),
that is, without time integration,

lim
ε→0

∫
F

(
x,ρε(t, x)

)
dx =

∫
F(x,ρ) dνt,x(ρ) dx(69)

for every t > 0, if F is compactly supported, and there exists a total subset S of R

such that F is continuous at (x, ρ) for every x ∈ S and ρ ∈ [0;K]. Hence, we may
pass to the limit in (66) with t = 0 to obtain∫

I
|ρ − ρ0(x)|dνδ,x dx ≤ Cδ,

for every bounded interval I , which yields the desired result. Next, we establish
the φ-entropy conditions of Definition 3.3 for ν. As an entropy solution to (62),
ρε satisfies entropy inequality (63) in distribution sense on R

+∗ × R for every
c ∈ [0;K]. Because of convergence in the sense (65) and the fact that αε(x) = 1
for |x| ≥ ε, in the limit ε → 0 we get (18) in m.v. form for ν away from x = 0
(i.e., on R

+∗ × R
∗); this is easily seen taking test functions supported away

from x = 0. Next, we consider the sequence of entropy solutions rε(t, x) = rε(x)

to (62) constructed in Lemma 6.6. Since ρε and rε are entropy solutions for
the conservation law (62), they satisfy the coupling entropy inequality (64) in
distribution sense on R

+∗ × R. For the same reasons as above, combined with
convergence of rε to Rρφ;ρφ

, this implies the m.v. form of (25) for ν and r(x) =
Rρφ;ρφ

, which establishes the entropy condition. Finally, two solutions ρi obtained

in this way from initial data ρi
0, i ∈ {1; 2} satisfy Proposition 3.5. This follows from

Proposition 3.2 applied to the corresponding solutions ρi,ε of (62) and passing to
the limit. �

6.3. General existence and uniqueness. So far we have proved Theorem 2.1,
Propositions 3.4 and 3.5 in the particular case where ρ0(·) has locally bounded
variation. We now extend Theorem 2.1, Proposition 3.5 and statement (i) of
Proposition 3.4 to the case of bounded measurable ρ0(·). Existence of a
φ-entropy solution in the sense of Definition 3.3, with the properties of Propo-
sitions 3.4 and 3.5, follows from a simple approximation procedure:
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LEMMA 6.7. Assume ρ0(·) is any measurable [0;K]-valued initial datum.
Let (ρn

0 , n ∈ N) be a sequence of approximations with locally bounded variation,
converging to ρ0(·) locally in L1. Denote by ρn the corresponding φ-entropy solu-
tions from Proposition 6.2. Then, (i) as n → ∞, ρn converges in C0(R+;L1

loc(R))

to a φ-entropy solution ρ in the sense of Definition 3.3 with initial datum ρ0 and
(ii) solutions constructed in this way from two initial data ρ1

0 and ρ2
0 satisfy Propo-

sition 3.5.

PROOF. Statement (ii) of Proposition 6.2 implies that (ρn) is a Cauchy
sequence in C0(R+;L1

loc(R)) and, thus, converges to some ρ ∈ C0(R+;L1
loc(R)).

It is easy to see that Definition 3.3 is stable for such convergence; hence, ρ is
a φ-entropy solution with Cauchy datum ρ0; this establishes (i). For two initial data
ρ1

0 and ρ2
0 , we may apply statement (ii) of Proposition 6.2 to the corresponding

sequences ρ1,n and ρ2,n; passing to the limit, we obtain Proposition 3.5 for the
φ-entropy solutions ρ1 and ρ2, that is, statement (ii). �

It remains to prove that the solution constructed above is the unique one in
the sense of Definition 3.3. Compared to Proposition 6.1, the difficulty is that we
cannot assume existence of boundary limits. The key idea will be first to compare
a general φ-entropy solution with one that has boundary limits. This is done in the
following lemma.

LEMMA 6.8. Assume ρ1 is a φ-entropy solution in the sense of Definition 3.3
with Cauchy datum ρ1

0 , and ρ2 is the φ-entropy solution constructed in Section 6.2
with Cauchy datum ρ2

0 , where ρ2
0 has locally bounded variation. Then �(t) ≤ �(0)

for a.e. 0 < t < (y − x)/(2V ), where �(t) is defined as in (22).

This lemma implies that any φ-entropy solution in the sense of Definition 3.3 is
the limit of ρn

0 from Lemma 6.7, hence, establishing uniqueness. Before proving
Lemma 6.8, we need the following preliminary lemma, which yields additional
entropy inequalities for a φ-entropy solution.

LEMMA 6.9. A φ-entropy solution ρ in the sense of Definition 3.3 satis-
fies (25) on R

+∗ × R with every stationary profile r(t, x) = r(x) in Rr−;r+ , where
(r−; r+) is a φ-admissible pair modulo h.

PROOF.

CASE 1. Let us first assume that the pair (r−, r+) is entropic. Then r(t, x)

satifies the usual Kružkov inequalities (18) for every c ∈ [0;K]. On the other
hand r± are both admissible densities. Thus we may apply Lemma 6.1 with

 = R

+∗ × R, ν1
t,x = δρ(t,x), ν2

t,x = δr(x), C1 = [0;K], C2 the set of φ-admissible
densities.
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CASE 2. Assume (r−, r+) is not entropic, so it must be a critical shock
with ρφ ≤ r+ ≤ r− ≤ ρφ . For ε > 0, we define rε(t, x) = r(t, x)1(−ε,ε)(x) +
Rρφ,ρφ

(x)1(−ε,ε)c (x). Below we argue that ρ and rε satisfy (25). Then ε → 0 will

produce the same for ρ and r , because rε → r in L1 sense, which allows to pass
to the limit in the distributional inequality.

First, ρ and rε satisfy (25) on R
+∗ × (−ε, ε) by Definition 3.3. Let us show they

also do on R
+∗ ×R

∗ and we shall be done. To this end observe that compared to r ,
rε has two additional increasing discontinuities: the pairs (r−, ρφ) and (ρφ, r+).
Both are entropic, because the condition φ ≤ φ∗ implies that the chord joining
any two critical densities lies below the graph of h. Thus, by the same arguments
as in the proof of Lemma 3.1, rε satisfies (18) for all c outside x = 0, because
it is piecewise constant with entropic pairs. We may now apply Lemma 6.1 with

 = R

+∗ × R
∗, ν1

t,x = δρ(t,x), ν2
t,x = δrε(x), and C1 and C2 as in Case 1. �

PROOF OF LEMMA 6.8. For every s > 0, limits ρ2(s,0±) modulo h exist by
Proposition 6.2, and we consider the following: (i) A modulo h-Riemann profile
Rs(·) defined as follows: for z > 0 (resp. z < 0), Rs(z) is the projection of ρ2(s, z)

on the modulo h class ρ2(s,0+) [resp. ρ2(s,0−)]. (ii) A family (ρ2,ε(s, ·), ε > 0)

of density profiles with locally bounded variation, such that

lim
ε→0

ε−1
∫ y

x
|ρ2(s, z) − ρ2,ε(s, z)|dz = 0,

with x and y taken from definition of � in (22). (iii) A new Cauchy datum

ρ2,ε
s (0, ·) = 1(−2V ε;2V ε)Rs + 1(−2V ε;2V ε)cρ

2,ε(s, ·).(70)

Set E(s; ε) = ∫ y
x |ρ2(s, z) − ρ2,ε

s (0, z)|dz. We shall prove that, for every ε > 0,
there exists a total subset Tε of {(s, t) ∈ (0;+∞) × (0; ε) : s + t < (y − x)/(2V )}
such that

�(s + t) − �(s) ≤ 2E(s; ε) ∀ (s, t) ∈ Tε.(71)

By existence of limits modulo h, the contribution of (−2V ε; 2V ε) ∩ (x;y) to
E(s; ε) is o(ε) for every s, thus, E(s; ε) = o(ε) as ε → 0 for any fixed s.
Thus, (71) implies the derivative �′ in distribution sense is nonpositive: to see
this take a test function f on (0;+∞), set t = εu, integrate (71) against f (s)

over (s, u) ∈ (0;+∞) × (0; 1), and let ε → 0. Hence, there is a total subset T
of (0;+∞) on which �(·) is nonincreasing. Let t ∈ T ; since (19) holds for
ρ1 and ρ2, we can find a sequence tn → 0 as n → ∞, with tn ∈ T , such that
�(tn) → �(0); thus, �(t) ≤ �(0) for every t ∈ T . This completes the proof of
the lemma.

We now turn to the proof of (71). Denote by S ⊂ (0; (y − x)/(2V )) the set
(with total Lebesgue measure) of Lebesgue points of �. We take s ∈ S as the
new time origin and set ρi

s(t, ·) = ρi(s + t, ·) for i ∈ {1; 2}. Since ρ2,ε
s (0, ·) has

locally bounded variation, we may consider the φ-entropy solution ρ2,ε
s (t, ·) with
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initial datum ρ2,ε
s (0, ·), as constructed in Proposition 6.2. We write �(s + t) ≤

�′
ε(s; t) + �′′

ε (s; t), where

�′
ε(s; t) =

∫ y−V (s+t)

x+V (s+t)
|ρ1

s (t, z) − ρ2,ε
s (t, z)|dx,

�′′
ε (s; t) =

∫ y−V (s+t)

x+V (s+t)
|ρ2

s (t, z) − ρ2,ε
s (t, z)|dx.

Note that ρ2
s and ρ2,ε

s belong to C0(R+;L1
loc(R)) by Proposition 6.2, which

implies continuity of �′′. This and statement (iii) of Proposition 6.1 imply

�′′
ε (s; t) ≤ �′′

ε (s; 0) ≤ E(s; ε)(72)

for every t > 0. We cannot apply statement (iii) of Proposition 6.1 to ρ1
s and ρ2,ε

s

in �′
ε because ρ1 is not assumed to have boundary limits modulo h. Never-

theless, we can prove the coupling inequality (61) for ρ1
s and ρ2,ε

s as follows:
ρ2,ε

s (0, ·) coincides with Rs for |x| < 2V ε; Rs is a stationary φ-entropy solution
by Lemma 3.1. Since ρ2,ε

s (0, ·) and Rs are φ-entropy solutions with boundary lim-
its modulo h, by statement (iv) of Proposition 6.1, they coincide a.e. on the set
{t < 2ε, |x| < V (2ε − t)}. Thus, by Lemma 6.9, ρ1 and ρ2,ε

s satisfy (61) on the
domain {t < ε, |x| < V ε}. On the other hand, by Lemma 6.1 they also satisfy (61)
on R

+∗ × R
∗; thus, they finally do on (0; ε) × R. Lemma 6.1 then implies

δ−1
∫ t+δ

t
�′

ε(s;u)du ≤ δ−1
∫ δ

0
�′

ε(s;u)du

≤ δ−1
∫ s+δ

s
�(u) du + δ−1

∫ δ

0
�′′

ε (s;u)du

for every δ ∈ (0; ε). Define Ss,ε as the set (with total Lebesgue measure) of t ∈
(0; ε) that are Lebesgue points of �′

ε(s; ·), and Tε = {(s, t) ∈ S × (0; ε) : t ∈ Ss,ε}.
Since �′′

ε (s; ·) is continuous, letting δ → 0 produces

�′
ε(s; t) ≤ �(s) + �′′

ε (s; 0) ≤ �(s) + E(s; ε) ∀ (s, t) ∈ Ts,ε(73)

and (71) follows from (72) and (73). �

APPENDIX

Proof of Lemma 6.5. We shall need the following elementary lemma.

LEMMA A.1. Assume u ∈ L∞(R) and ∂xu ≤ v in distribution sense for some
measure v with locally finite variation. Then, TVI ≤ 2(‖u‖∞ +|v|(I )), where TVI

denotes total variation on interval I .
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PROOF. By assumption, v − ∂xu is a nonnegative distribution, and, thus,
a nonnegative, locally finite measure. Thus, ∂xu is a locally finite measure. We
have the unique decomposition ∂xu = (∂xu)+ − (∂xu)− with (∂xu)+ and (∂xu)−
nonnegative measures, and

|∂xu| = (∂xu)+ + (∂xu)− = 2(∂xu)+ − ∂xu ≤ 2|v| − ∂xu.

The result follows from integration of the above inequality. �

PROOF OF LEMMA 6.5. We start proving (66). By semigroup property,
ρε(δ + ·, ·) is the entropy solution to (62) with initial datum ρε(δ, ·). Hence, by
Proposition 3.2,∫

I
|ρε(t + δ, x) − ρε(t, x)|dx ≤

∫
IV t

|ρε(δ, x) − ρε(0, x)|dx,(74)

where IV t := {x ∈ R :d(x, I ) ≤ V t}. Since ρ0 has locally bounded variation and
ρ solves (62), we have the formal computation

lim
δ→0

δ−1
∫
IV t

|ρε(δ, x) − ρ(0, x)|dx =
∫
IV t

|∂tρ(0, x)|dx

=
∫
IV t

∣∣∂x[αε(x)h(ρ0(x))]∣∣dx,

which can be justified for the entropy solution by smooth approximation of the
initial datum because then the solution is locally strong at small times. (66) follows
because αε has total variation bounded by 2. Next, denoting by TVI total variation
on an interval I , we have the estimate

TVI

[
αε(·)ψ(

ρε(t; ·); c
)] ≤ C(75)

for every t > 0 and c ∈ [0;K], with again a uniform constant C that depends
only on I , h and ρ0. This follows from (63) for ρε and Lemma A.1 with
u(·) = ∂x[αε(·)ψ(ρε(t, ·); c)]; variation of the measure v can be controlled using
estimate (66) and the fact that total variation of αε is bounded by 2.

(ρε, ε > 0) is sequentially relatively compact in the sense (65) because ρε is
uniformly bounded, see [10]. Let ν be a subsequential limiting Young measure.
(66) implies the stronger convergence (69). Set uε

c = ψ(ρε; c). Since ψ is
uniformly Lipschitz continuous, (66) also holds with uε

c instead of ρε and another
uniform constant C independent of c and ε. By standard criteria (66) and (75)
imply relative compacity of (uε

c, ε > 0) in C0(R+;L1
loc(R)) for each c ∈ [0;K],

and that limits have locally bounded space variation at all times. Since c �→ uε
c(t, x)

is uniformy Lipschitz continuous, one may extract a further subsequence along
which uε

c converges to some uc simultaneously for all c. It is easy to see (we
leave this as a technical exercise for the reader) that this implies the following:
(i) existence of densities ρ(t, x±) modulo h such that uc(t, x

±) = ψ(ρ(t, x±); c)
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for every t > 0, x ∈ R and c ∈ [0;K], and (ii) there is a version of ν with limits
νt,x± = ρ(t, x±) modulo h for every t > 0 and x ∈ R. This follows from the
fact that a density ρ modulo h is entirely determined by the collection of values
(ψ(ρ; c), c ∈ [0;K]). �
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