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THE ESCAPE RATE OF FAVORITE SITES OF SIMPLE RANDOM
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BY MIKHAIL A. LIFSHITS AND ZHAN SHI

St. Petersburg State University and Université Paris VI

Consider a simple symmetric random walk on the integer lattice Z.
For each n, let V (n) denote a favorite site (or most visited site) of the
random walk in the first n steps. A somewhat surprising theorem of
Bass and Griffin [Z. Wahrsch. Verw. Gebiete 70 (1985) 417–436] says
that V is almost surely transient, thus disproving a previous conjecture of
Erdős and Révész [Mathematical Structures–Computational Mathematics–
Mathematical Modeling 2 (1984) 152–157]. More precisely, Bass and Griffin
proved that almost surely, lim infn→∞ |V (n)|

n1/2(logn)−γ equals 0 if γ < 1, and

is infinity if γ > 11 (eleven). The present paper studies the rate of escape
of V (n). We show that almost surely, the “lim inf” expression in question is 0
if γ ≤ 1, and is infinity otherwise. The corresponding problem for Brownian
motion is also studied.

1. Introduction. Consider the movement (Sn, n ≥ 0) of a simple symmetric
random walk on the integer lattice Z starting from S0 := 0. That is, Sn = ∑n

i=1 Xi ,
where (Xi, i ≥ 1) is a sequence of independent and identically distributed random
variables with P(Xi = 1) = P(Xi = −1) = 1/2. We write, for n ≥ 0 and x ∈ Z,

N(n,x) := #{k ∈ [0, n] ∩ Z : Sk = x},(1.1)

which records the number of visits of the random walk during the first n steps. We
define

V(n) :=
{
x ∈ Z : N(n,x) = max

y∈Z

N(n,y)

}
.(1.2)

In words, V(n) denotes the set of sites which are the “most visited” by the random
walk at step n. Following Erdős and Révész [11], an element of V(n) is called
“favorite site.”

Erdős and Révész [11] initiated the study of favorite sites. One of the questions
they asked is the following: what is the probability that 0 ∈ V(n) for infinitely
many n? In view of the recurrence of the random walk (Pólya’s theorem), it seems
natural to expect this probability to be positive. However, things do not go like
this; a theorem of Bass and Griffin [3] implies that

inf
x∈V(n)

|x| → ∞ a.s.(1.3)

In particular, (1.3) disproves a conjecture of Erdős and Révész [11].
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We now give the precise statement of the Bass–Griffin theorem. Throughout the
paper, V (n) denotes an arbitrary element of V(n); when we state a limit result
for V (n) [such as (1.4)], it is to be understood that the result holds uniformly
in all V (n) ∈ V(n).

THEOREM A ([3]). Almost surely,

lim inf
n→∞

|V (n)|
n1/2(log n)−γ

=
{0, if γ < 1,

∞, if γ > 11.
(1.4)

The transience of the process V stated in (1.3) is clearly a consequence of (1.4).
What about the rate of escape of V ?

THEOREM 1.1. We have, almost surely,

lim inf
n→∞

|V (n)|
n1/2(logn)−γ

=
{

0, if γ ≤ 1,

∞, otherwise.
(1.5)

Theorem 1.1 gives accurate information of the escape rate of V . A few
comments about its proof. The upper bound in Theorem 1.1 (the “if” part)
slightly improves the corresponding Bass–Griffin result by bringing in the critical
case γ = 1. In some situations, the critical case can be very hard to deal with. It
is not the case here. The main contribution of the present paper is to deal with
the very delicate lower bound (the “otherwise” part in Theorem 1.1). Our method
of proving this part is interesting, not only because it solves a hard problem, but,
perhaps more importantly, because it can be adapted to handle other rate of escape
problems. For example, by means of a variation of this method, we have recently
obtained in [17] some interesting results for the lower class (in the sense of P. Lévy)
of the empirical process.

There were many open questions for favorite sites of random walk, raised in the
pioneer work of Erdős and Révész [11]. These questions were later summarized
in the book of Révész ([21], pages 130 and 131). A great number of them remain
unanswered so far. Let us just mention an innocent-looking conjecture here.

It is clear that almost surely there are infinitely many n for which #V(n) = 1;
and it is equally clear that almost surely there are infinitely many n such
that #V(n) = 2. What is not known is whether these are the only possibilities;
in fact, Erdős and Révész [11] conjectured that

P{#V(n) ≥ 3; for infinitely many n} = 0.(1.6)

The best result so far has been obtained by Tóth [24], who proved that the
probability in (1.6) is 0 if we replace “#V(n) ≥ 3” by “#V(n) ≥ 4.” See also
Section 5.4 for a few comments about this conjecture.

We now make a (short) list of some related references. Theorem A has an
obvious analogue for Brownian motion—also proved in [3]—which implies that
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the process of favorite sites of Brownian motion is transient. This has been
extended to symmetric stable processes by Bass, Eisenbaum and Shi [2], and
recently by Marcus [18] to a class of Lévy processes. (See Section 5.3 for more
details.) Two of the Erdős–Révész problems for random walk were solved in [6]
concerning, respectively, the large jumps of favorite sites, and the joint asymptotic
behavior of favorite sites and local times. Other interesting questions and results
can be found in [16] for Brownian motion, in [8] for symmetric stable processes,
and in [10] for more general symmetric Markov processes. We refer to the survey
paper [23] for an updated overview of various problems for favorite sites.

The main idea of our approach in the proof of Theorem 1.1 can be described
as follows. It is more convenient to study the case of Brownian motion in view
of the powerful Ray–Knight theorem (Fact 2.3). Therefore, instead of studying
the number of visits N(·, ·) of our random walk, we will be studying a similar
object for Brownian motion, namely the local time L(·, ·) [defined in (2.1)]. That
we are allowed to make this passage from N (associated with a random walk) to L

(associated with a Brownian motion) is guaranteed by a strong invariance principle
of Révész, recalled as Fact 3.1. To get the lower bound in Theorem 1.1, we bound
a probability of type [for some appropriate (qk), (ak) and (bk)]

P

{
sup

|x|≤qk

L(t, x) > sup
|x|>qk

L(t, x) − �k, for some t ∈ [ak, bk]
}
,

where �k is “very small,” and its presence is only to compensate the small error
term we get in the passage from N to L. If this probability is summable for k,
then we will be able to apply the Borel–Cantelli lemma to see that almost surely
for all large k, sup|x|≤qk

L(t, x) ≤ sup|x|>qk
L(t, x) − �k for all t ∈ [ak, bk], and

this will tell us that the maximum of x �→ N(t, x) is realized at some site |x| > qk ,
which in turn will give us the desired lower bound in Theorem 1.1. Unfortunately,
since our basic tool (the Ray–Knight theorem) works more smoothly with some
random times instead of deterministic times, we will have to work with random
times ak and bk, and moreover our bk can be much greater than ak (indeed, bk/ak

is almost surely unbounded). This will cause us some additional difficulties. The
way in which we deal with this is to make a special partition of the random
interval [ak, bk], and make a very careful analysis within each element of the
partition. The exact statement of the probability estimate is in Lemma 2.1, and
its proof is the heart of the paper.

To obtain the upper bound in Theorem 1.1, we choose some random (qk), (tk)

and prove that ∑
k

P

{
sup

|x|≤qk

L(tk, x) > sup
|x|>qk

L(tk, x) − �k

}
= ∞,(1.7)

where again the presence of �k is to compensate the error term originating from
the use of invariance principle. The estimate (1.7) is proved directly by means
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of the Ray–Knight theorem, with some technical arrangements to get rid of the
dependence structure in order to apply the Borel–Cantelli lemma. From there,
the upper bound in Theorem 1.1 follows by means of a routine argument. The
statement of the probability estimate is in Lemma 2.2.

Here is how the rest of the paper is organized. Section 2 is devoted to the
statement and the proof of the two probability estimates for the local time of
Brownian motion which are briefly described as above. We make use of these
estimates to prove Theorem 1.1: the “otherwise” part in Section 3, and the “if”
part in Section 4. Finally, some further discussions and a few related questions are
provided in Section 5.

2. Key estimates. In this section, we study the local time of Brownian motion,
and prove the two main probability estimates described in the Introduction.
Throughout, W := (W(t), t ≥ 0) denotes a standard Brownian motion. Let L :=
(L(t, x), t ≥ 0, x ∈ R) be the process of local time of W . That is, for all Borel
function f ≥ 0, ∫ t

0
f (W(s)) ds =

∫ ∞
−∞

f (x)L(t, x) dx.(2.1)

In the sense of (2.1), the process L relates to W in the same way N(n,x) [defined
in (1.1)] does to the random walk (Sn). Moreover, according to Trotter [25], L is
jointly continuous in t and x (except on a null set).

We introduce the (right-continuous) inverse local time at 0:

τr := inf{t ≥ 0 : L(t,0) > r}, r > 0.(2.2)

Here are the main probability estimates of the section, which will play important
roles in the proofs of, respectively, the lower and upper bounds of Theorem 1.1.
As we have already mentioned before, Lemma 2.1 is the key result of the present
paper; the estimate in Lemma 2.2, on the other hand, despite its resemblance
somewhat to Lemma 2.1, is not as deep by far.

LEMMA 2.1. Fix 0 < ρ < 1. For all R ≥ 3, 0 < a ≤ (log R)−1−5ρ and
[1 − (logR)−ρ]R ≤ r < R, we have

P

{
sup

|x|≤a
√

t

L(t, x) > sup
|y|>a

√
t

L(t, y) − R

(logR)(1+3ρ)/2
, for some t ∈ [τr, τR]

}
(2.3)

≤ c1

(logR)1+2ρ
,

where c1 = c1(ρ) ∈ R
∗+ is a constant whose value depends only on ρ.

LEMMA 2.2. Let R > 0 and 0 < a ≤ 1. Then

P

{
sup

|x|≤a
√

τR

L(τR, x) > sup
|y|>a

√
τR

L(τR, y) + √
aR

}
≥ c2a,(2.4)
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where c2 ∈ R
∗+ is an absolute constant.

Before we proceed to prove the lemmas, let us recall our basic tool. Indeed, the
main reason for which τ is of interest is the following Ray–Knight theorem, which
describes the law of the process (L(τ1, x), x ∈ R). The independence part in the
theorem is a consequence of excursion theory.

FACT 2.3 ([15, 19]). The processes (L(τ1, x), x ≥ 0) and (L(τ1,−x), x ≥ 0)

are independent squared Bessel processes of dimension 0, starting from 1.

For an account of definition and general properties of (squared) Bessel
processes, we refer to the books of Borodin and Salminen [4] and Revuz and
Yor [22].

The proof of Lemma 2.1 also relies on two useful results. The first one
(Fact 2.4), which can be proved for example by means of the Ray–Knight theorem,
is borrowed from [5] and is stated here in a weakened form; see also [3] for
a slightly different version. The second (Fact 2.5), which we have learnt from [26],
concerns level crossings of the Ornstein–Uhlenbeck process.

FACT 2.4 ([5]). For all a ∈ (0,1) and λ ∈ (0,1),

P

{
sup
|x|≤a

L(τ1, x) > 1 + λ

}
≤ 8 exp

(
− λ2

16a

)
,(2.5)

P

{
sup
|x|≤a

L(τ1, x) < 1 − λ

}
≤ 8 exp

(
− λ2

16a

)
.(2.6)

FACT 2.5 ([26]). There exist absolute constants c3 ∈ R
∗+ and c4 ∈ R

∗+ such
that for all a ∈ (0,1) and λ ∈ (0,1),

P
{
W(t) < λ

√
t, ∀ t ∈ [a,1]} ≤ c3a

1/2 exp[c4λ log(1/a)].(2.7)

We now start to prove Lemma 2.1. In the rest of this section, the letter c with
subscripts denotes unimportant constants which are finite and positive.

PROOF OF LEMMA 2.1. It is clear that the probability expression on the left-
hand side of (2.3) is nondecreasing in a and nonincreasing in r ; therefore, we only
have to prove the lemma for

a := (log R)−1−5ρ,(2.8)

r := [1 − (logR)−ρ]R.(2.9)

There is nothing to prove if R is bounded [in this case, we only have to take a
large value of c1 so that (2.3) holds trivially]. We will thus concentrate ourselves
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on the case R ≥ R0, where R0 = R0(ρ) is a constant whose value will be given
in (2.25).

For notational convenience, we write

� = �(R,ρ) := R

(logR)(1+3ρ)/2
.

We define T = T (ω,R,ρ) by

T := inf
{
t ≥ τr : sup

|x|≤a
√

t

L(t, x) > sup
|y|>a

√
t

L(t, y) − �

}
,

with the usual convention inf ∅ := ∞. Then{
sup

|x|≤a
√

t

L(t, x) > sup
|y|>a

√
t

L(t, y) − �, for some t ∈ [τr, τR]
}

(2.10)
= {T < τR},

so that the probability term on the left-hand side of (2.3) is nothing else but
P{T < τR}.

When T < ∞, we clearly have

sup
|x|≤a

√
T

L(T , x) ≥ sup
|y|>a

√
T

L(T , y) − �,(2.11)

|W(T )| ≤ a
√

T .(2.12)

In fact both (2.11) and (2.12) are identities in case T > τr ; in the other case T = τr ,
we simply have |W(T )| = 0 while (2.11) is a strict inequality.

There are two main difficulties in dealing with P{T < τR}:
(i) In the event on the left-hand side of (2.10), we are taking maxima with

respect to x and y over some random and moving intervals.
(ii) The random time T can lie anywhere between τr and τR (in the event

which is of interest to us), and τr and τR can fall quite apart from each other
(indeed, nothing prevents W from making a long excursion away from 0 after τr ).
If we do not know where T lies, then it will be hard to estimate the probability of
an event involving the local time at T .

We overcome difficulty (i) by making a (deterministic) partition of the (random)
interval [τr, τR]. Let 1 < b0 < b1 < · · · < bM < R/2, whose values will be given
in (2.23) and (2.24). For each fixed j , if a

√
T ∈ [bj−1, bj ], then (2.11) and (2.12)

imply, respectively,

sup
|x|≤bj

L(T , x) ≥ sup
|y|>bj

L(T , y) − �,(2.13)

|W(T )| ≤ bj .(2.14)
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To overcome difficulty (ii), we introduce a “nice” event which, together with
condition (2.13), leads us to something concerning the local time at τR , the
probability of which we know how to estimate by means of the Ray–Knight
theorem [the precise formulation of this idea is in (2.15)]. In order to introduce
this “nice” event, we define, for ω ∈ {T < ∞},

D(T ) := inf{t ≥ T : W(t) = 0},
which is the first zero of the Brownian motion W after T . Accordingly, there
exists a (random) � ≥ r such that D(T ) = τ�, and since W(τR) = 0, it is clear
that � ∈ [r,R] on {T < τR}.

Let c5 := c5(ρ) ∈ R
∗+ be a constant (depending only on ρ) whose value is

determined in (2.20). For notational simplification, we write

f (u) = fρ(u) := (c5)
2[log(|u| ∨ e)]ρ/2, u ∈ R,

with the usual notation p ∨ q := max{p,q}. Note that f is nondecreasing on R+.
The “nice” event we have in mind is the intersection of the following two events,

which are well defined for ω ∈ {T < τR}:

Ej− :=
{

sup
y∈R

[L(τ�,y) − L(T,y)] ≤ bj

}
∩

{
sup

T ≤t≤τ�

|W(t)| ≤ 2bj

}
,

Ej+ :=
{
|L(τR, x) − L(τ�,x) − (R − �)|
≤

√
|x|(R − �)f

(
(R − �)/|x|) for all |x| ≤ R − �

}
∩

{
sup

τ�≤t≤τR

|W(t)| ≤ R − �

}
.

On Ej+ ∩ {T < τR}, we clearly have L(τR, x) = L(τ�,x) for all |x| > R and,
moreover, for |x| ≤ R,

|L(τR, x) − L(τ�,x) − (R − �)| ≤
√

|x|(R − r)f (R/|x|).
If ω ∈ {a√

T ∈ [bj−1, bj ]} ∩ {T < τR} ∩ Ej− ∩ Ej+ and bj < |y| ≤ R, then, in
view of (2.13),

sup
|x|≤bj

L(τR, x) ≥ L(τR, y) − � − bj −
√

|y|(R − r)f (R/|y|)

− sup
|x|≤bj

√
|x|(R − r)f (R/|x|).

Since

sup
|x|≤bj

√
|x|(R − r)f (R/|x|) ≤ c6

√
bj (R − r)f (R)
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for some c6 = c6(ρ), we have, for ω ∈ {a√
T ∈ [bj−1, bj ]} ∩ {T < τR} ∩ Ej− ∩

Ej+ (writing c7 := 1 + c6)

sup
|x|≤bj

L(τR, x) ≥ sup
bj<|y|≤R

[
L(τR, y) − � − bj − c7

√|y|(R − r)f (R)
]
.

If ω ∈ {a√
T ∈ [bj−1, bj ]} ∩ {T < τR} ∩ Ej− ∩ Ej+ and |y| > R, then

sup
|x|≤bj

L(τR, x) ≥ L(τR, y) − � − bj − sup
|x|≤bj

√|x|(R − r)f (R/|x|)

≥ L(τR, y) − � − bj − c7

√
bj (R − r)f (R).

(Of course, in the last line, c6 would have done the job in lieu of c7.) Accordingly,
by introducing the event

Ej :=
{

sup
|x|≤bj

L(τR, x) ≥ sup
bj <|y|≤R

[
L(τR, y) − � − bj − c7

√|y|(R − r)f (R)
]}

∩
{

sup
|x|≤bj

L(τR, x) ≥ sup
|y|>R

L(τR, y) − � − bj − c7

√
bj (R − r)f (R)

}

∩
{
τR ≥ b2

j−1

a2

}
∩

{
sup

0≤t≤τR

|W(t)| ≤ sup
0≤t≤(bj /a)2

|W(t)| ∨ R

}
,

we have, for all 1 ≤ j ≤ M ,({
a
√

T ∈ [bj−1, bj ]} ∩ {T < τR} ∩ Ej− ∩ Ej+
) ⊂ Ej .(2.15)

This is our solution to overcome difficulty (ii).
Let us outline the rest of the proof of Lemma 2.1. Both Ej− and Ej+ are

“typical” events in the sense that P(Ej−) and P(Ej+) are greater than some
positive constants. This will lead us, by exploiting the strong Markov property,
to the estimate that P{a√

T ∈ [bj−1, bj ], T < τR} is bounded by, say, c8P{Ej }.
Summing over j , we will arrive at: P{T < τR} ≤ c8

∑
j P{Ej }. Despite the

somewhat complicated form of the event Ej , we will be able to estimate P{Ej }
by means of the Ray–Knight theorem, which will give us an upper bound for
P{T < τR}, and will thus yield Lemma 2.1. Now let us make things rigorous.

Let (Ft )t≥0 denote the natural filtration of W , then by (2.15),

P(Ej ) ≥ P
(
bj−1 ≤ a

√
T ≤ bj , T < τR,Ej−,Ej+

)
= E

[
1{bj−1≤a

√
T ≤bj ,T <τR,Ej−}P

(
Ej+|FD(T )

)]
,

(2.16)

the equality following from the fact that {a√
T ∈ [bj−1, bj ]}, {T < τR} and Ej−

are all measurable with respect to FD(T ) = Fτ�
. By the strong Markov and scaling
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properties, on {T < τR},
P{Ej+|FD(T )}

= P

{
|L(τ1, x) − 1| ≤ √|x|f (1/|x|), ∀0 < |x| ≤ 1, sup

0≤s≤τ1

|W(s)| ≤ 1
}

≥ P
{|L(τ1, x) − 1| ≤ √|x|f (1/|x|), ∀0 < |x| ≤ 1

} − c9,

(2.17)

where

c9 := P

{
sup

0≤s≤τ1

|W(s)| > 1
}

< 1.(2.18)

(It is easy to see, e.g., by means of excursion theory, that [sup0≤s≤τ1
|W(s)|]−1 has

the exponential distribution with mean 1, so that c9 = 1−e−1, but we are not going
to use the exact value of c9.) According to the Ray–Knight theorem recalled in
Fact 2.3, if (Z(t), t ≥ 0) denotes a squared Bessel process of dimension 0 starting
from Z(0) = 1, then

P
{|L(τ1, x) − 1| ≤ √|x|f (1/|x|), ∀0 < |x| ≤ 1

} = [P(A)]2,(2.19)

where

A := {|Z(t) − 1| ≤ √
tf (1/t), ∀0 < t ≤ 1

}
.

We now estimate P(A). Since Z satisfies

Z(t) = 1 + B

(
4

∫ t

0
Z(s) ds

)
,

where B is a standard Brownian motion, we can apply the usual iterated logarithm
law to B to see that

lim sup
t→0

|Z(t) − 1|√
2t log log(1/t)

= 2 a.s.,

a fortiori,

sup
0<t≤1

|Z(t) − 1|√
t (log max{e,1/t})ρ/2

< ∞ a.s.

We can therefore choose a constant c5 := c5(ρ) sufficiently large (how large
depending only on ρ), such that

P

(
sup

0<t≤1

|Z(t) − 1|√
t (log max{e,1/t})ρ/2

< c5

)
>

√
c9,(2.20)

where c9 < 1 is the absolute constant defined in (2.18). Let c10 = c10(ρ) denote the
probability on the left-hand side of (2.20). We have proved that P(A) = c10 >

√
c9,

which, considered jointly with (2.19) and (2.18), yields that on {T < τR},
P

{
Ej+|FD(T )

} ≥ (c10)
2 − c9 > 0.
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Plugging this into (2.16) we obtain [writing c11 := (c10)
2 − c9]

P(Ej ) ≥ c11P
(
bj−1 ≤ a

√
T ≤ bj , T < τR,Ej−

)
= c11E

[
1{bj−1≤a

√
T ≤bj ,T <τR}P(Ej−|FT )

]
.

By the strong Markov property, if we write P
x for the probability under which W

starts from W(0) = x (one can work in the canonical space), and H0 := inf{t ≥ 0 :
W(t) = 0}, then on {a√

T ∈ [bj−1, bj ]},

P{Ej−|FT } ≥ inf|x|≤bj

P
x

{
sup
y∈R

L(H0, y) ≤ bj , sup
0≤t≤H0

|W(t)| ≤ 2bj

}

= inf|x|≤1
P

x

{
sup
y∈R

L(H0, y) ≤ 1, sup
0≤t≤H0

|W(t)| ≤ 2
}

:= c12 > 0.

Accordingly, by writing c13 := 1/(c11c12), we arrive at

P
(
bj−1 ≤ a

√
T ≤ bj , T < τR

) ≤ c13P(Ej ), 1 ≤ j ≤ M.

Since T ≥ τr by definition, we obtain

P(T < τR) ≤ P

(√
τR >

bM

a

)
+ P

(√
τr <

b0

a

)
+ c13

M∑
j=1

P(Ej ).

By Lévy’s identity, for any fixed u > 0, u/
√

τu is distributed as the modulus of a
standard Gaussian random variable, so that

P(T < τR) ≤ aR

bM

+ exp
(
−a2r2

2b2
0

)
+ c13

M∑
j=1

P(Ej )

(2.21)

≤ aR

bM

+ exp
(
−c14

a2R2

b2
0

)
+ c13

M∑
j=1

P(Ej ),

the last inequality being a consequence of (2.9).
We now bound P(Ej ). For notational simplicity, let us write

εj := bj

R
,

δ :=
(

1 − r

R

)
f (R) = (c5)

2

(log R)ρ/2 ,

�j := � + bj

R
= 1

(logR)(1+3ρ)/2
+ εj ,

[the second identity for δ following from (2.9) and from the definition of f ].
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By scaling,

P(Ej ) = P

{
sup

|x|≤εj

L(τ1, x) ≥ sup
εj <|y|≤1

(
L(τ1, y) − �j − c7

√
δ|y| ),

sup
|x|≤εj

L(τ1, x) ≥ sup
|y|>1

L(τ1, y) − �j − c7

√
εj δ,(2.22)

τ1 ≥ b2
j−1

a2R2 , sup
0≤t≤τ1

|W(t)| ≤ sup
0≤t≤b2

j /(aR)2

|W(t)| ∨ 1
}
.

From here, the estimate of P(Ej ) will depend on whether j = 1 or j ≥ 2. For the
case j ≥ 2, we note that

P(Ej ) ≤ P

{
sup

|x|≤εj

L(τ1, x) ≥ sup
|y|>εj

L(τ1, y) − �j − c7
√

δ,

τ1 ≥ b2
j−1

a2R2
, sup

0≤t≤τ1

|W(t)| ≤ sup
0≤t≤b2

j /(aR)2

|W(t)| ∨ 1
}
.

By the usual Brownian tail estimate,

P

{
sup

0≤t≤b2
j /(aR)2

|W(t)| >
bj

√
2f (R)

aR

}
≤ 2e−f (R).

Accordingly,

P(Ej ) ≤ 2e−f (R) + P

{
sup

|x|≤εj

L(τ1, x) ≥ sup
|y|>εj

L(τ1, y) − �j − c7
√

δ,

τ1 ≥ b2
j−1

a2R2
, sup

0≤t≤τ1

|W(t)| ≤ bj

√
2f (R)

aR

}
,

where we used the fact that we can choose R0 = R0(ρ) sufficiently large so that
b2

√
2f (R) ≥ aR for all R ≥ R0, the choice of b2 being fixed in (2.24). When the

event {· · ·} in the probability expression on the right-hand side is realized, we have
supx∈R L(τ1, x) ≤ sup|x|≤εj

L(τ1, x) + �j + c7
√

δ, so that

b2
j−1

a2R2 ≤ τ1 =
∫
|x|≤bj

√
2f (R)/(aR)

L(τ1, x) dx

≤ 2bj

√
2f (R)

aR

(
sup

|x|≤εj

L(τ1, x) + �j + c7
√

δ

)
.
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As a result,

P(Ej ) ≤ 2e−f (R) + P

{
sup

|x|≤εj

L(τ1, x) ≥ b2
j−1

abjR
√

8f (R)
− �j − c7

√
δ

}
.

We now choose the values for bj , 0 ≤ j ≤ M :

b0 := aR(logR)−ρ,(2.23)

bj := aR(logR)(j+1)ρ/2, 1 ≤ j ≤ M := 2(1 + 2ρ)/ρ�.(2.24)

Recall that we are only interested in R ≥ R0. Our choice of R0 = R0(ρ) is as
follows. For 2 ≤ j ≤ M ,

b2
j−1

abjR
√

8f (R)
− �j − c7

√
δ

= (log R)jρ/2−3ρ/4
√

8c5
− 1

(logR)(1+3ρ)/2

− (log R)jρ/2−1−9ρ/2 − c7c5

(logR)ρ/4

≥ 2,

(2.25)

and R0 is such that the last inequality in (2.25) holds for all R ≥ R0. If need be,
we can enlarge the value of R0 in order to ensure that conditions b2

√
2f (R) ≥ aR

and bM < R/2 are fulfilled for all R ≥ R0.
Accordingly, for 2 ≤ j ≤ M ,

P(Ej ) ≤ 2e−f (R) + P

{
sup

|x|≤εj

L(τ1, x) ≥ 2
}

≤ 2e−f (R) + 8 exp
(
− 1

16εj

)
,

the last inequality being a consequence of (2.5). Since for j ≤ M , εj =
a(logR)(j+1)ρ/2 ≤ a(logR)1+5ρ/2 = (logR)−5ρ/2, we obtain

P(Ej ) ≤ 2e−f (R) + 8 exp
(
−(log R)5ρ/2

16

)
, j ≥ 2.

Since M , defined in (2.24), is a constant depending only on ρ, we have

M∑
j=2

P(Ej ) ≤ 2Me−f (R) + 8M exp
(
−(log R)5ρ/2

16

)

= 2M exp
(−(c5)

2(log R)ρ/2) + 8M exp
(
−(log R)5ρ/2

16

)
(2.26)

≤ c15

(logR)1+2ρ
.



ESCAPE RATE OF FAVORITE SITES 141

We now estimate P(E1). By (2.22),

P(E1) ≤ P

{
sup

|x|≤ε1

L(τ1, x) ≥ sup
ε1<|y|≤1

(
L(τ1, y) − �1 − c7

√
δ|y| )}.

If the event {· · ·} in the probability term on the right-hand side is realized, and if
furthermore sup|x|≤ε1

L(τ1, x) ≤ 1 + 4
√

ε1 log(1/ε1), then

sup
ε1<|y|≤δ

(
L(τ1, y) − c7

√
δ|y| ) ≤ sup

ε1<|y|≤1

(
L(τ1, y) − c7

√
δ|y| )

≤ sup
|x|≤ε1

L(τ1, x) + �1

≤ 1 + 4
√

ε1 log(1/ε1) + �1.

Therefore, by introducing

�̂ := 4
√

ε1 log(1/ε1) + �1 = 4
√

ε1 log(1/ε1) + 1

(log R)(1+3ρ)/2
+ ε1,

Ê :=
{

sup
ε1<|y|≤δ

(
L(τ1, y) − c7

√
δ|y| ) < 1 + �̂, inf|y|≤δ

L(τ1, y) > 1
4

}
,

we have

P(E1) ≤ P(Ê) + P

{
sup

|x|≤ε1

L(τ1, x) > 1 + 4
√

ε1 log(1/ε1)

}

+ P

{
inf|y|≤δ

L(τ1, y) ≤ 1
4

}
.

According to (2.5),

P

{
sup

|x|≤ε1

L(τ1, x) > 1 + 4
√

ε1 log(1/ε1)

}
≤ 8ε1,

whereas by means of (2.6),

P

{
inf|y|≤δ

L(τ1, y) ≤ 1

4

}
≤ 8 exp

(
− 9

256δ

)
= 8 exp

[−c16(logR)ρ/2]
.

Therefore,

P(E1) ≤ P(Ê) + 8ε1 + 8 exp
[−c16(log R)ρ/2].(2.27)

It remains to estimate P(Ê). According to the Ray–Knight theorem (Fact 2.3), if Y

denotes a zero-dimensional Bessel process with Y (0) = 1, then

P(Ê) =
[
P

(
sup

ε1<t≤δ

(
Y 2(t) − c7

√
δt

)
< 1 + �̂, inf

0≤t≤δ
Y 2(t) >

1

4

)]2

≤
[
P

(
sup

ε1<t≤δ

(
Y (t) − c7

√
δt

)
< 1 + �̂

2
, inf

0≤t≤δ
Y (t) >

1

2

)]2

.
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Recall that Y satisfies the stochastic differential equation (B denoting a standard
Brownian motion)

Y (t) = 1 + B(t) − 1

2

∫ t

0

ds

Y (s)
,

for all 0 ≤ t < ζY := inf{s > 0 : Y (s) = 0}. Therefore, if inf0≤t≤δ Y (t) > 1/2,
then ζY > δ, and for all t ≤ δ, Y (t) ≥ 1+B(t)− t ≥ 1+B(t)−√

δt . Consequently,

P(Ê) ≤
[
P

(
B(t) < (1 + c7)

√
δt + �̂

2
, ∀ ε1 < t ≤ δ

)]2

≤ [
P

(
B(t) < (2 + c7)

√
δt, ∀ ν ≤ t ≤ δ

)]2
,

where ν is such that
√

δν := �̂/2, or equivalently, ν := (4
√

ε1 log(1/ε1) +
�1)

2/(4δ), which is greater than ε1. By scaling,

P(Ê) ≤ [
P

(
B(s) < (2 + c7)

√
δs, ∀ s ∈ [δ−1ν,1])]2

,

which, in light of (2.7), yields

P(Ê) ≤
[
c3

√
ν√
δ

exp
(
c4(2 + c7)

√
δ log

δ

ν

)]2

≤ c17
ν

δ

≤ c18
ε1 log(1/ε1) + �2

1

δ2

≤ c19
ε1 log(1/ε1)

δ2 + c20

δ2(logR)1+3ρ
.

Since ε1 = a(logR)ρ = (logR)−1−4ρ [cf. (2.8)], we have

ε1 log(1/ε1)

δ2 = 1 + 4ρ

(c5)
4

log log R

(logR)1+3ρ
≤ c21

(log R)1+2ρ
,

whereas δ2(logR)1+3ρ = (c5)
4(log R)1+2ρ . Therefore,

P(Ê) ≤ c19c21

(logR)1+2ρ
+ c20/(c5)

4

(log R)1+2ρ
:= c22

(logR)1+2ρ
.

Plugging this into (2.27) gives

P(E1) ≤ c23

(log R)1+2ρ
.

This estimate, together with (2.27) and (2.21), implies that

P(T < τR) ≤ aR

bM

+ exp
(
−c14

a2R2

b2
0

)
+ c24

(log R)1+2ρ
.
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Since aR/bM = (logR)−(M+1)ρ/2 ≤ (log R)−(1+2ρ) and a2R2/b2
0 = (log R)2ρ ,

we obtain

P(T < τR) ≤ 1

(log R)1+2ρ
+ exp

[−c14(log R)2ρ
] + c24

(log R)1+2ρ

≤ c25

(log R)1+2ρ
.

In view of (2.10), this completes the proof of Lemma 2.1. �

PROOF OF LEMMA 2.2. By scaling,

p(a) := P

{
sup

|x|≤a
√

τR

L(τR, x) > sup
|y|>a

√
τR

L(τR, y) + √
aR

}

= P

{
sup

|x|≤a
√

τ1

L(τ1, x) > sup
|y|>a

√
τ1

L(τ1, y) + √
a

}
.

There is nothing to prove in case a ∈ [1/17,1] (it suffices then to take a small value
of the constant c2). So we assume a ∈ (0,1/17) from now on. Note that

p(a) ≥ P

{
sup
|x|≤a

L(τ1, x) > sup
|y|>a

L(τ1, y) + √
a, τ1 ≥ 1

}
.

By the occupation time formula, τ1 = ∫
R

L(τ1, y) dy, so that

p(a) ≥ P

{
sup
|x|≤a

L(τ1, x) > sup
|y|>a

L(τ1, y) + √
a, inf

1≤y≤3
L(τ1, y) ≥ 1

2

}
.

According to the Ray–Knight theorem (Fact 2.3), if Z and Z̃ are two independent
zero-dimensional squared Bessel processes starting from 1, then

p(a) ≥ P

{
sup

0≤t≤a

(
Z(t) ∨ Z̃(t)

)
> sup

t>a

(
Z(t) ∨ Z̃(t)

) + √
a, inf

1≤t≤3
Z(t) ≥ 1

2

}

≥ P

{
sup

0≤t≤a

Z(t) ≥ 1 + 2
√

a,1 − √
a ≤ Z(a) ≤ 1

}
× P

{
1 − √

a ≤ Z̃(a) ≤ 1
}

× inf
1−√

a≤x≤1
P

x

{
sup
t≥0

Z(t) < 1 + √
a, inf

1−a≤t≤3−a
Z(t) ≥ 1

2

}

× inf
1−√

a≤x≤1
P

x

{
sup
t≥0

Z̃(t) < 1 + √
a

}
,

where P
x is the probability under which the squared Bessel process Z starts from x

(thus P = P
1).



144 M. A. LIFSHITS AND Z. SHI

If we could show that

P

{
sup

0≤t≤a

Z(t) ≥ 1 + 2
√

a,1 − √
a ≤ Z(a) ≤ 1

}
≥ c26,(2.28)

inf
1−√

a≤x≤1
P

x

{
sup
t≥0

Z(t) < 1 + √
a, inf

1−a≤t≤3−a
Z(t) ≥ 1

2

}
≥ c27

√
a,(2.29)

then we would have p(a) ≥ (c26c27
√

a )2, which would complete the proof of
Lemma 2.2, with c2 := (c26c27)

2.
It remains to verify (2.28) and (2.29). We start with the proof of (2.29). Write

σr := inf{t ≥ 0 : Zt = r}, r ≥ 0.

Recall that a < 1/17. For all 1 − √
a ≤ x ≤ 1, we have

P
x

{
sup
t≥0

Z(t) < 1 + √
a, inf

1−a≤t≤3−a
Z(t) ≥ 1

2

}

≥ P
x

{
σ3/4 < σ1+√

a, inf
σ3/4≤t≤3+σ3/4

Z(t) ≥ 1
2 , sup

t≥σ3/4

Z(t) ≤ 1
}

(2.30)

= P
x{σ3/4 < σ1+√

a}P 3/4
{

inf
0≤t≤3

Z(t) ≥ 1
2 , sup

t≥0
Z(t) ≤ 1

}
,

the last identity being a consequence of the strong Markov property. The second
probability expression on the right-hand side is a (strictly) positive constant.
Since Z is a diffusion process in its natural scale ([22], Chapter XI), we have,
uniformly in x ∈ [1 − √

a,1],

P
x
{
σ3/4 < σ1+√

a

} = 1 + √
a − x

1 + √
a − 3/4

≥ 1 + √
a − 1

1 + 1 − 3/4
= 4

5

√
a,

which, with the aid of (2.30), yields (2.29).
To check (2.28), we note that by the Markov property, the probability on the

left-hand side of (2.28) is greater than or equal to

P
{
1 + 2

√
a ≤ Z(a/2) ≤ 1 + 3

√
a

}
inf

x∈[1+2
√

a,1+3
√

a ]
P

x{
1 − √

a ≤ Z(a/2) ≤ 1
}
.

Recall the semigroup of the squared Bessel process Z ([22], Chapter XI): for x > 0
and y > 0,

P
x{Z(t) ∈ dy} = 1

2t

x1/2

y1/2
exp

(
−x + y

2t

)
I1

(
(xy)1/2

t

)
dy

(and P
x{Z(t) = 0} = e−x/(2t)), where I1(·) is the modified Bessel function of

index 1. It is known (see, e.g., [1], page 377, Formula 9.7.1) that

I1(z) = 1 + o(1)

(2πz)1/2
ez, z → ∞,
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from which it follows that uniformly in a ∈ (0,1/17),

P
{
1 + 2

√
a ≤ Z(a/2) ≤ 1 + 3

√
a
} ≥ c28,

inf
x∈[1+2

√
a,1+3

√
a ]

P
x
{
1 − √

a ≤ Z(a/2) ≤ 1
} ≥ c29.

This yields (2.28), and completes the proof of Lemma 2.2. �

3. Proof of Theorem 1.1: the “otherwise” part. This section is devoted to
the proof of the lower bound in Theorem 1.1: for any γ > 1,

lim
n→∞

|V (n)|
n1/2(logn)−γ

= ∞ a.s.(3.1)

Before starting the proof, we recall two useful results. The first (Fact 3.1) is a
strong invariance principle for local time, and the second (Fact 3.2) concerns the
increments of the local time of Brownian motion.

FACT 3.1 ([20]). Possibly in an enlarged probability space, there exists a
coupling for simple random walk (Sn) and standard Brownian motion W , such
that for any ε > 0, when n → ∞,

sup
x∈Z

|L(n,x) − N(n,x)| = o
(
n(1/4)+ε) a.s.,(3.2)

where L is the local time of W , and N is the number of visits of (Sn) as in (1.1).

FACT 3.2 ([3]). Let L be the local time of Brownian motion. For any ε > 0,
when t → ∞,

sup
(x,y)∈R2,|x−y|≤1

|L(t, x) − L(t, y)| = o
(
t(1/4)+ε

)
a.s.(3.3)

Without loss of generality, we shall be working with the coupled processes
(Sn) and W defined in Fact 3.1. Fix γ > 1. It is possible to choose β ∈ (1/2,1)

such that

γ > 1 + 5(1 − β)

β
.(3.4)

Let rk := exp(kβ). It is easily checked that

1 − rk−1

rk
= β + o(1)

(log rk)(1−β)/β
, k → ∞.

Thus, for all large k, rk−1 ≥ [1 − (log rk)
−(1−β)/β]rk . By applying Lemma 2.1 to

ρ = (1 − β)/β , R = rk , r = rk−1 and a = (log rk)
−γ [thus a < (log R)−1−5ρ in
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view of (3.4)], we obtain: for all large k,

P

{
sup

|x|≤√
t(log rk)

−γ

L(t, x) > sup
|y|>√

t(log rk)
−γ

L(t, y) − �k, for some t ∈ [τrk−1, τrk ]
}

≤ c1

(log rk)1+2(1−β)/β
,

where �k := rk/(log rk)
(3−2β)/(2β). Since

∑
k 1/(log rk)

1+2(1−β)/β < ∞, it fol-
lows from the Borel–Cantelli lemma that with probability one, for all sufficiently
large k and all t ∈ [τrk−1, τrk ],

sup
|x|≤√

t(log rk)
−γ

L(t, x) ≤ sup
|y|>√

t(log rk)
−γ

L(t, y) − �k.

Fix ε > 0. In view of Facts 3.1 and 3.2, this yields that almost surely for all large k

and all n ∈ [τrk−1, τrk ],
max

|x|≤√
n(log rk)

−γ
N(n, x)

≤ max
|y|>√

n(log rk)
−γ

N(n, y) − �k +
( √

τrk

(log rk)
γ

)(1/4)+ε

.

(3.5)

At this stage, it is convenient to recall that

lim sup
t→∞

supx∈R L(t, x)

(2t log log t)1/2
= 1 a.s.,(3.6)

lim
t→∞

L(t,0)

t1/2(log t)−2 = ∞ a.s.(3.7)

Indeed, (3.6) is Kesten’s iterated logarithm law for the local time [14], while (3.7)
is a special case of Hirsch’s law [13]. Whereas Hirsch’s law was formulated for the
supremum of partial sums (or equivalently for that of Brownian motion), it holds,
by virtue of Lévy’s identity, for the local time as well.

From (3.7) it follows that almost surely for all large r ,

τr ≤ r2(log r)4.(3.8)

Thus, ε > 0 being a (small) fixed constant, almost surely for all large k,( √
τrk

(log rk)γ

)(1/4)+ε

≤ (
rk(log rk)

2−γ
)(1/4)+ε

< �k.

Going back to (3.5), we obtain: almost surely for all large k and all n ∈ [τrk−1, τrk ],
max

x∈Z : |x|≤√
n (log rk)

−γ
N(n, x) < max

y∈Z : |y|>√
n(log rk)

−γ
N(n, y),

which, by definition of V (n), means

|V (n)| > √
n (log rk)

−γ .
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When k → ∞ and n ∈ [τrk−1, τrk ], we have, almost surely,

(log rk)
−γ = 1 + o(1)

(log rk−1)
γ

≥ 1 + o(1)

[log L(n,0)]γ ≥ 1 + o(1)

[(1/2) logn]γ ,

the last inequality being a consequence of (3.6). Therefore,

lim inf
n→∞

|V (n)|
n1/2(log n)−γ

≥ 2γ a.s.

Since γ > 1 is arbitrary, this yields (3.1), and therefore completes the proof of the
“otherwise” part of Theorem 1.1.

4. Proof of Theorem 1.1: the “if” part. This section is devoted to the proof
of the upper bound in Theorem 1.1. We note that only the case γ = 1 needs treated,
namely,

lim inf
n→∞

|V (n)|
n1/2(logn)−1

= 0 a.s.(4.1)

As for the proof of the lower bound (cf. Section 3), we shall again be working
with the random walk (Sn) and Brownian motion W defined in Fact 3.1. We
consider the sequence rk := k5k . Let τ be as before the inverse local time at 0
of W [cf. (2.2)], and let

W(k)(t) := W
(
t + τrk−1

)
, t ≥ 0.

The strong Markov property tells us that for each k ≥ 2, W(k) is a standard
Brownian motion independent of Fτrk−1

[recalling that (Ft ) is the natural filtration
of W ]. We can of course define for this new Brownian motion its local time
[denoted by L(k)(t, x)] and its inverse local time at 0 [denoted by τ

(k)
r ]. Clearly,

L(k)(t, x) = L
(
t + τrk−1, x

) − L
(
τrk−1, x

)
, t ≥ 0, x ∈ R,(4.2)

τ (k)
r = τr+rk−1 − τrk−1, r > 0.(4.3)

We fix λ > 0, and define

ak := λ

log rk
,

sk := rk − rk−1,

Ak :=
{

sup
|x|≤ak

√
τ

(k)
sk

L(k)
(
τ (k)
sk

, x
)
> sup

|y|>ak

√
τ

(k)
sk

L(k)
(
τ (k)
sk

, y
) + √

aksk

}
.

By (4.2) and (4.3), each Ak is measurable with respect to Fτsk+rk−1
= Fτrk

.
Therefore the events {Ak : k ≥ 2} are independent. Moreover,

P(Ak) = P

{
sup

|x|≤ak
√

τsk

L
(
τsk , x

)
> sup

|y|>ak
√

τsk

L
(
τsk , y

) + √
aksk

}
,
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which, according to Lemma 2.2, is greater than or equal to c2ak. Since
∑

k ak = ∞,
the Borel–Cantelli lemma confirms that almost surely there exist infinitely many k

such that

sup
|x|≤ak

√
τ

(k)
sk

L(k)
(
τ (k)
sk

, x
)
> sup

|y|>ak

√
τ

(k)
sk

L(k)
(
τ (k)
sk

, y
) + √

aksk,

which, in light of (4.2) and (4.3), in turn implies

sup
|x|≤ak

√
τ

(k)
sk

L
(
τrk , x

)
> sup

|y|>ak

√
τ

(k)
sk

L
(
τrk , y

) + √
aksk − sup

y∈R

L
(
τrk−1, y

)
.

Applying Facts 3.1 and 3.2, we get the corresponding result for random walk:
almost surely there exist infinitely many k such that

max
|x|≤ak

√
τ

(k)
sk

N
(⌊

τrk

⌋
, x

)

> max
|y|>ak

√
τ

(k)
sk

N
(⌊

τrk

⌋
, y

) + √
aksk − sup

y∈R

L
(
τrk−1, y

) − τ (1/4)+ε
rk

.

(4.4)

In view of (3.6) and (3.8), we have, almost surely for k → ∞,

sup
y∈R

L
(
τrk−1, y

) + τ 1/4+ε
rk

≤ τ 1/2
rk−1

log τrk−1 + τ 1/4+ε
rk

≤ rk−1(log rk−1)
4 + r

1/2+2ε
k (log rk)

1+4ε

= o
(√

aksk
)
.

Plugging this into (4.4) yields that almost surely, we have, for infinitely many k,

max
|x|≤ak

√
τ

(k)
sk

N
(⌊

τrk

⌋
, x

)
> max

|y|>ak

√
τ

(k)
sk

N
(⌊

τrk

⌋
, y

)
.

By definition, we have found infinitely many k such that∣∣V (⌊
τrk

⌋)∣∣ ≤ ak

√
τ

(k)
sk ≤ ak

√
τrk .

According to (3.8), we have ak ≤ (2λ + o(1))/ log τrk , a.s. (for k → ∞), which
leads us to the following estimate:

lim inf
n→∞

|V (n)|
n1/2(log n)−1 ≤ 2λ a.s.

Sending λ to 0 readily yields (4.1), and thus completes the proof of the “if” part in
Theorem 1.1.

5. Remarks and questions. In this final section, we first mention some
related results concerning, respectively, favorite sites in Z+ of random walk, and
favorite sites of Brownian motion. We finish the paper with some unanswered
questions.
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5.1. Nonnegative favorite sites. Bass and Griffin [3] also considered
nonnegative favorite sites: let V+(n) ∈ Z+ be such that

N
(
n,V+(n)

) = max
x∈Z+

N(n,x).(5.1)

They proved that, almost surely,

lim inf
n→∞

V+(n)

n1/2(logn)−γ
=

{
0, if γ < 2,
∞, if γ > 11.

An inspection of the proof of Theorem 1.1 readily yields the following result
concerning the escape rate of V+(n):

THEOREM 5.1. Let V+(n) be as in (5.1). Then

lim inf
n→∞

V+(n)

n1/2(logn)−γ
=

{
0, if γ ≤ 2,
∞, otherwise.

5.2. Favorite sites of Brownian motion. The problem of favorite sites is also
naturally posed for Brownian motion. Let W be a standard Brownian motion and
let L denote the local time of W . For each t , we call

U(t) :=
{
x ∈ R : L(t, x) = sup

y∈R

L(t, y)

}
the set of favorite sites at time t . In contrast to the case of random walk [cf. the
Erdős–Révész conjecture stated in (1.6)], it is not hard to determine the cardinality
of U(t). For each fixed t , U(t) is almost surely a singleton; and almost surely
for all t , #U(t) is either 1 or 2. See [8] and [16] for more details. This property
actually holds for symmetric stable processes [8], and was recently extended to
more general symmetric Markov processes by Eisenbaum and Khoshnevisan [10].

Similarly, one can consider U+(t) := {x ∈ R+ : L(t, x) = supy≥0 L(t, y)}, the
set of nonnegative favorite sites at time t . It is easy to adapt our argument to show
the analogues of Theorems 1.1 and 5.1 for Brownian motion.

THEOREM 5.2. Let U(t) ∈ U(t) and U+(t) ∈ U+(t). With probability 1,

lim inf
t→∞

|U(t)|
t1/2(log t)−γ

=
{

0, if γ ≤ 1,
∞, otherwise,

lim inf
t→∞

U+(t)

t1/2(log t)−γ
=

{
0, if γ ≤ 2,
∞, otherwise.

Again, as for random walk, Theorem 5.2 holds uniformly in U(t) ∈ U(t) and
U+(t) ∈ U+(t).
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5.3. Favorite sites of symmetric stable processes. The Bass–Griffin theorem
tells us that the process of favorite sites of Brownian motion (or simple random
walk) is transient with probability 1. This property is enjoyed by symmetric stable
processes. Let (Xα(t), t ≥ 0) be a symmetric stable process of index α ∈ (1,2].
The condition α > 1 is here to ensure the existence of the local time Lα of Xα . Let
Vα(t) be a favorite site, in the sense that Lα(t,Vα(t)) = supx∈R Lα(t, x). It was
proved by Bass, Eisenbaum and Shi [2] that for sufficiently large γ ,

lim
t→∞

|Vα(t)|
t1/α(log t)−γ

= ∞ a.s.

In particular, this implies the transience of Vα . The result was recently extended
by Marcus [18] to a class of symmetric Lévy processes.

It seems interesting to know what the escape rate of Vα is. In order to answer this
question, one needs to know some fine properties of fractional Brownian motion.
As such, this can also be viewed as a problem in Gaussian theory.

5.4. About the Erdős–Révész conjecture. Let us say a few words about the
Erdős–Révész conjecture stated in (1.6), concerning the probability that #V(n) ≥ 3
for infinitely many n. One of the reasons it is hard to study the asymptotic behavior
of #V(n) is that little is known about the “site local time” process x �→ N(n,x)

[for the definition of N , see (1.1)], whether n is random or deterministic. In the
literature, there is a description by Knight [15] for the “edge local time” process
(i.e., instead of counting the number of visits at each site, one counts the visits
at each edge) of random walk stopped at some carefully chosen random times,
and this is the tool with which Tóth [24] managed to prove that almost surely for
all large n, #V(n) ≤ 3. Tóth’s theorem is quite close to conjecture (1.6), but the
ultimate small gap might be very hard to fill.

Recently Eisenbaum [9] obtained an explicit and very interesting description
of the site local time process N stopped at some random times. One would like
to hope that this description might shed some new light upon the Erdős–Révész
conjecture.

5.5. Two-dimensional random walk. Dimension two is critical for simple
symmetric random walk, and some local time questions may be very delicate
(note that local time does not exist for two-dimensional Brownian motion). Let
(Sn, n ≥ 0) be a simple symmetric random walk on Z

2, starting from S0 = 0. Let
N(n,x) := #{k ∈ [0, n] ∩ Z : Sk = x}, for any x ∈ Z

2. It is very hard to study
the precise asymptotic behavior of supx∈Z2 N(n,x). Indeed, in 1960 Erdős and
Taylor [12] raised the conjecture that

lim
n→∞

1

(logn)2 sup
x∈Z2

N(n,x) = 1

π
a.s.(5.2)
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Some 40 years later (5.2) was confirmed by Dembo, Peres, Rosen and Zeitouni [7].
As an interesting consequence of (5.2), it was established in [7] that if V(n) is a
favorite site at time n (with obvious definition), then

lim
n→∞

log ‖V(n)‖
logn

= 1

2
a.s.,(5.3)

where ‖x‖ denotes the Euclidean modulus of x ∈ Z
2.

It is a challenging problem to study the rate of escape of ‖V(n)‖, not only in
the logarithmic scale, as in (5.3). For example, is it possible to prove something in
dimension two which is similar to (1.4)?
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