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THE COMPLETE CONVERGENCE THEOREM
OF THE CONTACT PROCESS ON TREES!

By Yu ZHANG

University of Colorado

Consider the contact process on a homogeneous tree with degree

d > 3. Denote by
A, = inf{A: P(0 € & i.0.) > 0}
the critical value of local survival probability, where o is the root of the
tree. Pemantle and Durrett and Schinazi both conjectured that the com-
plete convergence theorem should hold if A > .. Here we answer the
conjecture affirmatively. Furthermore, we will show that
P(o€ & i0)=0 ata,.

Therefore, the conclusion of the complete convergence theorem cannot
hold at A,.

1. Introduction and statement of results. Let T be an infinite homo-
geneous tree with d > 2 branches for each vertex in 7. Note that T is a line if
d = 2. The distance |v; — v,| between two vertices v, and v, is defined to be
the number of vertices in the unique path of T from v; to v,. A nominated
vertex of T is called the root and labeled o. For simplicity, let [v — o| = | v| for
any v € T. Also, for any collection A of vertices, |A| denotes the number of
vertices in A. Let S be any connected infinite subgraph of 7. Consider the
contact process on S as follows. We first set a continuous-time Markov
process {£4(S): ¢t > 0} as the collection of finite subsets of vertices in S such
that £8(S) = A for some A c S. The vertices in ¢2(S) are thought of as
occupied and the system evolves as follows:

1. If x € ¢A(S), then x becomes vacant at rate 1.
2. If x & ¢2(S), then x becomes occupied at rate A times the number of
occupied neighbors.

If S =T, we denote
gtA(T) = gtA-
More specifically, we are interested in the processes &' and &°, where
&} is the process with ¢ = T

and
&S is the process with &5 = o.
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THE CONTACT PROCESS ON TREES 1409

One of the most important questions in the contact process is to investigate
the stationary measures. We start with two extreme measures. First, let §,
be the measure concentrated on the empty configuration. Clearly, §, is a
stationary measure. Second, it follows from a simple argument (see [2] or [6])
that &' = &1, where &! is called the upper invariant measure. It is another
stationary measure. For a large A, it was shown in [10] that

(D EA = P(12 <) 8y + P(t2 =x)¢g! ast >
for any A c T, where
4 = inf{t: ¢4 = 2.
Equation (1) is often called the complete convergence theorem. Set
A, = inf{x: P(1£°1 > 0 for all t) > 0},
A, = inf{x: P(0 € & i.0.) > 0},

where A, and A, are the critical values for the survival and the local survival
of the contact process, respectively. Clearly,

A <A,
The most interesting phenomenon of the contact process on T', found by [10]
and [7], is the difference between its two critical values, that is,
(2) Ay <A,

when d > 3. For d = 2, it has been proved that A, = A, (see [2] or [6]).
Let us return to the discussion of the stationary measures of the contact
process. Clearly, if A < A,

&2 =5,.
Furthermore, it follows from [9] and [1] that
EA =5, at),.

When d > 3 and A, < A < A, it was proved in [3] that there are infinitely
many extremal stationary measures. On the other hand, by (1), the complete
convergence theorem holds for large A. Then there are only two extremal
stationary measures for large A. It is natural to ask how many extremal
stationary measures there are when A is equal or near from the right-hand
side of A,. In fact, both [10] and [4] conjectured that the complete convergence
theorem should hold for A > A,. Then it will imply that there are only two

extremal stationary measures for A > A.. Here we answer this question
affirmatively as follows.

THEOREM 1. For any homogeneous tree with d > 2, the complete conver-
gence theorem holds if A > A,.

REMARKS. (a) When d = 2, the complete convergence theorem holds if
A > A, (see [2] or [6]). This implies that A, = A,. Furthermore, the argument
that the complete theorem holds when A > A, is also known for Z¢ (see [1)).
Therefore, Theorem 1 holds for d = 2.
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(b) We can also consider the contact process on any homogeneous graph G.
Note that if G is homogenous, then we can pick a vertex o as the origin of G.
Clearly, we can also let

A (@) = inf{r: P(o € £(G) i.0.) > 0}.

For both G = Z¢ and G = T, the complete convergence theorem holds if and
only if A > A, by (a), the remark after Theorem 3 and Theorem 1 above. Here
we conjecture that the result should hold for any graph as follows.

CONJECTURE. For any homogeneous graph G, the complete convergence
theorem holds iff A > A (G).

In general, the so-called critical case, that is, A = A_, is more complicated.
However, the method developed in Theorem 1 allows us also to prove the
following theorem.

THEOREM 2. For A = A,

P(o € £ i0.) = 0.

By using the argument in [4], Theorem 2 will imply that there exist
infinitely many extremal stationary distributions at A, More precisely, we
have the following theorem.

THEOREM 3. If A = A, there are infinitely many extremal stationary dis-
tributions.

REMARK. By Theorem 3, the complete convergence theorem cannot hold
at A,.

The proofs of the theorems are organized as follows. We collect the prelimi-
nary results of the contact process on trees in Section 2. Then we complete
the proofs of Theorems 1-3 in Section 3.

Since the proof of Theorem 1 is involved, we would like to outline its proof.
To show the complete convergence theorem, one of the useful methods is to
check the hypotheses of the following lemma.

LEmMMA (Griffeath’s lemma). For any subsets A and B of T, if £F is an
independent copy of the contact process and

P(ftA N EtB =, ftA * O, StB #@) -0 ast—> o,
then the complete convergence theorem holds.

PrROOF. See the same proof in Chapter 11 of [2]. O
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To verify the hypotheses of Griffeath’s lemma, we first show that if A > A,
then for any ¢ > 0, there exist two positive numbers C and R such that

(3) P(x € & for t < R|x|) > C exp(—&|xl)

for any x € T. To show (3), we will renormalize T' to another tree with
“bigger edges” (see Figure 2). Then we show in Proposition 1 thatif A > A, a
vertex in any bigger edge is occupied infinitely often in the bigger edge and
some of its branches with a positive probability. By using the renormalized
edges and standard ergodic and percolation results (see Propositions 2 and 3),
we prove (3) in Proposition 4. By (3) we then show

(4) liminf P(o € £°(U)) > 0,
t

where U is a branch of o [see the definition of U after (6)]. Equation (4) is
proved in Proposition 5 (see the intuitive explanation before the proof of
Proposition 5). Finally, by using (3) and (4), we will verify the hypotheses of
Griffeath’s lemma (see the heuristic argument of the proof of Theorem 1
before the proof of Theorem 1).

2. Preliminaries. Now we only focus on the case d > 2. We start with
the graphical representation of the contact process (see [2] and [9] for more
details). Consider T X.7, where T is a tree and .7 is the time interval [0, «).
We often denote by (x,¢) and A X B an element and a subset of T X.7,
respectively. We associate each site of T' with d + 1 independent Poisson
processes, one with rate 1 and the d others with rate A. Assume that these
Poisson processes are independent from site to site in 7. For each v, let {T"*:
n>1}, k=0,1,2,...,d, be the arrival times of these d + 1 processes, re-
spectively, where v represents the vertices in 7. The process {T":°: n > 1}
has rate 1, the others rate A. For each v and n > 1 we write a 6 mark at the
point (v, T"°) for n > 1 while if £ > 1 we draw arrows from (v,T""*) to
(v,,T"*), where v,, k=1,2,...,d, are the neighbors of v. We say that
there is a path from (v, s) to {u, t) if there is a sequence of times s, = s <

sy < -+ <s, <s,,; =t and spatial locations x, = v, x,,..., x, = u so that
for i =1,2,...,n there is an arrow from x, ; to x;, at time s; and the
vertical segments {x;} X (s;,s;,;) for i = 1,..., n do not contain any 8. For

any two sets A and B, we use the notation A X {s} —» B X {t} to denote the
event that there is a path from (x,s) to (y,¢) for x €A and y € B.
Specifically, we say that A X {s} - B X {¢} inside D for some set D c T if
the path mentioned above stays inside D X [0,~). We denote by B, the
subset of T' X .7 such that for any {x, ¢) € B, there exists a path from (y, 0)
to (x, t) for some y € A. Clearly, B, is a connected component in the sense of
our graph construction for x € T. We refer to B, as a cluster.

We pick a line in the tree (a self-avoiding path of vertices {v,: n € Z})
which contains the root. We write L for the line and simply denote the
vertices in L by {—«,..., —n,...,0,...,n,...,}. We consider the segment
[k, k] contained in L. For each vertex of T, there are d disjoint subgraphs
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connected to the vertex. These subgraphs are called the branches of the
vertex.

Next we consider the following special sets. Let H(—£%, k) be the subgraph
of T by:

1. removing d — 1 branches from {k} but leaving the branch that contains
the segment [ — &, k];

2. removing d — 1 branches from {—k£} but leaving the branch that contains
the segment [ — k&, k] (see Figure 1).

Clearly, lim,, ., H(—k, k) = T. In general, for any vertices x, y € T, note
that there is only one segment in 7' which can connect x and y. Let S, , be
the segment. By shifting the graph H(—k, k) [or H(—k, k + 1)] such that the
segment [ —k, k] (or [—%, k + 1)) matches the segment S, , for some k, we
can define H(x, y) as the subgraph which contains the segment connecting x
and y. Furthermore, if |x — y| is an even number, let c, , be the center of
S, ,- Then let (see Figure 1)

Z(x,y) ={v:|v —e(x,9)| <lx —yl/2} U {x} U {5}

If [x —yl is an odd number, let y’ €S, , be the vertex next to y. Then
|[x —y'| =|x —y| — 1 is an even number. Let ¢, , be the center of S, . and
let (see Figure 1)

D(x,y) ={v:|v—c(x,y)| <lx—y'l/2} U {x} U {y'} U {y}).

Since H(—k, k) is an infinite graph, we can consider the contact process on
H(—E, k). Set

ME) = inf{A: P(o € £P(H(—Fk,k))i.0.) > 0}.

Clearly,
(5) ME) = ME+1) = A,
Let

lim A(k) = .

Then we have the following proposition.

Fic. 1. The left solid graph is H(—k, k) with k = 6 and d = 3; the middle and the right graphs
are 9(x,y) with d = 3 and with |x — y| = 6 and 7, respectively.
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ProposITION 1. A, = pu.

Before the proof of Proposition 1, we need to introduce a lemma. Clearly, if
A, < A, then

(6) P(l£21> 0forall £) > 0.
Note that d — 2 of the branches of o do not contain any edges of L. We pick
such a branch which contains o and denote it by U. Then we will show the
following lemma which is stronger than (6).

LEMMA 1. If A > A,
(7 P(|&2(U)| > 0forall ¢) > 0.

ProOF. Lemma 1 was proved by Morrow, Schinazi and Zhang (see [8]).

However, the paper is unpublished and the method is involved. We prefer to
give another proof which relies on a method in [9] as follows. Let

Ay = inf{A: P(|£°(U)| > 0for all ¢) > 0}.

To show Lemma 1, we only need to show that

(8) A = Ay

Clearly,

(9) A, < Ap.

It follows from (6) in [9] that

(10) exp(c(A)t) < tdE(|§t"(U)|),

where c()) is a function of A such that c¢(A) > 0 if and only if A > A,.
Furthermore, by a standard result in the theory of branching processes (see
the proof of Theorem 2 in [9]) it can also be proved that

(11) P(|&(U)|>0forall t) >0 if3 ¢, such that E|£2(U)| > K

for some large constant K. Clearly, if A > A, then by (10) there exists ¢, such
that E| .f;:)(U)I > K. It follows from (11) that A > Ay. Therefore,

(12) A, = Ay
Lemma 1 is proved by (9) and (12). O

ProoF oF ProOPOSITION 1. It follows from (5) that
m= A
To show Proposition 1, we only need to show the other direction. Suppose that
(13) > A,
Then we pick a A such that
A, <A< pu.
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Clearly, for such A,
P(o €& i0.) > B,
where B is a positive constant. If we use the graphical language of the

contact process, we let

{k €& 10} = {(k,t) € B, i.0}

and

{k € & finitely often for all ¢} = {(k,t) € B, f.0}.
Then
(14) P(¢0,t) €B, i.0.) > B,

where B, is the cluster of o. On the other hand, note that A < pu and
w < ME) so that, for any integer &,

(15) P({o,t) € B,i.0., B, CH(~k,k) X (0,)) = 0.
For each sample point in {0, ¢) € B, i.0.}, by (15) the sample point is not in
{B, cH(—k,k) X (0,%)}.
In other words, for each such sample point, it is either in
{B, N {k} X (0,) # &)
or in
{B, n {—k} x (0,%) + &}
for any positive integer k. By symmetry and (14),

(16) P(B, N {k} X (0,%) + D) > g.

By (16), for any positive integer % there exists a real number J(%) such that

(17) P(B, N {k} x (0,J(k)) a&@)zg.

On the other hand, by Lemma 1, with probability « > 0, [£°(U)| > 0 for all ¢.
Note that A < u < A1) and B, (U) c H(—1,1) X (0,%) so that, by (15),

(18) P(o,t) € B,(U)i.0.) =0.

In contrast to (18), on the assumption A, < A < u, we will show that
(19) P({o,t) € B,(U) fo.,|£(U)| > 0forall t) = 0.
Since

(20) P(|&2(U)| > 0forall t) = a > 0,

(18) and (19) cannot both hold. The contradiction tell us that assumption (13)
is wrong. This is
A, < .

Therefore, Proposition 1 is proved if (19) holds.
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Now we begin to show (19). Intuitively, for each time ¢, there exists x such
that {x,¢) € B,(U) if |£2(U)| > 0 for all ¢. By (17) and translation invari-
ance, with probability 8/3 there exists a path connecting x to o with edges
in U in the time interval (¢, ¢ + J(|x[)). On the event [£2(U)| > 0 for all ¢, we
can find infinitely many such {«x, #), and with probability 8/3 each {x, ¢) can
be connected by a path to o, s) for some s € (¢, ¢ + J(|x]). It would imply

(0,t) € B,(U) i.o.

on the event | £°(U)| > 0 for all ¢. Then (19) can be shown.
Now we will give a formal proof of (19) as follows. Suppose that

(21) P({o,t) € B,(U) fo.,|£(U)| > 0forall t) > 3r

for some r > 0. By (21), there exists M such that

(22) P(<o,t) € B,(U) at most M times, |£?(U)| > 0forall ¢) > 2r.
Then we can find I large such that

(23) P(B,(U) Nn{o} x (I,») =&, |£(U)| > 0forall ¢) > r.
We take n large and then 1 small such that

B\" r ., T
(24) (1—5) <Z and 1—(1—7]) <Z.

Let
UM)={veU:lvl<M}.
Note that, for any s > 0,
PB,(U)NUX {s} #||&(U)|>0forall ¢) =1

so that we can choose M| large such that
(25) P(B,(U) NU(M,) x {I} = D||£(U)|>0forallt) >1—n.
Note also that
(26) P(B,(U)NUX{I+J(My)}+J,

B,(U) nU(M,y) X (I} # B||é2(U)| > 0forall ) >1 -

so that we can choose M, large such that
P(B,(U) N U(M,) X {I +J(My)}+ I,
B,(U) N U(M,y) x {I} + D||&(U)| > 0forall ) = (1 — n)°,

where J(k) was defined in (17). Consequently, we choose M,, M,,..., M,
large such that

(27) P(E,|&(U)|>0forall¢) > (1—1)",
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where
E, = nhl{Bo(U) NU(M;) X {I+J(My) + - +J(M;_,)} # T}
i=0

On the other hand,

P(B,(U) N {o} x (I,%) =@,| & (U)| > 0forall ¢)
<P(B,(U) n{o} x (I,°) =, E,,|£(U)|> 0forall ¢)
+P(EZI|£2(U)| > 0 for all )
< P(B,(U) n {0} x (I,*) =D, E,, | £(U)|> 0forall ¢)
+1-(1-m)"
= Y P(B,(U) n{o} x (I,*) =D, E,, | & (U)| > 0forall ¢,
(28) F B,(U)NUX(I+J(My)+ - +J(M,))=T
X(I+J(My) + -+ +J(M,))) + 1~ (1 )"
= Y P(B,(U) n{o} x (I, I +J(My) + - +J(M,)) = T,
r

E, ,B(UYNnUX(I+J(My)+-+J(M,))=T

X(I+J(My) + - +J(M,)),

'} (I+J(My)+ - +J(M,)) » o,s)for I+ J(M,)
+o (M) <s<®)+1-(1-1n)",

where the sum is taken over all possible I' and I' is a finite vertex set in U.
Let BL(U) be the cluster of B,(U) inside time interval (0, ¢). Then

(29)  {B,(U) n{o} x(0,2) =@} = {B{(U) n {{o} X (0,2)} = 2}

In other words, {B,(U) N o X (0,t) = &} only depends on the time interval
(0,%). Clearly, by (29),
{BO(U) N {O} X (I’I + J(MO) + o +J(Mn)) = Q’En—h
B(U)NUX(I+dJ(My)+ - +J(M,))
=X (I+Jd(My) + - +J(M,))}

and

{Cx(I+Jd(M,) + - +J(M,))
-+ (o, s) for I + J(My) + - +J(M,) <s < «}
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are independent since both events depend on different time intervals. Fur-
thermore, by translation invariance,
P(T X (I +dJ(My) + - +J(M,))
» Co,s) for I + J(M,) + - +J(M,) <s < o)
<P(x,I+J(My) + - +J(M,))
+ o,s) for I + J(My) + - +J(M,) <s < )

(30) (where x is a vertex of I')
<P(B, N {x} X (0,) = &)
B B o .
<|1- 5] < 1 — —| [by translation invariance and (16)].

Then, by (30), the first term on the right-hand side of (28) equals
Y P(B,(U) n{o} X (I, I +J(My) + - +J(M,)) =,
r

E, ,B(U)YNnUX(I+J(My)+-+J(M,))=T
X(I+J(My) + - +J(M,)), T X (I+J(My) + - +J(M,))
» Co,s) for I + J(M,) + - +J(M,) <s < )
= Y. P(B,(U) n{o} X (I,I+J(My) + - +J(M,)) =,
r

(31) E, ,B(U)NUX(I+J(My)+--+J(M,))=T
X(I+dJ(My) + - +J(M,)))
P(I' X (I+J(My) + - +J(M,)) » <o, s) for I +J(M,)
+ o+ (M) <s <)
<P(B,(U) n{o} x (I,I +J(My) + - +J(M,)) =D, E, ,)

-4)

By the definition of J(M;), (17) and the same method repeated above n — 1
times,

P(B,(U) n{o} X (I, 1+ J(My) + - +J(M,)) =0, En_l)(l - E)

3
<(1-%) .
3

(32)
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Combining (29), (31) and (32),
P(B,(U) Nn{o} x (I,°) =@
©9 s(l—ﬁ)n+1—(1—n)"<£.
3 2
This contradicts assumption (23). Therefore, (19) is proved. O

°(U)| > 0forall ¢)

Let I,(k) be the indicator of the event that the vertex x becomes occupied
infinitely often in x + H(—k, k). By translation invariance and Proposition 1,
if A > A_, then there exists k£ such that

(34) P(L(k)) = 6(A) >0,

where 0()) is a constant. Recall that L is the line defined before. It is easy to
check that I(k),...,I,(k),... for n € L is a stationary sequence. By a
standard ergodic theorem,

1 n—1
(35) P|lim — Y I(k)=06(A)]|=1.
noE o
Due to (35) we have the following fact.

Fact 1. Assume that A > A,. Given ¢ > 0, we can pick N large such that
(36) P(3ie€[0,n]suchthat I;(k,) =1)>1—¢& forn>N.

For fixed A and &’ we can choose N such that N > 4k'. For the integer N
let Jy be the indicator of the event that there exists i € [N/4,3N /4] such
that I,(k') = 1 for some &' < N/4. By Fact 1 and translation invariance, we
have the following fact.

Fact 2. Assume that A > A,. For given ¢ > 0, we can pick N large such
that

(37) P(Jy=1)>1-¢.

Now we renormalize T as the following new graph (see Figure 2). We first
choose [0, N] as an edge called L,. There are d — 1 branches that connect to
N and which do not contain [0, N). We pick two branches and select two
segments from the two branches such that each of the segments has a length
N (containing N vertices), and each is next to {V}. Denote these by L, ; and
L, ;. Then both L, , and L, , have two end vertices: the common one is N
and the others are denoted by Iy, and [, ,, respectively. Continuing, we pick
Ly, ,and L, , , to be the two edges with length N next to the end vertex lo 1
and L, , ; and L, , , to be the other two edges with length N next to the end
vertex [, ,. With this construction, we get a new three-branch tree but with
only one branch connecting the root (see Figure 2).

On the event Jy, [0, N] is occupied by a particle infinitely often. Once
[0, N] is occupied by a particle, then with positive probability the particle can
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o
Lo
LO.l L0,2
Lo Loaa /\ Loaa /\ Loas

FiG. 2. The bold graph is a renormalized tree with |[N| = 2 from T.

generate particles in each site of L, ;. More precisely, if we write H(K) for
H(x, y) for any segment K with two end vertices x and y, then with positive
probability L, , ¢ £ ¥W(H(Ly) U H(L, ,)) for some ¢ > 0. Let F,(N) be this
event; that is, each site of L, , is occupied by £ VI(H(L,) U H(L, ,)). Then,
on the event Jy, U,c g .,F;(IN) should occur with probability 1. More pre-
cisely, we have the following proposition.

ProOPOSITION 2.  Assume that A > A,. There is N which only depends on A
such that

(38) P(30 <t < »suchthat F,(N) occurs|Jy) = 1.

Proor. Note that A > A, so that, by Proposition 1,
(39) A> AR
for some %&'. We can pick N such that N > 4k’ as we did before. On the event
Jy, let
n, = inf{o > ¢ > 1: [0, N] n £ NI(H(0,N)) + &},

(40) Mg = inf{oo >t>mn +1:[0,N] n ¢ N(H(O,N)) # @}’

n, = inf{e > ¢ > m, |, + 1:[0,N] n ¢ NI(H(0,N)) = &}.
Clearly, on the event oJ,, with probability 1 there exists n; < n, < -+ <

n, < « for any integer n. Furthermore, let ¢,(x) be the probability of the
event that

Lo, C&F(H(Ly) VH(Ly,))
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for x € [0, N]. Let
gy = max gy(x).
x€[0,N]
Clearly,
gy > 0.

With these definitions and translation invariance,
P(A0 <t < «such that F,(N) occurs|Jy)
= P(30 <t <« such that F,(N) occurs, Iy, ny, ..., m,ldy)

= fwP(ﬁ 0 < ¢ < © such that F,(N) occurs,
(41) ’
Any, M9, My M, = Sldy) ds

< fo (1 —gy)P(30 <t < ssuchthat F,(N) occurs,

ANy, Mg, My My = S|JN)ds‘
By iterating (41),

(42) P(30 <t < < such that F,(N) occurs|Jy) < (1 — qy)".

By (42), we note that n can be arbitrarily large so that Proposition 2 is
proved. O

Similarly, on the event Jy each of the vertices of L, , is occupied by
£P(H(Ly) U H(L, ,)) for some ¢ with probability 1. Let

T = mf{oo >t>1:L,c &t (H(Lo))}'

By Fact 2 and the same proof of Proposition 2, for A > A, and any given
£ > 0, we can pick N and R large such that

(43) P(7, < R|L, is occupied by particles at time 0) > 1 — &.

Similarly, on the event 7, < R, let

o1 = inf{eo > ¢ > 701 Ly, € g0 (H(Ly N Ly 1))},

Too = inf{oo > ¢ > 71 Ly, C &F0"0(H(Ly N Ly 5))},

where ¢5°7 is the contact process for ¢ > 7, such that §TLO’TO = L. Then, by
Fact 2 and Proposition 2, for large N and R,

(45) P(ry, —t<Rlry=t)=21-¢

for 7 =1,2. Consequently, on the event that 7,
R,...,7y <R, for the N and the R in (45), let

T .
0,i1,..., Lt

(44)

.....

i LO,L'1 ..... '

Li+1

C g0ty T i’(H(Lo,il ..... i/) UH(Ly,,, ... ijﬂ))},

(46) lnf{oo >t > TO i
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where i; = 1or2,...,i;,; = 1 or 2. Then, by translation invariance and (45),

(47) P(TO,il,...,i i

i "t<Rlry,; =t)=1-¢.

Now, on the condition that every vertex in L, is occupied at time 0, we say L,
is open if 7, < R. Continuing, on the event that L,; . ; is open, we say
Lo, ..., isopenifro; . ~—7o; . ; <R. With this definition, on the
condition that every vertex in L is occupled at time 0, we define C(N, R) as
the open cluster of the root o w1th open edges in the edge set{Lg, l]_} Now
we show the following result.

ProposiTION 3. If A > A, we can pick N and R large such that
(48) P(|C(N,R)| = | L, is occupied at 0) > 3.

Proor. By the Markov property, on the event that L, ;  , and Ly, =,
are first occupied (for each vertex) by particles at ¢; and ¢,, respectively, for
ij # 1}, then the events that L,;  ;,  and L, _ ; ; , are open or not
only depend on the Poisson processes on edges of H(L,, .. ) U
H(L,;, . JQand H(Ly,  ,)VUH(Lg, 0.

), respectively. Note that
{H(Lo i ) UH(Lgy ;. ij,ij+1)} N{H(Ly,;, )YH(Lo,  1.1,.)} =7

sothat Ly, ., ~and Ly,  , ;  areopen or notindependently on the
event that L,;  , and Lo, _, are first occupied at ¢, and ¢,, respec-
tively, for i; # [,. By a standard Peierls argument (see the proof of (8.12) in
[5]) and the Markov property, for any 8 > 0 if £ is small enough in (45) and

(47), then
(49) P(|C(N,R)| = L, is occupied at 0) > 1 — &.

Proposition 3 is proved. O

,,,,,

With Proposition 3, we have the following proposition.

ProPOSITION 4.  Suppose that A > A,. Given any ¢ > 0, there exist M and G
which may depend on & such that

P(3t < M|x| such that 0,0y — {x,t) inside H(0, x)) > exp( —&|x])
for all |x| > G.

ProoF. For any large |x| consider the graph {v € T: |v| < |x[}. We con-
struct the graph {L,, L, ; ;}as we did in the proof of Proposition 3, where
|Ly| = N for some N which is 1arge enough such that Proposition 3 holds, and
Jj is the largest integer such that j|L,| <|x|. We also choose our
{Ly,.... Ly ;, } such that x can be connected by y directly, where y is one
of the end vertices of {Lo;,..) (see Figure 3). Clearly, |x —yl<N. By
Proposition 3, on the event that L is occupied by particles at time 0, there
exists an open path from o to one of {L,; i lj} with a probability larger than

.....
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o
Lo
Lo.x L0.3
Loaa A Loas /\ Loaa /N Loas
Y
z

Fic. 3. The bold graph is a special renormalized tree with |N| = 2 such that y can connect to x
directly.

1. Note that, on the event that there is such an open path, each of its open
bonds Ly, ., for0<m <jhas to allow all its vertices to be occupied by a
particle at some time ¢,, with ¢, — ¢, _; < R so that

(50) P((Lo x {0}) — ({Lo’il ,,,,, ) X {t}) inU
with ¢ < jR|L, is occupied at 0) > 1,

where U is the branch of o which contains the segment from o to x. Let
q(L,) be the probability that, starting with one particle at (o, 0), each vertex
of L, is occupied by particles at time 1. Then

(51) P(<o,o> = ({Lo,iy,..0i} X {2}) in U with ¢ <R + 1) = $q(L,).

On the other hand, the number of end vertices of {L, ;

i} equals 27 <
21#1/(Lol=D By symmetry and (51),

.....

P(3¢ <Rj + 1suchthat<o,0) » (y,t)inU)

x|
N

We also let g,(L,) be the probability that, on the event that y is first
occupied at time 7 by a particle, x is occupied by a particle at time 7+ 1.

(52)
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Since N does not depend on x, q,(L,) has a positive lower bound that does
not depend on x:

P(3t <Rj+ 2suchthat(o,0) - (x,¢)in U)
1 x|
> Q1(Lo)§Q(Lo)eXP(—m)-
For a given &, we take |L,| large enough and then |x| large such that
(54) P(3 ¢ <Rj+ 2suchthat(o,0) » (x,¢)in U) > exp( —¢&lxl).

Note that T is a tree so that if there exists a path in U X [0, ) from (o, 0) to
(x,t) with # < Rj + 2, then there exists a path in H(o, x) X [0,%) from
{0,0) to {x,t) with ¢t < Rj + 2. Finally, by (54),

P(3 ¢ < M|x| + 2 such that {0,0) — {x,t) in H(o, x))
> P(3 ¢t < M|x| + 2 such that {0,0) = {(x,¢)in U)
> exp(—e&lxl)
for M = R/N. Proposition 4 is proved. O

(53)

By adapting the proof of Proposition 4, we can show the following corollary.

COROLLARY. For any A > A, and & > 0, there exists M and G such that
P(3 ¢t < M|yl such that 0,0y — {y,t) inside Z(o0,y)) > exp(—&lyl)
for any |yl = G.

Proor. For a large integer f, let Jy(f) be the indicator of the event that
i €[N/4,3N /4] is occupied more than f times in H(o, N) for some i. By
Fact 2, for some large N,

P(Jy(f)=1)=P(Jy=1)>1-¢/3.
Then, for each f, we take K large such that
(55) P(Jy(f) = linside H(o,N) N {lv| < K}) > 1 — g/2.
On the event Jy(f) = 1, let
Ty = inf{eo > ¢ > 1: Ly € ¢0(H(L,) N {lvl < K})}.
It follows from (55) for large f and the same proof of Proposition 2 that we
can pick N, R and K such that
P(7y < R|L, is occupied by particlesat 0) > 1 — &.
Similarly, on the event 7; < R, let
To1 = inf{oo >t>1y: Ly, C gFom(H(Ly N Ly,)n{lv —Nl=< K})}
and
Too = inf{o > ¢ > 74 Ly, € £F0"0(H(Ly N Ly 5) N {lv — NI < K})}.
Then, by (55) and the same proof of Proposition 2, for large N, R and K,
(56) P(ry;—t<Rlrp=t)=1-¢
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for = 1,2. Consequently, on the event that 74 < R, 7 — 75 <
R,...,T{],i1 ,,,,, i, = Toiy....i;, <R for the K, N and R in (56), let
T0,igserijy = inf{oo 2t> 70, i Loy, i,

c gloi i 0 i"((H(Lo,il ..... ij) U H(Lo,i1 ..... ij+1))

m{|v _lo,i1 ..... ijISK})}’

where i; =1or 2,...,i;,;,=1or 2, and [,; i, is the common vertex of
H(L,,; . ij) and H (LO’L1 ’’’’’ ) Then, by translatlon invariance and (56),
(57) P(7hi. i, ~t<Rly, ., =t)=1-e

Now, on the condition that every vertex in L, is occupied at time 0, we say L,
is open if 70 <R. Contmumg, on the event that L, , i, is open, we say
Lo . is open if 75 ; i T To,ip,..., i, < R. With this definition, on the
condition that every vertex in L, is occupled at time 0, let C'(N, R, K) be the
corresponding open cluster Wlth open edges on {L, i, } deﬁned above. By
the same proofs of Propositions 3 and 4, we can show that for a large N, R
and K,
P((L, x {0}) is connected to ({Lo,;,,. ,J} X {t}) by open edges in U
with ¢ < jR|L, is occupied at 0) > 3.

Note that the renormalized graph {L, ; } is a tree so that if there is an

.....

open path from o to x for some x € T, then the open path is the unique path.
By this observation and the same argument of (51), there exists C > 0 such
that

P(3t <Rj+ 1suchthat{o,0) - (y,t)in U N {|v| < |yl + K})

olje1

> Cexp| —

x|
i)
By the same argument from (52) to (53), note that K is a finite number which
does not depend on y so that there exist M, G and K such that
P(3 ¢t < M|yl such that {o0,0) - {y,¢>in Z(0,y)) > exp(—¢lyl)
for all |y| = G. The corollary is proved. O

PrOPOSITION 5.  For any A > A,, there exists 8 > 0 (which may depend on
M) such that

(58) liminf P(o € £°(U)) > 6
t
Before the proof of Proposition 5, we first prove the following lemma.

LEMMA 2. If A > A, there exist o, B and 6 > 0 such that, for any t > 0,
(59) P(|&2(U) n{v: at < vl < Bt}| > exp(c,t)) > 8,

where c, is a positive number which may depend on A.
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Proor. It follows from Lemma 1 in [9] that, on the event that £°(U)
survives,

(60) lim| £2(U)| = =
Note that A > A, so that
P(Vt, &2(U) +# D) =n>0.
Then, by (60),
(61) P(lim | &(U)| = =) = n.
Let us consider that i.i.d. sequence {X;} which has common distribution:
X, = 1 with probability r and X, = 0 with probability 1 — r.

Let % be a probability measure corresponding to {X;} and let S, = X7 ; X,.
By a standard large deviation result (see [3]),

(62) @(sk<k(%)) < exp(—a(r)k)

for some constant a(r) > 0 which may depend on r but not k2. Now, for any
S c T, we define the border set of S as follows. We say that a vertex in S is
in the border if at least one of the d branches emanating from x has no
vertex in S except x. Denote by .2(S) and N(x) the border of S and one of
the empty branches of x for x € S, respectively. It is known (see [10]) that

d-1
(63) |%(8)] = ( 7 )ISI.
Now, for any £ with
ny(d-1
k|l = > 2
=)

by (61) we can take ¢, such that
(64) P(|e2(U)| > k) > 3n.
Then we also can take « small and B large such that
(65) P(|&2(U) 0 {v: aty < vl < Bt} = k) > 3.

Clearly, by (63), on the event that |§;(’)(U) N{v: at, <lvl < Bty > k, the
number of border vertices of £°(U) is at least ((d — 1)/d)k. By the same
argument of (63), there exist at least ((d — 1)/d)k border vertices {x} of
t‘;(U) NA{v: at, < |v| < Bt,} such that N(x) N {v: |v| < aty} = J. Note that,
for two such border vertices x and y, N(x) N N(y) = & so that each such
border vertex x can also generate another k particles with probability 37
independently inside

N(x) N {v: aty <lv —x| < Bty} CN(x) N {v:2at, < |v| < 2Bt}
by repeating the step in (65). Therefore, by (62), (65) and the Markov
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i

property,

£5,(U) N {v:2at, < |v] < 2Bt}

k2(d 1) (7
ST 4 (E)
m\ k(d - 1)
< exp( —a(E) 3 )
Iterating by using the argument in (66),

d

(66)

£(U) N {v: aty < vl < Bto}| = k

20 (U) N {v: mat, <lvimpt,)|

)

-

[£2(U) N {v: aty < vl < Bto}| > &
k(d—1) (m\\"
d (E)H
|§<2n—1)t0(U) N{v:a(m - 1), <lvl < B(m - 1)t0}|

k(dz—dl)n)’"_l)

0. (U) N {v: mat, < vl < th0}| >

mt

>

X P

| €61, (U) N {v: (m = Dty <ol < (m — 1) Bt,}|

m—1

(67)

d 2
|§(Om—2)t0(U) N {v: a(m — 2)t, <lvl < B(m - 2)t0}|
>(k(d - 1)7;)’" )

>(k(d—1)(2)

2d

xXP

£5,(U) N {v:2aty < |v] < 2Bt}

k(d—1) (n)2
> —_
( d ( 2 ) )
(by the Markov property)

7o e o322 |

E(U) N {v: aty < vl < ﬁt0}| > k)
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Note that

and (67) so that

(68) P(|§,,‘3Lt0(U) N{v:mat, <v| < th0}| > 2m) > (g)a,

}o.

Since the proof of Proposition 5 is involved, we would like to present an
intuitive explanation first. In fact, if a particle at (o, 0) survives for a long
time ¢;, by Lemma 2 and (63), there should exist C exp(c,¢;) vertices {x;}
inside {@?, < [v| < Bt} such that each of them is occupied by a particle 7,
and no other particles occupy N(x,), where C is a constant. For each x,, at
time 2¢,, there should exist C exp(c,t;) vertices {x,} in N(x;) N {at; <|v —
x| < Bt} such that each of them is occupied by a particle n, generated from
n,, inside N(x,) (see Figure 4). After doing this step m times, at time mt,,
there exist C exp(c,t,) vertices {x,,} inside N(x,, _;) such that each of them is
occupied by a particle n, generated from 7,  inside N(x,_,) N{at; <
lv — x,,| < Bt,}. Now we consider a backward process, that is, to generate the
partlcles {n, } to o. For each x,,, by Proposition 4, n, can generate a particle
to x,_1 inside N(x,,_,) Wlth a probablhty ‘exp(— elx,, — x, 1) =
exp(—eBmt,), where B, deﬁned in Lemma 2, is a constant which does not
depend on ¢, and m, and & can be very small if ¢, is large. However, there
are at least Cexp(c,(m — 1)t;) such N(x,,_;) as we discussed above. Note
that N(x) N N(y) = @ if x # y so that, by a standard probability estimate,
there are at least D expl[(c,(m — 1) — &B)t;] such x,,_; that are occupied by
a particle from {n, }, where D is a constant. We denote by {n, } these
particles. Subsequently, by the same argument there are at least

Dexp(c,(m — 1)t; — eBt; — ePt;)

such «x, _, that are occupied by a particle from {n,,_,}. Note that & can be
very small so that we can repeat this method m times to generate a particle
from x,, back to o again with a positive probability.

Now we give a formal proof as follows. In the following proof, we first give
a probability estimate for m = 3. Note that, except the first time, each time
we only generate particles in N(x;) from 7, to n;,, for i =2,3,... and
consider the backward generation from n,,; to n, also in N(x,) so that we
can repeat the same method as m = 2 and 3 for a general m.

where
- i )2

Lemma 2 is proved. O

PrOOF oF PROPOSITION 5. We divide the proof into three parts. The first
part, part A, is to show that a particle from o generates particles in {N(x,)}
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FiG. 4. The left figure is the event that the particle from o comes to {x,} and the right one is the
event that o is reoccupied by the particles from {x,}.

as mentioned in the intuitive explanation. The second part, part B, is to show
that, with a uniform positive probability, o is reoccupied by the particles in
{N(x,)}. The third part, part C, is to give a general probability estimate for
any m.

Now we prove part A. By Lemma 2, we may take ¢, large such that

(69) P(|&2(U) N {v: aty < vl < Bt} > exp(eyty)) = 6.

Now we consider the border of ¢’(U). Let Y; be the border set of these
particles. Then, by (63), the number of its vertices has to be larger than
d—-1
d

exp(c,ty)
if
{| £0(U) N {vo: aty < vl By} > exp(cAt1)>.
For such a particle at x, at time 2¢,, by Lemma 2 with a probability larger
than &, there exist more than exp(c,t;) particles generated from x which

stay in N(x) N {v: at; <|v — x| < B¢,}. Here by a particle generated from x
inside N(x) N {v: a#; <|v — x| < B¢;} we mean that at 2¢, it can be con-
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nected by a path from {x,¢;) inside N(x) N {v: at; <|v — x| < Bt;}. If the
border vertex x has the above property, N(x) is called a good branch or
good. By (62) and the same argument of Lemma 2 again, there exist

€D () e

good N(x) with a probability larger than

1- exp[—a(ﬁ)%exp(qtl)}.

Now we consider the border vertices of the particles generated by such x at
time 3¢;. Let Y, denote these particles. We also call N(y) good if there exist
exp(c,t,) particles generated from y in N(y) N {v: a¢; <|v — y| < Bt,;}. Simi-
larly, on the event that there exist

(d-1)(s

—a4 |32 exp(c,t;)

good N(x), at time 3¢, there exist
(d—1)(8\]
EESITEL] S

good N(y) with a probability larger than
(d-1)\*s
1 — exp| —a(6)exp(c,2¢,) v

(see Figure 4), where y € Y,. Note that § does not depend on ¢; so that we
may choose ¢; large enough such that, for all m > 1,

d-1)(8\]"
[%(E)} exp(c/\mtl) > eXP(Mbtl)

and

(d-1) "8
exp(—a(ﬁ)exp(cAmtl)[T} [E} ) < exp(—a(8)exp(bmt,))

for some 0 < b < ¢,. Thus part A is proved.

Next we show part B; that is, o is reoccupied by a particle generated by
these particles in U, N(y) with a uniform positive probability. By Proposition
4, for £ > 0 and any z € {v: at; < |v|] < Bt;}, there exist M and G such that,
for all ¢; > G,

P(3 t(z) < MPBt, such that {0,0) — (z,¢(z))in H(o, 2))
> exp(—&Bt,).

Clearly, for each z € U, N(y),

P(3t(z) < MBt, such that (z,0) —» (y,t(z)>in H(z,y))

> exp(—&PBt;).

(70)

(71)



1430 Y. ZHANG

On the event that there exist exp(bz;) good N(x) and exp(2b¢;) good N(y),
for each N(y)let z € N(y) be a vertex such that z is occupied by the particle
generated from y. Then, by (71) and translation invariance,

P(3t(z) < MBt, such that {z,3¢,) —» (y,3¢t; + t(z))in H(z,y))

(72) > exp(—¢&Bty).

Specifically, z is called excellent if z satisfies the condition above. Let Z be
the set of all excellent vertices. Let us consider the i.i.d. sequence {X,} with a
common distribution

X =

13

1, with probability exp( —¢Bt,),
0, with probability 1 — exp( —&pBt;).

Let S, = X'_, X,. By Chebyshev’s inequality, for n = exp(2bt¢,),

< 4exp(—(2b - &p)t,)

n =

(73) 9?’(8 < —neXp(_gtl))

for the probability measure %, where 2 is the product probability measure
for {X,}. Note that if y; # y,, then N(y;) N N(y,) = & so that

{3 t(2z,) < MBt, such that (z,,3¢) = (y1,3¢ + t(2;))in H(zy, y1)}
and
{3 t(z,) < MBt, suchthat (z,,3t;) = (y5,3t; + £(25))in H(z,, y,)}
are independent events since
H(zy,y,) NH(zy,y,) =.

Furthermore, each event has a probability larger than exp(— £8t;). Then, by
(72), (73), and the independence of two such events, with a probability larger
than

1—4exp(—(2b - &B)t,),

there exists 1exp((2b — £B8)t,) such N(y) so that each of them contains such
excellent z.

However, t(z) varies from 3¢; to 3¢, + M Bt;. To fix a unique time, we will
do the following work. We denote by E(2t;) the event that there exist
Lexp((2b — ¢B)t;) such N(y) so that each of them contains an excellent z.
Then, on the event E(2t,), for each z, there exists an integer h(z) with
3t, < h(z) < 3t; + MBt, such that

1
MpBt,

P(t(z) € [h(2),h(2) +1]) =
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By Chebyshev’s inequality [see (73)] with

1, with probability

X - Mpt,’
0, with probability 1 — MBt,’
then there exist
1
— 2b — t
T

such A(z) defined above with a probability larger than
1 — 8MpBt, exp[—(2b — eB)¢,].
Clearly, if #(z) is fixed in the interval [A(z), h(z) + 1], with a unique strictly
positive probability p for all z,
(¥,t(2)) >(y,h(2) +2).

By (62), the Markov property and the discussion above, with a probability
larger than

[1— 4dexp(—(2b — eB)t,)|[1 — 8MBt, exp(—(2b — £B)¢,)]

exp((2b — sB)tl)”,

X

1- eXp(—GL(P)WBt1

there exist

p
mexp(@b - S,B)tl)

such z with
(z,3t;) = (y,h(z) +2).
Let .#" be the number of such z so that
(z,3t;) > {y,m + 2)

for some integer m with 3t; < m < 3¢, + MB¢,, where m does not depend on
z. Note that h(z) is an integer (nonrandom) and 3¢, < h(z) < 3¢, + MB#, so
that there exists m such that

p

= thmexp(@b - E,B)tl))

> [1 — 4exp(—(2b — &B)t;)|[1 — 8MPBtexp(—(2b — eB)¢,)]

exp((2b6 — a,B)tl))}.

%

X

1
1- eXp(—a(P)m
1
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Since B does not depend on ¢;, by Proposition 4, we may take ¢, large enough
in (70) such that |z| is large enough to make

< —.
ep "

Also, note that M does not depend on ¢; so that we take ¢, large enough such
that, for any integer n > 0,

[1— 4dexp(—(nb — eB)t,)][1 — 8MpBt, exp(—(nb — &B)t,)]

(74) X exp((nb — sB)tl))]

22MpBt,
>1—exp(—b(n —1)¢)

1- exp(—a( p)

and

(75) exp((nb — eB)ty) > exp(b(n — 1)t,).

p
MBt, 2°MBt,

Clearly, with n = 2, if ¢, satisfies (70), (74) and (75), with a probability larger
than

[1 - exp(—bt,)],

there exist exp(bt;) such N(y) so that each of them contains a z which
satisfies

(z,3ty) » {y,m + 2).

Similarly, for each y connected by a path from z, we consider the event
(y,m + 2) = (x,¢) for some time ¢, where x € Y;. By the same estimate we
can show the following result. If ¢; satisfies (70), (74) and (75), then, with a
probability larger than

1 — exp(—(bt,)/2),
there exist m < m; < m + MB¢, and exp(c,¢,/2) such y with
(y,m +2) - (x,m; +2).
We can then choose a time S such that
P({x,3t; + (m +2) + (my + 2))
—={0,3t; + (m+2) +(m; +2)+8))=r
for 7 > 0 depending on ¢, and B only. Clearly,
P({0,0) = 0,3t; + (m +2) + (m; +2) +8))
> 67(1 — exp(—a(8)exp(bt,)))
X (1 — exp(—a(5)exp(2bt,)))
X (1 — exp(—bty))
X (1 — exp(—bt,/2))
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Finally, we show part C. In general, if we do this step / times, we can
construct good branches Y,,Y,,...,Y,. Then we can find m(l), m(0), ..., m,(1)
such that

Ity <m(l)
(76) <lt; + MBt,, m(l) <my(l)
sm(l) + MBty,...,m;_(1) <m(l) <m; (1) + MBt,,

where #; satisfies (70), (74) and (75). By the same discussion above, note that
t, does not depend on [ so that

P({0,0) = (o, Ity + (m(l) +2) + (my(1) + 2) + - +(my(1) +2) + 8))
> 67(1 — exp(—a(8)exp(bt,)))
X (1 — exp(—a(5)exp(2bt,)))

X (1= exp(—a(®)exp(Ibt,)))
X (1 — exp(—b(l — 2)t,))
X (1 — exp(—b(l — 3)t,))

‘><(1 — exp(—bt,))
X (1 — exp(—bt,/2))
> o710,

where

o= f[l(l - exp(—a(&)exp(lbtl)))Hl]_i[S(1 —exp(—b(l — 2)t))
X [1 — exp(—bt,/2)]>0.

Note that ¢;, m(l), m,(),...,m;(I) and S are fixed times. For any ¢, we
choose [ such that

t<lty+m(l)+2+my(l) +2+ - +my(l) +2+ 8.

Clearly, we have good branches Y;,...,Y;. Let X;_, be the particles gener-
ated back from Y, as we did before. Clearly, X; ; Y, ;. Now we only
consider doing [ — 1 steps instead of doing [ steps. Clearly, we have the same

good branches Y;,...,Y,_; as above. If we only consider that o is reoccupied
by the particles in X;_; instead of the particles in Y,_;, then we have the
same m;, my(l),..., m;_,(1) as above such that

P(0,0) = <o, (I — 1)t; + (m(l) +2)
+(my(l) +2) + - +(m;_y(1) +2) + 8)) > 870.
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Similarly, let X, _, be the particles generated back from X,_,,..., and let X,
be the particles generated back from X,. By the same reasoning,

P({0,0) = <o, (Il —i)t; + (m(l) + 2)
+(my(l) +2) + - +(m;_;(1) +2) +8)) > 670.
Clearly,
(I—iyt, +my(l) + 2+ +m, (1) +2+8S
<t<{—-i+Dt;+m(l)+2+ - +m;_; (I)+2+ S
for some i. Let
m=P(o,(I —i)t; + my(l) +2+ - +m;_;(I) +2+8) - (o,)).

It follows from (76) that 7 only depends on #;,, M and B. By the Markov
property for any ¢,
P({0,0) = {o,t)) = 8tom.

Proposition 5 is proved. O
3. Proofs of the theorems. Before the proof of Theorem 1 we give the
following lemma. We write {x, ¢) < (y,t) if there exist z € T and time s > ¢

such that (x,t) - {(z,s) and {y,#) - {2z, s). With the definition, we have
the following lemma.

LEMmMA 3. Suppose that A > ).. Given ¢ > 0, for any x,y € T, there exists
C which may depend on & but not on x and y such that

P({y,0) & (x,0) inside Z{y, x)) = Clx — y| "exp(—slx — yl).

Proor. By the corollary, we can show that there exist M and G such that
P(3 ¢t < M|yl such that (y,0) — <o, ¢) inside Z (o0, y)) > exp( —e€lyl)

for any |y| > G. Therefore, there exist C; > 0, C, > 0 and M > 0 which are
independent of y such that

C, exp(—elyl)
< P(3t < Mlylsuchthat (y,0) — o, t) inside Z (o0, y))
Myl
(77) < Y P({y,0) - o,t)inside Z(o,y) fori <t <i + 1)
i=0

< M|y|lmax P({y,0) — {o,t) inside Z (o, y) fori <t <i + 1)

= Cy,M|ylP({y,0) = {o0,t,(y) inside Z (o, y))

for all y, where ¢,(y) is an integer time such that the probability that
(y,0) = <0, ¢,(y)) inside (o, y) is the largest among all i with0 <i < M|y,
and we assume that M|y|is an integer without loss of generality. For each x
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and y, let z be the center of 2(x,y) and let zZ be a vertex such that
|Z| = min{|y — z|,|z — x[}. Note that Z is the center of the segment connecting
x and y if |x — y| is an even number. Therefore, by translation invariance,
the FKG inequality (see page 78 in [6] for more details) and (77),

P({y,0) « (x,0) inside Z(y, x))
> P({y,0) = <z,t,(Z)) inside Z(y, z),
(x,0) > (z,t,(Z)) inside Z(x, z))
> P(y,0) = {z,t,(Z)) inside Z(y, z))
XP({x,0) = {z,ty(Z2)) inside Z(x, z))
> Cg(Cl/CZM)zly — x| exp(—e&2ly — xl)
for some constant C; > 0. Lemma 3 is proved. O

To show Theorem 1, we need to verify the condition of Griffeath’s lemma as
we said before; that is, for any subsets A and B of T,

(78) P(ftAﬁgt3=@,§tA¢@,gtB¢@)—>0 ast — o,

where EtB is an independent copy of the contact process. To verify (78), we
would like to present the following heuristic argument first. We will first
show that

(79) P(Vit<rsuchthat {2 NEF =0, 64 # D, EP #D)> 0 ast— =

Assuming that both ¢# # (J and ETB # (J, then by Lemma 2 we can choose s
large with s < 7 such that

| €4 N {v:lv — ul < 2Bs for u € A}| > exp(c,s)
and

EEn{v:ilv—ul<2Bsforu EB}| > exp(c,s).
We set
(X,Y) = {(x,9): x €8(&8), y € B(E7)},

where x and y are border vertices of £¢* and ESB, respectively. Clearly, x # y
for any pair (x, y) if é2 N éE = & for t < 7. Furthermore, {x,s) < (y,s)
cannot occur on the time interval (s, ¢) if €4 N EtB = for t < 7. However,
(x,s) <> (y,s) in some time interval (s, s;) will have a probability smaller
than

1-Clx — ylfzexp(—slx - yl)

by Lemma 3. Now, for another pair (x;, y;) € (X,Y), the particles in x; and
y, can survive and hit x, and y, at time s, in N(x,) and N(y,), respectively,
with a positive probability 62 by Proposition 5. Suppose that x, and y, are
hit by s; by particles from {x;, s) and {y;, s), respectively. Then {x,, s;? <7L>
(yy, 8, in some time interval (s,, s,) for any 7> s, > s, if {42 N €E = O for
s, < 7. It will have a probability smaller than 1 — 62C|x, — y,|” " exp(—&
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|x, — y,). By using the same argument for each pair in (X,Y), é¢2 N £F = &
for s <t < 7 has a probability smaller than

xp(c,s)

1 — 8*Cmax|x; — y;l 72 exp(—s max|x; — yil)e e )
12 l
Note that |x; — y,| < 2Bs for each i so that the probability in (79) goes to 0 as
s goes to » if we take ¢ small. With the probability estimate above and the
Markov property, we know that ¢* and &P intersect many times if ¢ is
large. Then, by Proposition 5, we can show that Lemma 4 holds if ¢ is large.
Now we present a formal proof as follows.

Proor oF THEOREM 1. Clearly, to show that the complete convergence
theorem holds for A > A_, we only need to check Griffeath’s lemma for A > A,.
We first restrict our discussion to the finite sets A and B. Now we will show
(79). We denote

M= max {Jlu—vl}.
veA,ueB

We also denote

D,(A) =%

EA N { U {vilv —ul < Bs}})
. ueA

D(B) =%

E8 N { U {vilv —ul < ,Bs}),
ueB

where Z(S) is the border of S. Note that A is finite so that it follows from

the same argument in Lemma 2 [see (67) and (68)] and (63) that, given & > 0,

we can take s > M large such that

(80) P(|D,(A)| = exp(cys)lgf # D) 21—«
and
(81) P(ID,(B)| = exp(c,s)|EF # D) =21 — &,

where B8 and c, are constants which do not depend on s. We write Z(s) for
the following event:

{ID,(A)] = exp(c,s)} N {|Dy(B)| = exp(c,s)}.
Let x; € D(A) and y; € D,(B) be the vertices such that

lxy — 1l = min {lx — yl}.
xeD(A), yeD(B)

Note that (x;, ¥;) may not be a unique pair and 2(x,, y;) does not contain
the other vertices of D,(A) and D,(B) except for x; and y;. On the event that

{¢AnEfF=0,Vt<r)
for x; € D,(A) and y, € D,(B) and any s < ¢; < 7, then

ty
(x;,8) < {yy, $) cannot occur,

t
where (x, s) o (¥4, s) is the event that {(x,,s) < {y;, s) at some ¢ with
s <t < t,. However, by Lemma 3, for given n > 0 there exist ¢; and C which
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does not depend on x, and y; such that
‘1 .
(82) P(<x1,3><—><y1,3>1n51de Q(xl,yl))
> Clay =y, exp(—nlx; = y,).
On the event Z(s), consider x, € D.(A) and y, € D,(B) with

lxy — yol = min {|x—y|}.
x€D(AN{x}, yeD(BN\{y}

Note that Z(x,, y,) does not contain vertices of D,(A)\ {x;, x,} and D,(B)\
{y,, vo}. Note also that x, and y, are border vertices of £ and &5,
respectively, so that there exist N(x,) and N(y,) such that N(x,) and N(y,)
do not contain particles of ¢4 and £ except for x, and y,. It follows from
our definitions of x; and y; for i = 1,2 that if N(x,) N2(x,, y;) # J, then
D(xy, y,) € N(x,). This is impossible since N(x,) does not contain any vertex
of D,(A) U DJ(B) except for x,. Similarly, we can show that N(y,) N
D(xq,y,) = . Then

(83) [N(x;) UN(y,)] NZ(%1,51) = 2.

On the event D(A) =T, and D,(B) =T, for some vertex set I'; and T, by
Proposition 5 and the independence of £ and &7, there exists s; > ¢, such
that x, € £ °(N(x,)) and y, € ES{Z’S(N(yZ)) with probability §2 for some
5> 0, x, €T, and y, € T, where £¢*°(N(x)) was defined in (44), that is, the
contact process for ¢ > s on N(x) such that £*°(N(x)) = x. Furthermore, by
Lemma 3, for n > 0 in (82) there exist the C [in (82)] and ¢, such that

P(xZ = gsfz’x(N(xZ))’ y2 = é:s}llz’s(N(yZ))’

(84) (xp,51) S (v, 5,) imside F(xy, )

> C82|xxy — y,| 7 (exp(—nlxy — ¥,0))
for any x, and y,. However, on the event Z(s), D,(A) =T}, D(B) =T, and
EANEE =D forall s <t<r,then,ift, <,

{228 2 (N (),

- to .
¥a € B (N(22)), (xa, 510 S (3, 5,) inside P (3, vy) )

cannot occur. Note that, by (83), {N(x,) U N(y,)} NZ(x,,y,) = J and s <
t; < s; <ty so that, on the event that D,(A) =T, and D(B) =T,

131
{(xl, sy < (¥, s) inside Z( x,, yl)}
and

{28 2 (N(22)), 3 € B2 (N (1)),

t
(x5, < {3y, 8, inside F(xs, y2) |



1438 Y. ZHANG

are independent for (x,, y;,) € (D,(A), D,(B)) with i = 1,2 since the first
event only depends on the Poisson processes on Z(x4, y;) X (s, ¢;) and the
second event only depends on the Poisson processes on N(x,) U N(y,) X
(s, s7) and Z(x,, y5) X (81, ty). Continuing, on the event Z(s), we can con-
struct % pairs as follows:

{(x5,53);--3(2x, 3:)} € (D,(A), Dy(B))
for an integer & with exp(c,s) — 1 < k < exp(c,s). Then, by the same argu-
ment on the event Z(s), D,(A) =T, and D,(B) =T,, we have the following
independent events:

{(xl, sy <t—1> (y1, s inside g(xl,yl)},
{2 € &2 (N(xy)), vz € 82 *(N(2)),

ty
(xy,5,) © (yy, s, inside Q(xz,yz)},
(85)

{xk € & (N(xy)), 7, € E;Z'fls(N(yk)),

t
(X, 8410 < (¥, 8p—1) inside Z(x;, y,)}
for s <t, <s, <ty < -+ <s,_ ; <t,. By the independence of ¢* and &7,
Proposition 5 and Lemma 3 again for the > 0 in (82), there exist the C [in
(82)] and ¢, such that
P(xi € &5 (N(xy)),
- t;
(86) Yi € fs“fi’ls(N(yi))’ (x;, 8,17 ©(y;,8;,_1) inside Z(x;, yi))

> C8%x; — yi|72 exp(—nlx; — y,l)
for any x; and y,. On the other hand, on the event Z(s), D(A) =T},
D(B)=T,and ¢* N &P =T forall s <t <r,then,ift, <,

{(xl, sy <t—1> (y1, s inside Q(xl,yl)}
s € £ (N(22)), 30 € B4 (N(32)),

ty
(x4,8,) S (yy,5,) inside D (xy, }
(87) 2551 Y2581 (%3, ¥2)

U €200 (N(0)), 30 € 25 (N (),

2 ..
(g, 8412 © (Yp, S, inside g(xkayk)}
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cannot occur. Therefore, if we take 7 large such that ¢, < 7,

P(Vit<rtwith §2 NEP =0, E2 + O, €8 + )
SP(Z(S),Vt< T with gtAmStB =fors <t < T) + 2¢
[by (80) and (81)]

< X P(Z(s), D(A) =T, D(B) =T,
Iy, Ty

Vi<t with §fven gt =gfors <t <71)+2¢

[the sum is taken over all T} and T, for I} € U, 4lv:
lv —ul < Bstand Ty € U, cplv: v — ul < Bs} with T; N T,
= J and |T';| > exp(c,s) and |Ty| > exp(c,s)]

=< Z P(Z(S)’ D,(A) =Ty, D(B) =1,
I, Ty

E (xhyl)"“’(xk’yk) c (FI’FZ)
t ¢
with k£ = |exp(c,s)| such that {<x1,8> < (¥, s) inside 9(951,3’1)} ,

{xZ € & °(N(x3)), y2 € 58{278(]\[(3,2)), (x5, 81) 3 (y2, 817

c
inside Z( x5, y2)}

(88) {10 € €20 (N(x)), 30 € B2 (N(90),

c
(xk,sk,1><t—k><yk,sk,1>inside9(xk,yk)} )+28 [by (87)]

< FZF P(Z(s), D(A) =Ty, D(B) =I)

X[l - P(EI (x1,51) € (I', Ty)
such that (x,, s) 3 (¥, s) inside 9(361,3’1))]
% [1 - P(EI (%5,5) € (T},Ty), x5 € £525(N(x3)),

_ t
Y2 € sylz’s(N(yz))’ (x4, 81) & (ys, 81 inside 9(%73’2))}
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X[l - P(El (x5, 32) € (T, Ty), ) € £57 7 (N(x1)),
yi € &M (N(y:)),
I{xy, 8,1 4 (¥, 81, inside Z(x,, yk))} + 2¢
[by the Markov property and (85)]

k
< [1 — C62% max |x, — y;| ° exp(—nlmaxklxi —yil)] +2& [by (86)]
<1<

1<i<k

] exp(cys)—1

< [1—C82(Bs)_2 exp( —nBs) + 2e.

Note that 8 and ¢, depend only on A so that we may take n small such that
1B < ¢,. On the other hand, § only depends on A and C does not depend on x;

and y; so does not s. Hence, by taking 1 small, s large then r large in (88), it
follows that, for any finite A and B,

(89) P(Vit<r, ¢ nNE =0, 8+, EP+D) >0 as7— o,

Therefore, (79) is proved. With (79), we next show (78). By the Markov
property and (79), for any m,

P(EI t, <ty< - <t <rtwitht,+1<¢t,,i=1,...,m— 1, such that

(90) G NE+ DA NE # D, ENE 018 0, B+ 0
-1 ast— o
For any N, let
P(l&4, N €5l = NIEA 0 &P # D) = p(N).

By the Markov property again, (90) and the same proof as in Proposition 2,
for any integer N,

91 P(EI t < rsuchthat [£A N EF| = N|EA + O, £F + @)—) 1 as7—> o«
If [€£ N EF| = N, then, by (62),

_ d-1
|B(e2 N EP)| = ——N.

For each x €.%( &2 N €P), by Proposition 5 and the independence of ¢4 and
&P for all s and ¢ with s < ¢, there exists 6 > 0:

P(x € ¢A(N(x)) N EE(N(x))lx e éA n ESB)
> P(x € £4(N(x)), x € §5(N(x))lx € 4 N &F)
> P(x € & (N(x)), x € £ ,(N(x)))
(by the Markov property and translation invariance)
> P(x € & (N(x)))P(x € & (N(x)))

> 82,
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Note that, on the event that y,z € é¢A N &P if t > s and y # 2,
{Z < gtA(N(Z)) N EtB(N(Z))} and {y < gtA(N(y)) N gtB(N(y))}

are independent so that, given & > 0, by the law of large numbers we can find
N such that, for any s and ¢ with s < ¢,

P(Ax € ¢4 N EB such that x € £A(N(x)) N € (N(x))]

92 >
(92) [EANEEI>N)> 1 — &

Finally,
P(¢ANEP =0, &8 + D, 88 + 2)
~P(&ANEP =, ¢4 + O, EP + @, s <t such that |£4 0 EF] > N
+P(EANEP=0,84+ 0,8 + 0,
V s < t such that |2 N €5 sN)

-0 ast— o [by(91)and(92)].

Then (78) is proved for finite A and B. Now we show that (78) holds for any
sets A and B. Consider only A and B are infinite. The other cases can be
shown by the same argument. Since A and B are both infinite sets, the
borders of A and B are both infinite. Note that A > A, and recall Lemma 1 so
that by the law of large numbers we can find finite A; C A and B; C B such
that, for any ¢ > 0,

(93) P(¢M#D)>1—-6 and P(EPr#0) 21~ e
Therefore,
P(¢ANEP =0, ¢ + 3,88 + 0)
SP(EANEP =0, eM + D, EPr # @) + 26 [by (93)]
(94) <SP(EMngl =0, M =0, 885 + D) + 26
—2¢ ast— o [by(78) and note that A, and B, are finite].
Then, by Griffeath’s lemma, Theorem 1 is proved. O

PrOOF OF THEOREM 2. We assume that
(95) P(o€ ¢l io) >8>0 ata,.
Then we will find a contradiction later. With assumption (95) we first show
that there exists %2 such that
(96) P(oe€ ¢ (H(—k,k))i0) >0 at A,

where H(—k, k) was defined in the proof of Proposition 1. The proof can be
adapted directly from the proof of Proposition 1. Indeed, in the proof of
Proposition 1, we only assumed that (14) holds, which is (95). Next we will
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prove that for any ¢ > 0 and large integer f there exist N and K such that
(97)  P(Jy(f) =1linside H(o,N) n{lv|<K})>1—-¢ atA,

where Jy(f) is defined in the corollary. This can be proved by checking the
proof of Fact 2 and the corollary directly. In fact, we only need to use (96) and
a standard ergodic theorem to show (97). Note that the event that Jy(f) =1
inside H(o, N) N {|lv| < K} only depends on the Poisson processes in a finite
set in T. By (2) we may take A, < A, close to A, but less than A, such that

(98) P(Jy(f) =1linside H(o,N) N {lv|<K})>1-2¢ atA,.

With a small ¢ in (98) and a large f, we will prove that for any n > 0 there
exist M and G such that, at A,

(99) P(3t < M|x|suchthat{o,0) = {(x,¢)in H(o, x)) > exp(—nlx)

for any |x| > G. The proof of (99) is the same as the proof of Proposition 4. In
fact, we only need (98) to show (99) in Proposition 4. Finally, we show that,
at Ay,

(100) limsup P(o € £2(U)) = B> 0.

To prove (100), we just need to check the proof of Proposition 5 directly. The
first part of the proof of Proposition 5, part A, depends only on A > A, (see the
proof of Proposition 5, part A). Certainly, it holds for A, since A, > A,. The
second part of the proof of Proposition 5, part B, depends on Proposition 4.
Clearly, it also works for A, since (99) holds. Then (100) is proved. However,
(100) will imply that

(101) P(o€ & io) =B at A,

which would contradict (95) since A, < A,. Theorem 2 is proved. O

ProoF oF THEOREM 3. To show Theorem 3, we only need to show that (see
(2.4) in [4])

(102) P (v is ever occupied by a particle) - 0 as [v| — » at A,.

However, (102) is implied by Theorem 2 and the proof of Lemma 6.4 in [10].
O
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