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DISTANCE FLUCTUATIONS AND
LYAPOUNOV EXPONENTS

By ALAIN-SOL SZNITMAN
ETH-Zentrum

We associate certain translation invariant random metrics on R? to
Brownian motion evolving in a truncated Poissonian potential. These
metrics behave over large distances, in an appropriate sense, like certain
deterministic norms (the so-called Lyapounov exponents). We prove here
upper bounds on the size of fluctuations of the metrics around their mean.
Under an additional assumption of rotational invariance, we also derive
upper bounds on the difference between the mean of the metrics and the
Lyapounov norms.

Introduction. We consider in this article a Brownian motion in dimen-
sion d > 1, evolving in a truncated Poissonian potential and conditioned to
reach a remote location. This conditioned Brownian motion “feels the pres-
ence of soft Poissonian obstacles” and can be viewed as a type of polymer in a
random environment. Our purpose here is to study the fluctuation properties
of certain naturally defined random distance functions. These metrics roughly
describe the cost attached to connecting two points of R¢ for this polymer in a
random environment.

For x € R¢, we denote by P, the Wiener measure on C(R,,R?) starting
from x and let P stand for the Poisson law with constant intensity » > 0 on
the space Q of simple pure point measures on R? Our soft obstacles are
modelled on a shape function W(-) > 0, which is assumed to be bounded,
measurable, compactly supported and not a.e. equal to 0. The truncated
potential is then defined as

(L) V(x, o) = (Xi:W(x —xi)) AM = (fRdW(x ~yo(dy)| AM

for x €R? and w=1Y, 8., € Q. The positive constant M determines the
truncation level.

Central objects of interest in the present work are the nonnegative func-
tions

(1.2) dy(x,y,0) =max(a,(x,y, »),a,(y,x, o))

for x,y € R, A > 0 and w € Q, where

(1.3) a,(x,y,w) = — inf loge,(-,y, w)
B(x,1)
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and

(14) efx,y, ) = Ex[exp{—fH(y)(/\ +V)(Z,, ) ds}, H(y) <
0

Here Z. stands for the canonical process on C(R,,R%) and H(y) stands for
the entrance time of Z. in B(y, 1), the closed ball of radius 1 around y. It was
observed in [12] that the nonnegative functions a,(-, -, ) satisfy the triangle
inequality. In fact, under mild assumptions [see (1.7) below], the d,(-, -, »)
are distance functions on R

From our results in [12] and as is recalled in Section 1, there are norms
a,(+) on R? for which

(I1.5) P-a.s. d,(0,y,w) ~a(y) asy— .

These norms are the so-called Lyapounov exponents which govern the P-al-
most sure exponential directional decay of ¢,(0,-, w) and of the A-Green
function [— 2A + A + V(-, )] 710, - ).

The model we study here has very much the flavour of models of first
passage percolation (see [7]) or of directed polymers (see [3] and [9]). For
instance the function d,(-, -, w) should be viewed as natural analogues of the
point to point passage times and the Lyapounov coefficients of the directional
time constants. Both in the case of first passage percolation and directed
polymers, one does not know too much about the analogues of the Lyapounov
coefficients. In several instances one makes assumptions on the curvature of
the unit spheres of the corresponding norms (see [11] and [10]) which usually
cannot be checked directly. One possible interesting feature of the random
polymer model studied here is that the «,(-) are proportional to the Euclidean
norm when W(-) is invariant under rotation, and one has of course a good
control over the unit ball or sphere for the «,(-) norm.

Our purpose here is to derive upper bounds on the size fluctuations of
d,(0, y, w) around its mean (which is finite; see Section 1),

(L6) D\(0,y) = E[d)(0,y,w)], y€ERY,

for W(-) as above, and on the difference D,(0, y) — a,(y) for rotationally
invariant W(-). These bounds are not expected to capture the true size of
these fluctuations (for instance when d = 2, A > 0, the considerations devel-
oped in Krug and Spohn [9] would lead us to expect fluctuations of order
|y|?). Nevertheless this type of bounds can be very very useful (see [11]
and [10]).

Let us now describe how the present article is organized. Section 1 recalls
certain useful facts from [12] and [13] and develops suitable estimates on the
random metrics. The role of the truncation parameter M in (I.1) is to simplify
things by providing certain uniform Harnack inequalities.

Section 2 studies the fluctuations of d,(0, y, w) around D,(0, y). The gen-
eral approach is similar to Kesten [8]. That is, we use the martingale method
and derive some exponential estimates on the distribution of d,(0, y, ) —
D,\(0, y) under P. Our main results are Theorem 2.1 and Corollary 2.4.
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In Section 3 we assume W(:) is rotationally invariant. Theorem 3.1 and
Corollary 3.4 provide bounds on the difference D,(0, y) — o,(y). As follows
from a straightforward subadditivity argument D,(0, y) > «,(y), so that our
main concern is the derivation of lower bounds for «,(y) in terms of D,(0, y).
The general scheme proposed in Alexander [2] does not seem to be easily
applicable here. Our line of approach is more in the spirit of Alexander [1].
We construct certain approximately submultiplicative quantities gz(m), m >
1 [see (3.10)] based on moments of small order 8 € (0,1) of ¢,(0,, ®). In
contrast to [1], the proof bypasses the Van den Berg—Kesten inequality and
uses instead a “splitting technique,” which is given in Lemma 3.3. The
approximate submultiplicative property forces lower estimates [see (3.33) and
(3.34)] on the norm «,(-) in terms of —(1/m)log g;(m). On the other hand,
the exponential estimates of Section 2 are used to relate g4() and D,(0, -).
The combination of these arguments produces the adequate lower bounds for

a,(*).

1. Setting and preliminary estimates. We first introduce some nota-
tion. We denote by a = a(W) > 0 the smallest possible a such that W(-) = 0
on B(0, a)°. For a closed subset A of R¢, H, stands for the entrance time of
Z.in A,

(1.1) H, =inf{s > 0, Z, € A},

and for an open subset U of R?, T}, stands for the exit time from U,
(1.2) T, =inf{s > 0, Z, & U}.

When z € R?, we also define

(1.3) B(z) =B(z,1) and H(z) = Hjy.,.

We now recall some results from [12]. The present situation as compared to
[12] is in fact simplified by the truncation of the Poissonian potential. For
A >0, e,(x, y, ) is continuous in x and measurable in » ([12], Lemma 1.1)
and a,(x, y, o) is jointly continuous in x, y and measurable in o ([12], after
(1.10)). Moreover, from [12] (Theorems 1.4 and 1.7), there are certain nonneg-
ative Lyapounov coefficients a,(x), A > 0, x € R?, jointly continuous in A, x
such that

(14) for x € R, A >0 — a,(x) is concave increasing,

(1.5) for A > 0, x € RY > a,(x) is a norm on R,

(1.6) P-as.for A>0, lim sup sup i| —loge,(x,y,w) —a(y)l=0,
Y7* xeB(0) 0<A<A |yl
and the convergence in (1.6) takes place in L}(P) as well.

The nonnegative continuous functions a,(-, -, w) and d,(-, -, ») ([(12], (1.10)
and (1.16)) satisfy the triangle inequality. Of course d,(-, -, ) is a symmetric
function of its two variables. These properties are not specific to Poissonian
potentials and in fact show up in a variety of situations.
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Now when d > 3 or A > 0 or w is such that for any z € R¢, V(-, w) is not
a.e. equal to 0 on B(z)° (which of course occurs P-a.s.), d,(x, y, ®) = 0 forces
x = y. In this case

d,(-,", w) is a distance function on R¢ which induces
(1.7)
the usual topology.

ExamPLE 1.1. When d =3, A > 0 and w = 0, for x, y € R%,

exp{—VZA (Ix =y - 1), },

(1.8) ol®y) = T

dy(x,y) = V2| x —yl+log(1 + [x — yl).

It is easy to check that there are no “genuine flat triangles” for d,(-, - ), that
is, d\(x,2) +d,(z,y) =d(x,y) >x =z or y =2z

This feature is different from the distance functions which show up in first
passage percolation, for instance, and somehow corresponds to the fact that
“Brownian motion has more than one way of going from x to y.”

We still need some further notation. For U € R¢ an open subset of R¢, we
introduce the “Schrodinger heat kernel”

ry(t,x,y,w) = (217t)7d/2 exp{— —(y ;tx) }

(1.9)

b

XE;’y[exp{_/’tV(Zs, ) ds}, Ty, >t
0

t>0,x,yeR weQ,

where E; | stands for the expectation with respect to the Brownian bridge
measure in time ¢ from x to y.

When U is nonvoid, r; is known to be the kernel of the self-adjoint
semigroup on L?*(U, dx) generated by — +A + V with Dirichlet boundary
conditions. We also introduce the (A + V)-Green function relative to U:

%]

(1.10) gru(x,y, o) = fo e *ry(s,x,y,»)ds €(0,%].

When U = R, the subscript R? will be dropped from the notation. We shall
also omit the » dependence in the notation when this causes no confusion.
Throughout this work we shall use “positive constants” in our estimates,
usually denoted by ¢y, ¢y,... Or yq, ¥, ... or sometimes by const, which solely
depend on the parameters of our model, namely, d, v, W(-), M and A.

The following lemma which we shall often use in the sequel relates the
distance function d, to the decay properties of e, and g,. For A > 0, z € R¢,
o € ), we define

(1.11) F(z,w) = 10g+(f g\(xy, x5, ®) dx; dxy | €(0,%].
B(z)XB(z)
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LEMMA 1.2. For |x —y|> 4 and o € Q,
max({ld,(x,y) + log g,(x, y)l,
(1.12) ldy(x, y) +loge,(x, ¥), 1d\(x,y) — ay(x, ¥)I}
<cy(1+F(x)+F(y))-
For x € R¢ and w € Q,
c(d, A), ifd>3orA>0,
(1.18) F(x) <{c(W,M)(1+log" (logdist(x,supp w))), ifd=2,A=0,
c(W, M)(1 +log™ (dist(x,supp w))), ifd=1,1=0,
provided supp w denotes the support of w.

ProoF. We begin with the proof of (1.12). Without loss of generality, we
assume that d > 3 or A > 0 or w # 0. Otherwise F(-, = 0) = © and there is
nothing to prove. Then the methods of Chung ([4], pages 208—-218) apply [see
also [12], (1.37)] and there are bounded positive measures e;" “(dz) on B(y)
such that for each x € R¢,

(1.14) e(x,y,0) = f g)‘(x,z,w)e;,"“'(dz)
B(y)

[the measure e;’v\"" is the (A + V)-equilibrium measure of B(y)]. Consider

now x, y in R? with |x — y| > 4. It follows from Harnack’s inequality applied
to both variables (see for instance [12], before Remark 1.8) that for x' € B(x),
y' € B(y) and a constant ¢(d, A + M) > 1,

(1.15) ¢ Y (d, A+ M) <g\(x,y,0)/g8(x,y,0) <c(d, A+ M).
This and (1.14) show that for x’ € B(x),
(1.16) | —loge,(x',y,®) +log g,(x,y, w)l <logc +[loge) “(B(y))l,
(1.17) | —loge,(x',y, w) +loge,(x,y,w)l <2logec.
Therefore, from the symmetry of g,(-,-, w) and (1.16) we deduce
ld\(x,y, @) +1og g,(x,y, »)l

< 2logc +[logey “(B(x))l + logey “(B(y))l

Our claim (1.12) will now follow after we provide a suitable upper bound on
llog e “(B(2))l, when z € R¢. From Theorem 6 in Section 5.2 of Chung [4],
the (A + V)-capacity of B(z) equals

e;“(B(2))

= 1/inf! [ 8i(21, 25, ©) p(dzy) p(dz,), nEMy(B(2)) |,
B(z)XB(z)

(1.18)

(1.19)

where M,(B(z)) denotes the set of probability measures on B(z). We know
from (1.43) of [12] that

(1.20) ed“(B(2)) < c(d, A, M).
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Moreover, if w; = |B(0)| stands for the volume of the unit ball of R,

(1.21) e;”(B(z)) = wg/(/ 821,25, ) dzy, dz, |.
B(2)XB(2)

Our claim (1.12) now follows. As for (1.13), the first inequality, when d > 3 or
A > 0 simply comes from

g,\(',',w) Sg}\('7';w=0) Sgo(',',w=0),

The last two inequalities, when d = 1,2, A = 0 and o # 0, come from g,(.,
, w) < go(-, -, 8,), where x; € supp @ is such that d(x, x;) = d(x, supp w),
together with rather standard estimates on

Eo[f: 13(0,2)(Zs)exp{—/os W(Z, - y) A Mdu} ds}. O

As an application of Lemma 1.2, we have the following proposition:
ProposITION 1.3. On a set of full P-measure, for A > 0,

1
(1.22) lim —

|d/\(0’ Y w) - aA(y)| =0,
y—o |yl

the convergence holds in L'(P) as well, and one can replace d,(0,y, ) by
a/\(ya O? (1)), _10g g/\(oa Y, (,!)) or —].Og e/\(ya 01 w)-

ProoF. When d > 3 or A > 0, this is an immediate consequence of (1.6)
and Lemma 1.2. When d = 1,2 and A = 0, the L' convergence follows easily
from Lemma 1.2 and (1.6). As for the almost sure convergence, observe that
when ¢ = c¢(d, v) is large enough,

Y P[d(q,supp ) > c(loglql)l/d] < o,
qEZd\{O)

It follows that on a set of full P-measure,

(1.23) lim supd( y, supp o) /(loglyl)

y—o>®©

1/d
<

and our claim now follows. O

We now recall some estimates from [13] which will be of use. We first
introduce a paving of R% Namely, for ¢ € Z%, we introduce the cube of size [
and center [q,

l 4 1
(1.24) C(q)={z€le,—§ sz‘—lq‘<§,i=l,...,d},
and pick a large enough

(1.25) I(d,v,a) € (d(4 + 8a),x),
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so that
(1.26) 9"p (I,v) <27, n=x=1,

provided p,(/, v) stands for the probability that a binomial variable with
parameter n and success probability p = 1 — exp(—vl?/4%) takes a value
smaller than n /2.

Such a choice of [/ can be made, as can be seen from standard exponential
estimates on the binomial distribution, with success probability close to 1.
Moreover, the factor 99" = (39)2" represents a rough upper bound on the
number of || |-lattice animals I' (i.e., finite connected sets) on Z¢ of size n,
containing 0, if the adjacency relation of two sites q,q € Z? is defined as
lg — ¢'ll < 1. We use the notation ||z|| = sup,_, _,lz| for z € R%

We refer to [13] or Lemma 1 of Cox, Gandolfi, Griffin and Kesten [5]. The
quantity 99"p, (I, v) is then an upper bound on the P-probability that there
exists an animal I' containing O of size n, such that

)" 1{the open cube of size [ /4 centered at
(1.27) gerl
lq receives a point of w} < n/2.

We then introduce

Ny(w) = the smallest n > 1 such that for 2 > n and I'

a | |-lattice animal containing 0 with |T'| = &,
I 1\¢ k
Hollg+|-=,=| | #0} = —.
L {“’ a4 ( 8’ 8) } =9

qgel
It follows from (1.26) and the above discussion that for n > 1,

(1.28)

(1.29) P[Ny(w) = n] < i 27k =2 ("D
k=n

We now introduce for y € R? and w € C(R,,R?) with H(y) < %, the random
lattice animal

(1.30) #(w) = {q € 7%, Hy,, < H(y)).

We can now apply the estimates of [13] after (1.38) [let us mention that the
supermartingale argument of [13] works as well in the d = 1 case and that
the presence in the present article of the truncation level M simply modifies
the constant y which appears in (1.33) of [13], where one should replace W(-)
by M A W)L It now follows from the above reference that picking
cs(d, v,W, M) > 0 small enough, we have for x € C(0) and y € RY,

< 9 No(w)/2

(1.31) Ex[exp{c?,IMI— fOH(y)V(ZS,a))ds},H(y) <o

and of course from (1.29), E[2Y0/2] < o,
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Let us mention the following two consequences of the exponential esti-
mates (1.31). For u > 0, we define

(1.32) A, ={zeR |zl <u}.
If w € C(R,,R?) is such that w(0) € C(0) and H(y) < =, then
Lzl > e(d, Dyl —c'(d,1).
Moreover, if 7, < H(y),
7l >é(d, u —é'(d,1),
as follows from simple geometric considerations. Therefore, for x € C(0),

u>0,yeRYand we Q,

<, 2N)/2 exp{ — ¢l yll},

(1.33) Ex[exp{—foH(y)V(zs, ) ds}, H(y) <=

(1.34) Ex[exp{—/oH(wV(Zs, w) ds}, T, < H(y) <=

< ¢, 2No(@)/2 exp{ —csu)

for suitable constants ¢, > 1 and ¢; > 0.
Finally we close this section with a tubular estimate for Brownian motion
which provides a lower bound on e,(x, y, w):

e(x,y, w) ZEx[eXp{—()\ + M)H(y)},

(1.35)
sup <1

O0<s<|y—xl|

S(y—x))
ly — x|

Zs—(x+

> cq exp{—cqly — xl}

with constants c¢g € (0,1) and ¢, > 0 (see for instance (1.11) of [12]).

2. Fluctuations around the mean value. We want to derive in this
section some upper bounds on the size of fluctuations of quantities like
d,(x,y, w) or —log e,(x, y, ) around their mean value. Our main tool here
will be the martingale method as in Kesten [8]. As mentioned in the Introduc-
tion, this is only expected to produce very rough upper bounds, which are
nevertheless useful.

THEOREM 2.1. Assumed >3 or A > 0. For |y| >4 and 0 < u < ¢y,

(2.1)  P[[loge,(0,y) — E[log e,(0, y)]| = u/Iyl] < cgexp{ —cou}.

Analogous estimates hold with e,(0, y) replaced by a,(0, y) or d,(0, y).



DISTANCE FLUCTUATIONS 1515

ProOOF. In view of Lemma 1.2, it clearly suffices to prove (2.1). We now
introduce an enumeration q,, k > 1, of Z¢ and the filtration .7, k > O:

Fo=1{¢, 0},
(2.2) k
F ={o(w(A)); AcB(RY) and Ac |JC(g;); whenk > 1.
i=1
We now pick a fixed y in R? with |y| > 4 and introduce the nonnegative
martingale
M, = E[—-loge,(0,¥)l%], k=0.

In view of (1.35), —log ¢,(0, y) is bounded and M, converges P-a.s. and in L?,
p € [1,x), converges to —log ¢,(0, y). We have, in fact,

(2.3) M, — M, = —loge,(0,y) + E[log e, (0, y)].

Our main task is now to derive upper bounds on the martingale increments
def
AM, =M, — M, ,, k > 1. We shall define [see (2.16) below] certain % -mea-

surable nonnegative variables U, with E[(AM,)?|%,_,]1 < HU,|%,_,], k > 1.
Our claim will then follow from suitable exponential estimates on ¥, . U,
derived in Lemma 2.3 and from Theorem 3 of Kesten [8].
We shall use the following notation: for 2 > 0, x € R? and w, o € Q (two
cloud configurations), we define

Vi(x,w,0)

(2.4) i

Y[ Wx-y)e(dy)+ ¥ [ W(x—y)a(dy))
C(q,,) C(q,,)

m<k m>Fk

as well as

(29)  epulmo) = Blewp| = ["V00+ V(2 ds) H(y) <

)

where we have dropped the w, o dependence from the notation. We can now
represent M, k > 0, through

(2.6) M, =E"[-loge, ,(0,¥)], k=0,

where E” denotes the integration over the variable o with respect to the
measure P. It is also convenient to introduce the path measures on C(R,, R9)
for x € R k> 0and w,o€ Q,

(2.7) P*xk _ e)\’k(x,y)fll{H(y) < w}exp{—j;)H(y)

as well as the analogously defined measure st, where V,(-, o, o) is being

replaced by V(x, w). To simplify notation, we shall write for 2 > 1,

(A +V)(Z) ds}Px,

C,=C(q;), C, = the closed a-neighborhood of C,,,

2.8 -
(2:8) H, = Hg, (the entrance time of Z. in Ck).
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Observe that W(-) = 0 outside B(0, a) and therefore
(2.9) V,(,0,0) =V,_i(-,w,0) onC§,fork > 1.

From the strong Markov property it now follows that when %2 > 1, with a
slight abuse of notation,

€\ k-1

(0,y) = P¢[H, > H(y)] + E}

e _
H, < H(y), &t 1(ZHk,y)}

ek e\ k

and, therefore,

e\ k-1

(2.10) (0,y) -1 =E§[Hk <H(y), (e:kl (Zw,» ) — 1”

Ak Ak
In an analogous fashion we have

W

(2.11) (0,y) -1 =E<’§1[Hk <H(y), (eem (Zu,»¥) = 1)}

e\ k-1 N k-1

We shall say that a box C, is a “neighbor of y” if |lg, — g,,l < 1, for some gq,,
with C,, N B(y) # . Of course the number of neighboring boxes of y is
bounded independently of y. Finally for A > 0 and £ > 0 we shall denote the
(A + V,)-Green function of B(y)‘ = U by

(2.12) g3 (-, ") defined as in (1.10) with V replaced by V.
LEMMA 2.2. Forx € R% k>1and A >0,
e/\,k—l(x’y) - eA’k(x,y)

(2.13) B ,l;jgf’k(x’z)(vk_Vk—l)(z)e/\,k—1(2,y) dz

= fc 8l r-1(x,2)(V, = V,_1)(2)e, (2, ) dz.

Moreover, we can pick a constant c,o(d, v, A, W, M) such that

(2.14) IAM,| < ¢q9, k>1,
(2.15) E[lAM, 15, ] <E[Ul5 4], k=1,
provided

, ifC, i ighb ,
(2.16) U, - C1o if C,, is a neighbor of y

- cioBo[H, <H(y)]?, otherwise.
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PROOF. The argument to prove (2.13) is classical. For w € C(R,, R?) with
H(y) < ©, we have

exp{—[(f“”(vk_1 —V.)(Z,) ds}

(2.17) =1+ ["V, -V, )(2)
0

><exp{—fH(y)(Vk_1 -V.)(Z,) du} ds.
Multiplying both members of (2.17) with exp{— [#*V,(Z,) ds} and integrat-
ing with respect to 1{H(y) < »}P_, we obtain the first equality of (2.13). The
second equality is obtained by exchanging the role of 2 and & — 1.

Let us now prove (2.14) and (2.15). From (2.6), (2.10) and (2.11), we have

" Al W
AM,, = E°|log|1 + Ef | H, < H(y), | = (Zu,, ) = 1
(2.18) " .
= —[E”[log 1 +E'(’§_1[Hk <H(y), (e L (Zy,,y) — 1””
AN E—1

When C, is a neighbor of y, we have

IAM,| < max([E"[suplog en k(s y)}, [E"[Suplog eni-1( )
Cy Cy

(2.19)

<log(cg!) + ¢;(2Vdl + 1+ a), using (1.35).

On the other hand, when C, is not a neighbor of y, it follows from (2.13) and
(2.18) that

IAM,| < max{[E”[log 1+ E* H, <H(y),

fékg)}\/,kfl(ZHk’ Z)(Vk - Vi_1)(2)

eni(2,9)

——dz
e)\,k(ZHk’ y)

|

(2.20)

1+ El-Y H, <H(y),

E“ [log

/C_kg,\y,k(ZHk, Z)(Vk—l - Vi)(2)

e/\,k—l(z’ y)
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Now from Harnack’s inequality [see, for instance [12] after (1.28)],

Supe/\)]’('yy)/ililfe/\,j('hy) <cy(d,\,M,a,l) forj=0
C, Cy

and, therefore,

IAM,| < max{[E"[log 1+ ManA'('f[Hk < H(y), fé 8l v-1(Zy,, 2) dz}”,
k

(2.21) lE"[log

L+ McllEA(])el[Hk <H(y),

}.

Now since d >3 or A >0, g, ,(,-) is smaller than g,(:,-, ® = 0), the
A-Green function of Brownian motion. It now easily follows that c;, can be
adjusted so that (2.14) holds. Squaring both members of (2.21), we also find
that when C, is not a neighbor of y,

«[é gﬁv,k—1(ZHk, 2) dZD

AM,* < ey max(E°[ BY[H, < H()]|", £ [ By [H, < H(»)]]')
< ey, max(E°| PY[H, < H(»)|*], E°[ P4 [ H, < H()]?]).
Conditioning with respect to .%,_;, we find
[E[(AMk)z |Ze—1] = 012[E[[EU[PA<§Q[Hk = H(y)]z
+B§ [ H, < H(y)]z”%efl]

(2.22) A )
|28 [H, < H(»)I']

= 2¢,E| By[H, < H(y))*| 7, _4].

From this and (2.19) it follows that c¢;, can be adjusted so that (2.15) holds.

Our next step is to derive exponential bounds on ¥, U,.

LEMMA 2.3. For |y| > 4,

(2.23) E

exp{cm by Uk}} = exp{cMIyl}.
k>1

PrROOF. In view of the definition of the U,, & > 1, it clearly suffices to
prove an estimate like (2.23) with U, replaced by P, H, < H(y)]?>. Now
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observe that on the event {H, < H(y)}, one of the ¢ with |l¢g —g,ll<1
belongs to ./ defined in (1.30) and, consequently,

(224) Y P[H,<H(y)|"< ¥ P)[H, <H(y)| <3E,[l~].
k>1 k>1

We are therefore reduced to proving an estimate like (2.23) with XU, re-
placed by E[|l«[l. From Jensen and Cauchy—Schwarz’s inequalities together
with (1.31) and (1.35), we find

o25) elexp( 2171} = €] e 24|
< E[2Y0/2]" % c5 1 explc,lyl).

Our claim follows.

Let us now finish the proof of Theorem 2.1. As a consequence of (2.14),
(2.15) and (2.23), we can apply Theorem 3 of Kesten [8]. The role of x, in the
notations of [8] is played by max(e?c%,,2(c,,/c;3)ly). Our claim (2.1) now
follows from (1.32) of [8]. O

An interesting consequence of Theorem 2.1 in view of Section 3 is the
following corollary:

COROLLARY 2.4. Assumed > 3 or A > 0. Then

(2.26) sup E
[yl>1

eXP{W(E[%(O,y)] - aA(O,y))} <=

and analogous estimates hold with d,(0, y) or —log ¢,(0, y) instead of a,(0, y).

ProOOF. In view of Lemma 1.2 and (1.35) it suffices to prove the estimate
for a, and |y| > 4. From (1.35) we also have

a,(0,y) <log(1/ce) + c7(lyl + 1) < cy6lyl.

From Theorem 2.1 we also know that
(2.27) I]D[[E[aA(O, )] —a(0,y) > u\/lyl] < ¢y exp{ —cyu}

for u < c¢;|yl. The left member of (2.27) is a decreasing function of u and
equals 0 for u > cy4y/lyl. As a consequence, (2.27) holds for all u provided
chlyl > ci6lyl, thatis, |y| > (c;4/c5)?. This and (1.35) easily imply our claim.

O

We shall now briefly discuss how the results and proofs are adapted in the
slightly more singular situation where d = 1,2 and A = 0.
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THEOREM 2.5. Assumed =1 or 2 and A = 0. For |y| > 4,

(2.28) I]:D[|log e,(0,y) — E[log e,(0, y)]| = uMloglyl] < ¢q7 exp(—cqgu)

for 0 <u < cylyl and

< o,

(2.29) sup E[exp{m(ﬂ—log e\(0,y)] + log eA(O,y))}

lyl=2

Analogous estimates hold with d,(0, y) or a,(0, y) instead of —log e,(0, y).

PrOOF. In view of Lemma 1.2, together with the fact that F (x, ) has
finite exponential moments of any order which do not depend on x, it suffices
to prove (2.28) and (2.29), the extension to d,(0,y) and a,(0, y) being
straightforward. Moreover, (2.29) follows from (2.28) by a similar argument
as in Corollary 2.4.

Now to prove (2.28), one introduces é,(x, y) defined as in (I.4) except that
V(-, ) is replaced by V(:, w) which equals M on a complement of a box A
[see (1.32) for the notation] and coincides with V on A
the constant 4c¢,/c;. Observe that

(2.30) e0(0,y) > ¢,(0,y) = cqexp{—c,lyl}

and

cly|

cy- Here ¢ stands for

P[—log é,(0, y) + log ey(0, y) > log 2]

|

exp| = ["V(Z,, 0) ds|. T, <H(y) <

P 1 % 0
= —_ > —
2 - eo( ' Y)

<P

N =

P[T,,, <H(y)] =

clyl

(2.31) 172

<ExE,

1/2

X [E[eO(O, y)fz]
c
<c}/? exp{ - Esclyl}[E[2N°/2]l/2 -cg ' exp{eqlyl)

< ¢y exp{—cqlyl},

using (1.34), (1.35) and our choice of c.
Observe that (2.30) and (2.31) also imply that

0 < E[—log é(0, y) + loge(0,y)] < cyy.

It therefore suffices to prove (2.28) with e,(0, y) replaced by €,(0, ). For this
we proceed as in the proof of Theorem 2.1. We now only have to take into
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account the cubes C, which intersect A, . For such cubes we have

clyl*

coq loglyl, ifd = 2,
sup | g3 .(x,2)dz < .
xeékfck bR coulyl, ifd=1,

as follows from standard Green function estimates.

As a consequence, we find that for cubes C, intersecting A, [AM,] <
co5 log|yl. Moreover, we define U, as c3s(log|y))*> when d =1, and when
d=2as

Cog s when C,, is a neighbor of |y|,

i cyr(loglyl)® Bo[ Hy, < H(y)]?, otherwise,

where the constants ¢, and c¢,,; are suitably adjusted so that (2.15) holds (of

course we only consider boxes C, which intersect A, ). In the exponential

estimate (2.23), c¢,; is now replaced by c,g/(logly))? and our claim (2.28)

follows again by an application of Theorem 3 of Kesten with x, in the

notation of [8] being picked equal to max(e?c2(log|yD?, 2(c’,/cq5)1oglyD?|y).
O

3. Fluctuations to the Lyapounov norms. In this section we shall
derive upper bounds on the difference D,(0, y) — a,(y) [see (1.6) and (1.6)].
These estimates combined with the results of Section 2 will provide bounds
on the difference d,(0, y) — a,(y). Throughout this section we assume that

(3.1) W (") is rotationally invariant.

As a consequence, both D,(0,-) and «,(-) are rotationally invariant. In fact,
the norm «,(-) is of the form «a(M)|-|, where «a()) is a continuous concave
increasing function R, — (0, +). It follows from translation invariance and
the triangle inequality that

D,(0,Nz) < ND,(0,z) forA>0,z€R% N> 1.

Dividing by N and letting N tend to infinity, we conclude from Proposition
1.3 that

(3.2) a,(z) <D(0,2) for x>0,z R?.

Therefore, our main task in this section is to provide lower bounds for a,(z)
in terms of D,(0, z).

THEOREM 3.1. Assume (3.1) and let A > 0 be given. If k(-): R, — (0, }) is
decreasing and satisfies

(3.3) Ad=ef sup [E[exp{x(lzl)([E[a)\(O, z)] — a,(0, z))}] < ®©

zeR4?
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then

) 1
s 2O E) <(v1l2)
<a(2) <D(0,2), z € RY,

for suitable constants &,(d,v,W, M, A, A) > 0 and y,(d, v,W, M, \) > 0.

1+ log + log(1 + |z])

ProOF. In the proof below the constants vy, v,,... will follow the conven-
tion we introduced after (1.10), whereas the constants &;, 8,,... may addi-
tionally depend on A defined in (3.3). Thanks to rotational invariance, we
assume without loss of generality that z = |z|e;, where ey,..., e, stands for
the canonical basis of R%. We define

l
(3.5) R=d(a+2)< 5 [see (1.25)]
and introduce for A > 0, x,y € R? and w € Q,
ex,y, »)
3.6
(3.6) = sup Ex,[exp{—fHR(y)(/\+V)(Zs,w)},HR(y) < oo,
x'€Bp(x) 0

provided for z € R¢, By(z) = B(z, R) and Hy(z) = Hy .. Given m € Z, we
consider the affine hyperplane .7, orthogonal to e;, passing through 3Rme;:

(3.7) #,={z€R? z-e, = 3Rm]

m

(when d = 1,7, = {3Rme,}). We introduce the sublattice of .Z,:

d
(3.8) 9 ={z=3mRel+ Y (a+ 1)k;e, kiEZ,i=2,...,d}.

m 171
i=2

We have picked R so that

U Bgr(2) 2 {2z’ € R%, dist(2',%,) <a + 1}.
z€Y,,

We let 7 stand for the closed a-neighborhood of /%, and define the open
neighborhood of 7

(3.9) 0,= U B(z,R) %"
z€,,

The open sets O,,, m € Z, are then pairwise disjoint. We finally introduce for
Be(0,1) and m > 1,

(3.10) gs(m) = ¥ E[2,(0,2)"].

meg,,

Our strategy to derive a lower bound on «,(z) is to show (in Lemma 3.3)
that gﬁ(m) is approximately submultiplicative. It then follows that —m !
log gﬁ(m) converges to a limit as m tends to infinity and cannot be “substan-
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tially smaller” than this limit when m is large [see (3.33)]. This limit value is
easily seen to be smaller than B3R a,(e;). The exponential estimates (3.3)
then enable us to relate —m™'log gz(m) and (B/2)Ea,(0,6Rme,)] and
provide a way to derive a lower estimate of «,(6 Rme;) [see (3.38)] in terms of
F[a,(0,6 Rme,)]. The extension to the case of a general z is then easy.

LEMMA 3.2. There are constants y, > 3R + 1 and vys, v, > 1, such that for
m=>1and B<(0,1),

Y2 _
gﬁ(m) < F Z [E[e,\(O,z)ﬁ]
||2||s=%2m
ze m
(3.11)
Y4 _ -
< —m*t ) [E[e/\(O,z)B],
B lzll< yam
ze,,
where

(3.12) &,(0,2) = sup Ex[exp{—fHR(Z)()\+ V)(Zs)ds},HR(z) <T
x€BR(0) 0

and T stands for the exit time of Ay [see (1.32)].

Proor. We have, on the one hand, a lower bound of gB(m). Indeed from
(1.35), for B € (0,1) and m > 1, assuming vy, > 3R + 1,

(3.13) gp(m) = [E[éA(O,3mRe1)B] > cf exp{ — Bc,3mR}
> exp{ —Bysm}.

On the other hand, we can cover any closed ball of radius R by finitely many
balls of radius 1. As a consequence and in view of (1.33) [note that B(0) C
C(0)], for z € R% and B € (0, 1),

(3.14) E[2,(0, 2)"] < 76 exp{~ ByslI2}.

Moreover, if we let for the time being 7' stand for 7, , with u = y,m and
v, = 3R + 1 to be defined below, we know by (1.34) that for z € R,

Hp(2) . B
(3.15) [ELES‘;IE’(O)EJC[QXP{—/O (A +V)(Z) ds}, T <H(z) < ]

< 7yg exp{ — Byyu}.

def .
Now for z € 9,,, z — 3mRe, = z | satisfies

lzll = 3mR < |z |l < llzll.
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It follows that for A > 3Rm + 1,

Z E[éA(O’Z)B] = Ve Z eXp{—,B'y7||z||}
ze,, 2€9,,
llzll> A llzll>A
=Y ) eXP{_B%”Z”}
ze,
lzl>A—3Rm
(3.16) <vs X ki lexp(—Byrk)

k>A—-3Rm

IA

+ o
'ygf ri-1lexp(—By,r)dr
A—-3Rm

IA

Y10
Fexp{—B%(A — 3mR)}.
Observe also that in view of (3.15), for z € R¢,

E[2,(0,2)"] < E[,(0,2)"] + 75 exp{—Bysu},

so that
Y E[2,(0,2)°]
llzll<A
ze,,
(317) o,
< ¥ E[6(0,2)"] + v(24 + 1)* " exp{ —Byou}.
llzll<A
ze,,

Thanks to (3.13) we can now pick A =u = y,m with y, > 3R + 1 large
enough so that (3.11) holds for suitable constants vy, y, > 1.

The promised almost submultiplicative property of gﬁ(m) now comes in
the next lemma. The proof bypasses the Van den Berg-Kesten inequality
which is at the root of the argument used in Alexander [1] and does not seem
easily applicable here. Instead we use a “splitting technique” [see (3.26) and
(3.27)] which generates the desired independence property.

LEmMA 3.3. For B€(0,1) and m,n > 1,

(3.18) gs(m +n) < %(m+n)3d_2gﬂ(m)gﬁ(n).

Proor. We pick B €(0,1), m,n > 1 and define T as the exit time of Z,
from the box A, ., [see (1.32)]. We also pick a fixed z € Z,,,, N A
and introduce

vo(m+n)

(3.19) L =sup{0 <s < Hg(z), Z, €7/},
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where we use the convention sup{J} = 0. Observe that when Z, € B;(0) and
H.(z) < =, then L € (0,%). We also consider
(3.20) S=T, o0, +L and H=H,.,
provided 6,, ¢ > 0, stands for the canonical shift on C(R,,R%). In other
words, H is the entrance time in .7 and S is the first exit time of O,
[defined in (3.9)] after L the last visit to Z¢ before entering By(z). Observe

that when y € R? is such that y e, < 3mR + a, for any path Z. with Z, =y
and Hg(z) < o,

(3.21) S <Hp(z), P,as.

Finally for x € R? we define

(3.22) Q, = YHg(z) < =}P,/P,[Hg(z) <,

that is, Wiener measure starting from x conditioned to enter Bg(z). For

x € Bg(0),

Ex[exp{—[oHR(Z)(A +V)(Z,) ds}, Hp(2) <T

(3.23) =Ex[exp{—f0H(A+V)(Zs)ds},H<T,

EZH[exp{—/OHR(Z)(/\ + V) (Z,) ds}, Hyp(2) <T

Now for y; €7, N A, (1) (playing the role of Z on the event {H < T'}) we
have

Eyl[exp{—foHR(Z)(/\ +VY(Z,) ds}, He(2) <T

< Eyl[exp{—j:gHR(Z)()\ +V)(Zy) ds}, Hp(z) <T| [using(3.21)]

=P, [Hp(z) < =]
(3.24)

X E%: exp{—fHR(Z)(/\ +V)(Z,) ds}, Hy(2) <T
| S

< Pyl[HR(Z) < o]

[ Hy(2)
X E®|Zg €A,y (i exp{—fo

(A + V)(Zs)ds}oes].

Observe then that under @, , conditionally on Zg, the process Zg,. is
distributed as Brownian motion starting from Zg conditioned to enter By(z)
before 7. Moreover, if we define

30, = {z € d0,,, z-e; > 3mR + a},
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then Zg € 97 0,, Q, -a.s. The rightmost member of (3.24) is therefore equal to
P, [Hy(z) <]

XE@1| Zg € A iy O a*om,EZS[exp{—fHR(”(A +V)(Z,) ds},
0

Hp(z) <H

[P Ha(z) < H]

<A(z)  sup Ey[exp{—[OHR(”(A +V)(Z,) ds}, Hy(z) <H

yEAYz(ern)ﬂ (9+Om

provided

(3.25) A(z) = ( inf P,[ Hy(2) <H])71.

yeA, (m+nr)Nd+0,,

Inserting the inequality we just derived in (3.23) and taking a supremum
over x € By(0), we obtain

6,(0,2) <A(z) sup Ex[exp{—foH()\ +V)(Z,) ds}, H<T

x € BpR(0)

x sup Ey[exp{—/oHR(Z)()\ +V)(Z,) ds},

yeA, (m+n)na*o,

Hp(z) <H

Now on the event {H < T}, H coincides with one of the Hy(y) for some
y € 9, with Bp(y) N A, ., ,, #* . Therefore,

(0,2) <A(2) ¥ sup Ex[exp{—/oH()\ +V)(Z,) ds},

y,y x€Bg(0)

Hy(y) =H<T

(3.26) o
X sup Ey,,[exp{—fo EEA+VY(Z,) ds},

y"€Bg(y)Nnad*0,,

Hp(z) <H

provided y, y' in the summation belong to &,, and are such that Br(y) and
By(y'), respectively, intersect A, . ,). We now raise both members of (3.26)
to the power B and integrate over P. The first term in the summation in the
right-hand member of (3.26) is measurable with respect to the restriction of
the Poisson cloud to {z € R¢, z -e; < 3mR}, whereas the second term is
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measurable with respect to the restriction of the Poisson cloud to {z € R¢,
z -e; > 3mR}. These terms are therefore independent and we find

(3.27) E[2,(0,2)"] < A(2)" Z/[E[éA(O,y)B][E[éA(y’,z)B].

Summing over z € 9,,,, N A, ., in view of Lemma 3.2 and of the in-

equality AP < A, we have thus shown

gg(m +n)
3.28 Y12 _ _
(328) X2 qup A2 gp(m)gp(n)(m+ )t
B 269m+nmAyz(m+n)

There now remains to give an upper bound on A(z). If x € 9"0O,,, we denote
by % the symmetric of x with respect to the hyperplane {z € R?, z-e, =
3Rm +a}.Nowifze g, ., NA it follows from the method of images
that for x € 970, N A

yo(m+n)

ya(m +n)>
Px[HR(Z) <H]
> c(d,R){Iz —x2 -z - o_clz_d} (when d > 3)

lz — x|
(3.29) > c¢(R)log (when d = 2)
lz — x|
R-a hen d = 1
3R -R_q (Whend=1).

It is now straightforward to check that for m,n > 1,
d
Sup{A(Z), ZE 9ern N A72(m+n)} < 713(m + n) N

Our claim (3.18) now follows.
We define for 8 € (0,1) and m > 1,

(3.30) F;(m) =log gz(m).
It follows from Lemma 3.3 that for 8 > 0 and m,n > 1,
Fy(m + n) <F;(m) + Fy;(n) + Gg(m + n),

(3.31) Y11

where Gﬁ(k)=log(F) + (3d — 2)log k.

The growth of G is “moderate” in the sense that

GB(m) Y12
(3.32) 4 Zk m < 7

1
1+ 1ogE + logk) for £ > 1.

m>2
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It follows from Hammersley [6] that

F,(m
f( B)d=ef lim L € [—o,©) exists
m—® m
3.33
( ) Fy(m) Y12 1
<——+ —|1+1log— +logm| form > 1.
m m B

On the other hand, we also have
gp(m) = [E[eA(O, 3Rme1)ﬁ] > exp{ BE[log e,(0, 3Rme,)]},
so that by (1.6),

(3.34) F(B) > —B3Ray(e,).
We shall now derive an upper bound on Fy(m). In view of (3.11) we have
Vs _
exp{Fy(m)} < — Y [E[eA(O, z)ﬁ].
B z€Z, Nk,

Observe that each ball of radius R can be covered by a fixed number of balls
of radius 1, so that for z € 9,,, m > 1 and B8 € (0, 1),
B ]

E[2,(0,2)"]
thanks to translation invariance. Now 3Rm < |z| < Vd y,m, where R is
given in (3.5), and we can apply Harnack’s inequality to find

E[2,(0,2)"]

<c(d,R)E

sup Ex[exp{— fH(Z)(/\ +V)(Z,) ds}, H(z) <
x*EByg ., 1(0) 0

IA

')’13”5[;1(10%@)\(-’6’ Z)B} = 713[E[eXp{_Ba/\(0a Z)}]

= 15 exp{— BE[a,(0, z)]}[E[exp{B([E[aA(O, z)] — a,(0, z))}]

We now choose

(3.35) B= K(\/E'yzm) € (0,1)
and conclude from (3.3) that for m > 1 and z € 9,,,
(3.36) E[2,(0,2)"] < 8, exp{—BE[,(0, 2)]}.

Moreover, since W(:) is rotationally invariant,
E[a,(0, 2)] = E[a,(0, 2)]

provided z denotes the image of z by a rotation of axis e; with angle .
Translation invariance and the triangle inequality for a,(-,-) imply

E[a,(0,6Rme,)] < 2E[a,(0, z)]
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and, therefore,
_ B B
(3.37) [E[eA(O,z) ] < 8, exp —E[E[a)‘(O,fiRmel)] ,
which together with (3.11) shows
(3.38) exp{Fy(m)} < Em exp —E[E[a,\(O,6Rme1)]

with B as in (3.35). Combining this with (3.33) and (3.34), we find that for
m>1,

1)
—3RBay(e;) < ;“ [a,(0, 6Rme, )]

1
1+10g§ +10gm) - %[E

and, therefore, for x = 6 Rme,,
25, L1 1
+ log
K(\/E72|Z|/6R) K(\/E72|Z|/6R)

Using the triangle inequality, translation and rotation invariance, we deduce
that for any z € R¢,

E[a,(0, 2)] < ay(2) +

+ loglzl).

1+ log

(3.39) E[a,y(0,2)] < ay(z) +

—K(71|Z|) —K(’)/1|Z|) + log(1 + |2])

This together with Lemma 1.2 and (3.2) finishes the proof of Theorem 3.1. O

We can now combine Corollary 2.4, Theorem 2.5 and Theorem 3.1 to find
the following corollary:

COROLLARY 3.4. Assume (3.1). When d > 3 or A > 0, then for z € R¢,
(340)  D,(0,2) — y,(1 + 121 log* (I2])) < a,(2) < D,(0, 2).
When d < 2 and A = 0, then for z € R¢,

(8.41)  Dy(0,2) — y35(1 + 12" (log*|2])*) < ag(2) < Dy(0, 2).

We also have the following corollary:

COROLLARY 3.5. Assume (3.1). When d > 3 or A > 3, then P-a.s. for large
|z,

ay(z) — 716(1 + |2]'? 10g|2|)

(3.42) s
<d\(0,2) < a,(2) + yi6(1 + 1277 loglzl).
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When d < 2 and A = 0, then P-a.s. for large |z|,
ag(z) = v (1 + | 2|2 log®|z)

(3.43) e
<dy(0,2) < ay(2z) + yi7(1 + 121" log®|zl).

ProOOF. Our claim follows from Corollary 3.4 and Theorem 2.1 or 2.5 in
the case of d, together with a Borel-Cantelli argument. [To this effect, it
should be noticed that sup,,_, ., d,(x, y) is uniformly bounded because of
(1.35).] O
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