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THE HEAT EQUATION AND REFLECTED BROWNIAN MOTION
IN TIME-DEPENDENT DOMAINS

BY KRZYSZTOF BURDZY,1 ZHEN-QING CHEN2 AND JOHN SYLVESTER3

University of Washington

The paper is concerned with reflecting Brownian motion (RBM) in do-
mains with deterministic moving boundaries, also known as “noncylindri-
cal domains,” and its connections with partial differential equations. Con-
struction is given for RBM in C3-smooth time-dependent domains in the
n-dimensional Euclidean space Rn. We present various sample path proper-
ties of the process, two-sided estimates for its transition density function, and
a probabilistic representation of solutions to some partial differential equa-
tions. Furthermore, the one-dimensional case is thoroughly studied, with the
assumptions on the smoothness of the boundary drastically relaxed.

1. Introduction. This is the first part of a two-paper series on the heat
equation and reflecting Brownian motion (RBM) in time-dependent domains.
The paper is concerned with RBM in domains with deterministic moving
boundaries, also known as “noncylindrical domains,” and its connections with
partial differential equations. A related paper, Burdzy, Chen and Sylvester (2004),
studies the existence and uniqueness of solutions to the heat equation in this
context from the analytic point of view. Some of the results of this paper,
for example, a Feynman–Kac type formula, are the basis for several effective
quantitative and qualitative arguments in the second paper in this series, Burdzy,
Chen and Sylvester (2003).

The analytic literature on the heat equation and related problems is enormous
and we would rather let the reader search the library than provide an exceedingly
imperfect review. Crank (1984) provides an excellent review of various problems
related to free and moving boundaries. Although one can see obvious general
similarities between our problem and the classical Stefan’s problem, it remains
to be seen if there exist any connections at the technical level. For an analytic
approach to the same model as in our paper, see Hofmann and Lewis (1996) and
Lewis and Murray (1995).
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Brownian motion in time-dependent domains belongs to “classical” subjects in
probability. The model appears in the context of a problem often referred to as
“boundary crossing.” The literature on the problem is huge; we suggest Anderson
and Pitt (1997) and Durbin (1992) as starting points. The boundary crossing
problem was mainly motivated by statistical questions but the estimates derived
in this area have been also applied to study Brownian path properties, see, for
example, Bass and Burdzy (1996) or Greenwood and Perkins (1983). In the context
of our article, this classical model may be described as a Brownian motion killed
on the boundary of a time-dependent domain. The corresponding analytic problem
may be called the heat equation in time-dependent domain with Dirichlet boundary
conditions.

Our article is devoted to Brownian motion reflected on rather than killed at the
boundary of a time-dependent domain. The analytic counterpart of the model is
a heat equation with Neumann rather than Dirichlet boundary conditions. We are
not aware of any article devoted to a systematic study of such a process but this
stochastic process appeared in literature in several unrelated contexts; see Bass and
Burdzy (1999), Cranston and Le Jan (1989), El Karoui and Karatzas (1991a, b),
Knight (1999) or Soucaliuc, Toth and Werner (2000).

There exists an extensive literature devoted to the relationship of Brownian
motion and the heat equation. We suggest four books as possible starting points:
Bass (1997), Doob (1984), Durrett (1984) and Port and Stone (1978). But, to the
authors’ best knowledge, the interplay between the RBM and the heat equation in
time-dependent domains has not been investigated before.

One of the strongest assertions about existence and uniqueness of RBM in a
smooth time-independent domain has the following form [Lions and Sznitman
(1984)]. Suppose Bt is a Brownian motion in Rn. For any bounded C2-smooth
domain D ⊂ Rn, there exists a unique solution Xt (RBM) to the following
Skorohod equation:

Xt = X0 + Bt +
∫ t

0
n(Xs) dLs, t ≥ 0,(1.1)

where n is the inward normal vector on the boundary ∂D and L is a continuous
nondecreasing process with L0 = 0, which increases only when Xt is on the
boundary ∂D, that is,

Lt =
∫ t

0
1{Xs∈∂D} dLs.(1.2)

Recently, strong existence and pathwise uniqueness have been established by Bass,
Burdzy and Chen (2002) for RBMs in bounded planar lip domains.

When the domain D in Rn is C3-smooth, there are a number of ways of
constructing a RBM in D—all these methods yield the same continuous strong
Markov process on D. RBM can be constructed using Dirichlet form methods
[Bass and Hsu (1990, 1991) and Fukushima (1967)]. It can be obtained by
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solving the deterministic Skorohod problem (1.1) and (1.2) or by solving the
corresponding stochastic differential equation [Costantini (1992), Dupuis and Ishii
(1993), Lions and Sznitman (1984), Saisho (1987) and Tanaka (1979)]. It can
also be constructed by solving a submartingale problem [Stroock and Varadhan
(1971)] or using an analytic method starting by solving the heat equation for the
transition density function for RBM [Hsu (1984) and Sato and Ueno (1965)]. See
the Introduction to Williams and Zheng (1990) for more information.

When the Dirichlet form method is applied, the smoothness assumption on
the boundary of D can be dramatically relaxed. One can construct RBM on an
arbitrary domain and effectively study its various properties [see Burdzy and Chen
(1998), Burdzy and Khoshnevisan (1998), Chen (1993, 1996), Chen, Fitzsimmons
and Williams (1993), Fukushima (1967), Fukushima and Tomisaki (1996) and
Williams and Zheng (1990)]. RBM constructed in this way is unique in the sense
of distribution. In some nonsmooth domains, RBM is a semimartingale [see Chen,
Fitzsimmons and Williams (1993), Fukushima (1999), Fukushima and Tomisaki
(1996) and Williams and Zheng (1990)]. This holds when, intuitively speaking,
the boundary of the domain has locally finite “surface area.” For such domains,
a generalized definition of the normal vector n for D can be given and one can
find a Brownian motion B such that a Skorohod decomposition similar to (1.1)
holds for the RBM X. All results mentioned in the last three paragraphs hold for
RBMs in time-independent domains. Motivated by a preliminary version of our
paper, Oshima (2001) recently constructed reflecting diffusions in certain time-
dependent domains by using the time-dependent Dirichlet form approach.

At the other extreme, parts of the theory of RBM and the corresponding heat
equation are known to hold only in domains with Lipschitz or Hölder continuous
boundaries [cf. Bass and Hsu (1991) and the references therein].

We would like to point out that in the one-dimensional case the strongest
existence results for RBM and solutions to the heat equation are obtained via the
deterministic Skorohod equation (see Section 3).

The remainder of the paper is organized as follows. In Section 2, we give the
construction of RBM in C3-smooth time-dependent domains in the n-dimensional
Euclidean space Rn and derive an upper bound estimate for its transition density
functions, also called the heat kernels. We prove the existence of boundary
local time for the RBM and derive its Skorohod decomposition. We then focus
on the probabilistic representation of solutions for the corresponding partial
differential equations. For this, exponential integrability of the boundary local time
is established. Several results will elucidate the relationship between “forward”
and “backward” equations and the time reversal transformation of the RBM. We
would like to point out Corollary 2.12, which contains Feynman–Kac formulas in
terms of RBMs in a space–time domain as well as in its time-reversed domain.
This formula is one of the main technical tools in Burdzy, Chen and Sylvester
(2003) to study the detailed properties of the heat equation solutions, including the
existence of heat atoms and singularities.
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Section 3 of this paper is devoted to the one-dimensional case. A deterministic
version of the Skorohod equation allows us to drastically relax the assumptions
on the smoothness of the boundary. Various properties concerning the heat kernels
or the marginal distributions of the RBM are studied using probabilistic means.
For example, it is shown for a one-dimensional time-dependent domain that, as
long as the boundary is continuous, the marginal distribution of the RBM in
the interior is absolutely continuous with respect to the Lebesgue measure and
its density function satisfies the heat equation. When the boundary of a one-
dimensional time-dependent domain is given by a continuous function g(t) whose
distributional derivative g′(t) is locally square integrable then transforming it into a
time-independent domain can result in a useful representation of the heat equation
solution—see Theorem 3.9 for a precise statement. This implies, in particular,
that under these assumptions the RBM has transition density functions up to the
boundary. It should be noted that if the local square integrability of g′(t) is not
satisfied, then the distribution of the RBM at the boundary point can be singular
with respect to the Lebesgue measure—this is one of the main topics of the second
paper in this series, Burdzy, Chen and Sylvester (2003).

2. Multidimensional RBMs in time-dependent domains. Let Ḋ be a subset
of R+ × Rn such that the projection of Ḋ onto the time axis is [0, T ) with
0 < T ≤ ∞, and that for each 0 ≤ t < T , D(t) = {x ∈ Rn : (t, x) ∈ D} is a bounded
connected open set in Rn. In this section we will assume that ∂Ḋ ∩ (0, T ) × Rn is
C3-smooth. Let n(t, x) be the unit inward normal of D(t) at a boundary point x.
Sometimes we will identify n(t, x) with a vector in R+ × Rn in an obvious way.
Let �γ be the unit inward normal vector field on ∂Ḋ.

THEOREM 2.1. Suppose that �γ ·n ≥ c0 on ∂Ḋ∩ (0, T )×Rn for some positive
constant c0 > 0. Suppose that B is a Brownian motion in Rn with B(0) = 0. Then

for each (s, x) ∈ Ḋ with s < T , there is a unique pair of continuous processes
(Xs,x,Ls,x) adapted to the minimal admissible filtration of B such that:

(i) (t,X
s,x
t ) ∈ Ḋ for t ∈ [s, T ) with Xs,x

s = x,
(ii) {Ls,x

t , t ∈ [s, T )} is a nondecreasing process with Ls,x
s = 0 such that

t → L
s,x
t increases only when the process (t,Xt ) is on the boundary of Ḋ, that

is, L
s,x
t = ∫ t

s 1∂Ḋ(r,Xr) dLs,x
r for s ≤ t < T ,

(iii) X
s,x
t = x + (Bt − Bs) + ∫ t

s n(r,Xs,x
r ) dLs,x

r for s ≤ t < T .

PROOF. Theorem 4.3 of Lions and Sznitman (1984) may be applied to con-
struct from the space–time Brownian motion (t,Bt ) a new process, a diffu-
sion Xs,x in Ḋ with oblique reflection vector field n. All assertions of Theorem 2.1
follow immediately from that result. �

Let P(s,x) denote the law of Xs,x induced on C[0,∞), the space of continuous
functions equipped with uniform topology on each compact time interval. Let
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X be the canonical map on C[0,∞). The uniqueness of Xs,x implies that X =
(X,P(s,x), (s, x) ∈ Ḋ) is a time-inhomogeneous strong Markov process. It is in
fact a continuous Feller process, as we will see in Theorem 2.5.

We will now prove the existence of the transition density for X and find some
estimates for it, using a parametric method from the theory of partial differential
equations [see, e.g., Itô (1957) or Hsu (1987)].

From now on we will work with the “half Laplacian” operator 1
2�, rather then

the standard Laplacian � because the standard Brownian motion is related to 1
2�.

One can pass from one normalization to the other by a trivial change of variable.

THEOREM 2.2. There exists a fundamental solution p(s, x; t, y), (s, x),

(t, y) ∈ Ḋ, s < t < T , for the following differential equation:

∂p

∂s
+ 1

2
�xp = 0, for (s, x) ∈ Ḋ with s < t ,

∂p

∂n
= 0, for (s, x) ∈ ∂Ḋ with s < t ,

lim
s↑t

p(s, x; t, y) dx = δ{y}(dx), for (t, y) ∈ Ḋ.

(2.1)

The function p(s, x; t, y) is continuous on Ḋ × Ḋ with s < t < T , continuously
differentiable in s ∈ (0, t) and of class C2(D(s))∩C1(D(s)) as a function of x. In
particular, p(s, x; t, y) solves equation (2.1) pointwise.

PROOF. We will use | · | to denote the Euclidean norm and d to denote the
Euclidean distance. Let �(s, x; t, y) be the fundamental solution for the heat equa-

tion ∂u
∂s

+ 1
2�xu = 0 in Rn; that is, �(s, x; t, y) = (2π(t − s))−n/2 exp(−|x−y|2

2(t−s)
).

For (s, x) ∈ Ḋ, let x0 ∈ ∂D(s) be such that |x − x0| = d(x, ∂D(s)) and let
x∗
s = 2x0 − x, the point symmetric to x with respect to x0. Note that since D(s) is

C3, x0 and x∗
s are uniquely determined by (s, x) and are C2-smooth in (s, x) pro-

vided (s, x) is sufficiently close to the boundary ∂Ḋ. For each fixed T0 < T , let
φ ∈ C∞

c (R+ × Rn) (the space of infinitely differentiable functions with compact
support) with 0 ≤ φ ≤ 1 and such that for s ≤ T0,

φ(s, x) =
{

1, if d
(
(s, x), ∂Ḋ

) ≤ ε0/2,

0, if d
(
(s, x), ∂Ḋ

) ≥ ε0,

where ε0 is a fixed small constant and d((s, x), ∂Ḋ) is the Euclidean distance
between (s, x) and the boundary of Ḋ in R+ × Rn. As a first approximation of p,
set

p0(s, x; t, y) = �(s, x; t, y) + φ(s, x)�(s, x∗
s ; t, y).
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This function satisfies the boundary and terminal conditions in (2.1). The idea of
the remaining part of the argument is to find a suitable function f (s, x; t, y) so that
if

p1(s, x; t, y) =
∫ t

s

(∫
D(r)

p0(s, x; r, z)f (r, z; t, y) dz

)
dr,

then

p(s, x; t, y) = p0(s, x; t, y) + p1(s, x; t, y), s < t ≤ T0,(2.2)

is the fundamental solution for (2.1). Note that p defined in (2.2) satisfies the
boundary and terminal condition in (2.1). We would like the function p defined
in (2.2) to satisfy the heat equation, that is,(

∂

∂s
+ 1

2
�x

)
p0 +

(
∂

∂s
+ 1

2
�x

)∫ t

s

(∫
D(r)

f (r, z; t, y)p0(s, x; r, z) dz

)
dr = 0.

This is equivalent to

f (s, x; t, y) =
(

∂

∂s
+ 1

2
�x

)
p0(s, x; t, y)

(2.3)
+

∫ t

s

(∫
D(r)

f (r, z; t, y)

(
∂

∂s
+ 1

2
�x

)
p0(s, x; t, y) dz

)
dr.

It remains to solve (2.3) for f . This is an integral equation of Volterra type, which
can be solved by the method of iteration. Let

f0(s, x; t, y) =
(

∂

∂s
+ 1

2
�x

)
p0(s, x; t, y),

fk(s, x; t, y) =
∫ t

s

(∫
D(r)

f0(s, x; r, z)fk−1(r, z; t, y) dz

)
dr, k ≥ 1,(2.4)

f (s, x; t, y) =
∞∑

k=0

fk(s, x; t, y).

We will show below that
∑∞

k=0 fk(s, x; t, y) is absolutely convergent and
solves (2.3).

Using induction, we can show that [cf. Hsu (1987), page 375] for each fixed
l < T , there are constants K1,K2 and C such that for all (s, x), (t, y) ∈ Ḋ

with s < t ≤ l,

|fk(s, x; t, y)| ≤ K1K
k
2�

(
k + 1

2

)−1

(t − s)(k−1−n)/2 exp
(
−c|x − y|2

(t − s)

)
,

(2.5)
k ≥ 1.



REFLECTING BROWNIAN MOTION IN TIME-DEPENDENT DOMAINS 781

Here �(λ) is the Gamma function defined by �(λ) = ∫ ∞
0 tλ−1e−t dt for λ > 0.

Thus, f (s, x; t, y) = ∑∞
k=0 fk(s, x; t, y) is well defined and continuous. It is easy

to deduce from (2.4) that it satisfies (2.3). �

For a fixed t < T , and a bounded continuous function φ on D(t), we see from
Theorem 2.2 that

u(s, x) =
∫
D(t)

p(s, x; t, y)φ(y) dy

is a solution of the following equation:

∂u

∂s
+ 1

2
�xu = 0, for (s, x) ∈ Ḋ with s < t ,

∂u

∂n
= 0, for (s, x) ∈ ∂Ḋ with s < t ,

lim
s↑t

u(s, x) = φ(x).

(2.6)

The following theorem is a special case of the uniqueness result in Friedman
[(1964), Theorem 15 in Chapter 2].

THEOREM 2.3. For fixed (t, x) ∈ Ḋ, the solution of the heat equation (2.6) is
unique.

THEOREM 2.4. The function p(s, x; t, y) in Theorem 2.2 has the following
properties:

(i) p(s, x; t, y) is strictly positive and C2-smooth on {(s, x, t, y) ∈ Ḋ×Ḋ : s <

t < T }.
(ii) For s < t < T , (s, x) ∈ Ḋ,∫

D(t)
p(s, x; t, y) dy = 1.

(iii) The Chapman–Kolmogorov equations hold then for any 0 ≤ s < r < t < T

and any (s, x), (t, y) ∈ Ḋ,

p(s, x; t, y) =
∫
D(r)

p(s, x; r, z)p(r, z; t, y) dz.

(iv) For each fixed 0 < l < T , there exist constants Kl > 0 and Cl < ∞ such
that

p(s, x; t, y) ≤ Cl(t − s)−n/2 exp
(−Kl|x − y|2

(t − s)

)
for s < t < l and (s, x), (t, y) ∈ Ḋ.
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(v) Let Ḋε = {(t, x) ∈ Ḋ :d(x, ∂D(t)) < ε}. For each fixed 0 < l < T , there
are constants εl > 0 and Cl > 0 such that for 0 < ε < εl , 0 < s < t ≤ l and

(s, x) ∈ Ḋ,

1

ε

∫
Ḋε

p(s, x; t, y) dy ≤ Cl/
√

t − s.

PROOF. (i) The positivity of p(s, x; t, y) is a consequence of a strong version
of the maximum principle [see Friedman (1964), Theorem 1 in Chapter 2] while
the C2 smoothness follows from (2.2) and (2.3). Assertions (ii) and (iii) follow
from Theorem 2.3. Claim (iv) follows from the estimate (2.5) and (2.2). Finally,
(v) follows from (iv). �

THEOREM 2.5. The function p(s, x; t, y) in Theorem 2.2 is the transition
density of the time-inhomogeneous RBM X on Ḋ defined in Theorem 2.1.
Therefore, X is a continuous Feller process and, hence, a strong Markov process.

PROOF. For any fixed t < T , and a bounded continuous function φ on D(t),
let

u(s, x) =
∫
D(t)

p(s, x; t, y)φ(y) dy.

The function u(s, x) is a C2-smooth solution to equation (2.6). For (s, x) ∈ Ḋ,
applying Itô’s formula to u(r,Xs,x

r ), we have

du(r,Xs,x
r ) = us(r,X

s,x
r ) dr + 1

2
�u(r,Xs,x

r ) dr

+ ∇u(r,Xs,x
r ) dBr + ∂u

∂n
(r,Xs,x

r ) dLs,x
r

= ∇u(r,Xs,x
r ) dBr.

Hence,

u(s, x) = E[u(t,X
s,x
t )] = E[φ(X

s,x
t )].

This shows that the distribution of X
s,x
t is absolutely continuous with respect

to the Lebesgue measure and its density function is p(s, x; t, y). From the
continuity of p, we see that for bounded measurable function φ on D(t), u(s, x) =
E[φ(X

s,x
t )] is a continuous function in Ḋ ∩ [0, t) × Rn. This means that X is a

Feller process. The Feller property together with the continuity of the sample paths
implies that X is a strong Markov process. Note that an alternative way of proving
the strong Markov property has been indicated in the proof of Theorem 2.1 and the
remark following it. �

For ε > 0, let Ḋε = {(s, x) ∈ Ḋ :d(x, ∂D(s)) < ε} and let σr denote the surface
area measure on ∂D(r).
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THEOREM 2.6. For (s, x) ∈ Ḋ and s < t < T ,

L
s,x
t = lim

ε↓0

1

2ε

∫ t

s
1Ḋε

(r,Xs,x
r ) dr,(2.7)

in L2 and a.s., uniformly on relatively compact sets of t . For each fixed 0 < l < T ,
there is a constant cl > 0 such that for (s, x) ∈ Ḋ and s < t ≤ l,

E[Ls,x
t ] = 1

2

∫ t

s

(∫
∂D(r)

p(s, x; r, z)σr(dz)

)
ds ≤ cl

√
t − s.(2.8)

PROOF. For each fixed small constant ε > 0, define ψε(δ) = (ε − δ)2/2
if 0 ≤ δ ≤ ε and 0 if δ > ε. Let

fε(s, x) = ψε

(
d
(
x,D(s)c

))
.

Since Ḋ is a C3-smooth domain, fε is twice differentiable with bounded second
derivative on {(t, x) ∈ Ḋ : t ≤ l} for each fixed l < T . Note that 0 ≤ fε ≤ ε2,
∂fε

∂s
≤ clε, |∇xfε| ≤ clε, ∇xfε(s, x) = −εn(s, x) for (s, x) ∈ ∂Ḋ, and �xfε =

(1 + O(ε))1Ḋε
. By Itô’s formula,

fε(t,X
s,x
t ) = fε(s, x) +

∫ t

s
∇fε(r,X

s,x
r ) dBr

+
∫ t

s

∂fε

∂n
(r,Xs,x

r ) dLs,x
r + 1

2

∫ t

s
�fε(r,X

s,x
r ) dr.

The second spatial derivative of the function fε is not continuous so the usual
Itô’s formula does not apply to fε . We will sketch a standard approximation
argument justifying the last formula. Let φ > 0 be a smooth function on Rn

with compact support and such that
∫

Rn φ(x) dx = 1. Let φn(x) = nφ(nx) and
fε,n(s, x) = ∫

fε(s, x − y)φn(y) dy. We can apply Itô’s formula to fε,n(t,X
s,x
t )

and then pass to the limit with n → ∞, using Theorem 2.4(iv).
Dividing both sides of the last formula by ε, we obtain

L
s,x
t − 1

2ε

∫ t

s
1Ḋε

(r,Xs,x
r ) dr

(2.9)
= 1

ε

∫ t

s
∇fε(r,X

s,x
r ) dBr + O(ε) + O(ε)

∫ t

s
1Ḋε

(r,Xs,x
r ) dr.

By Doob’s maximal inequality and Theorem 2.4(v),

E

[
sup

s≤t≤l

∣∣∣∣1

ε

∫ t

s
∇fε(r,X

s,x
r ) dBr

∣∣∣∣2
]

≤ 4

ε2
E

[∫ l

s
|∇fε(r,X

s,x
r )|2 dr

]
(2.10)
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≤ clE
[∫ l

s

∣∣1Ḋε
(r,Xs,x

r )
∣∣dr

]

= cl

∫ l

s

(∫
Ḋε

p(s, x; r, y) dy

)
dr

≤ Cε

∫ l

s
(r − s)−1/2 dr = Cε

√
l − s.

This and (2.9) imply that

lim
ε↓0

E
[

sup
s≤t≤l

∣∣∣∣∣Ls,x
t − 1

2ε

∫ t

s
1Ḋε

(r,Xs,x
r ) dr

∣∣∣∣2
]

= 0,

that is, (2.7) holds in L2-sense. From (2.10) and Chebyshev’s inequality we see
that

∞∑
k=1

P
(

sup
s≤t≤l

∣∣∣∣k4
∫ t

s
∇f1/k4(r,X

s,x
r ) dBr

∣∣∣∣ ≥ 1

k

)
≤ C

∞∑
k=1

1

k2 < ∞.

By the Borel–Cantelli lemma, with probability 1,

lim
k→∞ sup

s≤t≤l

k4
∣∣∣∣ ∫ t

s
∇f1/k4(r,X

s,x
r ) dBr

∣∣∣∣ = 0.

This implies that, a.s.,

lim
k→∞ sup

s≤t≤l

∣∣∣∣Ls,x
t − k4

2

∫ t

s
1Ḋ1/k4

(r,Xs,x
r ) dr

∣∣∣∣ = 0.(2.11)

For 0 < ε < 1, let kε ≥ 1 be the integer such that 1/k4
ε < ε ≤ 1/(kε − 1)4. Since

Ḋ1/k4
ε
⊂ Ḋε ⊂ Ḋ1/(kε−1)4 , we have

(kε − 1)4

2

∫ t

s
1Ḋ

1/k4
ε

(r,Xs,x
r ) dr ≤ 1

2ε

∫ t

s
1Ḋε

(r,Xs,x
r ) dr

≤ k4
ε

2

∫ t

s
1Ḋ1/(kε−1)4

(r,Xs,x
r ) dr.

This, together with (2.11), implies that, a.s.,

lim
ε↓0

sup
s≤t≤l

∣∣∣∣Ls,x
t − 1

2ε

∫ t

s
1Ḋε

(r,Xs,x
r ) dr

∣∣∣∣ = 0.

Inequality (2.8) follows from (2.7) and Theorem 2.4(v). �

The following result on exponential integrability of the local time is needed
for the probabilistic representation of solutions to the heat equation given in
Theorem 2.8.
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LEMMA 2.7. For each fixed α < ∞ and 0 < l < T ,

sup
(s,x)∈Ḋ

s<t≤l

E[exp(αL
s,x
t )] < ∞.

PROOF. It follows from Theorem 2.6 there is a δ > 0 such that

sup
(s,x)∈Ḋ, s<r≤l

|s−r |<δ

E[αLs,x
r ] < 1

2 ,

and therefore, by Khasminskii’s inequality [see, e.g., page 231 of Durrett (1984)],

sup
(s,x)∈Ḋ, s<r≤l

|s−r |<δ

E[exp(αLs,x
r )] ≤ 2.

Let k ≥ 1 be such that l/k < δ. Then by the Markov property of X and the
additivity of local time L, we have for any 0 ≤ s < t ≤ l and (s, x) ∈ Ḋ,

E[exp(αL
s,x
t )] ≤

(
sup

(s,x)∈Ḋ,s<r<l,|s−r |<δ

E[exp(αLs,x
r )]

)k

≤ 2k.
�

THEOREM 2.8. Fix some t > 0. Let f (s, x) be a bounded function defined on

∂Ḋ and φ be a continuous function on Ḋ(t). Suppose u(s, x) ∈ C2(Ḋ)∩C1(Ḋ) is
a C2-smooth solution for

∂u

∂s
+ 1

2
�xu = 0, for (s, x) ∈ Ḋ with s ≤ t ,

∂u

∂n
+ f (s, x)u = 0, for (s, x) ∈ ∂Ḋ with s < t ,

lim
s↑t

u(s, x) = φ(x).

(2.12)

Then for (s, x) ∈ Ḋ with s < t ,

u(s, x) = E
[

exp
(∫ t

s
f (r,Xs,x

r ) dLs,x
r

)
φ(X

s,x
t )

]
.(2.13)

Conversely, if f (s, x) is a bounded continuous function on ∂Ḋ, then the

function u(s, x) defined by (2.13) is continuous on Ḋ for s ≤ t , it is continuously
differentiable in s ∈ (0, t), it belongs to class C2(D(s)) ∩ C1(D(s)) as a function
of x, and it solves the equation (2.12).
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PROOF. Assume that u(s, x) solves (2.12). By Itô’s formula,

d

(
exp

(∫ r

s
f (v,Xs,x

v ) dLs,x
v

)
u(r,Xs,x

r )

)
= exp

(∫ r

s
f (v,Xs,x

v ) dLs,x
v

)
×

(
u(r,Xs,x

r )f (r,Xs,x
r ) dLs,x

r +
(

∂

∂r
+ 1

2
�x

)
u(r,Xs,x

r ) dr

+ ∇u(r,Xs,x
r ) dBr + ∂u

∂n
(r,Xs,x

r ) dLs,x
r

)
= exp

(∫ r

s
f (v,Xs,x

v ) dLs,x
v

)
∇u(r,Xs,x

r ) dBr.

Hence, {exp(
∫ r
s f (v,Xs,x

v ) dLs,x
v )u(r,Xs,x), s ≤ r ≤ t} is a local martingale. By

Lemma 2.7, it is, in fact, a martingale since u and f are bounded. This implies

u(s, x) = E
[

exp
(∫ t

s
f (r,Xs,x

r ) dLs,x
r

)
u(t,X

s,x
t )

]
= E

[
exp

(∫ t

s
f (v,Xs,x

r ) dLs,x
r

)
φ(X

s,x
t )

]
,

and, hence, proves (2.13).
Now suppose that f (s, x) is a bounded continuous function on ∂Ḋ and u is

a function defined by (2.13). Clearly, lims↑t u(s, x) = φ(x). We have

u(s, x) = E[φ(X
s,x
t )] + E

[(
exp

(∫ t

s
f (r,Xs,x

r ) dLs,x
r

)
− 1

)
φ(X

s,x
t )

]
= E[φ(X

s,x
t )]

− E
[∫ t

s
f (r,Xs,x

r ) exp
(∫ t

r
f (v,Xs,x

v ) dLs,x
v

)
φ(X

s,x
t ) dLs,x

r

]
(2.14)

= E[φ(X
s,x
t )] − E

[∫ t

s
f (r,Xs,x

r )u(r,Xs,x
r ) dLs,x

r

]
=

∫
Ḋ(t)

p(s, x; t, y)φ(y) dy

− 1
2

∫ t

s

(∫
∂D(r)

p(s, x; r, z)f (r, z)u(r, z)σr(dz)

)
dr.

From (2.14), we see that u ∈ C2(Ḋ)∩C1(Ḋ) for s < t . By Theorem 2.2, u satisfies
∂u
∂s

+ 1
2�xu = 0 in Ḋ. To show that u satisfies the boundary conditions in (2.12),

we adapt an approach from Hsu (1987), Proposition 3.2. Applying Itô’s formula,
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we have for s < r < t ,

u(r,Xs,x
r ) − u(s, x) =

∫ l

s
∇u(v,Xs,x

v ) dBv +
∫ l

s

∂u

∂n
(v,Xs,x

v ) dLs,x
v .(2.15)

On the other hand,

u(r,Xs,x
r ) = E

[
exp

(∫ t

r
f (v,Xr,X

s,x
r

v ) dLr,X
s,x
r

v

)
φ

(
X

r,X
s,x
r

t

)∣∣∣∣Fs,r

]
= exp

(
−

∫ r

s
f (v,Xs,x

v ) dLs,x
v

)
× E

[
exp

(∫ t

s
f (v,Xs,x

v ) dLs,x
v

)
φ(X

s,x
t )

∣∣∣∣Fs,r

]
,

where Fs,r is the σ -field generated by Xs,x
v for v ∈ [s, r]. Let

Mr = E
[

exp
(∫ t

s
f (v,Xs,x

v ) dLs,x
v

)
φ(X

s,x
t )

∣∣∣∣Fs,r

]
.

In view of Lemma 2.7, Mr is a martingale so by Itô’s formula,

u(r,Xs,x
r ) − u(s, x)

=
∫ r

s
exp

(
−

∫ θ

s
f (v,Xs,x

v ) dLs,x
v

)
dMθ

−
∫ r

s
f (θ,X

s,x
θ ) exp

(
−

∫ θ

s
f (v,Xs,x

v ) dLs,x
v

)
Mθ dL

s,x
θ(2.16)

=
∫ r

s
exp

(
−

∫ θ

s
f (v,Xs,x

v ) dLs,x
v

)
dMθ

−
∫ r

s
f (θ,X

s,x
θ )u(θ,X

s,x
θ ) dL

s,x
θ .

From (2.15) and (2.16), we see that the bounded variation process∫ r

s

(
∂u

∂n
(v,Xs,x

v ) + f (v,Xs,x
v )u(v,Xs,x

v )

)
dLs,x

v

is a continuous martingale and, therefore, it must be identically zero. Were
∂u
∂n �= −f u on ∂Ḋ, say ∂u

∂n(s, x) + f (s, x)u(s, x) > 0 for some (s, x) ∈ ∂Ḋ, there
would be a neighborhood U of (s, x) such that ∂u

∂n(s, x) + f (s, x)u(s, x) ≥ ε0 > 0
on U ∩ ∂Ḋ. Let τ = inf{r ≥ s : (r,Xs,x

r ) ∈ ∂Ḋ \ U }. Clearly, τ > 0 almost surely
and, therefore, there is t0 > 0 such that P s,x(τ > t0) > 0. Then on {τ > t0},

0 =
∫ t0

s

(
∂u

∂n
(v,Xs,x

v ) + f (v,Xs,x
v )u(v,Xs,x

v )

)
dLs,x

v ≥ ε0 dL
s,x
t0

.

This is impossible as (s, x) is a regular point of Ḋ for the space–time Brownian
motion because Ḋ is C3-smooth and, therefore, L

s,x
t0

> 0, P s,x-almost surely.
Therefore, ∂u

∂n = f u on ∂Ḋ. �
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REMARK. Uniqueness of C2-smooth solutions to (2.12) is a by-product of the
probabilistic representation (2.13).

The equation in (2.1) is the “backward partial differential equation” for the
transition density function p(s, x; t, y) of X, in variables s and x. Our next
result is concerned with p(s, x; t, y) as a function of t and y. If we view L =
∂
∂s

+ 1
2�x as an operator in Ḋ together with its zero Neumann boundary condition

given in (2.1), and we let L∗ be its formal adjoint operator in L2(Ḋ), then the
function (t, y) → p(s, x; t, y) is in the domain D(L∗) of L∗ and it satisfies the
differential equation L∗p = 0 [cf. Stroock and Varadhan (1979), pages 2 and 3].
The following result is an application of the divergence formula in Rn+1. Recall
that �γ = (γ1, γ2, . . . , γn+1) denotes the unit inward normal vector on the boundary
of Ḋ.

THEOREM 2.9. The function p(s, x; t, y) satisfies the following forward

differential equation in (t, y) for each fixed (s, x) ∈ Ḋ:

∂p

∂t
− 1

2
�yp = 0, for (t, y) ∈ Ḋ with s < t ,

∂p

∂n
− 2γ1

�γ · n
p = 0, for (t, y) ∈ ∂Ḋ with s < t ,

lim
t↓s

p(s, x; t, y) dy = δ{x}(dy), for (s, x) ∈ Ḋ.

(2.17)

PROOF. A function ψ belongs to D(L∗) ⊂ L2(Ḋ) if and only if there is
φ ∈ L2(Ḋ) such that ∫

Ḋ
ψLudt dx =

∫
Ḋ

φudt dx

for any u ∈ D(L), and in this case L∗ψ = φ. In view of the remarks about the
function (t, y) → p(s, x; t, y) preceding the theorem, it will suffice to show that
ψ ∈ D(L∗) if and only if L∗ψ = (− ∂

∂t
+ 1

2�)(ψ) and ∂p
∂n − 2γ1

�γ ·n
ψ = 0.

For any test function ψ ∈ C∞
c ((0, T ) × Rn) and u ∈ D(L),∫

Ḋ
ψ

(
∂

∂t
+ 1

2
�

)
udt dx

=
∫
Ḋ

(
∂(uψ)

∂t
− u

∂ψ

∂t

)
dt dx + 1

2

∫ T

0

(∫
Ḋ(t)

ψ�udx

)
dt

=
∫
Ḋ

(
∂(uψ)

∂t
− u

∂ψ

∂t

)
dt dx + 1

2

∫ T

0

(∫
Ḋ(t)

u�ψ dx

)
dt

+ 1

2

∫ T

0

(∫
∂Ḋ(t)

u
∂ψ

∂n
σt(dx)

)
dt
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=
∫
Ḋ

(
∂(uψ)

∂t
− u

∂ψ

∂t

)
dt dx + 1

2

∫ T

0

(∫
Ḋ(t)

u�ψ dx

)
dt

+ 1

2

∫ T

0

(∫
Ḋ(t)

divRn(−u∇ψ)dx

)
dt

=
∫
Ḋ

u

(
− ∂

∂t
+ 1

2
�

)
ψ dt dx +

∫
Ḋ

divRn+1

(
uψ,−1

2
u∇xψ

)
dt dx

=
∫
Ḋ

u

(
− ∂

∂t
+ 1

2
�

)
ψ dt dx +

∫
∂Ḋ

u �γ ·
(
−ψ,

1

2
∇xψ

)
dσ.

Therefore, ψ ∈ D(L∗) if and only if �γ · (−ψ, 1
2∇xψ) = 0 on ∂Ḋ and L∗ψ =

(− ∂
∂t

+ 1
2�)ψ . This is equivalent to L∗ψ = (− ∂

∂t
+ 1

2�)ψ and ∂p
∂n − 2γ1

�γ ·n
ψ = 0.

The proof is complete. �

REMARK. The differential equation (2.17) above is equivalent to the differ-
ential equation (2.25) in Burdzy, Chen and Sylvester (2004) by a straightforward
change of variable.

For fixed l < T , let D̃l = {(t, x) : (l − t, x) ∈ Ḋ}. For (t, x) ∈ D̃l , let Y t,x be the
RBM in D̃l constructed via Theorem 1, with Y

t,x
t = x and local time L̃t,x .

THEOREM 2.10. Let f (t, x) be a bounded function defined on ∂Ḋ and φ be

a continuous function on Ḋ(s). Suppose that v is a C2-smooth solution for


∂v

∂t
− 1

2
�v = 0, for (t, x) ∈ Ḋ with s < t < l,

∂v

∂n
+ f (t, x)v = 0, for (t, x) ∈ ∂Ḋ with s ≤ t ≤ l,

v(s, x) = φ(x).

(2.18)

Then for (t, x) ∈ Ḋ with s < t < l,

v(t, x) = E
[

exp
(∫ l−s

l−t
f (l − r, Y l−t,x

r ) dL̃l−t,x
r

)
φ(Y

l−t,x
l−s )

]
.(2.19)

Conversely, if f (t, x) is a bounded continuous function on ∂Ḋ, then the function

v(t, x) defined by (2.19) is continuous on Ḋ × Ḋ for s ≤ t < T , continuously
differentiable in t ∈ (s, T ), it belongs to class C2(D(t)) ∩ C1(D(t)) as a function
of x, and it solves equation (2.18).
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PROOF. Let u(t, x) = v(l − t, x). Then u solves

∂u

∂t
+ 1

2
�u = 0, for (t, x) ∈ D̃l with 0 < t < l − s,

∂u

∂n
+ f (l − t, x)u = 0, for (t, x) ∈ ∂D̃l with 0 < t < l − s,

lim
t↑l−s

u(t, x) = φ(x), for x ∈ Ḋ(s) = D̃l(l − s).

Hence, by Theorem 2.8,

v(l − t, x) = u(t, x) = E
[

exp
(∫ l−s

t
f (l − r, Y t,x

r ) dL̃t,x
r

)
φ(Y

t,x
l−s)

]
.

This proves the theorem. �

REMARK 2.11. Uniqueness of C2-smooth solutions to (2.18) is a by-product
of the probabilistic representation (2.19), just like uniqueness of solutions to (2.12)
follows from (2.13), as noted above.

We will use p̃ to denote the transition density function for process Y in D̃l and
use Ẽ(l−t,x)

(l−s,y) to denote the expectation under the law for the process Y conditioned

by {Y l−t,x
l−t = x} and {Y l−t,x

l−s = y}.

Letting f (s, x) = − 2γ1
�γ ·n

on ∂Ḋ, we obtain the following result from Theo-
rem 2.10.

COROLLARY 2.12. The function

u(t, x) = E
[

exp
(∫ l−s

l−t

−2γ1

�γ · n
(l − r, Y l−t,x

r ) dL̃l−t,x
r

)
φ(Y

l−t,x
l−s )

]
=

∫
Ḋ(s)

φ(y)p̃(l − t, x; l − s, y)

× Ẽ(l−t,x)
(l−s,y)

[
exp

(∫ l−s

l−t

−2γ1

�γ · n
(l − r, Y l−t,x

r ) dL̃l−t,x
r

)]
dy

solves 

∂u

∂t
− 1

2
�u = 0, for (t, y) ∈ Ḋ with s < t < l,

∂u

∂n
− 2γ1

�γ · n
u = 0, for (t, y) ∈ ∂Ḋ with s < t < l,

u(s, x) = φ(x).

(2.20)

By Theorem 2.9, the function u(t, x) solving (2.20) satisfies

u(t, x) =
∫
Ḋ(s)

p(s, y; t, x)φ(y) dy.



REFLECTING BROWNIAN MOTION IN TIME-DEPENDENT DOMAINS 791

Therefore,

p(s, y; t, x)

= p̃(l − t, x; l − s, y)Ẽ(l−t,x)
(l−s,y)

[
exp

(
−

∫ l−s

l−t

2γ1

�γ · n
(r, Y l−t,x

r ) dL̃l−t,x
r

)]
for 0 ≤ s < t < l. It follows that for s < t < l,

p(s, y; t, z)p(t, z; l, x)

p(s, y; l, x)

= p̃(s, y; t, z)p̃(t, z; l, x)

p̃(s, y; l, x)
(2.21)

× Ẽ(l−t,z)
(l−s,y)

[
exp

(
−

∫ l−s

l−t

2γ1

�γ · n
(r, Y l−t,z

r ) dL̃l−t,z
r

)]

× Ẽ(0,x)
(l−t,z)[exp(− ∫ l−t

0 2γ1/( �γ · n)(r, Y 0,x
r ) dL̃0,x

r )]
E(0,x)

(l−s,y)[exp(− ∫ l−s
0 2γ1/( �γ · n)(r, Y

0,x
r ) dL̃

0,x
r )] .

For 0 ≤ s < l < T , let P̂ 0,x
l−s,y denote the law of {Xs,y

l−v, v ∈ [0, l − s]} conditioned

by {Xs,y
l = x}, and let P̃0,x

l−s,y be the law of Y 0,x conditioned by {Y 0,x
l−s = y}.

THEOREM 2.13.

dP̂ 0,x
l−s,y

dP̃0,x
l−s,y

= exp(− ∫ l−s
0 2γ1/( �γ · n)(r, Y 0,x

r ) dL̃0,x
r )

E(0,x)
(l−s,y)[exp(− ∫ l−s

0 2γ1/( �γ · n)(r, Y
0,x
r ) dL̃

0,x
r )] .

PROOF. Clearly by (2.21), the above assertion is true on cylindrical sets.
A standard measure theoretical argument shows that Theorem 2.13 is true for
general measurable sets as well. �

3. One-dimensional RBM in a time-dependent domain. In the one-
dimensional case, the existence of a RBM in Ḋ can be proved under dramati-
cally relaxed assumptions on the smoothness of the boundary of Ḋ. We will show
that such a process can be constructed on any space–time domain lying between
the graphs of measurable functions. Almost all domains discussed in Burdzy, Chen
and Sylvester (2003) will have continuous boundaries. We need the existence re-
sult for domains with measurable boundaries mainly for technical reasons, but
some interesting theoretical questions arise in this context as well—we defer their
discussion to a separate article.

Recall the notation v+ = max{v,0} and v− = max{−v,0}.
The following lemma is a variation of the famous Skorohod decomposition.

The result is deterministic. Its proof is a modification of that of Lemma 3.6.14 in
Karatzas and Shreve (1994). Soucaliuc, Toth and Werner (2000) pointed out that
reflecting a continuous function on another continuous function is quite easy.
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LEMMA 3.1. Suppose that g is a locally bounded measurable function from
R+ to R. Let ĝ(t) = max(g(t), lim sups↓t g(s)). For every continuous function
b(t), t ≥ 0, there is a unique pair of functions (x(t), l(t)), t ≥ 0, such that:

(i) x(t)
df=b(t) + l(t) ≥ ĝ(t) for t ≥ 0,

(ii) l(t) is a nondecreasing right-continuous function with l(0) = (b(0) −
ĝ(0))−,

(iii) if x(t) > ĝ(t) for t ∈ [s1, s2], then l(s1) = l(s2) and
(iv) if l(t) has a jump at t = t1, that is, limt↑t1 l(t) < l(t1), then x(t1) = ĝ(t1).

Moreover,

l(t) = sup
0≤s≤t

(
b(s) − ĝ(s)

)−
.(3.1)

PROOF. We first prove uniqueness. Suppose that (x(t), l(t)) and (x̃(t), l̃(t))

have properties (i)–(iv) and that for some t∗ we have l(t∗) − l̃(t∗) > 0. By the
right-continuity of l and l̃, there exist t1 > t∗ and a > 0 such that l(t1) − l̃(t1) = a

and l(t) − l̃(t) > 0 for all t ∈ [t∗, t1]. Let t0 = inf{t ≤ t1 :x(s) > x̃(s) ∀ s ∈ [t, t1]}.
For every t ∈ (t0, t1] we have x(t) > x̃(t) ≥ ĝ(t) so (iii) implies that l(t) = l(t1).
This implies that, for t ∈ (t0, t1],

0 < a = x(t1) − x̃(t1) = l(t1) − l̃(t1) ≤ l(t) − l̃(t) = x(t) − x̃(t).(3.2)

Since b, l and l̃ are right-continuous, so are x and x̃ and so (3.2), in fact, holds for
all t ∈ [t0, t1]. In particular, x(t0) − x̃(t0) ≥ a > 0, which implies, in view of (ii),
that t0 > 0. The definition of t0 and the fact that x(t0) − x̃(t0) ≥ a > 0 require that
lim inft↑t0 x(t) − x̃(t) ≤ 0. Another consequence of (3.2) is that l(t0) − l̃(t0) ≥ a.
We obtain(

lim inf
t↑t0

l(t)

)
− (

l(t0) − a
) ≤

(
lim inf

t↑t0
l(t)

)
− l̃(t0) ≤ lim inf

t↑t0

(
l(t) − l̃(t)

)
= lim inf

t↑t0

(
x(t) − x̃(t)

) ≤ 0.

We see that limt↑t0 l(t) < l(t0) and so, according to (iv), x(t0) = ĝ(t0). However,
x̃(t0) ≤ x(t0) − a = ĝ(t0) − a. This implies that x̃(t) < ĝ(t) for some t , which is a
contradiction. The proof of uniqueness is complete.

We will finish the proof by showing that l(t) defined in (3.1), together
with x(t) = b(t)+ l(t), satisfy (i)–(iv). Property (i) is evident and so is the fact that
l(t) is nondecreasing. It is easy to see that ĝ(t) ≥ lim sups↓t ĝ(s). Right-continuity
of l(t) easily follows from this observation.

To prove (iv), note that by the continuity of b(t) and right-continuity of l(t),
x(t) is right-continuous and so limt↓t1 x(t) exists and is equal to x(t1). Let

t∗ = sup
{
s : sup

0≤r≤s

(
b(s) − ĝ(s)

)− = 0
}
.
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Then (x(t), l(t)) = (b(t),0) is the unique solution to the Skorohod problem
on [0, t∗) and so l(t) has no jumps on this interval. Suppose now that t1 ≥ t∗ is
a jump time for l. Let b(t1) = c. Then l(t1) = −c + ĝ(t1) because of continuity of
b(t) and the fact that l(t) has a jump at t = t1. We conclude that

x(t1) = b(t1) + l(t1) = c − c + ĝ(t) = ĝ(t),

which proves (iv).
It remains to prove (iii). Suppose that x(t) > ĝ(t) for t ∈ [s1, s2]. Then l(t) >

ĝ(t) − b(t) on the same interval. Since

l(s2) = max
{

sup
0≤s≤s1

(
b(s) − ĝ(s)

)−
, sup
s1≤s≤s2

(
b(s) − ĝ(s)

)−}
,

we must have l(s2) = l(s1). �

REMARKS 3.2. (i) If the function g(t) is continuous then ĝ(t) = g(t). Then
formula (3.1) shows that l(t) and, consequently, x(t) are continuous.

(ii) If g1(t) and g2(t) are locally bounded measurable and there exist contin-
uous functions g3(t) and g4(t), such that g1(t) < g3(t) < g4(t) < g2(t), then for
any continuous function b(t) one can construct a function x(t) which satisfies
g1(t) ≤ x(t) ≤ g2(t) and is a sum of b(t) and a “local time” l(t) which does not
change when g1(t) < x(t) < g2(t). The proof of this generalization of Lemma 3.1
is somewhat tedious but completely elementary. See Burdzy and Toby (1995) for
a similar version of the Skorohod lemma.

The first two of the following results follow immediately from formula (3.1).

COROLLARY 3.3. In the setting of Lemma 3.1, consider the Skorohod
problem for a fixed function b(t), relative to two different measurable functions
g1(t) and g2(t). Let (x1(t), l1(t)) and (x2(t), l2(t)) denote the corresponding
solutions of the Skorohod problem. If g1(t) ≤ g2(t) for all t , then x1(t) ≤ x2(t)

for all t . If |g1(t) − g2(t)| ≤ ε for all t , then |x1(t) − x2(t)| ≤ ε for all t .

COROLLARY 3.4. Suppose that we have a family of continuous func-
tions gα(t), where α is an index in some metric space and assume that the mapping
α → gα(·) is continuous in the uniform topology. Let (xα(t), lα(t)) denote solu-
tions of the Skorohod problem for a fixed b(t) (same for all α), relative to gα(t).
Then the mapping α → xα(t) is continuous in the uniform topology.

COROLLARY 3.5. Suppose that we have a family of measurable functions
ga(t), a ∈ R. Assume that a → ga(t) is nondecreasing for each t . Let (xa(t), la(t))

denote solutions of the Skorohod problem for a fixed b(t) (same for all a), relative
to ga(t). If lima↑a0 ga(t) = ga0(t) for every t , then lima↑a0 xa(t) = xa0(t).



794 K. BURDZY, Z.-Q. CHEN AND J. SYLVESTER

PROOF. It is not hard to verify the convergence in (3.1). We note, however, that
it is not necessarily true that lima↓a0 ga(t) = ga0(t) implies lima↓a0 xa(t) = xa0(t).

�

Fix for a moment s ≥ 0 and let B be a one-dimensional Brownian motion
starting from 0 at time s, that is, Bs = 0. Suppose that g(t), t ≥ s, is a measurable
function and let Ḋ = {(t, x) : t ≥ s, x > g(t)}. For any x ≥ g(s), let (Xs,x,Ls,x)

be the solution of the Skorohod problem defined in Lemma 3.1(i), with b(t) =
x + B(t). If g(t) is C3-smooth, then clearly Xs,x is the RBM in Ḋ in the sense of
Theorem 2.1.

We will use Px to denote the probability law on the canonical sample space
C([0,∞),R) induced by X0,x . The σ -field generated by ω(r) for 0 ≤ r ≤ t will
be denoted by Ft .

Let Y be the RBM on [0,∞) with Y0 = y ≥ 0, defined on the canonical sample
space C([0,∞),R). Then Yt can be represented as

Yt = y + Wt + Lt, t ≥ 0,

where W is a Brownian motion on R with W0 = 0 and Lt is the local time of Yt

at 0, satisfying Lt = ∫ t
0 1{Yr=0} dLr . Set Zt = Yt + g(t), t ≥ 0. Then the process

(t,Zt ) takes values in Ḋ and satisfies

Zt = z + (
Wt + g(t) − g(0)

) + Lt, t ≥ 0,

and

Lt = lim
ε↓0

1

2ε

∫ t

0
1{|Zs−g(s)|<ε} ds,

where z = y + g(0). Note that

Lt =
∫ t

0
1{Zr=g(r)} dLr.

Denote the distribution of Z by P̃x .

THEOREM 3.6. The measure Px is absolutely continuous with respect to P̃x

on Fl if and only if g ∈ H1[0, l] [that is,
∫ l

0 |g′(t)|2dt < ∞)]. If g ∈ H1[0, l], then

dPx

dP̃x
= exp

(
−

∫ l

0
g′(t) dWt − 1

2

∫ l

0
|g′(t)|2 dt

)
on Fl .(3.3)

PROOF. The “if ” part and (3.3) follow from Lemma 3.1 and Girsanov’s
theorem. For the “only if ” part, let Ml = dPx

dP̃x
|Fl

, and Mt = E(Ml | Ft ) for

0 ≤ t ≤ l. Then Mt is a continuous martingale. Define Nt = ∫ t
0 M−1

s 1{Ms>0} dMs .
Clearly, (Nt ,0 ≤ t ≤ l) is a continuous local martingale with respect to the
filtration {Ft}0≤t≤l . By the martingale representation theorem [cf. Theorem 3.4.2
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of Karatzas and Shreve (1994)], there exists an adapted process Hs with∫ l
0 H 2

s ds < ∞ a.s., such that Nt = ∫ t
0 Hs dWs . According to the Girsanov

transform, under the measure dPx = Ml dP̃x on Fl , the process

W̃t = Wt −
∫ t

0
Hs ds, 0 ≤ t ≤ l,

is a Brownian motion and Z can be rewritten as

Zt = x + W̃t +
∫ t

0

(
Hs + g′(s)

)
ds + Lt, 0 ≤ t ≤ l.

Since under Px , Zt is a RBM in Ḋ, by the uniqueness of the Skorohod
decomposition,

∫ t
0 (Hs + g′(s)) ds + Lt must be the boundary local time of Z

and, hence, Hs + g′(s) = 0 for a.e. 0 ≤ s ≤ l. This implies that g′ ∈ L2[0, l] and,
therefore, g ∈ H1[0, l]. �

The following result gives the exponential integrability of the boundary local
time for RBM, which will be used to give a probabilistic representation for
solutions of the corresponding heat equation.

LEMMA 3.7. Suppose that the domains Ḋk = {(s, x) : s ≥ 0, x > gk(s)} have
smooth boundaries, the functions gk(t) converge to g(t) uniformly on compact
subsets of positive half-line and Ḋ = {(s, x) : s ≥ 0, x > g(s)}. Let Xs,x,k’s be
the RBMs in Ḋk’s driven by a common Brownian motion B , as in Lemma 3.1.
Then, a.s., Xs,x,k’s converge uniformly to the RBM Xs,x in Ḋ, driven by the same
Brownian motion B .

PROOF. The result follows from the second assertion of Corollary 3.3. �

Now we show that RBM in Ḋ = {(s, x) : s ≥ 0, x > g(s)}, where g is a
continuous function, always has transition density function in the interior of the
domain.

THEOREM 3.8. Suppose that g(s) is a continuous function and let Ḋ =
{(s, x) : s ≥ 0, x > g(s)}. For all t > s ≥ 0 and x ≥ g(s), there is a positive
function p(s, x; t, y) such that

P(X
s,x
t ∈ A) =

∫
A

p(s, x; t, y) dy,

for all Borel subsets A of the interior of D(t). The function p(s, x; t, y) is (locally)
Hölder continuous on Ḋ × Ḋ. Moreover, p(s, x; t, y) satisfies

∂p

∂s
+ 1

2
�xp = 0,
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for (s, x) ∈ Ḋ with s < t , and

∂p

∂t
− 1

2
�yp = 0,

for (t, y) ∈ Ḋ with s < t .

PROOF. For each fixed l > t , there is a sequence of smooth functions {gk}k≥1
on [0, l] such that limk→∞ sup0≤r≤l |gk(r)−g(r)| = 0. Define Ḋk = {(r, z) : r ≥ 0,
z > gk(r)} and denote the RBM in Ḋk by Xk , and its transition density function
by pk(s, x; t, y). For (t, y) ∈ Ḋ with s < t < l, there is a constant 0 < ε <

min{l − t, t − s}/4 such that [t − 3ε, t + 3ε] × [y − 3ε, y + 3ε] ⊂ Ḋ. Without loss
of generality, we may assume that [t −3ε, t +3ε]×[y −3ε, y +3ε] ⊂ Ḋk for every
k ≥ 1. By Moser’s Harnack inequality [see Theorem 2 of Moser (1964)], there is a
constant c1 = c1(n, ε) > such that

log
pk(s, x; t1, y1)

pk(s, x; t2, y2)
≤ c

( |y1 − y2|2
t2 − t1

+ t2 − t1

ε2 + 1
)

for t − 2ε ≤ t1 < t2 ≤ t + 2ε, y1, y2 ∈ [y − 2ε, y + 2ε] and k ≥ 1. Therefore, there
is a constant c2 = c2(ε) > 0 such that

pk(s, x; t1, y1) ≤ c2pk(s, x; t + 2ε, y2)

for t1 ∈ [t − ε, t + ε], y1, y2 ∈ [y − 2ε, y + 2ε] and k ≥ 1. Thus,

pk(s, x; t1, y1) ≤ c2

4ε

∫
[y−2ε,y+2ε]

pk(s, x; t + 2ε, y2) dy2 ≤ c2

4ε

for (t1, y1) ∈ [t − ε, t + ε] × [y − 2ε, y + 2ε] and k ≥ 1. Now by Nash’s Hölder
continuity result for solutions to heat equation [see (2.4) of Moser (1964)], there
are constants 0 < α < 1 and c > 0 that depend only on n and ε such that

|pk(s, x; t1, y1) − pk(s, x; t2, y2)| ≤ c
(|y1 − y2|α + |t1 − t2|α/2)

for k ≥ 1 and (ti , yi) ∈ [t − ε/2, t + ε/2] × [y − ε, y + ε] with i = 1,2. So there
is a subsequence of pk(s, x; r, z) that converges to some function p(s, x; r, z)

uniformly in (r, z) ∈ [t − ε/2, t + ε/2] × [y − ε, y + ε]. Clearly, p(s, x; r, z) is
Hölder continuous in (r, z) on [t −ε/2, t +ε/2]×[y −ε, y +ε] and by Lemma 3.7,

P(X
s,x
t ∈ A) =

∫
A

p(s, x; t, y) dy for A ∈ B
(
(y − ε, y + ε)

)
.

Since y is an arbitrary point in Ḋ(t), it follows that p(s, x; t, y) is the density
function for X

s,x
t inside Ḋ(t). Nash’s inequality again implies that p(s, x; t, y)

is locally Hölder continuous in (s, x) ∈ Ḋ so p is locally Hölder continuous
in Ḋ × Ḋ.

The function p(s, x; t, y) satisfies the forward and backward heat equations
because the functions pk(s, x; t, y) do and they converge to p(s, x; t, y) uniformly
on balls in Ḋ. �
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When the boundary of the domain is sufficiently smooth, transforming it into a
time-independent domain can result in a useful representation of the heat equation
solution. A similar general idea underlies the arguments in Burdzy, Chen and
Sylvester (2003), but the following result is completely different at the technical
level. The representation (3.4) is somewhat similar to that in Corollary 2.12 but
the crucial difference is that the local time in (3.4) corresponds to the RBM
on a half-line. The distribution of this process is well known—we use it as an
essential ingredient of the proof of Theorem 3.9. The smoothness assumptions
on the boundary of the domain are significantly weaker in Theorem 3.9 than in
Corollary 2.12.

THEOREM 3.9. Suppose that g is a continuous function on R+ and that
Ḋ = {(t, y) : t ≥ 0, y < g(t)}. Let X be the RBM in Ḋ with initial distribution
X0 being the Lebesgue measure on (−∞, g(0)). Let Bt be the standard Brownian
motion and Yt = Y0 +Bt −Lt be the RBM on (−∞,0], with Lt the local time of Y

at 0. Let Px denote the law of Y with Y0 = x. Assume that
∫ 1

0 |g′(s)|2 ds < ∞ and
let

Nt = exp
(∫ t

0
g′(t − s) dBs − 1

2

∫ t

0
|g′(t − s)|2 ds − 2

∫ t

0
g′(t − s) dLs

)
,

(3.4)
0 ≤ t ≤ 1.

Then for each t ∈ [0,1], Ex[Nt ] is bounded on compact intervals of (−∞,0)

and the distribution of Xt is absolutely continuous with respect to the Lebesgue
measure on (−∞, g(t)] with density function u given by u(t, g(t) + x) = Ex[Nt ].

PROOF. The absolute continuity of the distribution of Xt is a consequence of
Theorem 3.6.

Step 1. We first assume that g is C3-smooth. By Theorem 2.9, the density u(t, x)

for the distribution of Xt is a C2-smooth function and satisfies the following heat
equation: 

ut = 1
2uxx, for (t, x) ∈ Ḋ,

ux + 2g′(t)u = 0, for (t, x) ∈ ∂Ḋ,

u(0, x) = 1, for x ≤ g(0).

Let v(t, x) = u(t, g(t) + x) for t ≥ 0 and x ≤ 0. Clearly, vx = ux and vt =
ut + g′(t)ux and so v satisfies the partial differential equation

vt = 1
2vxx + g′(t)vx , for x > 0,

vx + 2g′(t)v = 0, for x = 0,

v(0, x) = 1, for x ≤ 0.

(3.5)

Fix some T ∈ (0, 1] and for t ∈ [0, T ] let

Mt = exp
(∫ t

0
g′(T − s) dBs − 1

2

∫ t

0
|g′(T − s)|2 ds − 2

∫ t

0
g′(T − s) dLs

)
.
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Note that MT = NT . By Itô’s formula, using (3.5),

d
(
v(T − t, Yt )Mt

)
= Mt

(−vt (T − t, Yt ) dt + vx(T − t, Yt ) dBt

− vx(T − t, Yt ) dLt + 1
2vxx(T − t, Yt ) dt

)
+ v(T − t, Yt )Mt

(
g′(T − t) dBt − 1

2 |g′(T − t)|2 dt

− 2g′(T − t) dLt + 1
2 |g′(T − t)|2 dt

)
+ vx(T − t, Yt )Mtg

′(T − t) dt

= Mt

(
vx(T − t, Yt ) + v(T − t, Yt )g

′(T − t)
)
dBt .

This shows that t → v(T − t, Yt )Mt is a local martingale for t ∈ [0, T ]. We
will prove that this process is, in fact, a martingale. It will suffice to show that
E(v(T − t, Yt )Mt)

2 < ∞ for t ∈ [0, T ]. We first note that v(t, x) is bounded
on Ḋ ∩ [0, T ] × Rn in view of Theorem 2.4(iv). It remains to estimate EN2

t . In
view of the boundedness of the first three derivatives of g, the process

t → exp
(∫ t

0
4g′(T − s) dBs − 1

2

∫ t

0
|4g′(T − s)|2 ds

)
is a martingale so its expectation is equal to 1 for every t . We obtain for
any t ∈ [0, T ],

Ex[M2
t ]

= exp
(
−

∫ t

0
|g′(T − s)|2 ds

)

× Ex

[
exp

(
2

∫ t

0
g′(T − s) dBs − 4

∫ t

0
g′(T − s) dLs

)]

= exp
(

2
∫ t

0
|g′(T − s)|2 ds

)
× Ex

[
exp

(
2

∫ t

0
g′(T − s) dBs

− 2
√

2
∫ t

0
|g′(T − s)|2 ds − 4

∫ t

0
g′(T − s) dLs

)]

≤ exp
(

2
∫ t

0
|g′(T − s)|2 ds

)(
Ex

[
exp

(
−8

∫ t

0
g′(T − s) dLs

)])1/2

×
(

Ex

[
exp

(∫ t

0
4g′(T − s) dBs − 1

2

∫ t

0
|4g′(T − s)|2 ds

)])1/2

(3.6)
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≤ exp
(

2
∫ T

0
|g′(s)|2 ds

)(
Ex

[
exp

(
8‖g′‖L∞[0,T ]Lt

)])1/2

≤ c,

for some positive constant c < ∞ independent of x < 0. The first factor in
the second to last line is bounded because g′ is bounded on [0, T ], while the
second one is bounded due to Lemma 2.7. This shows that ExM

2
t < ∞ and, thus,

completes the proof of the fact that t → v(T − t, Yt )Mt is a martingale. Thus,

v(T , x) = Ex[v(T − 0, x)M0] = Ex[v(T − T,x)MT ] = Ex[NT ],
and the theorem follows for C3-smooth g.

Step 2. For the general case, let gn be a sequence of smooth functions with
gn(0) = g(0) such that g′

n converge to g′ in L2[0,1]. Then gn converge to g

uniformly on [0,1]. We will prove the theorem only for t = 1 as the argument
is analogous for t < 1. Let Xn be the RBM in the domain Ḋn = {(t, x) : t ≥ 0, x <

gn(t)} with the density of the initial distribution equal to 1 on (−∞, gn(0)] and
let un(t, x) be the density of the distribution of Xn

t . Let Nn be defined by (3.4)
with gn in place of g. If we let vn(t, x) = un(t, g(t) + x), we have from Step 1,
vn(1, x) = Ex[Nn

1 ] for x < 0. Note that

Ex|N1 − Nn
1 |

= Ex

[
Nn

1

∣∣∣∣ exp
(

1
2

∫ 1

0

(|g′
n(s)|2 − |g′(s)|2)

ds

)

× exp
(∫ 1

0
(g′ − g′

n)(1 − s) dBs

− 2
∫ 1

0
(g′ − g′

n)(1 − s) dLs

)
− 1

∣∣∣∣](3.7)

≤ (
Ex[(Nn

1 )2])1/2
(

Ex

(
exp

(
1
2

∫ 1

0

(|g′
n(s)|2 − |g′(s)|2)

ds

)

× exp
(∫ 1

0
(g′ − g′

n)(1 − s) dBs

− 2
∫ 1

0
(g′ − g′

n)(1 − s) dLs

)
− 1

)2
)1/2

.

We now estimate the second factor on the right-hand side of (3.7). First of all, for
k > 0,

exp
(
k

∫ 1

0

(|g′(s)|2 − |g′
n(s)|2

)
ds

)
→ 1

because g′
n → g′ in L2.
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Recall that for a fixed s > 0, the density of the distribution of Ls is equal to
2√
2π

s−1/2e−a2/(2s) [see, e.g., page 211 in Karatzas and Shreve (1994)]. Hence, for
any a < 0,

lim
n→∞ sup

x≤a
Ex

[∫ 1

0
|(g′

n − g′)(1 − s)|dLs

]
(3.8)

= lim
n→∞

2√
2π

∫ 1

0
|(g′

n − g′)(1 − s)|s−1/2e−a2/(2s) ds = 0

and, therefore, by Khasminskii’s inequality,

lim
n→∞ sup

x≤a
Ex exp

(
k

∫ 1

0
|(g′

n − g′)(1 − s)|dLs

)
= 1.(3.9)

Since

t → exp
(∫ t

0
k(g′

n − g′)(1 − s) dBs − 1
2

∫ t

0
|k(g′

n − g′)(1 − s)|2 ds

)
is a martingale, the expectation of its value at t = 1 is the same as at t = 0, that is,
it is equal to 1. We use this observation in the following computation:

Ex

[
exp

(∫ 1

0
4(g′ − g′

n)(1 − s) dBs

)]

= exp
(∫ 1

0
8|g′ − g′

n|2(s) ds

)
(3.10)

× Ex exp
(∫ 1

0
4(g′ − g′

n)(1 − s) dBs − 1
2

∫ 1

0
|4(g′ − g′

n)(1 − s)|2 ds

)

= exp
(∫ 1

0
8|g′ − g′

n|2(s) ds

)
.

The last expression converges to 1, so using (3.9),

lim
n→∞ sup

x≤a
Ex

[
exp

(∫ 1

0
2(g′ − g′

n)(1 − s) dBs − 4
∫ 1

0
(g′ − g′

n)(1 − s) dLs

)]

≤ lim
n→∞ sup

x≤a

(
Ex

[
exp

(∫ 1

0
4(g′ − g′

n)(1 − s) dBs

)]

× Ex

[
exp

(
8

∫ 1

0
|(g′ − g′

n)(1 − s)|dLs

)])1/2

≤ 1.

On the other hand, by Jensen’s inequality and (3.8),

lim
n→∞ inf

x≤a
Ex

[
exp

(∫ 1

0
(g′ − g′

n)(1 − s) dBs − 2
∫ 1

0
(g′ − g′

n)(1 − s) dLs

)]

≥ exp
(
−2 sup

x≤a
Ex

[∫ 1

0
|(g′ − g′

n)(1 − s)|dLs

])
= 1.
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This, together with (3.9) and (3.10), shows that

lim
n→∞ sup

x≤a

(
Ex

(
exp

(
1
2

∫ 1

0

(|g′(s)|2 − |g′
n(s)|2

)
ds

)

× exp
(∫ 1

0
(g′ − g′

n)(1 − s) dBs(3.11)

− 2
∫ 1

0
(g′ − g′

n)(1 − s) dLs

)
− 1

)2
)1/2

= 0.

Since gn is C3-smooth, we see from (3.6) with T = t = 1 that Ex[(Nn
1 )2] is

bounded. Hence, Ex[|N1 − Nn
1 |] is locally bounded on (−∞,0). Therefore, N1 is

Px -integrable and v(1, x) = Ex[N1] is locally bounded on (−∞,0). A similar
argument as above shows that Ex[(N1)

2] is locally bounded on (−∞,0). Note
that

|v(1, x) − vn(1, x)|
= |Ex[N1 − Nn

1 ]|

≤ Ex

[
N1

∣∣∣∣1 − exp
(

1
2

∫ 1

0

(|g′(s)|2 − |g′
n(s)|2

)
ds

)

× exp
(∫ 1

0
(g′

n − g′)(1 − s) dBs

− 2
∫ 1

0
(g′

n − g′)(1 − s) dLs

)∣∣∣∣]

≤ (
Ex[(N1)

2])1/2
(

Ex

(
1 − exp

(
1
2

∫ 1

0

(|g′(s)|2 − |g′
n(s)|2

)
ds

)

× exp
(∫ 1

0
(g′

n − g′)(1 − s) dBs

− 2
∫ 1

0
(g′

n − g′)(1 − s) dLs

)
− 1

)2
)1/2

.

By a proof completely analogous to that of (3.11), the second factor in the
last display goes to zero uniformly on compact intervals of (−∞,0). Thus,
limn→∞ vn(1, x) = v(1, x) uniformly on compact intervals in (−∞,0). As
gn converge to g uniformly on [0,1], by Corollary 3.4, Xn

1 converge to X1
uniformly. Since vn(1, x − gn(1)) is the density function for Xn

1 , we see that
v(1, x − g(1)) is the density function for X1. �

REMARK 3.10. It is shown in Burdzy, Chen and Sylvester (2003) that the
distribution of Xt can be singular with respect to the Lebesgue measure at a
boundary point x = g(t) if the L2-integrability of g′ is not satisfied.
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