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Let Bn = (1/N)T
1/2
n XnX∗

nT
1/2
n where Xn = (Xij ) is n × N with

i.i.d. complex standardized entries having finite fourth moment, and T
1/2
n is

a Hermitian square root of the nonnegative definite Hermitian matrix Tn. The
limiting behavior, as n → ∞ with n/N approaching a positive constant, of
functionals of the eigenvalues of Bn, where each is given equal weight, is
studied. Due to the limiting behavior of the empirical spectral distribution
of Bn, it is known that these linear spectral statistics converges a.s. to
a nonrandom quantity. This paper shows their rate of convergence to be 1/n

by proving, after proper scaling, that they form a tight sequence. Moreover,
if EX2

11 = 0 and E|X11|4 = 2, or if X11 and Tn are real and EX4
11 = 3, they

are shown to have Gaussian limits.

1. Introduction. Due to the rapid development of modern technology, sta-
tisticians are confronted with the task of analyzing data with ever increasing
dimension. For example, stock market analysis can now include a large number
of companies. The study of DNA can now incorporate a sizable number of its
base pairs. Computers can easily perform computations with high-dimensional
data. Indeed, within several milli-seconds, a mainframe can complete the spec-
tral decomposition of a 1000 × 1000 symmetric matrix, a feat unachievable only
20 years ago. In the past, so-called dimension reduction schemes played the main
role in dealing with high-dimensional data, but a large portion of information
contained in the original data would inevitably get lost. For example, in variable
selection of multivariate linear regression models, one will lose all information
contained in the unselected variables; in principal component analysis, all infor-
mation contained in the components deemed “nonprincipal” would be gone. Now
when dimension reduction is performed it is usually not due to computational re-
strictions.

However, even though the technology exists to compute much of what is needed,
there is a fundamental problem with the analytical tools used by statisticians.
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Their use relies on their asymptotic behavior as the number of samples increase.
It is to be expected that larger dimension will require larger samples in order to
maintain the same level of behavior. But the required increase is typically orders
of magnitude larger than the dimension, sample sizes that are simply unattainable
in most situations. With a necessary limitation on the number of samples, many
frequently used statistics in multivariate analysis perform in a completely different
manner than they do on data of low dimension with no restriction on sample size.
Some methods behave very poorly [see Bai and Saranadasa (1996)], and some are
even not applicable [see Dempster (1958)]. Consider the following example.

Let Xij be i.i.d. standard normal variables. Write

SN =
(

1

N

N∑
k=1

XikXjk

)n

i,j=1

,

which can be considered as a sample covariance matrix, N samples of an
n-dimensional mean zero random vector with population matrix I . An important
statistic in multivariate analysis is

LN = ln(detSN) =
n∑

j=1

ln(λN,j ),

where λN,j , j = 1, . . . , n, are the eigenvalues of SN . When n is fixed, λN,j → 1

almost surely as N → ∞ and thus LN
a.s.→ 0.

Further, by taking a Taylor expansion on ln(1 + x), one can show that√
N/nLN

D→ N(0,2),

for any fixed n. This suggests the possibility that LN is asymptotically normal,
provided that n = O(N). However, this is not the case. Let us see what happens
when n/N → c ∈ (0,1) as n → ∞. Using results on the limiting spectral
distribution of {SN } [see Marčenko and Pastur (1967) and Bai (1999)], we have,
with probability 1,

1

n
LN →

∫ b(c)

a(c)

lnx

2πxc

√(
b(c) − x

)(
x − a(c)

)
dx

(1.1)
= c − 1

c
ln(1 − c) − 1 ≡ d(c) < 0,

where a(c) = (1 − √
c )2, b(c) = (1 + √

c )2 (see Section 5 for a derivation of the
integral). This shows that almost surely√

N/nLN ∼ d(c)
√

Nn → −∞.

Thus, any test which assumes asymptotic normality of
√

N/nLN will result in
a serious error.
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Besides demonstrating problems with relying on traditional methodology when
sample size is restricted, the example introduces one of several results that can be
used to handle data with large dimension n, proportional to N , the sample size.
They are limit theorems, as n approaches infinity, on the eigenvalues of a class
of random matrices of sample covariance type [Yin and Krishnaiah (1983), Yin
(1986), Silverstein (1995) and Bai and Silverstein (1998, 1999)]. They take the
form

Bn = 1

N
T 1/2

n XnX
∗
nT 1/2

n ,

where Xn = (Xn
ij ) is n × N , Xn

ij ∈ C are i.i.d. with E|Xn
11 − EXn

11|2 = 1, T
1/2
n is

n × n random Hermitian, with Xn and T
1/2
n independent. When Xn

11 is known to
have mean zero and Tn is nonrandom, Bn can be viewed as a sample covariance
matrix, which includes any Wishart matrix, formed from N samples of the random
vector T

1/2
n Xn

·1 (Xn
·1 denoting the first column of Xn), which has population

covariance matrix Tn ≡ (T
1/2
n )2. Besides sample covariance matrices, Bn, whose

eigenvalues are the same as those of (1/N)XnX
∗
nTn, models the spectral behavior

of other matrices important to multivariate statistics, in particular multivariate
F matrices, where Xn

11 is N(0,1) and Tn is the inverse of another Wishart matrix.
The basic limit theorem on the eigenvalues of Bn concerns its empirical spectral

distribution FBn , where for any matrix A with real eigenvalues, FA denotes the
empirical distribution function of the eigenvalues of A, that is, if A is n × n then

FA(x) = 1

n
(number of eigenvalues of A ≤ x).

If:

1. for all n, i, j , Xn
ij are i.d.,

2. with probability 1, FTn
D→ H , a proper cumulative distribution function (c.d.f.)

and
3. n/N → c > 0 as n → ∞,

then with probability 1 FBn converges in distribution to F c,H , a nonrandom proper
c.d.f.

The case when H distributes its mass at one positive number (called the Pastur–
Marcěnko law), as in the above example, is one of seven nontrivial cases where an
explicit expression for F c,H is known (the multivariate F matrix case [Silverstein
(1985)] and, as to be seen below, when H is discrete with at most three positive
mass points with or without mass at zero). However, a good deal of information,
including a way to compute F c,H , can be extracted out of an equation satisfied by
its Stieltjes transform, defined for any c.d.f. G to be

mG(z) ≡
∫ 1

λ − z
dG(λ), 	z 
= 0.
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We see that mG(z̄) = mG(z). For each z ∈ C+ ≡ {z ∈ C :	 z > 0}, the Stieltjes
transform m(z) ≡ mFc,H (z) is the unique solution to

m =
∫ 1

λ(1 − c − czm) − z
dH(λ)

in the set {m ∈ C :−1−c
z

+ cm ∈ C+}. The equation takes on a simpler form when
F c,H is replaced by

F c,H ≡ (1 − c)I[0,∞) + cF c,H

(IA denoting the indicator function on the set A), which is the limiting empirical
distribution function of B n ≡ (1/N)X∗

nTnXn (the spectra of which differs from
that of Bn by |n − N | zeros). Its Stieltjes transform

m(z) ≡ mFc,H (z) = −1 − c

z
+ cm(z)

has inverse

z = z(m) = − 1

m
+ c

∫
t

1 + tm
dH(t).(1.2)

Using (1.2) it is shown in Silverstein and Choi (1995) that, on (0,∞), F c,H has
a continuous density, is analytic inside its support and is given by

f c,H (x) = c−1 d

dx
Fc,H (x)

(1.3) = (cπ)−1	m(x) ≡ (cπ)−1 lim
z→x

	m(z).

Also, F c,H (0) = max[1 − c−1,H(0)]. Moreover, considering (1.2) for m real, the
range of values where it is increasing constitutes the complement of the support of
F c,H on (0,∞) [Marčenko and Pastur (1967) and Silverstein and Choi (1995)].
From (1.2) and (1.3) f c,H (x) can be computed using Newton’s method for each
x ∈ (0,∞) inside its support [see Bai and Silverstein (1998) for an illustration of
the density when c = 0.1 and H places mass 0.2, 0.4, and 0.4 at, resp., 1, 3 and 10].

Notice in (1.2) when H is discrete with at most three positive mass points the
density has an explicit expression, since m(z) is the root of a polynomial of degree
at most four.

Convergence in distribution of FBn of course reveals no information on the
number of eigenvalues of Bn appearing on any interval [a, b] outside the support
of F c,H , other than the number is almost surely o(n). In Bai and Silverstein (1998)
it is shown that, with probability 1, no eigenvalues of Bn appear in [a, b] for all
n large under the following additional assumptions:

1′. Xn is the first n rows and N columns of a doubly infinite array of i.i.d. random
variables, with EX11 = 0, E|X11|2 = 1 and E|X11|4 < ∞, and
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2′. Tn is nonrandom, ‖Tn‖, the spectral norm of Tn, is bounded in n, and
3′. [a, b] lies in an open subset of (0,∞) which is outside the support of F cn,Hn

for all n large, where cn ≡ n/N and Hn ≡ FTn .

The result extends what has been previously known on the extreme eigenvalues
of (1/N)XnX

∗
n (Tn = I ). Let λA

max, λA
min denote, respectively, the largest and

smallest eigenvalues of the Hermitian matrix A. Under condition 1′, Yin, Bai and
Krishnaiah (1988) showed, as n → ∞

λ
(1/N)XnX

∗
n

max
a.s.→ (

1 + √
c
)2

,

while in Bai and Yin (1993) for c ≤ 1

λ
(1/N)XnX

∗
n

min
a.s.→ (

1 − √
c
)2

.

If [a, b] separates the support of F c,H in (0,∞) into two nonempty sets, then
associated with it is another interval J which separates the eigenvalues of Tn for
all n large. The mass F cn,Hn places, say, to the right of b equals the proportion of
eigenvalues of Tn lying to the right of J . In Bai and Silverstein (1999) it is proved
that, with probability 1, the number of eigenvalues of Bn and Tn lying on the same
side of their respective intervals is the same for all n large.

The above two results are intuitively plausible when viewing Bn as an
approximation of Tn, especially when cn is small (it can be shown that F c,H D→ H

as c → 0). However, regardless of the size of c, when separation in the support of
F c,H on (0,∞) associated with a gap in the spectrum of Tn occurs, there will be
exact splitting of the eigenvalues of Bn.

These results can be used in applications where location of eigenvalues of the
population covariance matrix is needed, as in the detection problem in array signal
processing [see Silverstein and Combettes (1992)]. Here, each entry of the sampled
vector is a reading off a sensor, due to an unknown number q of sources emitting
signals in a noise-filled environment (q < n). The problem is to determine q .
The smallest eigenvalue of the population covariance matrix is positive with
multiplicity n − q (the so-called “noise” eigenvalues). The traditional approach
has been to sample enough times so that the sample covariance matrix is close
to the population matrix, relying on fixed dimension, large sample asymptotic
analysis. However, it may be impossible to sample enough times if q is sizable. The
above results show that in order to determine the number of sources, simply sample
enough times so that the eigenvalues of Bn split into two discernable groups. The
number on the right will, with high probability, equal q .

The results also enable us to understand the true behavior of statistics such
as LN in the above example when n and N are large but on the same order of
magnitude; LN is not close to zero, rather n−1LN is close to the quantity d(c)

in (1.1), or perhaps more appropriately d(cn).
However, in order to fully utilize n−1LN , typically in hypothesis testing, it

is important to establish the limiting distribution of LN − nd(cn). We come to
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the main purpose of this paper, to study the limiting distribution of normalized
spectral functionals like LN − nd(c), and as a by-product, the rate of convergence
of statistics such as n−1LN , functionals of the eigenvalues of Bn where each is
given equal weight. We will call them linear spectral statistics, quantities of the
form

1

n

n∑
j=1

f (λj ) (λ1, . . . , λn denoting the eigenvalues of Bn) =
∫

f (x) dFBn(x),

where f is a function on [0,∞).
We will show, under the assumption E|X11|4 < ∞ and the analyticity of f ,

the rate
∫

f (x) dFBn(x) − ∫
f (x) dF cn,Hn(x) approaches zero is essentially 1/n.

Define

Gn(x) = n
[
FBn(x) − F cn,Hn(x)

]
.

The main result is stated in the following theorem.

THEOREM 1.1. Assume:

(a) For each n Xij = Xn
ij , i ≤ n, j ≤ N are i.i.d., i.d. for all n, i, j , EX11 = 0,

E|X11|2 = 1, E|X11|4 < ∞, n/N → c, and
(b) Tn is n × n nonrandom Hermitian nonnegative definite with spectral norm

bounded in n, with FTn
D→ H , a proper c.d.f.

Let f1, . . . , fk be functions on R analytic on an open interval containing[
lim inf

n
λ

Tn

minI(0,1)(c)
(
1 − √

c
)2

, lim sup
n

λTn
max

(
1 + √

c
)2
]

(1.4)

Then:

(i) the random vector(∫
f1(x) dGn(x), . . . ,

∫
fk(x) dGn(x)

)
(1.5)

forms a tight sequence in n.
(ii) If X11 and Tn are real and E(X4

11) = 3, then (1.5) converges weakly to
a Gaussian vector (Xf1, . . . ,Xfk

), with means

EXf = − 1

2πi

∫
f (z)

c
∫

m(z)3t2(1 + tm(z))−3 dH(t)

(1 − c
∫

m(z)2t2(1 + tm(z))−2 dH(t))2 dz(1.6)

and covariance function

Cov(Xf ,Xg)

(1.7) = − 1

2π2

∫ ∫
f (z1)g(z2)

(m(z1) − m(z2))
2

d

dz1
m(z1)

d

dz2
m(z2) dz1 dz2
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(f,g ∈ {f1, . . . , fk}). The contours in (1.6) and (1.7) [two in (1.7), which we may
assume to be nonoverlapping] are closed and are taken in the positive direction in
the complex plane, each enclosing the support of F c,H .

(iii) If X11 is complex with E(X2
11) = 0 and E(|X11|4) = 2, then (ii) also holds,

except the means are zero and the covariance function is 1/2 the function given
in (1.7).

This theorem can be viewed as an extension of results obtained in Jonsson
(1982) where the entries of Xn are Gaussian and Tn = I and is consistent with
central limit theorem results on linear statistics of eigenvalues of other classes
of random matrices [see, e.g., Johansson (1998), Sinai and Soshnikov (1998),
Soshnikov (2000) and Diaconis and Evans (2001)]. As will be seen, the techniques
and arguments used to prove the theorem, which rely heavily on properties of the
Stieltjes transform of FBn , have nothing in common with any of the tools used in
these other papers.

We begin the proof of Theorem 1.1 here with the replacement of the entries of
Xn with truncated and centralized variables. For m = 1,2, . . . find nm (nm > nm−1)
satisfying

m4
∫
{|X11|≥√

n/m}
|X11|4 < 2−m

for all n ≥ nm. Define δn = 1/m for all n ∈ [nm,nm+1) (= 1 for n < n1). Then,
as n → ∞, δn → 0 and

δ−4
n

∫
{|X11|≥δn

√
n }

|X11|4 → 0.(1.8)

Let now for each n δn be the larger of δn constructed above and the δn created
in the proof of Lemma 2.2 of Yin, Bai and Krishnaiah (1988) with r = 1/2 and
satisfying δnn

1/4 → ∞. Let B̂n = (1/N)T
1/2
n X̂nX̂

∗
nT

1/2
n with X̂n n × N having

(i, j)th entry Xij I{|Xij |<δn
√

n }. We have then

P(Bn 
= B̂n) ≤ nNP
(|X11| ≥ δn

√
n
) ≤ Kδ−4

n

∫
{|X11|≥δn

√
n }

|X11|4 = o(1).

Define B̃n = (1/N)T
1/2
n X̃nX̃

∗
nT

1/2
n with X̃n n × N having (i, j)th entry

(X̂ij − EX̂ij )/σn, where σ 2
n = E|X̂ij − EX̂ij |2. From Yin, Bai and Krishnaiah

(1988) we know that both lim supn λ
B̂n
max and lim supn λ

B̃n
max are almost surely

bounded by lim supn ‖Tn‖(1 + √
c )2. We use Ĝn(x) and G̃n(x) to denote the

analogues of Gn(x) with the matrix Bn replaced by B̂n and B̃n, respectively. Let
λA

i denote the ith smallest eigenvalue of Hermitian A. Using the same approach
and bounds that are used in the proof of Lemma 2.7 of Bai (1999), we have,
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for each j = 1,2, . . . , k,∣∣∣∣ ∫ fj (x) dĜn(x) −
∫

fj (x) dG̃n(x)

∣∣∣∣
≤ Kj

n∑
k=1

∣∣λB̂n

k − λ
B̃n

k

∣∣
≤ 2Kj

(
N−1 trT 1/2

n (X̂n − X̃n)(X̂n − X̃n)
∗T 1/2

n

)1/2(
n
(
λB̂n

max + λB̃n
max

))1/2
,

where Kj is a bound on |f ′
j (z)|. From (1.8) we have

|σ 2
n − 1| ≤ 2

∫
{|X11|≥2δn

√
n }

|X11|2 ≤ 2δ−2
n n−1

∫
{|X11|≥δn

√
n }

|X11|4 = o(δ2
nn

−1).

Moreover,

|EX̂11| =
∣∣∣∣ ∫{|X11|≥δn

√
n }

X11

∣∣∣∣ = o(δnn
−3/2).

These give us(
N−1 tr T 1/2

n (X̂n − X̃n)(X̂n − X̃n)
∗T 1/2

n

)1/2

≤ (
N−1(1 − 1/σn)

2 tr B̂n

)1/2 + (
N−1‖Tn‖σ−2 tr EX̂nEX̂∗

n

)1/2

≤
(

(1 − σ 2
n )2

σ 2(1 + σ 2)2

n

N
λB̂n

max

)1/2

+ (n‖Tn‖)1/2σ−1|EX̂11|

= o(δnn
−1/2)

(
λB̂n

max
)1/2 + o(δnn

−1).

From the above estimates, we obtain∫
fj (x) dGn(x) =

∫
fj (x) dG̃n(x) + op(1)

[op(1)
i.p.→ 0 as n → ∞.] Therefore, we only need to find the limiting distribution

of {∫ fj (x) dG̃n(x), j = 1, . . . , k}. Hence, in the sequel, we shall assume the
underlying variables are truncated at δn

√
n, centralized and renormalized. For

simplicity, we shall suppress all sub- or superscripts on the variables and assume
that |Xij | < δn

√
n, EXij = 0, E|Xij |2 = 1, E|Xij |4 < ∞, and for assumption (ii)

of Theorem 1.1 E|X11|4 = 3 +o(1), while for assumption (iii) EX2
11 = o(1/n) and

E|X11|4 = 2 + o(1).
Since the truncation steps are identical to those in Yin, Bai and Krishnaiah

(1988) we have for any η > (1 + √
c )2 the existence of {kn} for which

kn

ln n
→ ∞ and E‖(1/N)XnX

∗
n‖kn ≤ ηkn
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for all n large. Therefore,

P (‖Bn‖ ≥ η) = o(n−�),(1.9a)

for any η > lim sup‖T ‖(1 + √
c )2 and any positive �. By modifying the proof in

Bai and Yin (1993) on the smallest eigenvalue of (1/N)XnX
∗
n it follows that when

lim infn λT
minI(0,1)(c)(1 − √

c )2 > 0

P
(
λ

Bn

min ≤ η
) = o(n−�),(1.9b)

whenever 0 < η < lim infn λT
minI(0,1)(c)(1 − √

c )2. The modification is given in
the Appendix.

After truncation and centralization, our proof of the main theorem relies on
establishing limiting results on

Mn(z) = n
[
mFBn (z) − mFcn,Hn (z)

] = N
[
mFB n (z) − mFcn,Hn (z)

]
,

or more precisely, on M̂n(·), a truncated version of Mn(·) when viewed as a random
two-dimensional process defined on a contour C of the complex plane, described
as follows. Let v0 > 0 be arbitrary. Let xr be any number greater than the right end
point of interval (1.4). Let xl be any negative number if the left end point of (1.4)
is zero. Otherwise choose xl ∈ (0, lim infn λ

Tn

minI(0,1)(c)(1 − √
c )2). Let

Cu = {x + iv0 :x ∈ [xl, xr]}.
Then

C ≡ {xl + iv :v ∈ [0, v0]} ∪ Cu ∪ {xr + iv :v ∈ [0, v0]}.
We define now the subsets Cn of C on which Mn(·) agrees with M̂n(·). Choose
sequence {εn} decreasing to zero satisfying for some α ∈ (0,1)

εn ≥ n−α.(1.10)

Let

Cl =
{

{xl + iv :v ∈ [n−1εn, v0]}, if xl > 0,

{xl + iv :v ∈ [0, v0]}, if xl < 0,

and

Cr = {xr + iv :v ∈ [n−1εn, v0]}.
Then Cn = Cl ∪ Cu ∪ Cr . The process M̂n(·) can now be defined. For z = x + iv

we have

M̂n(z) =


Mn(z), for z ∈ Cn,

Mn(xr + in−1εn), for x = xr , v ∈ [0, n−1εn],
and if xl > 0,

Mn(xl + in−1εn), for x = xl, v ∈ [0, n−1εn].
(1.11)
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M̂n(·) is viewed as a random element in the metric space C(C,R2) of continuous
functions from C to R2. All of Chapter 2 of Billingsley (1968) applies to
continuous functions from a set such as C (homeomorphic to [0,1]) to finite-
dimensional Euclidean space, with | · | interpreted as Euclidean distance.

Most of the paper will deal with proving the following lemma.

LEMMA 1.1. Under conditions (a) and (b) of Theorem 1.1 {M̂n(·)} forms
a tight sequence on C. Moreover, if assumptions in (ii) or (iii) of Theorem 1.1
on X11 hold, then M̂n(·) converges weakly to a two-dimensional Gaussian process
M(·) satisfying for z ∈ C under the assumptions in (ii),

EM(z) = c
∫

m(z)3t2(1 + tm(z))−3 dH(t)

(1 − c
∫

m(z)2t2(1 + tm(z))−2 dH(t))2
(1.12)

and for z1, z2 ∈ C ∪ C̄ , with C̄ ≡ {z̄ : z ∈ C},
Cov

(
M(z1),M(z2)

) ≡ E
[(

M(z1) − EM(z1)
)(

M(z2) − EM(z2)
)]

(1.13)

= m′(z1)m
′(z2)

(m(z1) − m(z2))2
− 1

(z1 − z2)2
,

while under the assumptions in (iii) EM(z) = 0, and the “covariance” function
analogous to (1.13) is 1/2 the right-hand side of (1.13).

We show now how Theorem 1.1 follows from the above lemma. We use the
identity ∫

f (x) dG(x) = − 1

2πi

∫
f (z)mG(z) dz(1.14)

valid for c.d.f. G and f analytic on an open set containing the support of G. The
complex integral on the right-hand side is over any positively oriented contour
enclosing the support of G and on which f is analytic. Choose v0, xr and xl so
that f1, . . . , fk are all analytic on and inside the resulting C ∪ C̄.

Due to the a.s. convergence of the extreme eigenvalues of (1/N)XnX
∗
n and the

bounds

λAB
max ≤ λA

maxλ
B
max λAB

min ≥ λA
minλ

B
min,

valid for n×n Hermitian nonnegative definite A and B , we have with probability 1

lim inf
n→∞ min

(
xr − λBn

max, λ
Bn

min − xl

)
> 0.

It also follows that the support of F cn,Hn is contained in[
λ

Tn

minI(0,1)(cn)
(
1 − √

cn

)2
, λTn

max
(
1 + √

cn

)2]
.
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Therefore for any f ∈ {f1, . . . , fk}, with probability 1∫
f (x) dGn(x) = − 1

2πi

∫
f (z)Mn(z) dz

for all n large, where the complex integral is over C ∪ C̄. Moreover, with
probability 1, for all n large,∣∣∣∣∫ f (z)

(
Mn(z) − M̂n(z)

)
dz

∣∣∣∣
≤ 4Kεn

(∣∣max
(
λTn

max
(
1 + √

cn

)2
, λBn

max
)− xr

∣∣−1

+ ∣∣min
(
λ

Tn

minI(0,1)(cn)
(
1 − √

cn

)2
, λ

Bn

min

) − xl

∣∣−1
)
,

which converges to zero as n → ∞. Here K is a bound on f over C.
Since

M̂n(·) →
(
− 1

2πi

∫
f1(z)M̂n(z) dz, . . . ,− 1

2πi

∫
fk(z)M̂n(z) dz

)
is a continuous mapping of C(C,R2) into Rk , it follows that the above vector
and, subsequently, (1.5) form tight sequences. Letting M(·) denote the limit of any
weakly converging subsequence of {M̂n(·)} we have the weak limit of (1.5) equal
in distribution to(

− 1

2πi

∫
f1(z)M(z) dz, . . . ,− 1

2πi

∫
fk(z)M(z) dz

)
.

The fact that this vector, under the assumptions in (ii) or (iii), is multivariate
Gaussian follows from the fact that Riemann sums corresponding to these integrals
are multivariate Gaussian and that weak limits of Gaussian vectors can only
be Gaussian. The limiting expressions for the mean and covariance follow
immediately.

Notice the assumptions in (ii) and (iii) require X11 to have the same first, second
and fourth moments of either a real or complex Gaussian variable, the latter having
real and imaginary parts i.i.d. N(0,1/2). We will use the terms “RG” and “CG” to
refer to these conditions.

The reason why concrete results are at present only obtained for the assumptions
in (ii) and (iii) is mainly due to the identity

E(X∗·1AX·1 − trA)(X∗·1BX·1 − tr B)
(1.15)

= (E|X11|4 − |EX2
11|2 − 2)

n∑
i=1

aiibii + |EX2
11|2 trABT + tr AB

valid for n × n A = (aij ) and B = (bij ), which is needed in several places in
the proof of Lemma 1.1. The assumptions in (iii) leave only the last term on the
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right-hand side, whereas those in (ii) leave the last two, but in this case the matrix
B will always be symmetric. This also accounts for the relation between the two
covariance functions and the difficulty in obtaining explicit results more generally.
As will be seen in the proof, whenever (1.15) is used, little is known about the
limiting behavior of

∑
aiibii .

Simple substitution reveals

RHS of (1.7) = − 1

2π2

∫ ∫
f (z(m1))g(z(m2))

(m1 − m2)2
d(m1) d(m2).(1.16)

However, the contours depend on the z1, z2 contours and cannot be arbitrarily
chosen. It is also true that

(1.7) = 1

π2

∫ ∫
f ′(x)g′(y) ln

∣∣∣∣m(x) − m(y)

m(x) − m(y)

∣∣∣∣dx dy

(1.17)

= 1

2π2

∫ ∫
f ′(x)g′(y) ln

(
1 + 4

mi(x)m i(y)

|m(x) − m(y)|2
)

dx dy

and

EXf = 1

2π

∫
f ′(x) arg

(
1 − c

∫
t2m2(x)

(1 + tm(x))2 dH(t)

)
dx.(1.18)

Here for 0 
= x ∈ R

m(x) = lim
z→x

m(z), z ∈ C
+,(1.19)

known to exist and to satisfy (1.2) [see Silverstein and Choi (1995)], and mi(x) =
	m(x). The term

j (x) = arg
(

1 − c

∫
t2m2(x)

(1 + tm(x))2 dH(t)

)
in (1.18) is well defined for almost every x and takes values in (−π/2, π/2).
Section 5 contains proofs of (1.17) and (1.18), along with showing

k(x, y) ≡ ln
(

1 + 4
mi(x)m i(y)

|m(x) − m(y)|2
)

(1.20)

to be Lebesgue integrable on R2. It is interesting to note that the support of
k(x, y) matches the support of f c,H on R − {0}: k(x, y) = 0 ⇔ min(f c,H (x),

f c,H (y)) = 0. We also have f c,H (x) = 0 ⇒ j (x) = 0.
Section 5 also contains derivations of the relevant quantities associated with

the example given at the beginning of this section. The linear spectral statistic
(1/n)LN has a.s. limit d(c) as stated in (1.1). The quantity LN − nd(n/N)

converges weakly to a Gaussian random variable Xln with

EXln = 1
2 ln(1 − c)(1.21)
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and

VarXln = −2 ln(1 − c).(1.22)

Results on both LN − ELN and n[∫ xr dF SN (x)− E
∫

xr dF SN (x)] for positive
integer r are derived in Jonsson (1982). Included in Section 5 are derivations of
the following expressions for means and covariances, in this case (H = I[1,∞)).
We have

EXxr = 1
4

((
1 − √

c
)2r + (

1 + √
c
)2r )− 1

2

r∑
j=0

(
r

j

)2
cj(1.23)

and

Cov(Xxr1 ,Xxr2 ) = 2cr1+r2

r1−1∑
k1=0

r2∑
k2=0

(
r1
k1

)(
r2
k2

)(
1 − c

c

)k1+k2

×
r1−k1∑
�=1

�

(
2r1 − 1 − (k1 + �)

r1 − 1

)
(1.24)

×
(

2r2 − 1 − k2 + �

r2 − 1

)
.

It is noteworthy to mention here a consequence of (1.17), namely that if the
assumptions in (ii) or (iii) of Theorem 1.1 were to hold, then Gn, considered as
a random element in D[0,∞) (the space of functions on [0,∞) that are right-
continuous with left-hand side limits, together with the Skorohod metric) cannot
form a tight sequence in D[0,∞). Indeed, under the assumptions of either one,
if G(x) were a weak limit of a subsequence, then, because of Theorem 1.1, it is
straightforward to conclude that for any x0 in the interior of the support of F and
positive ε, ∫ x0+ε

x0

G(x)dx

would be Gaussian, and therefore so would

G(x0) = lim
ε→0

1

ε

∫ x0+ε

x0

G(x)dx.

However, the variance would necessarily be

lim
ε→0

1

2π2

1

ε2

∫ x0+ε

x0

∫ x0+ε

x0

k(x, y) dx dy = ∞.

Still, under the assumptions in (ii) or (iii), a limit may exist for {Gn} when Gn is
viewed as a linear functional

f −→
∫

f (x) dGn(x),
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that is, a limit expressed in terms of a measure in a space of generalized functions.
The characterization of the limiting measure of course depends on the space, which
in turn relies on the set of test functions, which for now is restricted to functions
analytic on the support of F . Work in this area is currently being pursued.

We emphasize here the importance of studying Gn(x) which essentially
balances FBn(x) with F cn,Hn , and not F c,H or EFBn(x). F c,H cannot be used
simply because the convergence of cn → c and that of Hn → H can be arbitrarily
slow. It should be viewed as a mathematical convenience because the result is
expressed as a limit theorem. From the point of view of statistical inference, the
choice of F cn,Hn over EFBn(x) is made simply because much is known of the
former, while little is analytically known about the latter.

The proof of Lemma 1.1 is divided into three sections. Sections 2 and 3
handle the limiting behavior of the centralized Mn, while Section 4 analyzes the
nonrandom part. In each of the three sections the reader will be referred to work
done in Bai and Silverstein (1998).

2. Convergence of finite-dimensional distributions. Write for z ∈ Cn,
Mn(z) = M1

n(z) + M2
n(z) where

M1
n(z) = n

[
mFBn (z) − EmFBn (z)

]
and

M2
n(z) = n

[
mEFBn (z) − mFcn,Hn (z)

]
.

In this section we will show for any positive integer r , the sum
r∑

i=1

αiM
1
n(zi) (	 zi 
= 0)

whenever it is real, is tight, and, under the assumptions in (ii) or (iii) of
Theorem 1.1, will converge in distribution to a Gaussian random variable.
Formula (1.13) will also be derived. We begin with a list of results.

LEMMA 2.1 [Burkholder (1973)]. Let {Xk} be a complex martingale differ-
ence sequence with respect to the increasing σ -field {Fk}. Then, for p > 1,

E
∣∣∣∑Xk

∣∣∣p ≤ KpE
(∑ |Xk|2

)p/2
.

(Note: The reference considers only real variables. Extending to complex variables
is straightforward.)

LEMMA 2.2 [Lemma 2.7 in Bai and Silverstein (1998)]. For X = (X1, . . . ,

Xn)
T i.i.d. standardized (complex) entries, C n × n matrix (complex) we have, for

any p ≥ 2,

E|X∗CX − trC|p ≤ Kp

(
(E|X1|4 trCC∗)p/2 + E|X1|2p tr(CC∗)p/2).
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LEMMA 2.3. Let f1, f2, . . . be analytic in D, a connected open set of C,
satisfying |fn(z)| ≤ M for every n and z in D, and fn(z) converges, as n → ∞ for
each z in a subset of D having a limit point in D. Then there exists a function f ,
analytic in D for which fn(z) → f (z) and f ′

n(z) → f ′(z) for all z ∈ D. Moreover,
on any set bounded by a contour interior to D the convergence is uniform and
{f ′

n(z)} is uniformly bounded by 2M/ε, where ε is the distance between the
contour and the boundary of D.

PROOF. The conclusions on {fn} are from Vitali’s convergence theorem
[see Titchmarsh (1939), page 168]. Those on {f ′

n} follow from the dominated
convergence theorem (d.c.t.) and the identity

f ′
n(z) = 1

2πi

∫
C

fn(w)

(w − z)2 dw. �

LEMMA 2.4 [Theorem 35.12 of Billingsley (1995)]. Suppose for each n

Yn1, Yn2, . . . , Ynrn is a real martingale difference sequence with respect to the
increasing σ -field {Fnj } having second moments. If as n → ∞,

(i)
rn∑

j=1

E(Y 2
nj |Fn,j−1)

i.p.→ σ 2,

where σ 2 is a positive constant, and for each ε > 0,

(ii)
rn∑

j=1

E
(
Y 2

nj I(|Ynj |≥ε)

) → 0

then
rn∑

j=1

Ynj
D→ N(0, σ 2).

Recalling the truncation and centralization steps, we get from Lemma 2.2

E|X∗·1CX·1 − trC|p ≤ Kp‖C‖p[np/2 + δ(2p−4)
n n(p−1)]

(2.1) ≤ K p‖C‖pδ(2p−4)
n n(p−1), p ≥ 2.

Let v = 	 z. For the following analysis we will assume v > 0. To facilitate
notation, we will let T = Tn. Because of assumption (2′) we may assume ‖T ‖ ≤ 1
for all n. Constants appearing in inequalities will be denoted by K and may take
on different values from one expression to the next. Let rj = (1/

√
N )T 1/2X·j ,

D(z) = Bn − zI , Dj(z) = D(z) − rj r
∗
j ,

εj (z) = r∗
j D−1

j (z)rj − 1

N
tr T D−1

j (z),

δj (z) = r∗
j D−2

j (z)rj − 1

N
tr T D−2

j (z) = d

dz
εj (z)
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and

βj(z) = 1

1 + r∗
j D−1

j (z)rj
,

β̄j (z) = 1

1 + N−1 trTnD
−1
j (z)

,

bn(z) = 1

1 + N−1E trTnD
−1
1 (z)

.

All of the three latter quantities are bounded in absolute value by |z|/v [see (3.4)
of Bai and Silverstein (1998)]. We have

D−1(z) − D−1
j (z) = −D−1

j (z)rj r
∗
j D−1

j (z)βj (z)

and from Lemma 2.10 of Bai and Silverstein (1998) for any n × n A∣∣ tr
(
D−1(z) − D−1

j (z)
)
A
∣∣ ≤ ‖A‖

	 z
.(2.2)

For nonrandom n ×n Ak , k = 1, . . . , p and Bl , l = 1, . . . , q , we shall establish the
following inequality:∣∣∣∣∣E

(
p∏

k=1

r∗
1 Akr1

q∏
l=1

(r∗
1 Blr1 − N−1 tr T Bl)

)∣∣∣∣∣
(2.3)

≤ KN−(1∧q)δ(2q−4)∨0
n

p∏
k=1

‖Ak‖
q∏

l=1

‖Bl‖, p ≥ 0, q ≥ 0.

When p = 0, q = 1, the left-hand side is 0. When p = 0, q > 1, (2.3) is
a consequence of (2.1) and Hölder’s inequality. If p ≥ 1, then by induction on
p we have∣∣∣∣∣E

( p∏
k=1

r∗
1 Akr1

q∏
l=1

(r∗
1 Blr1 − N−1 tr T Bl)

)∣∣∣∣∣
≤

∣∣∣∣∣E
( p−1∏

k=1

r∗
1 Akr1(r

∗
1 Apr1 − N−1 trT Ap)

q∏
l=1

(r∗
1 Blr1 − N−1 trT Bl)

)∣∣∣∣∣
+ nN−1‖Ap‖

∣∣∣∣∣E
(

p−1∏
k=1

r∗
1 Akr1

q∏
l=1

(r∗
1 Blr1 − N−1 trT Bl)

)∣∣∣∣∣
≤ KN−1δ(2q−4)∨0

n

p∏
k=1

‖Ak‖
q∏

l=1

‖Bl‖.

We have proved the case where q > 0. When q = 0, (2.3) is a trivial consequence
of (2.1).
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Let E0(·) denote expectation and Ej (·) denote conditional expectation with
respect to the σ -field generated by r1, . . . , rj .

We have

n
[
mFBn (z) − EmFBn (z)

]
= tr[D−1(z) − ED−1(z)]

=
N∑

j=1

tr EjD
−1(z) − tr Ej−1D

−1(z)

=
N∑

j=1

tr Ej [D−1(z) − D−1
j (z)] − tr Ej−1[D−1(z) − D−1

j (z)]

= −
N∑

j=1

(Ej − Ej−1)βj (z)r
∗
j D−2

j (z)rj .

Write βj(z) = β̄j (z) − βj(z)β̄j (z)εj (z) = β̄j (z) − β̄2
j (z)εj (z) + β̄2

j (z) ×
βj(z)ε

2
j (z). We have then

(Ej − Ej−1)βj (z)r
∗
j D−2

j (z)rj

= (Ej − Ej−1)

(
β̄j (z)δj (z) − β̄2

j (z)εj (z)δj (z)

− β̄2
j (z)εj (z)

1

N
tr T D−2

j (z) + β̄2
j (z)βj (z)ε

2
j (z)r

∗
j D−2

j (z)rj

)
= Ej

(
β̄j (z)δj (z) − β̄2

j (z)εj (z)
1

N
tr T D−2

j (z)

)
− (Ej − Ej−1)β̄

2
j (z)

(
εj (z)δj (z) − βj(z)rjD

−2
j (z)rjε

2
j (z)

)
.

Using (2.3), we have

E

∣∣∣∣∣
N∑

j=1

(Ej − Ej−1)β̄
2
j (z)εj (z)δj (z)

∣∣∣∣∣
2

=
N∑

j=1

E|(Ej − Ej−1)β̄
2
j (z)εj (z)δj (z)|2

≤ 4
N∑

j=1

E|β̄2
j (z)εj (z)δj (z)|2 = o(1).

Therefore,
∑N

j=1(Ej − Ej−1)β̄
2
j (z)εj (z)δj (z) converges to zero in probability.

By the same argument, we have

N∑
j=1

(Ej − Ej−1)βj (z)rjD
−2
j (z)rj ε

2
j (z)

i.p.→ 0.
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Therefore we need only consider the sum

r∑
i=1

αi

N∑
j=1

Yj (zi) =
N∑

j=1

r∑
i=1

αiYj (zi),

where

Yj(z) = −Ej

(
β̄j (z)δj (z) − β̄2

j (z)εj (z)
1

N
trT D−2

j (z)

)
= −Ej

d

dz
β̄j (z)εj (z).

Again, by using (2.3), we obtain

E|Yj(z)|4 ≤ K

( |z|4
v4 E|δj (z)|4 + |z|8

v16

(
n

N

)4

E|εj (z)|4
)

= o(N−1),

which implies for any ε > 0

N∑
j=1

E

(∣∣∣∣∣
r∑

i=1

αiYj (zi)

∣∣∣∣∣
2

I(|∑r
i=1 αiYj (zi )|≥ε)

)
≤ 1

ε2

N∑
j=1

E

∣∣∣∣∣
r∑

i=1

αiYj (zi)

∣∣∣∣∣
4

→ 0

as n → ∞. Therefore condition (ii) of Lemma 2.4 is satisfied and it is enough to
prove, under the assumptions in (ii) or (iii) of Theorem 1.1, for z1, z2 with nonzero
imaginary parts

N∑
j=1

Ej−1[Yj (z1)Yj (z2)](2.4)

converges in probability to a constant (and to determine the constant).
We show here for future use the tightness of the sequence {∑r

i=1 αiM
1
n(zi)}.

From (2.3) we easily get E|Yj (z)|2 = O(N−1), so that

E

∣∣∣∣∣
r∑

i=1

αi

N∑
j=1

Yj (zi)

∣∣∣∣∣
2

=
N∑

j=1

E

∣∣∣∣∣
r∑

i=1

αiYj (zi)

∣∣∣∣∣
2

(2.5)

≤ r

N∑
j=1

r∑
i=1

|αi |2E
∣∣Yj(zi)

∣∣2 ≤ K.

Consider the sum
N∑

j=1

Ej−1
[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̄j (z2)εj (z2)

)]
.(2.6)

In the j th term (viewed as an expectation with respect to rj+1, . . . , rN ) we apply
the d.c.t. to the difference quotient defined by β̄j (z)εj (z) to get

∂2

∂z2 ∂z1
(2.6) = (2.4).
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Let v0 be a lower bound on |	zi |. For each j let Ai
j = (1/N)T 1/2EjD

−1
j (zi) ×

T 1/2, i = 1,2. Then trAi
jA

i
j

∗ ≤ n(v0N)−2. Using (2.1) we see, therefore, that
(2.6) is bounded, with a bound depending only on |zi | and v0.

We can then appeal to Lemma 2.3. Suppose (2.6) converges in probability
to a nonrandom limit for each zk, zl ∈ {zi} ⊂ D ≡ {z :v0 < |	z| < K} (K > v0
arbitrary), a sequence having two limit points, one on each side of the real axis.
Then by a diagonalization argument, for any subsequence of the natural numbers,
there is a further subsequence such that, with probability one, (2.6) converges for
each pair zk, zl . Write (2.6) as fn(z1, z2). We concentrate on this subsequence
and on one realization for which convergence holds. For each zl ∈ {zi} we apply
Lemma 2.3 on each of {z :v0/2 < 	z < K} and {z :−K < 	z < −v0/2} to get
convergence of fn(z, zl) to a function f (z, zl), analytic for z ∈ D satisfying
∂
∂z

fn(z, zl) → ∂
∂z

f (z, zl). From Lemma 2.3 we see that ∂
∂z

fn(z,w) is bounded
in w and n for all w ∈ D. Applying again Lemma 2.3 on the remaining
variable we see that fn(z,w) → f (z,w), analytic for w ∈ D and ∂2

∂u∂z
fn(z,w) →

∂2

∂w ∂z
fn(z,w). Since f (z,w) does not depend on the realization nor on the

subsequence, we have convergence in probability of (2.6) to f and (2.4) to the
mixed partials of f . Therefore we need only show (2.6) converges in probability
and to determine its limit.

From the derivation above (4.3) of Bai and Silverstein (1998) we get

E|β̄j (zi) − bn(zi)|2 ≤ K
|zi |4
v6

0

N−1.

This implies

E
∣∣∣Ej−1

[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̄j (z2)εj (z2)

)]
− Ej−1

[
Ej

(
bn(z1)εj (z1)

)
Ej

(
bn(z2)εj (z2)

)]∣∣∣ = O(N−3/2)

from which we get

N∑
j=1

Ej−1
[
Ej

(
β̄j (z1)εj (z1)

)
Ej

(
β̂j (z2)εj (z2)

)]

− bn(z1)bn(z2)

N∑
j=1

Ej−1
[
Ej (εj (z1))Ej (εj (z2))

] i.p.→ 0.

Thus the goal is to show

bn(z1)bn(z2)

N∑
j=1

Ej−1
[
Ej (εj (z1))Ej (εj (z2))

]
(2.7)

converges in probability, and to determine its limit. The latter’s second mixed
partial derivative will yield the limit of (2.4).
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We now assume the CG case, namely EX2
11 = o(1/n) and E|X11|4 = 2 + o(1),

so that, using (1.15), (2.7) becomes

bn(z1)bn(z2)
1

N2

N∑
j=1

(
tr T 1/2Ej

(
D−1

j (z1)
)
T Ej

(
D−1

j (z2)
)
T 1/2 + o(1)An

)
,

where

|An| ≤ K
(
trT Ej

(
D−1

j (z1)
)
T Ej

(
D̄−1

j (z1)
)

× trT Ej

(
D−1

j (z2)
)
T Ej

(
D̄−1

j (z2)
))1/2 = O(N).

Thus we study

bn(z1)bn(z2)
1

N2

N∑
j=1

trT 1/2Ej

(
D−1

j (z1)
)
T Ej

(
D−1

j (z2)
)
T 1/2.(2.8)

The RG case [Tn, X11 real, E|X11|4 = 3 + o(1)] will be double that of the limit
of (2.8).

Let Dij (z) = D(z) − rir
∗
i − rj r

∗
j ,

βij (z) = 1

1 + r∗
i D−1

ij (z)ri
and b1(z) = 1

1 + N−1E trT D−1
12 (z)

.

We write

Dj(z1) + z1I − N − 1

N
b1(z1)T =

N∑
i 
=j

rir
∗
i − N − 1

N
b1(z1)T .

Multiplying by (z1I − N−1
N

b1(z1)T )−1 on the left-hand side, D−1
j (z1) on the right-

hand side and using

r∗
i D−1

j (z1) = βij (z1)r
∗
i D−1

ij (z1)

we get

D−1
j (z1) = −

(
z1I − N − 1

N
b1(z1)T

)−1

+ ∑
i 
=j

βij (z1)

(
z1I − N − 1

N
b1(z1)T

)−1

rir
∗
i D−1

ij (z1)

(2.9)

− N − 1

N
b1(z1)

(
z1I − N − 1

N
b1(z1)T

)−1

T D−1
j (z1)

= −
(
z1I − N − 1

N
b1(z1)T

)−1

+ b1(z1)A(z1) + B(z1) + C(z1),
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where

A(z1) = ∑
i 
=j

(
z1I − N − 1

N
b1(z1)T

)−1

(rir
∗
i − N−1T )D−1

ij (z1),

B(z1) = ∑
i 
=j

(
βij (z1) − b1(z1)

)(
z1I − N − 1

N
b1(z1)T

)−1

rir
∗
i D−1

ij (z1)

and

C(z1) = N−1b1(z1)

(
z1I − N − 1

N
b1(z1)T

)−1

T

× ∑
i 
=j

(
D−1

ij (z1) − D−1
j (z1)

)
.

It is easy to verify for any real t ,∣∣∣∣1 − t

z(1 + N−1E trT D−1
12 (z))

∣∣∣∣−1

≤ |z(1 + N−1E trT D−1
12 (z))|

	 z(1 + N−1E trT D−1
12 (z))

≤ |z|(1 + n/(Nv0))

v0
.

Thus ∥∥∥∥(z1I − N − 1

N
b1(z1)T

)−1∥∥∥∥ ≤ 1 + n/(Nv0)

v0
.(2.10)

Let M be n × n and let ‖|M‖| denote a nonrandom bound on the spectral norm
of M for all parameters governing M and under all realizations of M . From (4.3)
of Bai and Silverstein (1998), (2.3) and (2.10) we get

E| trB(z1)M|
≤ NE1/2(|β12(z1) − b1(z1)|2)

(2.11)
× E1/2

(∣∣∣∣r∗
i D−1

ij (z1)M

(
z1I − N − 1

N
b1(z1)T

)−1

ri

∣∣∣∣2)

≤ K‖|M‖| |z1|2(1 + n/(Nv0))

v5
0

N1/2.

From (2.2) we have

| trC(z1)M| ≤ ‖|M‖| |z1|(1 + n/(Nv0))

v3
0

.(2.12)
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From (2.3) and (2.10) we get, for M nonrandom,

E| tr A(z1)M|

≤ KE1/2 trT 1/2D−1
ij (z1)M

(
z1I − N − 1

N
b1(z1)T

)−1

(2.13)

× T

(
z̄1I − N − 1

N
b1(z̄1)T

)−1

M∗D−1
ij (z̄1)T

1/2

≤ K‖M‖(1 + n/(Nv0))

v2
0

N1/2.

We write [using the identity above (2.2)]

tr Ej (A(z1))T D−1
j (z2)T = A1(z1, z2) + A2(z1, z2) + A3(z1, z2),(2.14)

where

A1(z1, z2) = − tr
∑
i<j

(
z1I − N − 1

N
b1(z1)T

)−1

rir
∗
i Ej

(
D−1

ij (z1)
)

× Tβij (z2)D
−1
ij (z2)rir

∗
i D−1

ij (z2)T

= −∑
i<j

βij (z2)r
∗
i Ej

(
D−1

ij (z1)
)
T D−1

ij (z2)rir
∗
i

× D−1
ij (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

ri,

A2(z1, z2) = − tr
∑
i<j

(
z1I − N − 1

N
b1(z1)T

)−1

N−1T

× Ej

(
D−1

ij (z1)
)
T
(
D−1

j (z2) − D−1
ij (z2)

)
T

and

A3(z1, z2) = tr
∑
i<j

(
z1I − N − 1

N
b1(z1)T

)−1

(rir
∗
i − N−1T )

× Ej

(
D−1

ij (z1)
)
T D−1

ij (z2)T .

We get from (2.2) and (2.10)

|A2(z1, z2)| ≤ (1 + n/(Nv0))

v2
0

(2.15)
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and similarly to (2.11) we have

E|A3(z1, z2)| ≤ (1 + n/(Nv0))

v3
0

N1/2.

Using (2.1), (2.3) and (4.3) of Bai and Silverstein (1998) we have for i < j

E

∣∣∣∣βij (z2)r
∗
i Ej

(
D−1

ij (z1)
)
T D−1

ij (z2)rir
∗
i

× D−1
ij (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

ri

− b1(z2)N
−2 tr

(
Ej

(
D−1

ij (z1)
)
T D−1

ij (z2)T
)

× tr
(
D−1

ij (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)∣∣∣∣
≤ KN−1/2

(K now depending as well on the zi and on n/N ). Using (2.2) we have∣∣∣∣ tr
(
Ej

(
D−1

ij (z1)
)
T D−1

ij (z2)T
)

tr
(
D−1

ij (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)

− tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

tr
(
D−1

j (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)∣∣∣∣
≤ KN.

It follows that

E

∣∣∣∣A1(z1, z2) + j − 1

N2 b1(z2) tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

× tr
(
D−1

j (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)∣∣∣∣(2.16)

≤ KN1/2.

Therefore, from (2.9)–(2.16) we can write

tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

×
[
1 + j − 1

N2 b1(z1)b1(z2) tr
(
D−1

j (z2)T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)]

= − tr
((

z1I − N − 1

N
b1(z1)T

)−1

T D−1
j (z2)T

)
+ A4(z1, z2),

where

E|A4(z1, z2)| ≤ KN1/2.
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Using the expression for D−1
j (z2) in (2.9) and (2.11)–(2.13) we find that

tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

×
[
1 − j − 1

N2 b1(z1)b1(z2)

× tr
((

z2I − N − 1

N
b1(z2)T

)−1

T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)]

= tr
((

z2I − N − 1

N
b1(z2)T

)−1

T

(
z1I − N − 1

N
b1(z1)T

)−1

T

)
+ A5(z1, z2),

where

E|A5(z1, z2)| ≤ KN1/2.

From (2.2) we have

|b1(z) − bn(z)| ≤ KN−1.

From (4.3) of Bai and Silverstein (1998) we have

|bn(z) − Eβ1(z)| ≤ KN−1/2.

From the formula

mn = − 1

zN

N∑
j=1

βj (z)

[(2.2) of Silverstein (1995)] we get Eβ1(z) = −zEmn(z). Section 5 of Bai and
Silverstein (1998) proves that

|Emn(z) − m0
n(z)| ≤ KN−1.

Therefore we have

|b1(z) + zm0
n(z)| ≤ KN−1/2,(2.17)

so that we can write

tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

×
[
1 − j − 1

N2 m0
n(z1)m

0
n(z2)

(2.18)

× tr
((

I + m0
n(z2)T

)−1
T
(
I + m0

n(z1)T
)−1

T
)]

= 1

z1z2
tr
((

I + m0
n(z2)T

)−1
T
(
I + m0

n(z1)T
)−1

T
) + A6(z1, z2),
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where

E|A6(z1, z2)| ≤ KN1/2.

Rewrite (2.18) as

tr
(
Ej

(
D−1

j (z1)
)
T D−1

j (z2)T
)

×
[
1 − j − 1

N
cnm

0
n(z1)m

0
n(z2)

∫
t2 dHn(t)

(1 + tm0
n(z1))(1 + tm0

n(z2))

]

= Ncn

z1z2

∫
t2 dHn(t)

(1 + tm0
n(z1))(1 + tm0

n(z2))
+ A6(z1, z2).

Using (3.9) and (3.16) in Bai and Silverstein (1998) we find∣∣∣∣cnm
0
n(z1)m

0
n(z2)

∫
t2 dHn(t)

(1 + tm0
n(z1))(1 + tm0

n(z2))

∣∣∣∣(2.19)

=
∣∣∣∣cn

[∫
t2 dHn(t)

(1 + tm0
n(z1))(1 + tm0

n(z2))

]

×
[(

−z1 + cn

∫
t dHn(t)

1 + tm0
n(z1)

)(
−z2 + cn

∫
t dHn(t)

1 + tm0
n(z2)

)]−1∣∣∣∣
≤

(
cn

∫
t2 dHn(t)

|1 + tm0
n(z1)|2

∣∣∣∣−z1 + cn

∫
t dHn(t)

1 + tm0
n(z1)

∣∣∣∣−2)1/2

×
(
cn

∫
t2 dHn(t)

|1 + tm0
n(z2)|2

∣∣∣∣−z2 + cn

∫
t dHn(t)

1 + tm0
n(z2)

∣∣∣∣−2)1/2

=
((

	m0
n(z1)cn

∫
t2 dHn(t)

|1 + tm0
n(z1)|2

)

×
(
	 z1 + 	m0

n(z1)cn

∫
t2 dHn(t)

|1 + tm0
n(z1)|2

)−1)1/2

×
((

	m0
n(z2)cn

∫
t2 dHn(t)

|1 + tm0
n(z2)|2

)

×
(
	 z2 + 	m0

n(z2)cn

∫
t2 dHn(t)

|1 + tm0
n(z2)|2

)−1)1/2

< 1

since

	 z

(
	m0

n(z)cn

∫
t2 dHn(t)

|1 + tm0
n(z)|2

)−1

is bounded away from 0. Therefore using (2.17) and letting an(z1, z2) denote
the expression inside the absolute value sign in (2.19) we find that (2.8) can be
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written as

an(z1, z2)
1

N

N∑
j=1

1

1 − ((j − 1)/N)an(z1, z2)
+ A7(z1, z2),

where

E|A7(z1, z2)| ≤ KN−1/2.

We see then that

(2.8)
i.p.→ a(z1, z2)

∫ 1

0

1

1 − ta(z1, z2)
dt =

∫ a(z1,z2)

0

1

1 − z
dz

where

a(z1, z2) = cm(z1)m(z2)

∫
t2 dH(t)

(1 + tm(z1))(1 + tm(z2))

= m(z1)m(z2)

m(z2) − m(z1)

(
c

∫
t dH(t)

1 + tm(z1)
− c

∫
t dH(t)

1 + tm(z2)

)

= 1 + m(z1)m(z2)(z1 − z2)

m(z2) − m(z1)
.

Thus the i.p. limit of (2.4) under the CG case is

∂2

∂z2 ∂z1

∫ a(z1,z2)

0

1

1 − z
dz

= ∂

∂z2

(
∂a(z1, z2)/∂z1

1 − a(z1, z2)

)

= ∂

∂z2

[
(m(z2) − m(z1))(m

′(z1)m(z2)(z1 − z2) + m(z1)m(z2))

(m(z2) − m(z1))
2

+ m(z1)m(z2)(z1 − z2)m
′(z1)

(m(z2) − m(z1))2

]

× m(z2) − m(z1)

m(z1)m(z2)(z2 − z1)

= − ∂

∂z2

(
m′(z1)

m(z1)
+ 1

z1 − z2
+ m′(z1)

m(z2) − m(z1)

)

= m′(z1)m
′(z2)

(m(z2) − m(z1))2
− 1

(z1 − z2)2

which is (1.13).
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3. Tightness of M1
n(z). We proceed to prove tightness of the sequence of

random functions M̂ 1
n (z) for z ∈ C defined by (1.11). We will use Theorem 12.3

[Billingsley (1968), page 96]. It is easy to verify from the proof of the Arzela–
Ascoli theorem [Billingsley (1968), page 221] that condition (i) of Theorem 12.3
can be replaced with the assumption of tightness at any point in [0,1]. From (2.5)
we see that this condition is satisfied. We will verify condition (ii) of Theorem 12.3
by proving the moment condition (12.51) of Billingsley (1968). We will show

sup
n;z1,z2∈Cn

E|M1
n(z1) − M1

n(z2)|2
|z1 − z2|2

is finite.
We claim that moments of ‖D−1(z)‖, ‖D−1

j (z)‖ and ‖D−1
ij (z)‖ are bounded in

n and z ∈ Cn. This is clearly true for z ∈ Cu and for z ∈ Cl if xl < 0. For z ∈ Cr or,
if xl > 0, z ∈ Cl , we use (1.9) and (1.10) on, for example B(1) = Bn − r1r

∗
1 , to get

E‖D−1
j (z)‖p ≤ K1 + v−pP

(∥∥B(1)

∥∥ ≥ ηr or λ
B(1)

min ≤ ηl

)
≤ K1 + K2n

pε−pn−� ≤ K

for suitably large �. Here, ηr is any fixed number between lim supn ‖T ‖(1 + √
c )2

and xr , and, if xl > 0, ηl is any fixed number between xl and lim infn λT
min(1 −√

c )2 (take ηl < 0 if xl < 0). Therefore for any positive p,

max
(
E‖D−1(z)‖p,E‖D−1

j (z)‖p,E‖D−1
ij (z)‖p) ≤ Kp.(3.1)

We can use the above argument to extend (2.3). Using (1.8) and (2.3) we get∣∣∣∣E(
a(v)

q∏
l=1

(
r∗

1 Bl(v)r1 − N−1 tr T Bl(v)
))∣∣∣∣

(3.2)
≤ KN−(1∧q)δ(2q−4)∨0

n , q ≥ 0,

where now the matrices Bl(v) are independent of r1 and

max
(|a(v)|,‖Bl(v)‖) ≤ K

(
1 + nsI

(‖Bn‖ ≥ ηr or λB̃
min ≤ ηl

))
for some positive s, with B̃ being Bn or Bn with one or two of the rj ’s removed.

We would like to inform the reader that in applications of (3.2), a(v) is
a product of factors of the form β1(z) or r∗

1 A(z)r1 and A is a product of one
or several D−1

1 (z)D−1
1 (zj ), j = 1,2 or similarly defined D−1 matrices. The

matrices Bl also have this form. For example, we have |r∗
1 D−1

1 (z1)D
−1
1 (z2)r1| ≤

|r1|2‖D−1
1 (z1)D

−1
1 (z2)‖ ≤ K2ηr + |z|n3+2αI (‖Bn‖ ≥ ηr or λ

B(1)

min ≤ ηl), where
K can be taken to be max((xr − ηr )

−1, (ηl − xl)
−1, v−1

0 ), and where we have
used (1.10) and the fact that |r1|2 ≤ ηr if ‖Bn‖ < ηr and |r1|2 ≤ n otherwise.
We have ‖Bl‖ obviously satisfying this condition. We also have β1(z) satisfying
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this condition since from (3.3) (see below) |β1(z)| = |1 − r∗
1 D−1r1| ≤ 1 + Kηr +

|z|n2+αI (‖Bn‖ ≥ ηr or λ
Bn

min ≤ ηl). In the sequel, we shall freely use (3.2) without
verifying these conditions, even similarly defined βj functions and A, B matrices.

We have

D−1(z) − D−1
j (z) = −D−1

j (z)rj r
∗
j D−1

j (z)

1 + r∗
j D−1

j (z)rj
(3.3)

= −βj(z)D
−1
j (z)rjr

∗
j D−1

j (z).

Let

γj (z) = r∗
j D−1

j (z)rj − N−1E
(
tr
(
D−1

j (z)T
))

.

We first derive bounds on the moments of γj (z) and εj (z). Using (3.2) we have

E|εj (z)|p ≤ KpN−1δ2p−4
n p even.(3.4)

It should be noted that constants obtained do not depend on z ∈ Cn.
Using Lemma 2.1, (3.2), and Hölder’s inequality, we have, for all even p,

E|γj (z) − εj (z)|p = E|γ1(z) − ε1(z)|p

= E

∣∣∣∣∣ 1

N

N∑
j=2

Ej tr T D1(z)
−1 − Ej−1 trT D−1

1 (z)

∣∣∣∣∣
p

= E

∣∣∣∣∣ 1

N

N∑
j=2

Ej tr T
(
D−1

1 (z) − D−1
1j (z)

)

− Ej−1 trT
(
D−1

1 (z) − D−1
1j (z)

)∣∣∣∣∣
p

= 1

Np
E

∣∣∣∣∣
N∑

j=2

(Ej − Ej−1)β1j (z)r
∗
j D−1

1j (z)T D−1
1j (z)rj

∣∣∣∣∣
p

≤ Kp

Np
E

(
N∑

j=2

∣∣(Ej − Ej−1)β1j (z)r
∗
j D−1

1j (z)T D−1
1j (z)rj

∣∣2)p/2

≤ Kp

N1+p/2

N∑
j=2

E
∣∣(Ej − Ej−1)β1j (z)r

∗
j D−1

1j (z)T D−1
1j (z)rj

∣∣p
≤ Kp

Np/2
E
∣∣β12(z)r

∗
2 D−1

12 (z)T D−1
12 (z)r2

∣∣p
≤ Kp

Np/2 .
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Therefore

E|γj |p ≤ KpN−1δ2p−4
n , p ≥ 2.(3.5)

We next prove that bn(z) is bounded for all n. From (3.2) we find, for any p ≥ 1,

E|β1(z)|p ≤ Kp.(3.6)

Since bn = β1(z) + β1(z)bn(z)γ1(z) we get from (3.5), (3.6)

|bn(z)| = |Eβ1(z) + Eβ1(z)bn(z)γ1(z)| ≤ K1 + K2|bn(z)|N−1/2.

Thus for all n large,

|bn(z)| ≤ K1

1 − K2N−1/2

and subsequently bn(z) is bounded for all n.
From (3.3) we have

D−1(z1)D
−1(z2) − D−1

j (z1)D
−1
j (z2)

= (
D−1(z1) − D−1

j (z1)
)(

D−1(z2) − D−1
j (z2)

)
+ (

D−1(z1) − D−1
j (z1)

)
D−1

j (z2)

+ D−1
j (z1)

(
D−1(z2) − D−1

j (z2)
)

= βj(z1)βj (z2)D
−1
j (z1)rj r

∗
j D−1

j (z1)D
−1
j (z2)rj r

∗
j D−1

j (z2)

− βj(z1)D
−1
j (z1)rj r

∗
j D−1

j (z1)D
−1
j (z2)

− βj(z2)D
−1
j (z1)D

−1
j (z2)rj r

∗
j D−1

j (z2).

Therefore

tr
(
D−1(z1)D

−1(z2) − D−1
j (z1)D

−1
j (z2)

)
= βj(z1)βj (z2)

(
r∗
j D−1

j (z1)D
−1
j (z2)rj

)2(3.7)

− βj (z1)r
∗
j D−2

j (z1)D
−1
j (z2)rj − βj (z2)r

∗
j D−2

j (z2)D
−1
j (z1)rj .

We write

mn(z1) − mn(z2) = 1

n
tr
(
D−1(z1) − D−1(z2)

)
= 1

n
(z1 − z2) trD−1(z1)D

−1(z2).
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Therefore, from (3.7) we have

n
mn(z1) − mn(z2) − E(mn(z1) − mn(z2))

z1 − z2

=
N∑

j=1

(Ej − Ej−1) trD−1(z1)D
−1(z2)

=
N∑

j=1

(Ej − Ej−1)βj (z1)βj (z2)
(
r∗
j D−1

j (z1)D
−1
j (z2)rj

)2(3.8)

−
N∑

j=1

(Ej − Ej−1)βj (z1)r
∗
j D−2

j (z1)D
−1
j (z2)rj

−
N∑

j=1

(Ej − Ej−1)βj (z2)r
∗
j D−2

j (z2)D
−1
j (z1)rj .

Our goal is to show that the absolute second moment of (3.8) is bounded. We
begin with the second sum in (3.8). We have

N∑
j=1

(Ej − Ej−1)βj (z1)r
∗
j D−2

j (z1)D
−1
j (z2)rj

=
N∑

j=1

(Ej − Ej−1)
(
bn(z1)r

∗
j D−2

j (z1)D
−1
j (z2)rj

− βj(z1)bn(z1)r
∗
j D−2

j (z1)D
−1
j (z2)rjγj (z1)

)
= bn(z1)

N∑
j=1

Ej

(
r∗
j D−2

j (z1)D
−1
j (z2)rj

− N−1 tr T 1/2D−2
j (z1)D

−1
j (z2)T

1/2)
− bn(z1)

N∑
j=1

(Ej − Ej−1)βj (z1)r
∗
j D−2

j (z1)D
−1
j (z2)rj γj (z1)

≡ bn(z1)W1 − bn(z1)W2.

Using (3.2) we have

E|W1|2 =
N∑

j=1

E
∣∣Ej

(
r∗
j D−2

j (z1)D
−1
j (z2)rj − N−1 trT 1/2D−2

j (z1)D
−1
j (z2)T

1/2)∣∣2
≤ K.
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Using (3.5), and the bounds for β1(z1) and r∗
1 D−2

1 (z1)D
−1
1 (z2)r1 given in the

remark to (3.2), we have

E|W2|2 =
N∑

j=1

E
∣∣(Ej − Ej−1)βj (z1)r

∗
j D−2

j (z1)D
−1
j (z2)rjγj (z1)

∣∣2
≤ KN

[
E|γ1(z1)|2 + v−10n2P

(‖Bn‖ > ηr or λ
B(1)

min < ηl

)]
≤ K.

This argument of course handles the third sum in (3.8).
For the first sum in (3.8) we have
N∑

j=1

(Ej − Ej−1)βj (z1)βj (z2)
(
r∗
j D−1

j (z1)D
−1
j (z2)rj

)2

= bn(z1)bn(z2)

N∑
j=1

(Ej − Ej−1)
[(

r∗
j D−1

j (z1)D
−1
j (z2)rj

)2

− (
N−1 tr T 1/2D−1

j (z1)D
−1
j (z2)T

1/2)2]
− bn(z2)

N∑
j=1

(Ej − Ej−1)βj (z1)βj (z2)
(
r∗
j D−1

j (z1)D
−1
j (z2)rj

)2
γj (z2)

− bn(z1)bn(z2)

N∑
j=1

(Ej − Ej−1)βj (z1)
(
r∗
j D−1

j (z1)D
−1
j (z2)rj

)2
γj (z1)

= bn(z1)bn(z2)Y1 − bn(z2)Y2 − bn(z1)bn(z2)Y3.

Both Y2 and Y3 are handled the same way as W2 above. Using (3.2) we have

E|Y1|2 ≤ NE
∣∣(r∗

1 D−1
1 (z1)D

−1
1 (z2)r1

)2

− (
N−1 trT 1/2D−1

1 (z1)D
−1
1 (z2)T

1/2)2∣∣2
≤ N

(
2E

∣∣(r∗
1 D−1

1 (z1)D
−1
1 (z2)r1

− N−1 tr T 1/2D−1
1 (z1)D

−1
1 (z2)T

1/2)∣∣4
+ 4(nN−1)2E

∣∣(r∗
1 D−1

1 (z1)D
−1
1 (z2)r1

− N−1 tr T 1/2D−1
1 (z1)D

−1
1 (z2)T

1/2)
× ‖D−1

1 (z1)D
−1
1 (z2)‖

∣∣2)
≤ K.



584 Z. D. BAI AND J. W. SILVERSTEIN

Therefore, condition (ii) of Theorem 12.3 in Billingsley (1968) is satisfied, and
we conclude that {M̂ 1

n (z)} is tight.

4. Convergence of M2
n(z). The proof of Lemma 1.1 is complete with the

verification of {M2
n(z)} for z ∈ Cn to be bounded and form an equicontinuous

family, and convergence to (1.12) under the assumptions in (ii) of Theorem 1.1
and to zero under those in (iii).

In order to simplify the exposition, we let C1 = Cu or Cu ∪ Cl if xl < 0, and
C2 = C2(n) = Cr or Cr ∪ Cl if xl > 0. We begin with proving

sup
z∈Cn

|Emn(z) − m(z)| → 0 as n → ∞.(4.1)

Since FB n
D→ F c,H almost surely, we get from d.c.t. EFB n

D→ F c,H . It is easy
to verify that EFB n is a proper c.d.f. Since, as z ranges in C1, the functions
(λ − z)−1 in λ ∈ [0,∞) form a bounded, equicontinuous family, it follows [see,
e.g., Billingsley (1968), Problem 8, page 17] that

sup
z∈C1

|Emn(z) − m(z)| → 0.

For z ∈ C2 we write (ηl, ηr defined as in the previous section)

Emn(z) − m(z) =
∫ 1

λ − z
I[ηl,ηr ](λ) d

(
EFB n(λ) − F c,H (λ)

)
+ E

∫ 1

λ − z
I[ηl,ηr ]c (λ) dFB n(λ).

As above, the first term converges uniformly to zero. For the second term we
use (1.9) with � ≥ 2 to get

sup
z∈C2

∣∣∣∣E ∫ 1

λ − z
I[ηl,ηr ]c (λ) dFB n(λ)

∣∣∣∣
≤ (εn/n)−1P

(‖Bn‖ ≥ ηr or λ
Bn

min ≤ ηl

)
≤ Knε−1n−� → 0.

Thus (4.1) holds.

From the fact that F cn,Hn
D→ F c,H [see Bai and Silverstein (1998), be-

low (3.10)] along with the fact that C lies outside the support of F c,H , it is straight-
forward to verify that

sup
z∈C

|m0
n(z) − m(z)| → 0 as n → ∞.(4.2)

We now show that

sup
nz∈Cn

∥∥(Emn(z)T + I
)−1∥∥ < ∞.(4.3)
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From Lemma 2.11 of Bai and Silverstein (1998), ‖(Emn(z)T + I )−1‖ is
bounded by max(2,4v−1

0 ) on Cu. Let x = xl or xr . Since x is outside the support of
F c,H it follows from Theorem 4.1 of Silverstein and Choi (1995) that for any t in
the support of H m(x)t + 1 
= 0. Choose any t0 in the support of H . Since m(z) is
continuous on C0 ≡ {x + iv :v ∈ [0, v0]}, there exist positive constants δ1 and µ0
such that

inf
z∈C0

|m(z)t0 + 1| > δ1 and sup
z∈C0

|m(z)| < µ0.

Using Hn
D→ H and (4.1), for all large n, there exists an eigenvalue λT of T such

that |λT − t0| < δ1/4µ0 and supz∈Cl∪Cr
|Emn(z) − m(z)| < δ1/4. Therefore, we

have

inf
z∈Cl∪Cr

|Emn(z)λ
T + 1| > δ1/2,

which completes the proof of (4.3).
Next we show the existence of ξ ∈ (0,1) such that for all n large

sup
z∈Cn

∣∣∣∣cnEmn(z)
2
∫

t2

(1 + tEmn(z))
2 dHn(t)

∣∣∣∣ < ξ.(4.4)

From the identity (1.1) of Bai and Silverstein (1998),

m(z) =
(
−z + c

∫
t

1 + tm(z)
dH(t)

)−1

valid for z = x + iv outside the support of F c,H ; we find

	m(z) =
(
v + 	m(z)c

∫
t2

|1 + tm(z)|2 dH(t)

)

×
∣∣∣∣−z + c

∫
t

1 + tm(z)
dH(t)

∣∣∣∣−2

.

Therefore∣∣∣∣cm(z)2
∫

t2

(1 + tm(z))2
dH(t)

∣∣∣∣
≤

(
c

∫
t2

|1 + tm(z)|2 dH(t)

)∣∣∣∣−z + c

∫
t

1 + tm(z)
dH(t)

∣∣∣∣−2

=
(
	m(z)c

∫
t2

|1 + tm(z)|2 dH(t)

)

×
[
v + 	m(z)c

∫
t2

|1 + tm(z)|2 dH(t)

]−1

(4.5)
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=
(
c

∫
1

|x − z|2 dF c,H (x)

∫
t2

|1 + tm(z)|2 dH(t)

)

×
[
1 + c

∫ 1

|x − z|2 dF c,H (x)

∫
t2

|1 + tm(z)|2 dH(t)

]−1

< 1,

for all z ∈ C. By continuity, we have the existence of ξ1 < 1 such that

sup
z∈C

∣∣∣∣cm(z)2
∫

t2

(1 + tm(z))2 dH(t)

∣∣∣∣ < ξ1.(4.6)

Therefore, using (4.1), (4.4) follows.
We proceed with some improved bounds on quantities appearing earlier.
Let M be nonrandom n × n. Then, using (3.2) and the argument used to derive

the bound on E|W2|, we find

E| trD−1M − E trD−1M|2

= E

∣∣∣∣∣
N∑

j=1

Ej trD−1M − Ej−1 trD−1M

∣∣∣∣∣
2

= E

∣∣∣∣∣
N∑

j=1

(Ej − Ej−1) tr(D−1 − D−1
j )M

∣∣∣∣∣
2

=
N∑

j=1

E
∣∣(Ej − Ej−1)βj r

∗
j D−1

j MD−1
j rj

∣∣2(4.7)

≤ 2
N∑

j=1

E
∣∣[βj (r

∗
j D−1

j MD−1
j rj ) − N−1 tr(T D−1

j MD−1
j )

∣∣2
+ E|βj − β̄j |2|N−1 tr(T D−1

j MD−1
j )|2]

≤ K‖M‖2.

The same argument holds for D−1
1 so we also have

E| trD−1
1 M − E trD−1

1 M|2 ≤ K‖M‖2.(4.8)

Our next task is to investigate the limiting behavior of

N

(
cn

∫
dHn(t)

1 + tEmn

+ zcnEmn

)

= NEβ1

[
r∗

1 D−1
1 (EmnT + I )−1r1 − 1

N
E tr(EmnT + I )−1T D−1

]
for z ∈ Cn [see (5.2) in Bai and Silverstein (1998)]. Throughout the following,
all bounds, including O(·) and o(·) expressions, and convergence statements hold
uniformly for z ∈ Cn.
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We have

E tr(EmnT + I )−1T D−1
1 − E tr(EmnT + I )−1T D−1

= Eβ1 tr(EmnT + I )−1T D−1
1 r1r

∗
1 D−1

1(4.9)

= bnE(1 − β1γ1)r
∗
1 D−1

1 (EmnT + I )−1T D−1
1 r1.

From (3.2), (3.5) and (4.3) we get∣∣Eβ1γ1r
∗
1 D−1

1 (EmnT + I )−1T D−1
1 r1

∣∣ ≤ KN−1.

Therefore ∣∣(4.9) − N−1bnE trD−1
1 (EmnT + I )−1T D−1

1 T
∣∣ ≤ KN−1.

Since β1 = bn − b2
nγ1 + β1b

2
nγ

2
1 we have

NEβ1r
∗
1 D−1

1 (EmnT + I )−1r1 − Eβ1E tr(EmnT + I )−1T D−1
1

= −b2
nNEγ1r

∗
1 D−1

1 (EmnT + I )−1r1

+ b2
n

(
NEβ1γ

2
1 r∗

1 D−1
1 (EmnT + I )−1r1

− (Eβ1γ
2
1 )E tr(EmnT + I )−1T D−1

1

)
= −b2

nNEγ1r
∗
1 D−1

1 (EmnT + I )−1r1

+ b2
n

(
E
[
Nβ1γ

2
1 r∗

1 D−1
1 (EmnT + I )−1r1

− β1γ
2
1 tr D−1

1 (EmnT + I )−1T
])

+ b2
n Cov

(
β1γ

2
1 , trD−1

1 (EmnT + I )−1T
)

[Cov(X,Y ) = EXY − EXEY ]. Using (3.2), (3.5) and (4.3), we have∣∣E[
Nβ1γ

2
1 r∗

1 D−1
1 (EmnT + I )−1r1 − β1γ

2
1 trD−1

1 (EmnT + I )−1T
]∣∣ ≤ Kδ2

n.

Using (3.5), (3.6), (4.3) and (4.8) we have∣∣Cov
(
β1γ

2
1 , trD−1

1 (EmnT + I )−1T
)∣∣

≤ (E|β1|4)1/4(E
∣∣γ1|8)1/4

× (
E
∣∣ trD−1

1 (EmnT + I )−1T − E trD−1
1 (EmnT + I )−1T

∣∣2)1/2

≤ Kδ3
nN

−1/4.

Since β1 = bn − bnβ1γ1, we get from (3.5) and (3.6) Eβ1 = bn + O(N−1/2).



588 Z. D. BAI AND J. W. SILVERSTEIN

Write

ENγ1r
∗
1 D−1

1 (EmnT + I )−1r1

= NE
[
(r∗

1 D−1
1 r1 − N−1 trD−1

1 T )

× (
r∗

1 D−1
1 (EmnT + I )−1r1 − N−1 tr D−1

1 (EmnT + I )−1T
)]

+ N−1 Cov
(
trD−1

1 T, tr D−1
1 (EmnT + I )−1T

)
.

From (4.8) we see the second term above is O(N−1). Therefore, we arrive at

N

(
cn

∫
dHn(t)

1 + tEmn

+ zcnEmn

)
= b2

nN
−1E trD−1

1 (EmnT + I )−1T D−1
1 T

− b2
nNE

[
(r∗

1 D−1
1 r1 − N−1 trD−1

1 T )(4.10)

× (
r∗

1 D−1
1 (EmnT + I )−1r1

− N−1 trD−1
1 (EmnT + I )−1T

)]
+ o(1).

Using (1.15) on (4.10) and arguing the same way (1.15) is used in Section 2
[below (2.7)], we see that under the assumptions in (iii) of Theorem 1.1, the CG
case

N

(
cn

∫
dHn(t)

1 + tEmn

+ zcnEmn

)
→ 0 as n → ∞,(4.11)

while under the assumptions in (ii) of Theorem 1.1, the RG case

N

(
cn

∫
dHn(t)

1 + tEmn

+ zcnEmn

)
= −b2

nN
−1E trD−1

1 (EmnT + I )−1T D−1
1 T + o(1).

Let An(z) = cn

∫ dHn(t)
1+tEmn(z)

+ zcnEmn(z). Using the identity

Emn(z) = −(1 − cn)

z
+ cnEmn

we have

An(z) = cn

∫
dHn(t)

1 + tEmn(z)
− cn + zEmn(z) + 1

= −Emn(z)

(
−z − 1

Emn(z)
+ cn

∫
t dHn(t)

1 + tEmn(z)

)
.
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It follows that

Emn(z) =
[
−z + cn

∫
t dHn(t)

1 + tEmn(z)
+ An/Emn(z)

]−1

.

From this, together with the analogous identity (4.4) we get

Emn(z) − m0
n(z)

(4.12)

= −m0
nAn

[
1 − cnEmnm

0
n

∫
t2 dHn(t)

(1 + tEmn)(1 + tm0
n)

]−1

.

We see from (4.4) and the corresponding bound involving m0
n(z), that the

denominator of (4.12) is bounded away from zero.
Therefore from (4.11), in the CG case

sup
z∈Cn

M2
n(z) → 0 as n → ∞.

We now find the limit of N−1E trD−1
1 (EmnT + I )−1T D−1

1 T . Applications of
(3.1)–(3.3), (3.6) and (4.3) show that both

E trD−1
1 (EmnT + I )−1T D−1

1 T − E trD−1(EmnT + I )−1T D−1
1 T

and

E trD−1(EmnT + I )−1T D−1
1 T − E trD−1(EmnT + I )−1T D−1T

are bounded. Therefore it is sufficient to consider

N−1E trD−1(EmnT + I )−1T D−1T .

Write

D(z) + zI − bn(z)T =
N∑

j=1

rj r
∗
j − bn(z)T .

It is straightforward to verify that zI − bn(z)T is nonsingular. Taking inverses we
get

D−1(z) = −(
zI − bn(z)T

)−1

+
N∑

j=1

βj(z)
(
zI − bn(z)T

)−1
rj r

∗
j Dj (z)

(4.13)
− bn(z)

(
zI − bn(z)T

)−1
T D−1(z)

= −(
zI − bn(z)T

)−1 + bn(z)A(z) + B(z) + C(z),
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where

A(z) =
N∑

j=1

(
zI − bn(z)T

)−1
(rj r

∗
j − N−1T )D−1

j (z),

B(z) =
N∑

j=1

(
βj(z) − bn(z)

)(
zI − bn(z)T

)−1
rj r

∗
j D−1

j (z)

and

C(z) = N−1bn(z)
(
zI − bn(z)T

)−1
T

N∑
j=1

(
D−1

j (z) − D−1(z)
)

= N−1bn(z)
(
zI − bn(z)T

)−1
T

N∑
j=1

βj(z)D
−1
j (z)rjr

∗
j D−1

j (z).

Since Eβ1 = −zEmn and Eβ1 = bn + O(N−1) we have bn → −zm. From (4.3) it
follows that ‖(zI − bn(z)T )−1‖ is bounded.

We have by (3.5) and (3.6)

E|β1 − bn|2 = |bn|2E|β1γ1|2 ≤ KN−1.(4.14)

Let M be n × n. From (3.1), (3.2), (3.6) and (4.14) we get

|N−1E trB(z)M| ≤ K(E|β1 − bn|2)1/2(E|r∗
1 r1‖D−1

1 M‖|2)1/2

(4.15)
≤ KN−1/2(E‖M‖4)1/4

and

|N−1E trC(z)M| ≤ KN−1E|β1|r∗
1 r1‖D−1

1 ‖2‖M‖
(4.16)

≤ KN−1(E‖M‖2)1/2.

For the following M , n × n, is nonrandom, bounded in norm. Write

trA(z)T D−1M = A1(z) + A2(z) + A3(z),(4.17)

where

A1(z) = tr
N∑

j=1

(zI − bnT )−1rj r
∗
j D−1

j T (D−1 − D−1
j )M,

A2(z) = tr
N∑

j=1

(zI − bnT )−1(rj r
∗
j D−1

j T D−1
j − N−1T D−1

j T D−1
j )M

and

A3(z) = tr
N∑

j=1

(zI − bnT )−1N−1T D−1
j T (D−1

j − D−1)M.
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We have EA2(z) = 0 and similarly to (4.16) we have

|EN−1A3(z)| ≤ KN−1.(4.18)

Using (3.2) and (4.14) we get

EN−1A1(z) = −Eβ1r
∗
1 D−1

1 T D−1
1 r1r

∗
1 D−1

1 M(zI − bnT )−1r1

= −bnE(N−1 trD−1
1 T D−1

1 T )
(
N−1 trD−1

1 M(zI − bnT )−1T
) + o(1)

= −bnE(N−1 trD−1T D−1T )
(
N−1 trD−1M(zI − bnT )−1T

) + o(1).

Using (3.1) and (4.7) we find∣∣Cov
(
N−1 tr D−1T D−1T,N−1 trD−1M(zI − bnT )−1T

)∣∣
≤ (E|N−1 tr D−1T D−1T |2)1/2N−1

× (
E| trD−1M(zI − bnT )−1T − ED−1M(zI − bnT )−1T |2)1/2

≤ KN−1.

Therefore

EN−1A1(z)

= −bn(EN−1 trD−1T D−1T )(4.19)

× (
EN−1 tr D−1M(zI − bnT )−1T

)+ o(1).

From (4.13), (4.15) and (4.16) we get

EN−1 trD−1T (zI − bnT )−1T

= N−1 tr
(−(zI − bnT )−1 + EB(z) + EC(z)

)
T (zI − bnT )−1T(4.20)

= −cn

z2

∫
t2 dHn(t)

(1 + tEmn)
2 + o(1).

Similarly,

EN−1 trD−1(EmnT + I )−1T (zI − bnT )−1T
(4.21)

= −cn

z2

∫
t2 dHn(t)

(1 + tEmn)
3 + o(1).

Using (4.13) and (4.15)–(4.20) we get

EN−1 trD−1T D−1T

= −EN−1D−1T (zI − bnT )−1T

− b2
n(EN−1 tr D−1T D−1T )

(
EN−1 trD−1T (zI − bnT )−1T

) + o(1)

= cn

z2

∫
t2 dHn(t)

(1 + tEmn)
2

(
1 + z2Em2

nEN−1 trD−1T D−1T
) + o(1).
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Therefore

EN−1 trD−1T D−1T
(4.22)

=
[
cn

z2

∫
t2 dHn(t)

(1 + tEmn)
2

][
1 − cn

∫
Em2

nt
2 dHn(t)

(1 + tEmn)
2

]−1

+ o(1).

Finally we have from (4.13)–(4.19), (4.21) and (4.22)

N−1E trD−1(EmnT + I )−1T D−1T

= −EN−1D−1(EmnT + I )−1T (zI − bnT )−1T

− b2
n(EN−1 trD−1T D−1T )

× (
EN−1 tr D−1(EmnT + I )−1T (zI − bnT )−1T

)+ o(1)

= cn

z2

∫
t2 dHn(t)

(1 + tEmn)
3

×
(
1 + z2Em2

n

[
cn

z2

∫
t2 dHn(t)

(1 + tEmn)
2

][
1 − cn

∫
Em2

nt
2 dHn(t)

(1 + tEmn)
2

]−1)
+o(1)

=
[
cn

z2

∫
t2 dHn(t)

(1 + tEmn)
3

][
1 − cn

∫
Em2

nt
2 dHn(t)

(1 + tEmn)
2

]−1

+ o(1).

Therefore, from (4.12) we conclude that in the RG case

sup
z∈Cn

M2
n(z) → c

∫
m(z)3t2 dH(t)

(1 + tm(z))3

(
1 − c

∫
m(z)2t2 dH(t)

(1 + tm(z))2

)−2

as n → ∞,

which is (1.12).
Finally, for general standardized X11, we see that in light of the above work, in

order to show {M2
n(z)} for z ∈ Cn is bounded and equicontinuous, it is sufficient to

prove {f ′
n(z)}, where

fn(z) ≡ NE
[
(r∗

1 D−1
1 r1 − N−1 tr D−1

1 T )

× (
r∗

1 D−1
1 (EmnT + I )−1r1 − N−1 trD−1

1 (EmnT + I )−1T
)]

is bounded. Using (2.3) we find

|f ′(z)| ≤ KN−1
((

E(tr D−2
1 T D1

−2
T )

× E
(
tr D−1

1 (EmnT + I )−1T (EmnT + I )−1D1
−1

T
))1/2

+ (
E(trD−1

1 T D1
−1

T )

× E
(
trD−2

1 (EmnT + I )−1T (EmnT + I )−1D1
−2

T
))1/2
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+ |Em′
n|
(
E(trD−1

1 T D1
−1

T )

× E
(
trD−1

1 (EmnT + I )−2T 3

× (EmnT + I )−2D1
−1

T
))1/2

)
.

Using the same argument resulting in (3.1) it is a simple matter to conclude that
Em′

n(z) is bounded for z ∈ Cn. All the remaining expected values are O(N) due
to (3.1) and (4.3), and we are done.

5. Some derivations and calculations. This section contains proofs of
formulas stated in Section 1. We begin with deriving some properties of m(z).
We claim that for any bounded subset S of C,

inf
z∈S

|m(z)| > 0.(5.1)

Suppose not. Then there exists a sequence {zn} ⊂ C
+ which converges to a number

for which m(zn) → 0. From (1.2) we must have

c

∫
tm(zn)

1 + tm(zn)
dH(t) → 1.

However, because H has bounded support, the limit of the left-hand side of the
above is obviously 0. The contradiction proves our assertion.

Next, we find a lower bound on the size of the difference quotient (m(z1) −
m(z2))/(z1 − z2) for distinct z1 = x + iv1, z2 = y + iv2, v1, v2 
= 0. From (1.2) we
get

z1 − z2 = m(z1) − m(z2)

m(z1)m(z2)

(
1 − c

∫
m(z1)m(z2)t

2 dH(t)

(1 + tm(z1))(1 + tm(z2))

)
.

Therefore, from (2.19) we can write

m(z1) − m(z2)

z1 − z2

= [m(z1)m(z2)]
[
1 − c

∫
m(z1)m(z2)t

2 dH(t)

(1 + tm(z1))(1 + tm(z2))

]−1

and conclude that ∣∣∣∣m(z1) − m(z2)

z1 − z2

∣∣∣∣ ≥ 1

2
|m(z1)m(z2)|.(5.2)

We proceed to show (1.17). Choose f,g ∈ {f1, . . . , fk}. Let SF denote the
support of Fc,H , and let a 
= 0, b be such that SF is a subset of (a, b), on whose
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closure f and g are analytic. Assume the z1 contour encloses the z2 contour. Using
integration by parts twice, first with respect to z2 and then with respect to z1, we
get

RHS of (1.7) = 1

2π2

∫ ∫
f (z1)g

′(z2)

(m(z1) − m(z2))

d

dz1
m(z1) dz2 dz1

= − 1

2π2

∫ ∫
f ′(z1)g

′(z2) log
(
m(z1) − m(z2)

)
dz1 dz2

(where log is any branch of the logarithm)

= − 1

2π2

∫ ∫
f ′(z1)g

′(z2)
[
ln |m(z1) − m(z2)|

+ i arg
(
m(z1) − m(z2)

)]
dz1 dz2.

We choose the contours to be rectangles with sides parallel to the axes. The
inside rectangle intersects the real axis at a and b, and the horizontal sides are
a distance v < 1 away from the real axis. The outside rectangle intersects the real
axis at a − ε, b + ε (points where f and g remain analytic), with height twice that
of the inside rectangle. We let v → 0.

We need only consider the logarithm term and show its convergence, since the
real part of the arg term disappears (f and g are real valued on R) in the limit, and
the sum (1.7) is real. Therefore the arg term also approaches zero.

We split up the log integral into 16 double integrals, each one involving a side
from each of the two rectangles. We argue that any portion of the integral involving
a vertical side can be neglected. This follows from (5.1), (5.2) and the fact that
z1 and z2 remain a positive distance apart, so that |m(z1) − m(z2)| is bounded
away from zero. Moreover, at least one of |m(z1)|, |m(z2)| is bounded, while the
other is bounded by 1/v, so the integral is bounded by Kv ln v−1 → 0.

Therefore we arrive at

− 1

2π2

∫ b

a

∫ b+ε

a−ε

[(
f ′(x + i2v)g′(y + iv) + f̄ ′(x + i2v)ḡ′(y + iv)

)
× ln |m(x + i2v) − m(y + iv)|

− (
f ′(x + i2v)ḡ′(y + iv)(5.3)

+ f̄ ′(x + i2v)g′(y + iv)
)

× ln |m(x + i2v) − m(y + iv)|]dx dy.
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Using subscripts to denote real and imaginary parts, we find

(5.3) = − 1

π2

∫ b

a

∫ b+ε

a−ε

[(
f ′

r (x + i2v)g′
r (y + iv) − f ′

i (x + i2v)g′
i (y + iv)

)
× ln |m(x + i2v) − m(y + iv)|

− (
f ′

r (x + i2v)g′
r (y + iv)

+ f ′
i (x + i2v)g′

i (y + iv)
)

× ln |m(x + i2v) − m(y + iv)|]dx dy

= 1

π2

∫ b

a

∫ b+ε

a−ε
f ′

r (x + i2v)g′
r (y + iv) ln

∣∣∣∣m(x + i2v) − m(y + iv)

m(x + i2v) − m(y + iv)

∣∣∣∣dx dy(5.4)

+ 1

π2

∫ b

a

∫ b+ε

a−ε
f ′

i (x + i2v)g′
i (y + iv)

× ln
∣∣(m(x + i2v) − m(y + iv)

)
(5.5)

× (
m(x + i2v) − m(y + iv)

)∣∣dx dy.

We have for any real-valued h, analytic on the bounded interval [α,β] for all v

sufficently small

sup
x∈[α,β]

|hi(x + iv)| ≤ K|v|,(5.6)

where K is a bound on |h′(z)| for z in a neighborhood of [α,β]. Using this and
(5.1), (5.2) we see that (5.5) is bounded in absolute value by Kv2 ln v−1 → 0.

For (5.4) we write

ln
∣∣∣∣m(x + i2v) − m(y + iv)

m(x + i2v) − m(y + iv)

∣∣∣∣ = 1

2
ln
(

1 + 4mi(x + i2v)mi(y + iv)

|m(x + i2v) − m(y + iv)|2
)
.(5.7)

From (5.2) we get

RHS of (5.7) ≤ 1

2
ln
(

1 + 16mi(x + i2v)mi(y + iv)

(x − y)2|m(x + i2v)m(y + iv)|2
)
.

From (5.1) we have

sup
x,y∈[a−ε,b+ε]

v∈(0,1)

mi(x + i2v)mi(y + iv)

|m(x + i2v)m(y + iv)|2 < ∞.
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Therefore, there exists a K > 0 for which the right-hand side of (5.7) is
bounded by

1

2
ln
(

1 + K

(x − y)2

)
(5.8)

for x, y ∈ [a − ε, b + ε]. It is straightforward to show that (5.8) is Lebesgue inte-
grable on bounded subsets of R2. Therefore, from (1.19) and the dominated con-
vergence theorem we conclude that (1.20) is Lebesgue integrable and that (1.17)
holds.

We now verify (1.18). From (1.2) we have

d

dz
m(z) = m2(z)

[
1 − c

∫
t2m2(z)

(1 + tm(z))2 dH(t)

]−1

.

In Silverstein and Choi (1995) it is argued that the only place where m′(z) can
possibly become unbounded are near the origin and the boundary, ∂SF , of SF . It
is a simple matter to verify

EXf = 1

4πi

∫
f (z)

d

dz
log

(
1 − c

∫
t2m2(z)

(1 + tm(z))2
dH(t)

)
dz

= − 1

4πi

∫
f ′(z) log

(
1 − c

∫
t2m2(z)

(1 + tm(z))2 dH(t)

)
dz,

where, because of (2.19), the arg term for log can be taken from (−π/2, π/2). We
choose a contour as above. From (3.17) of Bai and Silverstein (1998) there exists
a K > 0 such that for all small v,

inf
x∈R

∣∣∣∣1 − c

∫
t2m2(x + iv)

(1 + tm(x + iv))2
dH(t)

∣∣∣∣ ≥ Kv2.(5.9)

Therefore, we see the integrals on the two vertical sides are bounded by
Kv ln v−1 → 0. The integral on the two horizontal sides is equal to

1

2π

∫ b

a
f ′

i (x + iv) ln
∣∣∣∣1 − c

∫
t2m2(x + iv)

(1 + tm(x + iv))2 dH(t)

∣∣∣∣dx

(5.10)

+ 1

2π

∫ b

a
f ′

r (x + iv) arg
(

1 − c

∫
t2m2(x + iv)

(1 + tm(x + iv))2 dH(t)

)
dx.

Using (2.19), (5.6) and (5.9) we see the first term in (5.10) is bounded in absolute
value by Kv ln v−1 → 0. Since the integrand in the second term converges for
all x /∈ {0} ∪ ∂SF (a countable set) we get, therefore, (1.18) from the dominated
convergence theorem.

We now derive d(c) (c ∈ (0,1)) in (1.1), (1.21) and the variance in (1.22). The
first two rely on Poisson’s integral formula

u(z) = 1

2π

∫ 2π

0
u(eiθ )

1 − r2

1 + r2 − 2r cos(θ − φ)
dθ,(5.11)
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where u is harmonic on the unit disk in C, and z = reiφ with r ∈ [0,1). Making
the substitution x = 1 + c − 2

√
c cos θ we get

d(c) = 1

π

∫ 2π

0

sin2 θ

1 + c − 2
√

c cos θ
ln
(
1 + c − 2

√
c cos θ

)
dθ

= 1

2π

∫ 2π

0

2 sin2 θ

1 + c − 2
√

c cosθ
ln

∣∣1 − √
ceiθ

∣∣2 dθ.

It is straightforward to verify that

f (z) ≡ −(z − z−1)2(log
(
1 − √

cz
)+ √

cz
)− √

c(z − z3)

is analytic on the unit disk, and that

�f (eiθ ) = 2 sin2 θ ln
∣∣1 − √

ceiθ
∣∣2.

Therefore from (5.11) we have

d(c) = f (
√

c )

1 − c
= c − 1

c
ln(1 − c) − 1.

For (1.21) we use (1.18). From (1.2), with H(t) = I[1,∞)(t) we have for z ∈ C+

z = − 1

m(z)
+ c

1 + m(z)
.(5.12)

Solving for m(z) we find

m(z) = −(z + 1 − c) + √
(z + 1 − c)2 − 4z

2z

= −(z + 1 − c) + √
(z − 1 − c)2 − 4c

2z
,

the square roots defined to yield positive imaginary parts for z ∈ C+. As z → x ∈
[a(y), b(y)] [limits defined below (1.1)] we get

m(x) = −(x + 1 − c) + √
4c − (x − 1 − c)2 i

2x

= −(x + 1 − c) + √
(x − a(c))(b(c) − x) i

2x
.

The identity (5.12) still holds with z replaced by x and from it we get

m(x)

1 + m(x)
= 1 + xm(x)

c
,
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so that

1 − c
m2(x)

(1 + m(x))2

= 1 − 1

c

(−(x − 1 − c) + √
4c − (x − 1 − c)2 i

2

)2

=
√

4c − (x − 1 − c)2

2c

(√
4c − (x − 1 − c)2 + (x − 1 − c)i

)
.

Therefore, from (1.18)

EXf = 1

2π

∫ b(c)

a(c)
f ′(x) tan−1

(
x − 1 − c√

4c − (x − 1 − c)2

)
dx

(5.13)
= f (a(c)) + f (b(c))

4
− 1

2π

∫ b(c)

a(c)

f (x)√
4c − (x − 1 − c)2

dx.

To compute the last integral when f (x) = ln x we make the same substitution as
before, arriving at

1

4π

∫ 2π

0
ln

∣∣1 − √
ceiθ

∣∣2 dθ.

We apply (5.11) where now u(z) = ln |1 − √
cz|2, which is harmonic, and r = 0.

Therefore, the integral must be zero, and we conclude

EXln = ln(a(c)b(c))

4
= 1

c
ln(1 − c).

To derive (1.22) we use (1.16). Since the z1, z2 contours cannot enclose the
origin (because of the logarithm), neither can the resulting m1,m2 contours.
Indeed, either from the graph of x(m) or from m(x) we see that x > b(c) ⇔
m(x) ∈ (−(1 + √

c )−1,0) and x ∈ (0, a(y)) ⇔ m(x) < (
√

c − 1)−1. For our
analysis it is sufficient to know that the m1,m2 contours, nonintersecting and both
taken in the positive direction, enclose (c − 1)−1 and −1, but not 0. Assume the
m2 contour encloses the m1 contour. For fixed m2, using (5.12) we have∫ log(z(m1))

(m1 − m2)2
dm1

=
∫ 1/m2

1 − c/(1 + m1)
2

−1/m1 + c/(1 + m1)

1

(m1 − m2)
dm1

=
∫

(1 + m1)
2 − cm2

1

cm1(m1 − m2)

( −1

m1 + 1
+ 1

m1 − 1/(c − 1)

)
dm1

= 2πi

(
1

m2 + 1
− 1

m2 − 1/(c − 1)

)
.
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Therefore

VarXln = 1

πi

∫ (
1

m + 1
− 1

m − 1/(c − 1)

)
log(z(m)) dm

= 1

πi

∫ [
1

m + 1
− 1

m − 1/(c − 1)

]
log

(
m − 1/(c − 1)

m + 1

)
dm

− 1

πi

∫ [
1

m + 1
− 1

m − 1/(c − 1)

]
log(m)dm.

The first integral is zero since the integrand has antiderivative

−1

2

[
log

(
m − 1/(c − 1)

m + 1

)]2

,

which is single valued along the contour. Therefore we conclude that

VarXln = −2
[
log(−1) − log

(
(c − 1)−1)] = −2 ln(1 − c).

Finally, we compute expressions for (1.23) and (1.24). Using (5.13) we have

EXxr = (a(c))r + (b(c))r

4
− 1

2π

∫ b(c)

a(c)

xr√
4c − (x − 1 − c)2

dx

= (a(c))r + (b(c))r

4
− 1

4π

∫ 2π

0

∣∣1 − √
ceiθ

∣∣2r
dθ

= (a(c))r + (b(c))r

4
− 1

4π

∫ 2π

0

r∑
j,k=0

(
r

j

)(
r

k

) (−√
c
)j+k

ei(j−k)θ dθ

= 1

4

((
1 − √

c
)2r + (

1 + √
c
)2r )− 1

2

r∑
j=0

(
r

j

)2
cj ,

which is (1.23).
For (1.24) we use (1.16) and rely on observations made in deriving (1.22).

For c ∈ (0,1) the contours can again be made enclosing −1 and not the origin.
However, because of the fact that (1.7) derives from (1.14) and the support of
F c,I[1,∞) on R+ is [a(c), b(c)], we may also take the contours taken in the same
way when c > 1. The case c = 1 simply follows from the continuous dependence
of (1.16) on c.

Keeping m2 fixed, we have on a contour within 1 of −1∫
(−1/m1 + c/(1 + m1))

r1

(m1 − m2)2 dm1

= cr1

∫ (
1

m1 + 1
+ 1 − c

c

)r1(
1 − (m1 + 1)

)−r1

× (m2 + 1)−2
(

1 − m1 + 1

m2 + 1

)−2

dm1
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= cr1

∫ r1∑
k1=0

(
r1
k1

)(
1 − c

c

)k1

(1 + m1)
k−r1

×
∞∑

j=0

(
r1 + j − 1

j

)
(m1 + 1)j (m2 + 1)−2

∞∑
�=1

�

(
m1 + 1

m2 + 1

)�−1

dm1

= 2πicr1

r1−1∑
k1=0

r1−k1∑
�=1

(
r1
k1

)(
1 − c

c

)k1 (2r1 − 1 − (k1 + �)

r1 − 1

)
�(m2 + 1)−�−1.

Therefore,

Cov(Xxr1 ,Xxr2 )

= − i

π
cr1+r2

r1−1∑
k1=0

r1−k1∑
�=1

(
r1
k1

)(
1 − c

c

)k1
(

2r1 − 1 − (k1 + �)

r1 − 1

)
�

×
∫

(m2 + 1)−�−1
r2∑

k2=0

(
r2
k2

)(
1 − c

c

)k2

(m2 + 1)k2−r2

×
∞∑

j=0

(
r2 + j − 1

j

)
(m2 + 1)j dm2

= 2cr1+r2

r1−1∑
k1=0

r2∑
k2=0

(
r1
k1

)(
r2
k2

)(
1 − c

c

)k1+k2

×
r1−k1∑
�=1

�

(
2r1 − 1 − (k1 + �)

r1 − 1

)(
2r2 − 1 − k2 + �

r2 − 1

)
,

which is (1.24), and we are done.

APPENDIX

We verify (1.9b) by modifying the proof in Bai and Yin (1993) [hereafter
referred to as BY (1993)]. To avoid confusion we maintain as much as possible
the original notation used in BY (1993).

THEOREM. For Zij ∈ C, i = 1, . . . , p, j = 1, . . . , n i.i.d. EZ11 = 0,
E|Z11|2 = 1, and E|Z11|4 < ∞; let Sn = (1/n)XX∗ where X = (Xij ) is p × n

with

Xij = Xij (n) = Zij I{|Z|ij≤δn
√

n } − EZij I{|Z|ij≤δn
√

n },
where δn → 0 more slowly than that constructed in the proof of Lemma 2.2 of Yin,
Bai and Krishnaiah (1988) and satisfying δnn

1/3 → ∞. Assume p/n → y ∈ (0,1)
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as n → ∞. Then for any η < (1 − √
y )2 and any � > 0

P
(
λmin(Sn) < η

) = o(n−�).

PROOF. We follow along the proof of Theorem 1 in BY (1993). The
conclusions of Lemmas 1 and 3–8 need to be improved from “almost sure”
statements to ones reflecting tail probabilities. We shall denote the augmented
lemmas with primes (′) after the number. We remark here that the proof in BY
(1993) assumes entries of Z11 to be real, but all the arguments can be easily
modified to allow complex variables.

For Lemma 1 it has been shown that for the Hermitian matrices T (l) defined
in (2.2), and integers mn satisfying mn/ ln n → ∞, mnδ

1/3
n / lnn → 0 and

mn/(δn

√
n) → 0

E trT 2mn(l) ≤ n2((2l + 1)(l + 1)
)2mn(p/n)mn(l−1)

(
1 + o(1)

)4mnl
.

[(2.13) of BY (1993)]. Therefore, writing mn = kn ln n, for any ε > 0 there exists
an a ∈ (0,1) such that for all n large,

P
(
tr T (l) > (2l + 1)(l + 1)y(l−1)/2 + ε

) ≤ n2amn = n2+kn loga = o(n−�)(A.1)

for any positive �. We call (A.1) Lemma 1′.
We next replace Lemma 2 of BY (1993) with the following:

LEMMA 2′ . Let for every n X1,X2, . . . ,Xn be i.i.d. with X1 = X1(n) ∼
X11(n). Then for any ε > 0 and � > 0,

P

(∣∣∣∣∣n−1
n∑

i=1

|Xi |2 − 1

∣∣∣∣∣ > ε

)
= o(n−�)

and for any f > 1,

P

(
n−f

n∑
i=1

|Xi |2f > ε

)
= o(n−�).

PROOF. Since as n → ∞ E|X1|2 → 1,

n−f
n∑

i=1

E|Xi |2f ≤ 22f E|Z11|2f n1−f → 0 for f ∈ (1,2]

and

n−f
n∑

i=1

E|Xi |2f ≤ 22f E|Z11|4n1−f +(2f −4)/2 = Kn−1 → 0 for f > 2,
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it is sufficient to show for f ≥ 1,

P

(
n−f

∣∣∣∣∣
n∑

i=1

(|Xi |2f − E|Xi |2f )∣∣∣∣∣ > ε

)
= o(n−�).(A.2)

For any positive integer m we have this probability bounded by

n−2mf ε−2mE

[
n∑

i=1

(|Xi |2f − E|Xi |2f )

]2m

= n−2mf ε−2m
∑

i1≥0,...,in≥0
i1+···+in=2m

(
2m

i1 · · · in
) n∏

t=1

E(|Xt |2f − E|Xt |2f )it

= n−2mf ε−2m
m∑

k=1

(
n

k

) ∑
i1≥2,...,ik≥2
i1+···+ik=2m

(
2m

i1 · · · ik
) k∏

t=1

E(|X1|2f − E|X1|2f )it

≤ 22mn−2mf ε−2m
m∑

k=1

nk
∑

i1≥2,...,ik≥2
i1+···+ik=2m

(
2m

i1 · · · ik
) k∏

t=1

E|X1|2f it

≤ 22mn−2mf ε−2m
m∑

k=1

nk
∑

i1≥2,...,ik≥2
i1+···+ik=2m

(
2m

i1 · · · ik
) k∏

t=1

(
2δn

√
n
)2f it−4E|Z11|4

≤ 22mn−2mf ε−2m
m∑

k=1

k2m
(
2δn

√
n
)4f m−4k

nk(E|Z11|4)k

= 22mε−2m
m∑

k=1

(2δn)
4f m(E|Z11|4)k(4δ2

nn)−kk2m

≤ (for all n large) m

(
(2δn)

2f 4m

ε ln(4δ2
nn/E|Z11|4)

)2m

,

where we have used the inequality a−xxb ≤ (b/ lna)b, valid for all a > 1, b > 0,
x ≥ 1. Choose mn = kn ln n with kn → ∞ and δ

2f
n kn → 0. Since δnn

1/3 ≥ 1
for n large we get for these n ln(δ2

nn) ≥ (1/3) lnn. Using this and the fact that
limx→∞ x1/x = 1, we have the existence of a ∈ (0,1) for which

m

(
(2δn)

2f 4m

ε ln(4δ2
nn/E|Z11|4)

)2m

≤ a2kn ln n = n2kn ln a

for all n large. Therefore (A.2) holds.
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Redefining the matrix X(f ) in BY (1993) to be [|Xuv |f ], Lemma 3′ states for
any positive integer f

P
(
λmax

{
n−f X(f )X(f )∗} > 7 + ε

) = o(n−�) for any positive ε and �.

Its proof relies on Lemmas 1′, 2′ (for f = 1,2) and on the bounds used in the proof
of Lemma 3 in BY (1993). In particular we have the Gerŝgorin bound

λmax
{
n−f X(f )X(f )∗}
≤ max

i
n−f

n∑
j=1

|Xij |2f + max
i

n−f
∑
k 
=i

n∑
j=1

|Xij |f |Xkj |f(A.3)

≤ max
i

n−f
n∑

j=1

|Xij |2f +
(

max
i

n−1
n∑

j=1

|Xij |f
)(

max
j

n−1
p∑

k=1

|Xkj |f
)
.

We show the steps involved for f = 2. With ε1 > 0 satisfying (p/n+ε1)(1+ε1) <

7 + ε for all n we have from Lemma 2′ and (A.3)

P
(
λmax

{
n−2X(2)X(2)∗} > 7 + ε

)
≤ pP

(
n−2

n∑
j=1

|X1j |4 > ε1

)

+ pP

(
n−1

n∑
j=1

|X1j |2 − 1 > ε1

)
+ nP

(
p−1

p∑
k=1

|Xk1|2 − 1 > ε1

)

= o(n−�).

The same argument can be used to prove Lemma 4′, which states for integer
f > 2

P
(∥∥n−f/2X(f )

∥∥ > ε
) = o(n−�) for any positive ε and �.

The proofs of Lemmas 4′–8′ are handled using the arguments in BY (1993) and
those used above: each quantity Ln in BY (1993) that is o(1) a.s. can be shown to
satisfy P(|Ln| > ε) = o(n−�).

From Lemmas 1′ and 8′ there exists a positive C such that for every integer
k > 0 and positive ε and �,

P
(‖T − yI‖k > Ck42kyk/2 + ε

) = o(n−�).(A.4)

For given ε > 0 let integer k > 0 be such that∣∣2√
y
(
1 − (Ck4)1/k

)∣∣ < ε/2.

Then

2
√

y + ε > 2
√

y(Ck4)1/k + ε/2 ≥ (
Ck42kyk/2 + (ε/2)k

)1/k
.
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Therefore from (A.4) we get, for any � > 0,

P
(‖T − yI‖ > 2

√
y + ε

) = o(n−�).(A.5)

From Lemma 2′ and (A.5) we get for positive ε and �

P
(‖Sn − (1 + y)I‖ > 2

√
y + ε

)
≤ P(‖Sn − I − T ‖ > ε/2) + o(n−�)

= P

(
max
i≤p

∣∣∣∣∣n−1
n∑

j=1

|Xij |2 − 1

∣∣∣∣∣ > ε/2

)
+ o(n−�) = o(n−�).

Finally, for any positive η < (1 − √
y )2 and � > 0

P
(
λmin(Sn) < η

) = P
(
λmin

(
Sn − (1 + y)I

)
< η − (

1 − √
y
)2 − 2

√
y
)

≤ P
((‖Sn − (1 + y)I‖) > 2

√
y + (

1 − √
y
)2 − η

) = o(n−�)

and we are done. �
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