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A random variable X is N-divisible if it can be decomposed into a ran-
dom sum ofN i.i.d. components, whereN is a random variable independent
of the components; X is N-stable if the components are rescaled copies of
X. These N-divisible and N-stable random variables arise in a variety of
stochastic models, including thinned renewal processes and subordinated
Lévy and stable processes. We consider a general theory of N-divisibility
and N-stability in the case where E�N� <∞, based on a representation of
the probability generating function of N in terms of its limiting Laplace–
Stieltjes transform `. We analyze certain topological semigroups of such
p.g.f.’s in detail, and on this basis we extend existing characterizations of
N-divisible and N-stable laws in terms of `. We apply the results to the
aforementioned stochastic models.

1. Introduction. A random variable X is infinitely divisible in the clas-
sical sense if it can be decomposed (in distribution) into the sum of n i.i.d.
components, for any natural number n; in particular, X is strictly stable in
the classical sense if the components are rescaled copies of X itself. In this pa-
per we study the problem of random divisibility and stability: we say that X is
N-divisible if X can be decomposed into a random sum of N i.i.d. components,
whereN is a natural number-valued random variable independent of the com-
ponents, and we say that X is N-stable if the components are rescaled copies
of X. (Here we only consider strict N-stability, that is, no constant term.)
The problem is: given the distribution of N, characterize the N-divisible and
N-stable probability laws.

This problem first arose in the context of thinned renewal processes. Let
�R�τ�; τ ∈ �0;∞�� denote a renewal process; the p-thinning of R is the point
processRp formed by independently retaining each point ofR with probability
p or deleting it with probability 1 − p. Rényi (1976) showed that, among
renewal processes, the Poisson process is characterized by the fact that

�R�τ�; τ ∈ �0;∞�� =D �Rp�p−1τ�; τ ∈ �0;∞��; p ∈ �0;1�;

where =D denotes equality in distribution. Gnedenko (1970) considered arbi-
trary rescalings of the time axis, and he showed that

�R�τ�; τ ∈ �0;∞�� =D �Rp�c�p�τ�; τ ∈ �0;∞��; p ∈ �0;1�;
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for some function c�·� if and only if the interval distribution of R has Laplace–
Stieltjes transform (LST) 1/�1+ λsα�, s ≥ 0, where α ∈ �0;1� and λ > 0. (The
Poisson case corresponds to α = 1.) Now an interval of Rp is the random
sum of Np intervals of R, where Np is geometric with success probability
p. So Gnedenko’s result says that a distribution on the positive half-line is
geometric stable—that is, Np-stable for all p ∈ �0;1�—if and only if it has
LST 1/�1+λsα�. Geometric stable and geometric infinitely divisible laws (Np-
divisible for all p ∈ �0;1�) have subsequently been characterized on R and
even in Banach space [see Gnedenko and Janjic (1983), Klebanov, Maniya
and Melamed (1984), Pillai (1990), Melamed (1992), Fujita (1993) and Rachev
and Samorodnitsky (1994)]. These distributions have various statistical appli-
cations, particularly as models for financial data [see Rachev and SenGupta
(1992) and Rachev and Samorodnitsky (1994)].

In this paper we consider a theory of N-divisibility and N-stability for a
general N with E�N� < ∞. Apart from its intrinsic interest, such a the-
ory enables us to construct more flexible stochastic models based on random
sums; in particular, it allows us to identify the renewal processes that are
invariant up to time rescaling under a broad class of thinnings [see Rachev
and Samorodnitsky (1994) for applications]. From another perspective, an N-
divisible (respectively N-stable) random variable can be interpreted as the
value of a subordinated Lévy (resp. stable) process, and its components as the
increments of the process along a subordinated renewal process. We discuss
these matters further in Section 3.

When E�N� < ∞, the N-divisible and N-stable laws can be characterized
by a method based on the following representation of the probability gen-
erating function (p.g.f.) of N. The representation comes from the theory of
branching processes; in that setting the LST ` is interpreted as the limiting
LST of the normalized population size.

Fact 1 [Bingham, Goldie and Teugels (1987), page 404, and Asmussen
and Hering (1983), page 84]. Let g denote the p.g.f. of a probability measure
on N x= �1;2; : : :�; with mean µ = g′�1−� ∈ �1;∞�. Then there is a unique
LST ` �up to scale�; with lims→∞ `�s� = 0; such that

g�s� = `�µ`←�s��; 0 < s ≤ 1;(1)

where `← denotes the inverse function of `. Furthermore, 1− ` varies regularly
at 0+ with index 1.

[The geometric p.g.f., for example, can be written as `�p−1`←�s�� with
`�s� = 1/�1 + s�, the LST of the unit exponential distribution.] To apply
the method, one embeds the p.g.f. g�·� = `�µ`←�·�� in the parametric family
�`�µn`←�·��; n ∈ N � generated by composing g with itself; by taking certain
limits in n, one obtains a representation of the characteristic functions (ch.f.’s)
of the N-divisible and N-stable laws in terms of ` (see Sections 3 and 4 for
details). This was essentially the method used by Rényi (1976) and his suc-
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cessors in the exponential/geometric case; subsequently Klebanov, Maniya
and Melamed (1985) used a more general version of the method for the case
of a general ` with finite mean [see Melamed (1992) for details].

However, for our purposes Fact 1 is overly restrictive. Indeed, we will show
below that, for any LST ` [with lims→∞ `�s� = 0], there is a nonempty pa-
rameter set H` such that g`; t�·� x= `�et`←�·�� is a p.g.f. for t ∈ H` and g`; t
has finite mean, although the mean need not be et in general (cf. Section 2.2
and Proposition 3). For each `, the set G` x= �g`; t�·�; t ∈ H`� is a closed
subsemigroup of the general topological semigroup of p.g.f.’s (under composi-
tion and weak convergence), and each (nontrivial) G` determines a nonempty
class of “G`-infinitely divisible” (“G`-stable”) laws, that is, distributions that
are N`; t-divisible (N`; t-stable) for all t ∈H`, where N`; t has p.g.f. g`; t.

We proceed as follows. In Section 2.1 we give several examples of p.g.f.’s
generated by specific LSTs, including the exponential/geometric as a special
case. In Section 2.2 we show that, given `, H` and G` are isomorphic and
homeomorphic closed “Hun” semigroups [cf. Ruzsa and Székely (1988)], and
we organize the H`’s (and hence the `’s) into a lattice. In Section 2.3 we com-
pute the mean of g`; t as a function of t ∈ H`, particularly when 1 − ` is
regularly varying at 0+ (with index α ∈ �0;1�), and we relate this to Fact 1.
In Section 2.4 we find that the set of all p.g.f.’s of the form g`; t, namely⋃
`G`, is equal to the set of p.g.f.’s with finite mean. This set is not closed,

but we give a closure property of the union of G`’s over a tight set of `’s
(i.e., the set of corresponding measures is tight). In Section 3 we show that
any infinitely divisible (stable) law has a G`-infinitely divisible (G`-stable)
counterpart for any `. Conversely, returning to the case of Fact 1, we com-
pletely characterize the symmetric or one-sided G`-infinitely divisible and G`-
stable laws when 1 − ` varies regularly at 0+ with index 1. In the course
of this we discuss the interpretation in terms of subordinated Lévy (stable)
processes mentioned above, and the application to renewal processes thinned
by mechanisms more general than p-thinning. Finally, Section 4 contains the
proofs.

2. Composition semigroups of probability generating functions.
Let G denote the set of p.g.f.’s g�s�; 0 < s ≤ 1, of probability measures on
N . With the operation of composition and the topology of weak convergence,
G is a topological semigroup [Carruth, Hildebrant and Koch (1983)]. Here
and throughout we use the term “semigroup” to mean a semigroup with an
identity element; such a semigroup is also called a monoid. Note that G is not
commutative.

Let L denote the set of LSTs of probability measures on �0;∞� without
an atom at 0, so that lims→∞`�s� = 0 for ` ∈ L . If 1 − ` varies regularly
at 0+ with index α ∈ �0;1�, we write 1 − ` ∈ RV 0+

α [see Bingham, Goldie
and Teugels (1987)]. As before, given ` ∈ L , let H` = �t ∈ R: g`; t ∈ G�
and let G` = �g`; t: t ∈ H`�. Finally, let H denote the topological semigroup
��0;∞�� with the operation of addition and the usual topology, and recall that
a semigroup is called monothetic if it is generated by a single element.
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2.1. Examples. We begin with the following observation. Let ` ∈ L and
let `α�s� = `�sα�, s ≥ 0, α ∈ �0;1�. Then `α ∈ L and

`α�et/α`←α �s�� = `�et`←�s��; 0 < s ≤ 1;

so H`α
= α−1H` and G`α

= G`. Thus for our purposes the difference between `
and `α is inconsequential, although the corresponding distributions are quite
different.

Example 1. Suppose that `�s� = �1 + s�−γ, s ≥ 0, for some γ > 0. This is
the LST of the gamma distribution with shape parameter γ; when γ = 1, ` is
the LST of the exponential distribution with mean 1. Then

g`; t�s� = `�et`←�s�� =
(

e−ts1/γ

1− �1− e−t�s1/γ

)γ
; 0 < s ≤ 1;

and

H` =
{

H ; if γ = 1/k for some k ∈ N ;
�0�; otherwise.

If γ = 1/k, then

G` =
{(

e−tsk

1− �1− e−t�sk
)1/k

; t ∈ H

}

and

p`; t�j�

=





(�j−1�/k∏
i=1

1+ �i− 1�k
ik

)
�e−t�1/k�1− e−t��j−1�/k; j = 1; k+ 1;2k+ 1; : : : ;

0; otherwise,

t ∈ H , where p`; t�·� denotes the measure corresponding to g`; t. The case
γ = 1/k was considered by Melamed (1992); when k = 1 this reduces to the
exponential/geometric semigroup. We also note that, when γ = 1, `α�s� =
1/�1+sα� is the LST of the Mittag–Leffler distribution of index α [Pillai (1990)
and Fujita (1993)].

Example 2. Let ` ∈ L and let

φ�s� = `�s�
1− `�s� =

∑
n≥1

`n�s� = LST of the renewal measure
∑
n≥1

F∗n;

s > 0, where F∗n denotes the nth convolution of the d.f. F corresponding to `.
Suppose that

eαβφ�eβs� = φ�s�; s > 0;(2)

for some α ∈ �0;1� and β > 0. Such functions φ were studied by Dubuc (1990)
and by Biggins and Bingham (1991); their results show that any such φ is



1480 J. BUNGE

very close to a multiple of s−α. Then `�s� = φ�s�/�1+φ�s��, where φ satisfies
(2); Jayakumar and Pillai (1993) called such LSTs semi-Mittag–Leffler. In this
case

g`; t�s� = `�et`←�s�� =
φ�etφ←�s/�1− s���

1+φ�etφ←�s/�1− s��� ; 0 < s ≤ 1;

�nβ;n ∈ N0� ⊂H`;

{
e−αnβs

1− �1− e−αnβ�s; n ∈ N0

}
⊂ G`

and

p`; nβ�j� = e−αnβ�1− e−αnβ�j−1; n ∈ N0; j ∈ N ;

where N0 x= N ∪ �0�. But H` 6= H unless φ�s� = s−α, which is the Mittag–
Leffler case of Example 1.

Example 3. Suppose that ` is the LST of the unit mass at 1, `�s� = e−s.
Then

g`; t�s� = `�et`←�s�� = se
t

; 0 < s ≤ 1;

H` = �log n; n ∈ N � ; G` = �sn; n ∈ N �

and

p`; log n�j� = δj;n; n ∈ N ; j ∈ N ;

where δj;n is the Kronecker delta. Note that in this case H` has Lebesgue
measure 0 but is not monothetic. Note also that `α�s� = e−s

α
is the LST of a

positive α-stable distribution.

Example 4. Let ` ∈ L and suppose that `�s� = exp�−ρ�s��, where ρ is a
positive function with completely monotone derivative. Suppose further that

e− log kρ�e�log k�/αs� = ρ�s�; s ≥ 0;

for some α ∈ �0;1� and k ∈ N ; in this case the results of Dubuc (1990) and
Biggins and Bingham (1991) apply to ρ′. Then

g`; t�s� = `�et`←�s�� = exp�−ρ�etρ←�− log s���; 0 < s ≤ 1:

In this case
{
n log k
α

; n ∈ N0

}
⊂H` and

{
sk

n

; n ∈ N0
}
⊂ G`

and

p`; �n log k�/α�j� = δj; kn; n ∈ N0; j ∈ N :
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2.2. Basic structure. We note first that 0 ∈ H` for any ` ∈ L , since
g`;0�s� = `�e0`←�s�� = s, which is the p.g.f. of the unit mass at 1. Thus H`

is always nonempty. In general, however, it seems to be difficult to derive H`

and G` directly from `, even when ` can be inverted in closed form. However,
we have the following structural description of H`, G` and their relationship.

Proposition 1. For each ` ∈ L ;

(a) H` is a closed subsemigroup of H ;
(b) G` is a closed commutative subsemigroup of G ;
(c) the map 8`: t 7→ g`; t from H` to G` is an isomorphism and a homeo-

morphism.

Now let �H � denote the family of closed subsemigroups of H , partially
ordered by inclusion and with binary operations H∧J x=H∩J and H∨J x=
the closed semigroup generated by H ∪ J, where H, J ∈ �H �. Then �H � is
a lattice, with unit H and zero �0�. However, while �H � partially orders the
H`’s and partitions L into

⋃
H∈�H ��` ∈ L : H` = H�, we cannot at present

guarantee that for every H ∈ �H � there is some ` ∈ L such that H` =H.
We can shed some light on the internal structure of the H`’s by noting that

they are “Hun” semigroups, as defined and analyzed by Ruzsa and Székely
(1988). For this we need the following definitions, which we adapt to our ad-
ditive notation. First, let S denote a commutative Hausdorff topological semi-
group, and let t, u ∈ S. If there is some v ∈ S such that t = u+ v, we say that
u divides t and write u�t.

Definition 1 [Ruzsa and Székely (1988), page 15]. The semigroup S is
Hun if �u�t and t�u� implies t = u, and �u: u�t� is compact ∀ t ∈ S.

Proposition 2. A closed subsemigroup of H is Hun.

Ruzsa and Székely (1988), Section 2, gave a detailed account of decompo-
sition of Hun semigroups, including “the existence of a decomposition [of an
arbitrary element]: : :into irreducibles and an anti-irreducible, or into more
general kinds of factors,” and many other results. However, we do not exploit
their results further here, so we refer the reader to their book for details.

2.3. Means and regular variation. We now consider the mean of g`; t as a
function of t ∈H`.

Proposition 3. Let ` ∈ L .

(a) For all t ∈ H`; g`; t has mean g′`; t�1−� = eη�t�; where η: H` →
�0;∞�; 0 ≤ η�t� ≤ t ∀ t ∈H`; and η is additive and strictly increasing.

(b) If 1− ` ∈ RV 0+
α for some α ∈ �0;1�; then η�t� = αt.

(c) If H` contains a set of positive Lebesgue measure, then 1− ` ∈ RV 0+
α for

some α ∈ �0;1�. In this case η�t� = αt.
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(d) IfH` = H ; then ` = `∗α for some α ∈ �0;1� and `∗ ∈ L with 1−`∗ ∈ RV 0+
1 .

In this case 1− ` ∈ RV 0+
α and η�t� = αt.

Thus the mean of g`; t need not be et. On the other hand, by Fact 1, for each
t ∈H` there is a unique `t ∈ L (up to scale) such that

`�et`←�s�� = `t�eη�t�`←t �s��; 0 < s ≤ 1:

If 1 − ` ∈ RV 0+
1 , then Proposition 3(b) implies that `t ≡ `; if H` = H , then

Proposition 3(d) implies that

`�et`←�s�� = `∗α�et`∗←α �s�� = `∗�eαt`∗←�s��; 0 < s ≤ 1; t ∈ H ;

that is, `t ≡ `∗. However, it seems that in general `t may depend on t.

2.4. Existence and approximation. Next we consider the set of all p.g.f.’s
of the form g`; t, that is,

⋃
`∈L G`. First, from Fact 1 and Proposition 3(a) we

have
⋃
`∈L

G` = �g ∈ G : g has finite mean�:

Observe that
⋃
`∈L G` is not closed in G : for example, let gn denote the p.g.f.

of the probability measure

pn�j� x=
cn

j�j+ 1�1+1/n
; j ∈ N ;

where n ∈ N and cn is the appropriate normalizing constant. Then �gn; n ∈
N � ⊂ ⋃`∈L G`, but limn→∞gn ∈ G \⋃`∈L G`. However, the next result shows
that if limn`n ∈ L , then limng`n; tn ∈

⋃
`∈L G`.

Proposition 4. (a) Let �`n; n ∈ N � ⊂ L and suppose that `n → ` ∈ L
as n → ∞. Let tn ∈ H`n

and suppose that g`n; tn → g ∈ G as n → ∞. Then
g = g`; t for some t ∈H`.

(b) Let 3 ⊂ L denote a tight set of LSTs, that is, the set of probability
measures corresponding to LSTs in 3 is tight, and suppose that 3 ⊂ L ; where
3 denotes the closure of 3 with respect to weak convergence in the set of all
LSTs of probability measures on �0;∞�. Then

⋃
`∈3
G` ⊂

⋃

`∈3
G`;

where the closure on the left-hand side is in G (with respect to weak conver-
gence).

In particular, (a) implies that no sequence of LSTs corresponding to �gn�
in the example above can converge to an LST in L .
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3. Random infinite divisibility and stability. Up to now we have
only considered g`; t�s� for real s ∈ �0;1�. However, in the equations of
N`; t-divisibility and stability the argument of g`; t�·� will be a characteristic
function, so we must define g`; t�s� for s in the closed complex unit disk. To
avoid specifying a complex inverse for `, we write

g`; t�s� =
∑
n≥1

p`; t�n�sn; s ∈ �0;1�; t ∈H`:(3)

If t ∈H`, then g`; t ∈ G , so in this case we take (3) as the definition of g`; t�s�
for s in the closed unit disk. Also, for the logarithm of a ch.f. we use the
“distinguished logarithm” specified by Chung (1974), Section 7.6. We can now
define G`-infinite divisibility and G`-stability [cf. Definition 2.1 in Melamed
(1992)].

Definition 2. Let ` ∈ L with H` 6= �0�, and let X denote a (real-valued)
random variable with ch.f. f.

(a) We say that X (or f) is G`-infinitely divisible if X is N`; t-divisible for
every t ∈H`. In other words,

X =D
N`; t∑
n=1

X
�t�
n ∀ t ∈H`;

where �X�t�n ; n ∈ N � is an i.i.d. sequence independent of N`; t. In terms of
ch.f.’s, for every t ∈H` there is a ch.f. ft such that

f�u� = g`; t�ft�u��; u ∈R:

(b) We say that X (or f) is G`-stable if X is N`; t-stable for every t ∈ H`.
In other words, there is a function c: H`→R such that

X =D c�t�
N`; t∑
n=1

Xn ∀ t ∈H`;

where �Xn; n ∈ N � is an i.i.d. sequence with common ch.f. f independent of
N`; t. In terms of ch.f.’s,

f�u� = g`; t�f�c�t�u��; u ∈R; ∀ t ∈H`:

We now show that any infinitely divisible (respectively strictly stable) ran-
dom variable has a G`-infinitely divisible (resp. G`-stable) counterpart. First,
on a probability space ��;F ;P �, define a positive random variable W with
LST ` ∈ L , where H` 6= �0�. On another probability space ��′;F ′;P ′�, define
a sequence of i.i.d. copies of W, �Wn; n ∈ N �, and a random variable N`; t

independent of �Wn; n ∈ N �. Since W is G`-stable with c�t� = e−t, we have

W =D e−t
N`; t∑
n=1

Wn ∀ t ∈H`:
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Now let φ denote an infinitely divisible ch.f. and define a Lévy process
�Y�τ�; τ ∈ �0;∞�� on ��;F ;P �, with distribution determined by �φτ; τ ∈
�0;∞��. Also, define a sequence of i.i.d. copies of Y�·�, �Yn�τ�; τ ∈ �0;∞�;
n ∈ N �, on ��′;F ′;P ′�. Now fix a nonzero t ∈H` and write τn x= e−t

∑n
j=1Wj,

n ∈ N , τ0 x= 0. A conditioning argument then yields

Y�W� =D Y1�τN`; t
� =

N`; t∑
n=1

�Y1�τn� −Y1�τn−1��

=D
N`; t∑
n=1

Yn�τn − τn−1� =
N`; t∑
n=1

Yn�e−tWn�:

Since the ch.f. of Y�W� is `�− logφ�, we have the following result (the stable
case follows by an analogous argument).

Proposition 5. Let ` ∈ L with H` 6= �0�.
(a) If φ�·� is an infinitely divisible ch.f., then `�− logφ�·�� is a G`-infinitely

divisible ch.f.
(b) If φ�·� is a strictly stable ch.f., then `�− logφ�·�� is a G`-stable ch.f.

Klebanov, Maniya and Melamed (1985) proved Proposition 5 directly for `
with finite mean [without using the process Y�·�], and they also proved the
converse in this case. We can extend the converse to the case where 1 − ` ∈
RV 0+

1 (as in Fact 1), when X is symmetric or one-sided.

Theorem 1. Let ` ∈ L with H` 6= �0� and 1− ` ∈ RV 0+
1 ; and suppose that

f is the ch.f. of a measure that is either symmetric �about 0� or concentrated
on �0;∞�.

(a) If f is G`-infinitely divisible, then

f�u� = `�− logφ�u��; u ∈R;(4)

for some infinitely divisible ch.f. φ.
(b) Suppose further that �log n;n ∈ N � ⊂ H`. If f is G`-stable, then (4)

holds for some strictly stable ch.f. φ.

In either case, if f is symmetric or concentrated on �0;∞�; then so is φ.

By combining Proposition 5(b) and Theorem 1(b) with information about
transforms of symmetric or positive stable laws, we get the following result.

Corollary 1. Let ` ∈ L with 1− ` ∈ RV 0+
1 and �log n;n ∈ N � ⊂H`.

(a) The function f�u�; u ∈ R; is the ch.f. of a symmetric G`-stable distri-
bution if and only if �up to scale�

f�u� = `��u�α�; u ∈R;

for some α ∈ �0;2�.
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(b) The function f�s�; s ≥ 0; is the LST of a G`-stable distribution on �0;∞�
if and only if �up to scale�

f�s� = `�sα� = `α�s�; s ≥ 0;

for some α ∈ �0;1�.

We conclude by returning to the topic of thinned renewal processes. Let
�R�τ�; τ ∈ �0;∞�� denote a renewal process with (i.i.d.) intervals X1;X2; : : :,
and consider the thinned renewal process R`; t formed by retaining the points

ofRwith indicesN�1�`; t;N
�1�
`; t+N

�2�
`; t; : : : ;where 1−` ∈ RV 0+

1 , t ∈H` ⊃ �log n;n ∈
N � and N�1�`; t;N

�2�
`; t; : : : are i.i.d. The intervals of R`; t are then

X1 + · · · +XN
�1�
`; t
; X

N
�1�
`; t+1 + · · · +XN

�1�
`; t+N

�2�
`; t
; : : : :

Corollary 1(b) then says that

�R�τ�; τ ∈ �0;∞�� =D �R`; t�c�t�τ�; τ ∈ �0;∞��; t ∈H`;

for some function c�·� if and only if X1 has LST `α for some α ∈ �0;1�. Thus
we have characterized renewal processes that are invariant up to change of
time scale under a broad class of “regenerative” thinning mechanisms.

4. Proofs.

Proof of Proposition 1. (a) Clearly, H` is an additive subsemigroup of
R. Furthermore, if there is some t∗ < 0 in H`, then �g`; nt∗; n ∈ N0� ⊂ G and
g`; nt∗ converges to the p.g.f. of the unit mass at 0 as n→∞. However, this is
impossible by the continuity theorem for p.g.f.’s, so H` ⊂ H . To see that H`

is closed, suppose that �tn; n ∈ N � ⊂H` with tn→ t ∈ H as n→∞. By the
continuity of `,

g`; tn�s� = `�e
tn`←�s�� → `�et`←�s�� = g`; t�s�; n→∞; 0 < s ≤ 1:

Then g`; t ∈ G by the continuity theorem for p.g.f.’s, and hence t ∈H`.
(b) Clearly, G` is a commutative subsemigroup of G , so it remains to show

that G` is closed in G . Suppose that

g`; tn�s� = `�e
tn`←�s�� → g�s�; n→∞; 0 < s ≤ 1;

where �tn; n ∈ N � ⊂ H` and g ∈ G . Then, by the continuity of `←, tn
converges to a limit t, that is, g = g`; t.

(c) It is readily shown that 8` is an isomorphism, and the continuity of 8`
and 8←` follows from the continuity of ` and `←, respectively. 2

Proof of Proposition 2. Let H ∈ �H �; then clearly H satisfies the first
part of the definition. For the second part it suffices to show that �u: u�t� is
closed ∀ t ∈ H, since �u: u�t� ⊂ �0; t�. Fix t ∈ H and let �un; n ∈ N � be a
convergent sequence of divisors of t; then u x= limn→∞un ∈ H, �t − un; n ∈
N � ⊂H and t− u ∈H. Hence u�t. 2
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Proof of Proposition 3. (a) Assume that t ∈ H`. First, it is clear that
g′`; t�1−� = 1 iff t = 0, and otherwise g′`; t�1−� > 1. The first result then
follows from the fact that g′`; t�s� is increasing in s and

g′`; t�s� =
d

ds
`�et`←�s�� = et−`

′�et`←�s��
−`′�`←�s�� ≤ e

t ∀ s ∈ �0;1�:

It is readily shown that η is strictly increasing and additive.
(b) If 1− ` ∈ RV 0+

α , then

g′`; t�1−� = lim
s↑1

d

ds
`�et`←�s��

= lim
s↑1

et
−`′�et`←�s��
−`′�`←�s��

= lim
s↓0

et
−`′�ets�
−`′�s� = e

te�α−1�t = eαt;

where the next-to-last equality follows from Theorem 1.7.2b, page 39, in Bing-
ham, Goldie and Teugels (1987).

(c) If t ∈H`, then

lim
s↓0

1− `�ets�
1− `�s� = lim

s↓0
et
−`′�ets�
−`′�s� = e

η�t�:

If H` contains a set of positive Lebesgue measure, then Theorem 1.4.1,
page 17, in Bingham, Goldie and Teugels (1987) implies that 1 − ` ∈ RV 0+

α ,
and necessarily α ∈ �0;1�.

(d) By (c), if H` = H , then 1− ` ∈ RV 0+
α for some α ∈ �0;1� and η�t� = αt.

By Theorem 2.7, page 124, in Asmussen and Hering (1983), if H` = H , then
there exists a unique `∗∗ ∈ L (up to scale), with 1− `∗∗ ∈ RV 0+

1 , such that

`�et`←�s�� = `∗∗�eαt`∗∗←�s��; 0 < s ≤ 1; t ∈ H :(5)

Then, taking s = `�1� in (5), we get

`�et� = `∗∗�eαt`∗∗←�`�1���; t ∈ H :

However, two LSTs that coincide on �1;∞� coincide on �0;∞� [Feller (1971),
page 432], so

`�s� = `∗∗�`∗∗←�`�1��sα� =x `∗�sα� = `∗α�s�; s ≥ 0: 2

Proof of Proposition 4. (a) By hypothesis,

g`n; tn�s� = `n�e
tn`←n �s�� → g�s�; n→∞; 0 < s ≤ 1;

where g ∈ G . Now g`n; tn�s� → g�s� locally uniformly as n → ∞, and also
`←n �s� → `←�s� locally uniformly. Then, since `n�s� → `�s� ∀ s ≥ 0, we have

`←n �g`n; tn�`n�s��� = e
tns→ `←�g�`�s���; n→∞; s ≥ 0:
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Hence �tn; n ∈ N � converges to a limit t ∈ H , and therefore

g`n; tn�s� = `n�e
tn`←n �s�� → `�et`←�s�� = g�s�; n→∞; 0 < s ≤ 1:

(b) Let �`n; n ∈ N � ⊂ 3, let tn ∈ H`n
and suppose that g`n; tn → g ∈ G

as n → ∞. By Prohorov’s theorem, we can use the tightness of 3 to select a
convergent subsequence �`nk; k ∈ N � with ` x= limk→∞`nk ∈ 3 ⊂ L . Then,
by part (a),

g = lim
n→∞

g`n; tn = lim
k→∞

g`nk ; tnk
= g`; t

for some t ∈H`. 2

Proof of Theorem 1. (a) In the following arguments we need a real-
valued transform f. For concreteness we take f to be the ch.f. of a symmetric
measure, in which case f is real. To prove the theorem for a measure con-
centrated on �0;∞�, take f to be the (real-valued) LST of the measure; the
assertion of the theorem remains true for the corresponding ch.f.

First, we need to know that f does not vanish in the symmetric case.

Lemma 1. Let ` ∈ L with H` 6= �0�. If f is the ch.f. of a symmetric G`-
infinitely divisible law, then f�u� > 0 for all u ∈R.

Proof 1. Fix a nonzero t ∈H`, so that �nt; n ∈ N � ⊂H`. We have

f�u� = g`; nt�fnt�u��; u ∈R; n ∈ N ;(6)

for some sequence of ch.f.’s �fnt; n ∈ N �. Clearly, fnt is real for every n.
Furthermore, there is an ε > 0 such that, for all n ∈ N , fnt�u� > 0 for
u ∈ �−ε; ε�. Therefore,

f�u� = `�ent`←�fnt�u���; u ∈ �−ε; ε�; n ∈ N ;

and

fnt�u� = `�e−nt`←�f�u���; u ∈ �−ε; ε�; n ∈ N :(7)

But (7) implies that

fnt�u� → 1; u ∈ �−ε; ε�; n→∞;

and hence fnt�u� → 1 for all u ∈ R. By taking n large enough in (6), we see
that f�u� > 0 for every u ∈R. 2

Proof of Theorem 1 (Continued). (a) As above, fix a nonzero t ∈ H`.
Then �nt; n ∈ N � ⊂ H`, and the function fnt�u� = `�e−nt`←�f�u���, u ∈ R,
is a ch.f. for all n. Observe now that, for any c > 0, `�c�1 − s��, 0 < s ≤ 1,
is the p.g.f. of a mixed Poisson distribution (on N0) with mixing distribution
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corresponding to `�cs�. Hence `�c�1− fnt�� is a ch.f. for all c and n, and so is
the function

`

(
1

1− `�e−nt��1− fnt�u��
)

= `
(

1
1− `�e−nt��1− `�e

−nt`←�f�u����
)
; u ∈R:

Since 1− ` ∈ RV 0+
1 and f is real, we have

lim
n→∞

`

(
1

1− `�e−nt��1− fnt�u��
)

= lim
n→∞

`

(
1

1− `�e−nt��1− `�e
−nt`←�f�u����

)
= f�u�; u ∈R:

Hence

φ�u� x= exp�−`←�f�u���

= lim
n→∞

exp
(
−`←

(
`

(
1

1− `�e−nt��1− fnt�u��
)))

= lim
n→∞

exp
(

1
1− `�e−nt��fnt�u� − 1�

)

= lim
n→∞

exp�cn�fnt�u� − 1��; u ∈R;

(8)

where cn x= 1/�1−`�e−nt��. According to (8), φ is the limit of compound Poisson
ch.f.’s. Clearly, φ is continuous at 0, so φ is a ch.f. by the continuity theorem for
ch.f.’s [Chung (1974), Theorem 6.3.2, page 161], and φ is infinitely divisible,
being the limit of compound Poisson ch.f.’s [Feller (1971), Theorem 3, page 557].

(b) If f is G`-stable, then f is G`-infinitely divisible, and (a) then implies
that φ = exp�−`←�f�� is an infinitely divisible ch.f. Writing the defining equa-
tion of G`-stability in terms of φ, we have

φ�u� = �φ�c�t�u��et; u ∈R; t ∈H`;(9)

and if �log n; n ∈ N � ⊂H`, then (9) implies that φ is strictly stable. 2
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