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INCREMENTS OF PARTIAL SUMS
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We establish very general one-sided results on the lim sup behavior of
increments of suitably normalized partial sums of i.i.d. random variables.
Our main results apply to arbitrary nondegenerate positive random vari-
ables which need not have any finite moments. As a corollary we can show
that such results also hold for not necessarily positive random variables
whose negative parts have finite moment-generating functions.

1. Introduction. Let X;X1;X2; : : : be independent identically distrib-
uted (i.i.d.) nondegenerate random variables with distribution function
F. As usual, set S0 = 0; Sn = X1 + · · · + Xn; n ≥ 1, and let Lt x=
log�max�t; e��; LLt x= L�Lt�; t ≥ 0. Then it follows from the classical
Hartman–Wintner LIL that one has, under the assumptions EX = 0;EX2 =
1, with probability 1,

�1:1� lim sup
n→∞

�Sn�/�2nLLn�1/2 = 1:

It is also known that the above moment assumptions are necessary for (1.1) to
hold. Much more general LIL results, however, are attainable, if one considers
one-sided versions of (1.1) and uses different centering and norming sequences
[see, e.g., Klass (1976), Mason (1994) and Pruitt (1981)].

Mason (1994) has recently shown that if X is an arbitrary positive random
variable, then one can find centering constants �µn� and norming constants
an ↗∞ such that, with probability 1,

�1:2� 0 ≤ lim sup
n→∞

�nµn −Sn�/an ≤ 21/2:

Moreover, it follows from a result of Einmahl and Mason (1994) that the
lim sup in (1.2) is positive, whenever X is in the Feller class. Recall that a
random variable is in the Feller class, if one can find centering constants �δn�
and norming constants �cn� such that

�1:3� �Sn − δn�/cn is tight with nondegenerate subsequential limits:

Note, in particular, that any random variable in the domain of attraction to a
stable law of index α ∈ �0;2� belongs to the Feller class.
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The purpose of the present paper is to investigate whether one can obtain
similar general results on the behavior of increments of partial sums of i.i.d.
random variables. Our starting point is a result of Csörgő and Révész (1979),
the exact formulation of which requires some additional notation. Let 0 <
κn ≤ n be a nondecreasing sequence of real numbers satisfying

�1:4� κn/n is nonincreasing

and

�1:5� κn/ log n→∞ as n→∞:

Set kn x= �κn�; n ≥ 1, where �x� denotes the integer part of −∞ < x <∞, and
let, for 1 ≤ k ≤ n,

Mn�k� x= max
0≤i≤n−k

max
0≤j≤k

�Si+j −Si�:

Theorem A. Assuming that X is a random variable with finite moment-
generating function; mean 0 and variance 1 and �kn� is a sequence as above;
we have, with probability 1;

�1:6� lim sup
n→∞

αnMn�kn� = 1

and

�1:7� lim sup
n→∞

αn�Sn −Sn−kn � = 1;

where αn x= �2knγn�−1/2 and γn x= log�n log n/κn�; n ≥ 1.

The assumption that X has a finite moment-generating function is quite
strong, and it is very natural to ask whether one can obtain similar results
under less restrictive assumptions. This is, in general, not possible if one wants
to have a result of this type which is valid for any sequence κn satisfying (1.4)
and (1.5). If one focuses on particular sequences κn, however, one can prove
(1.6) and (1.7) under weaker assumptions which are specific to the choice of κn.
It turns out that the larger one chooses κn, the weaker are the corresponding
assumptions. In particular, if κn = n, (1.6) and (1.7) hold if and only if EX = 0
and EX2 = 1. [For more information in this direction, refer to subsection 3.2
of Csörgő and Révész (1981) and Hanson and Russo (1983).]

We shall show that there is a universal one-sided version of Theorem A
which is valid for any nondegenerate positive random variable X and any
sequence κn satisfying (1.4), (1.5) and an additional very mild assumption.
Similarly, as in the one-sided LIL result (1.2), we have to introduce centering
and norming constants, which will be defined in terms of suitable truncated
mean and variance functions.
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To that end, consider the quantile function Q�u� = inf�x: F�x� ≥ u�,
0 < u < 1, and set, for 0 < s < 1,

µ�s� x=
∫ 1−s

0
Q�u�du;(1.8)

ν�s� x= µ�s� + sQ�1− s�;(1.9)

τ2�s� x=
∫ 1−s

0
Q2�u�du− �µ�s��2(1.10)

and

�1:11� σ2�s� x=
∫ 1−s

0
Q2�u�du+ sQ2�1− s� − ν2�s�:

Let kn and κn be as above, and define, for each n ≥ 1,

bn x= γn/�κn + γn� and βn x= �2knγn�−1/2σ�bn�−1;

where γn is as in Theorem A. From assumption (1.13) below it follows that
�bn� and �βn� are nonincreasing sequences.

Finally, set, for each n ≥ 1, 0 < k ≤ n and 0 < b < 1,

�1:12� Mn�b; k� x= max
0≤i≤n−k

max
0≤j≤k

�jµ�b� −Si+j +Si�:

Then our first result can be formulated as follows.

Theorem 1. Let X ≥ 0 be a nondegenerate random variable, and let kn =
�κn�; where 0 < κn ≤ n is a nondecreasing sequence satisfying (1.4), (1.5) and

�1:13� γn/κn ↓ 0 as n→∞:
Then we have, with probability 1;

�1:14� lim sup
n→∞

βnMn�bn; kn� ≤ 1

and

�1:15� lim sup
n→∞

βn�knµ�bn� − �Sn −Sn−kn�� ≥ 0:

Note, in particular, that if we apply Theorem 1 with κn = n, we obtain a
version of the universal LIL (1.2). Moreover, one can show for any sequence κn
as above that the lim sup in (1.14) is equal to 1 if EX2 <∞, and the lim sup
in (1.15) is equal to 0 if 1 −F�x� is slowly varying at ∞. [The proof of these
two statements is very similar to the proof of Lemma 4 in Mason (1994).] This
clearly shows that the constants in Theorem 1 are sharp.

One might next ask whether the lim sup in (1.15) [and consequently that in
(1.14)] is positive whenever X is in the Feller class. Theorem 2 shows that this
is indeed the case, and it also shows that if the sequence κn is small enough,
one can supplement (1.14) by a lim inf result. It would be interesting to know
whether and when one has convergence to a limit as in the classical setting
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[see Theorem 3.1.1 of Csörgő and Révész (1981)]. We further note that the
lim inf in (1.15) will be negative (in many cases even equal to −∞) so that
there is no analog of (1.18) in this case. As a matter of fact, it is not difficult
to show that the lim inf in (1.7) cannot be positive, either.

Theorem 2. Assume that X ≥ 0 is a nondegenerate random variable in
the Feller class. Then we have, for any sequence kn as in Theorem 1; with
probability 1;

�1:16� lim sup
n→∞

βn�knµ�bn� − �Sn −Sn−kn�� ≥ C1;

where C1 is a positive constant depending on the distribution of X.
Furthermore, if κn satisfies, in addition to the above assumptions,

�1:17� log�n/κn�/LLn→∞ as n→∞;
we have, with probability 1;

�1:18� lim inf
n→∞

βnMn�bn; kn� ≥ C2;

where C2 is a positive constant depending on the distribution of X.

Using Theorems 1 and 2 in combination with Theorem A, one can easily
show that these results are also valid for not necessarily nonnegative random
variables if one imposes suitable conditions on the negative part X− of X. In
particular, one can show the following result.

Corollary. The conclusions of Theorems 1 and 2 remain true when the
assumption that X is non-negative is replaced by E exp�tX−� <∞ for all t in
a neighborhood of 0.

We note that it is possible to find weaker sufficient conditions if one is only
interested in specific sequences kn. For instance, one can show if kn = n, then
it is enough to assume that X− has a finite second moment.

As we already indicated earlier, such results have been obtained in the
setting of Theorem A. Refer to Theorem 2 of Lai (1972), subsection 3.2 of
Csörgő and Révész (1981) or Hanson and Russo (1983). Given the work of these
authors, it is straightforward to obtain similar refinements of our results, and
we will not provide any details here.

Our proof of Theorems 1 and 2 is based on the so-called quantile transforma-
tion method. We first use a martingale argument to obtain suitable (one-sided)
maximal inequalities (see Lemmas 2.1 and 2.2). Combining these inequalities
with some facts about the truncated mean/variance functions, we obtain state-
ment (1.14) in Section 2. The proof of statement (1.15), which will be carried
out in Section 3, is based on a refinement of the method employed by Ma-
son (1994). Among other things, we will need an extended version of a result
of Kiefer (1972) (see Lemma 3.2). We then prove Theorem 2 in Section 4.
The main difficulty is to find a good lower bound for probabilities of the type
P�knµn�bn� − Skn ≥ C�βn�−1�, where C > 0. This will be accomplished by
Lemma 4.1. Finally, the proof of the corollary will be given in Section 5.
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2. Proof of Theorem 1 (part 1).

2.1. Some auxiliary results. The following two exponential inequalities
will be crucial for the proof.

Lemma 2.1. Let Wj; 1 ≤ j ≤ n, be independent nonnegative random vari-

ables satisfying E exp�tWj� <∞; 0 < t <∞; EWj = µj and EW2
j ≤ α2; 1 ≤

j ≤ n. Then we have, for x ≥ 0 and p > 1;

�a� P

{
max
1≤k≤n

k∑
j=1

�µj −Wj� ≥ x
}
≤ exp

(
− x2

2nα2

)
;

�b� P

{
max

1≤k≤l≤n

l∑
j=k
�µj −Wj� ≥ x

}
≤ p

p− 1
exp

(
− x2

2npα2

)
:

Proof. Noting that, for any t > 0,
{
exp

(
t
∑k
j=1�µj −Wj�

)
; 1 ≤ k ≤ n

}
is

a submartingale, we can infer, via Doob’s inequality,

�2:1� P

{
max
1≤k≤n

k∑
j=1

�µj −Wj� ≥ x
}
≤ E exp

(
t
n∑
j=1

�µj −Wj�
)
· exp�−tx�:

Next observe that, for some 0 < t < t,

E exp�−tWj� = 1− tµj +
1
2
t2EW2

j −
t3

6
EW3

j exp�−tWj�

≤ exp
(
−tµj +

t2α2

2

)
; 1 ≤ j ≤ n:

Using the independence of the Wj’s, we readily obtain that the probability in
(2.1) is

≤ exp
(

1
2
nt2α2 − tx

)
;

which after choosing t = x/nα2 implies (a).
We now turn to the proof of (b). Let, for 1 ≤m ≤ n and t > 0,

Ym�t� = max
1≤j≤m

exp
(
t
m∑
i=j
�µi −Wi�

)
;

and set Fm x= σ�W1; : : : ;Wm�; 1 ≤m ≤ n. Then it is easy to see that

�2:2� ��Ym�t�;Fm�: 1 ≤m ≤ n� is a submartingale.
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Using again Doob’s inequality, we find that

P

{
max

1≤k≤l≤n

l∑
j=k
�µj −Wj� ≥ x

}

= P
{

max
1≤m≤n

Ym�t� ≥ exp�tx�
}

≤ EYn�t� exp�−tx�:

Next observe that

Yn�t� = max
1≤k≤n

Zk;n�t�;

where Zk;n�t� = exp
(
t
∑k
j=1�µn+1−j −Wn+1−j�

)
; 1 ≤ k ≤ n, is another sub-

martingale. Using Liapounov’s inequality in combination with Doob’s Lp-
inequality [see, e.g., inequality (35) on page 247 of Chow and Teicher (1988)],
we can conclude that

EYn�t� ≤
p

p− 1
�EZn;n�pt��1/p;

which by the proof of (a) is

≤ p

p− 1
exp

(
1
2
nt2pα2

)
:

Combining this with the above bound for the probability in (b) and setting
t = x/npα2, we obtain our assertion. 2

Arguing as in the proof of Lemma 2.1(a), one can use the proof of Bernstein’s
inequality [see, e.g., Dudley (1984), page 14], to obtain the following maximal
version of it.

Lemma 2.2. Let Zj; 1 ≤ j ≤ n; be independent mean-zero random vari-
ables satisfying, for some M> 0;

�2:3� �Zj� ≤M; 1 ≤ j ≤ n:

Then we have, for x ≥ 0;

P

{
max
1≤k≤n

k∑
j=1

Zj ≥ x
}
≤ exp

(
−x2/

(
2

n∑
j=1

σ2
j + 2Mx/3

))
;

where as usual σ2
j x= EZ2

j; 1 ≤ j ≤ n.

For the sake of easier reference later on, we now collect some more or less
known facts about the functions µ�s�; σ2�s� and τ2�s�; 0 < s < 1, which have
been introduced in Section 1.



1394 U. EINMAHL AND D. M. MASON

Fact 2.1. Let X ≥ 0 be a nondegenerate random variable. We have

�a� lim sup
s↓0

s1/2Q�1− s�/σ�s� ≤ 1;

�b� lim sup
s↓0

τ2�s�/σ2�s� ≤ 1:

For a proof refer to relations (2.1) and (2.2) of Mason (1994).

Fact 2.2. If X ≥ 0 is a random variable with EX2 = ∞, we have

lim sup
s↓0

µ�s�/σ�s� = 0:

Fact 2.2 can be proven by the same argument as in Lemma 2.1 of Csörgő,
Häusler and Mason (1988b). The next fact is obvious so that we can omit the
proof.

Fact 2.3. If X is a random variable with EX2 <∞, we have

�a� lim
s↓0

s1/2Q�1− s�/σ�s� = 0;

�b� lim
s↓0

µ�s�/σ�s� = EX/�Var�X��1/2:

2.2. Conclusion of the proof. Let U1;U2; : : : be a sequence of i.i.d. uniform
�0;1� random variables. Since �X1;X2; : : :�=D �Q�U1�;Q�U2�; : : :�, we can and
do assume that

�2:4� Xi = Q�Ui�; i = 1;2; : : : :

We first show that it is enough to prove (1.14) along a geometric subse-
quence. Let, for any λ > 1; mr x= �λr�; r = 1;2; : : : :

Lemma 2.3. For any ε > 0 there exists a λ�ε� > 1 such that, for 1 < λ < λ�ε�
and large enough r;

�2:5� max
mr≤n≤mr+1

βnkn�µ�bn� − µ�bmr
�� ≤ ε:

Proof. Notice that, for any mr ≤ n ≤mr+1,

0 ≤ �2bnσ2�bn��−1/2�µ�bn� − µ�bmr
�� ≤ �2bmr+1

�−1/2
∫ 1−bn

1−bmr

Q�u�
σ�1− u� du;

which by Fact 2.1(a) is for large enough r bounded above by

�2:6� �bmr+1
�−1/2

∫ 1−bmr+1

1−bmr
�1− u�−1/2 du = 2��bmr

/bmr+1
�1/2 − 1�:

Now conditions (1.4) and (1.5) imply that, as r→∞,

bmr
/bmr+1

∼ �γmr
/κmr
�/�γmr+1

/κmr+1
� ≤mr+1/mr;
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which, in turn, is asymptotically equivalent to λ, and we see that if r is large
the quantities in (2.6) are less than 3�λ1/2−1� (say). This establishes (2.5). 2

Choosing λ�ε� > 1 as in Lemma 2.3, we see that, for all 1 < λ < λ�ε� and
sufficiently large r,

�2:7� max
mr<n≤mr+1

βnMn�bn; kn� ≤ max
mr<n≤mr+1

βnMn�bmr
; kn� + ε;

which, in turn, is less than or equal to

max
0≤i≤mr+1−kmr

max
0≤j≤kmr+1

βmr
�jµ�bmr

� − �Sj+i −Si�� + ε

=x βmr
Mr�λ� + ε:

(2.8)

Therefore, it is enough to prove

�2:9� lim sup
λ↓1

lim sup
r→∞

βmr
Mr�λ� ≤ 1 a.s.

We next show that the proof of (2.9) can be reduced to establishing a result
for bounded random variables. We have to introduce some additional notation.
Let, for any 0 < b < 1 and i ≥ 1,

Wi�b� x= Q�Ui�1�Ui < 1− b� +Q�1− b�1�Ui ≥ 1− b�;
and set

Tj = Tj�r� x=
j∑
i=1

�ν�bmr
� −Wi�bmr

��; j ≥ 1:

It is easy to see that we have, for any 0 ≤ i ≤mr+1 − kmr
and 0 ≤ j ≤ kmr+1

,

�2:10� jµ�bmr
� − �Sj+i −Si� ≤ Ti+j�r� −Ti�r�:

Therefore, the proof of (2.9) is further reducible to showing

�2:11� lim sup
λ↓1

lim sup
r→∞

βmr
Mr�λ� ≤ 1;

where

Mr�λ� x= max
0≤i≤m�r�−k�r−1�

max
0≤j≤k�r�

�Ti+j�r� −Ti�r��

and

m�r� x=mr+1; k�r� x= km�r�; r ≥ 1:

Further, let, for any 0 < δ < 1 and r ≥ 1, k�δ; r� x= �δk�r��; l�δ; r� x=
�m�r�/k�δ; r�� + 1. We now show that Mr�λ� is close to a slightly smaller
quantity Mr;1�λ� which is obtained by taking the maximum only over indices
i which are multiples of k�δ; r�.

Choose, for any 0 ≤ i ≤ m�r� − k�r − 1�, the unique integer 1 ≤ l ≤ l�δ; r�
for which

�2:12� �l− 1�k�δ; r� ≤ i < lk�δ; r�:
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If 0 ≤ j ≤ k�r�, we have two possibilities.

Case 1. i+ j ≥ lk�δ; r�.

Case 2. i+ j < lk�δ; r�.

In the first case we can conclude that

Ti+j −Ti = Ti+j −Tlk�δ;r� +Tlk�δ;r� −Ti
≤ max

1≤l≤l�δ;r�
max

0≤j≤k�r�
�Tlk�δ;r�+j −Tlk�δ;r��

= + max
1≤l≤l�δ;r�

max
�l−1�k�δ;r�≤i≤j≤lk�δ;r�

�Tj −Ti�

=xMr;1�λ� +Mr;2�λ�:
Noticing that we have in the second case

Ti+j −Ti ≤Mr;2�λ�;
we readily obtain in both cases

�2:13� Mr�λ� ≤Mr;1�λ� +Mr;2�λ�:
We are now ready to finish the proof of (1.14). We first prove

�2:14� lim sup
r→∞

βm�r−1�Mr;1�λ� ≤ λ a.s.;

and then we show that the second term in (2.13) is irrelevant for our purposes
[see (2.17)].

To prove (2.14), we first assume that EX2 = ∞. In this case it follows from
Fact 2.2 that

�2:15� lim
r→∞

σ2�bm�r−1��/EW2
1�bm�r−1�� = 1:

Using Lemma 2.1(a) it is easy to see that, for large enough r,

P�Mr;1�λ� ≥ λβ−1
m�r−1�� ≤ 2δ−1�m�r�/k�r�� exp

(
−
√
λγm�r−1�

)
;(2.16)

where we use the fact that lim supr→∞ k�r�/k�r− 1� ≤ λ. By the definition of
the sequence �γn�, the last term is bounded above by

2δ−1�m�r�/m�r− 1���logm�r− 1��−
√
λ:

Since this is a summable sequence, (2.14) follows by a straightforward appli-
cation of the Borel–Cantelli lemma.

If EX2 < ∞, we can use Lemma 2.2 in combination with Fact 2.3(a), and
we obtain (2.14) by an obvious modification of the above proof.

We next show that, with probability 1,

�2:17� lim sup
r→∞

βm�r−1�Mr;2�λ� ≤Kλδ1/2;

where K is a positive constant depending on the distribution of X.
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Since δ > 0 can be made arbitrarily small, we obtain (2.11) by combining
(2.13), (2.14) and (2.17). The proof of (2.17) is based on Lemma 2.1(b). We
set K = 21/2 if EX2 = ∞, and K = 21/2�1 + �EX�2/Var�X��1/2 if EX2 < ∞.
Applying the aforementioned lemma with p = 2, we readily obtain that, for
large r,

P�Mr;2�λ� ≥Kλδ1/2�βm�r−1��−1�

≤ 4δ−1�m�r�/k�r�� exp
(
−
√
λγm�r−1�

)
;

(2.18)

where we use (2.15) if EX2 = ∞ and Fact 2.3 if EX2 <∞.
Now we can use the same Borel–Cantelli argument as before, and we get

(2.17), thereby finishing the first part of the proof of Theorem 1. 2

3. Proof of Theorem 1 (part 2). We first introduce a subsequence
�nj: j ≥ 1� as follows.

Let n1 = 1, and set nj+1 x= min�n: n − kn ≥ nj�; j ≥ 1, if ρ x=
limn→∞ kn/n < 1. (Note that in this case n− kn→∞ as n→∞.)

If ρ = 1, we set nj x= jj; j ≥ 1.

Lemma 3.1. We have in both cases

(a)
∑∞
j=1 knj/�nj log nj� = ∞y

(b)
∑∞
j=1�knj/nj log nj�1+δ <∞; δ > 0.

Proof. We only prove Lemma 3.1 for the case ρ < 1. From the definition
of the sequence �nj�, it follows that, in this case,

�3:1� knj ∼ nj − nj−1 as j→∞;
whence we have, for large enough j,

�3:2� �knj/nj log nj�1+δ ≤ 2�nj − nj−1�/nj�log nj�1+δ;
and (b) is obvious.

To prove (a), note that the assumption ρ < 1 implies

�3:3� lim sup
j→∞

nj/nj−1 <∞;

and (a) follows from (3.1) in combination with the fact that
∫ ∞

2
�x log x�−1dx = ∞: 2

Next consider the events An x= �Ui ≤ 1− bn; n− kn < i ≤ n�; n ≥ 1. The
following lemma is related to a fact contained in the proof of Theorem 2 of
Kiefer (1972) [see relation (2.11) of Mason (1994)]. For some other results in
this direction, refer also to Theorem 1 of Rothmann and Russo (1993).

Lemma 3.2. P�Anj
infinitely often� = 1.
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Proof. We first show that

�3:4�
∞∑
j=1

P�Anj
� = ∞:

To verify (3.4), observe that

�3:5� P�Anj
� = exp�knj log�1− bnj��; j ≥ 1:

Using the inequality

log�1− bnj� ≥ −bnj − b
2
nj

which holds for large j since bn→ 0 as n→∞, we get, after some calculation,

�3:6� P�Anj
� ≥ knj/�nj log nj�;

which in combination with Lemma 3.1(a) implies (3.4).
Noticing that the events Anj

; j ≥ 1, are independent if ρ < 1, we obtain
the assertion of Lemma 3.2 in this case immediately from (3.4) via the “usual”
Borel–Cantelli lemma.

To prove Lemma 3.2 for the case ρ = 1, we use a more general version of the
Borel–Cantelli lemma [see, e.g., Theorem 6.4 of Billingsley (1986)]. According
to this result, it is enough to check that

�3:7� lim inf
m→∞

∑
i;j≤m

P�Ani
∩Anj

�/
( m∑
i=1

P�Ani
�
)2

≤ 1:

In order to establish (3.7), it is obviously sufficient to prove that, for a suitable
sequence δj→ 0,

�3:8� P�Anj
∩Anj+l� ≤ �1+ δj�P�Anj

�P�Anj+l�; l = 1;2; : : : :

If nj+l − knj+l ≥ nj, the events Anj
and Anj+l are independent, and (3.8) is

trivial.
If nj+l − knj+l < nj, we have

P�Anj
∩Anj+l� = P�Anj

�P�Anj+l��1− bnj+l�
nj+l−knj+l−nj;

which is, for large enough j,

≤ P�Anj
�P�Anj+l� exp�2njbnj+l�:

Recalling that knj+l ≥ nj+l/2 for large j, we readily obtain that

2bnj+lnj ≤ 5�nj/nj+1� log log nj+1 =x δj

for large j, where δj→ 0 by the definition of �nj�. 2
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We are now ready to prove (1.15). As in the proof of (1.14), we will assume
that

�3:9� Xi = Q�Ui�; i = 1;2; : : : ;

where U1;U2; : : : is a sequence of i.i.d. uniform �0;1� random variables.
In view of Lemma 3.2, it is enough to prove

�3:10�
∞∑
j=1

pj�ε� <∞; ε > 0;

where

pj�ε� x= P
({ nj∑

nj−knj+1

�Q�Ui� − µ�bnj�� ≥ εβ
−1
nj

}
∩Anj

)
; j = 1;2; : : : :

Set, for j ≥ 1,

Zj x= max
nj−knj<i≤nj

Ui;

and denote its distribution function by Fj�x�. Then we can rewrite pj�ε� as

∫ 1−bnj

0
P

({ nj∑
nj−knj+1

�Q�Ui� − µ�bnj�� ≥ εβ
−1
nj

}∣∣∣Zj = x
)
dFj�x�:

Arguing as in Mason (1994), we can infer that, for large j,

�3:11� pj�ε� ≤ pj;1 + pj;2�ε�;
where pj;1 x= Fj�1− 2bnj�,

pj;2�ε� x=
∫ 1−bnj

1−2bnj

P

{knj−1∑
i=1

�Q�Vi�x�� −EQ�Vi�x��� ≥
ε

2
β−1
nj

}
dFj�x�

and Vi�x�; 1 ≤ i < knj , are independent, uniform �0; x� random variables.
Noting that, for large enough j,

pj;1 ≤ �1− 2bnj�
knj ≤ �knj/nj log nj�3/2;

we get, from Lemma 3.1(b),

�3:12�
∞∑
j=1

pj;1 <∞:

To bound pj;2�ε�, we will use the Bernstein inequality (see Lemma 2.2). Using
the fact that Q�Vi�x�� ≥ 0 (since X ≥ 0), it is easy to see that, for 1− 2bnj ≤
x ≤ 1− bnj ,

�3:13� �Q�Vi�x�� −EQ�Vi�x��� ≤ Q�1− bnj�;
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which, in view of Fact 2.1(a), is, for large j,

≤ 3
2b
−1/2
nj

σ�bnj�:
Moreover, recalling Fact 2.1(b), we find that, for 1 − 2bnj ≤ x ≤ 1 − bnj and
large j,

�3:14� Var�Q�Vi�x��� ≤ 2σ2�bnj�; 1 ≤ i < knj :
We now can infer from Lemma 2.2 that, for 1− 2bnj ≤ x ≤ 1− bnj ,

P

{knj−1∑
i=1

�Q�Vi�x�� −EQ�Vi�x��� ≥ �ε/2�β−1
nj

}

≤ �knj/nj log nj�δε;
where δε > 0.

Using the last inequality, we readily obtain that

pj;2�ε� ≤ Fj�1− bnj��knj/nj log nj�δε;
which is for large j bounded above by

�knj/nj log nj�1+δε/2

whence we have, by Lemma 3.1(b),

�3:15�
∞∑
j=1

pj;2�ε� <∞:

Combining (3.11), (3.12) and (3.15), we get (3.10), and consequently the asser-
tion. 2

4. Proof of Theorem 2. As in the previous sections we can and do as-
sume that Xi = Q�Ui�; i = 1;2; : : :, where Ui; i = 1;2; : : : ; is a sequence of
i.i.d. uniform �0;1� random variables.

We will make repeated use of the following fact, which can be inferred from
relation (1.42c) in Csörgő, Häusler and Mason (1988a).

Fact 4.1. Let X ≥ 0 be a nondegenerate random variable in the Feller
class. There exists a constant K ≥ 1 such that

lim sup
s↓0

σ�s�/τ�s� ≤K:

The next lemma will be the crucial tool for the proof of Theorem 2.

Lemma 4.1. Let X ≥ 0 be a nondegenerate random variable in the Feller
class. There exist positive constants C and δ depending on the distribution of
X such that, for large enough n;

P�knµ�bn� −Skn ≥ Cβ
−1
n � ≥ �kn/�n log n��1−δ:
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Proof. (i) Consider the event En x= �Ui ≤ 1 − λbn; 1 ≤ i ≤ kn�, where
λ = 1− 2δ and 0 < δ < 1

8 will be specified later. We then obviously have

�4:1� P�knµ�bn� −Skn ≥ Cβ
−1
n � ≥ P�En�P��knµ�bn� −Skn > Cβ

−1
n ��En�:

Since, for large n,

�4:2� P�En� ≥ �kn/�n log n��1−1:5δ

it is enough to show that if we choose δ and C small enough, we have, for
large n,

�4:3� P��knµ�bn� − �Sn −Sn−kn� > Cβ
−1
n ��En� ≥ �kn/�n log n��δ/2:

(ii) To prove (4.3), we first note that the conditional probability in (4.3) is
equal to

�4:4� P

{
knµ�bn� −

kn∑
j=1

Q�Vn;j� > C
√

2knγnσ�bn�
}
;

where Vn;j; 1 ≤ j ≤ kn, are independent uniform �0;1 − λbn� random vari-
ables.

Consequently, we have

kn∑
j=1

�EQ�Vn;j� − µ�bn�� = kn�µ�λbn��1− λbn�−1 − µ�bn��;

which is, for large n,

≤ 2kn�µ�λbn� − µ�bn� + bnµ�bn��:
Using Fact 2.1(a), we get, for large n,

µ�λbn� − µ�bn� =
∫ bn
λbn

Q�1− u�du

≤ 1:5
∫ bn
λbn

σ�u�/√udu

≤ 3δσ�λbn�
√
bn/λ;

which, since λ ≥ 3
4 , is bounded above by

4δ
√
γn/knσ�λbn�:

Moreover, on account of Facts 2.2 and 2.3(b), we have, as n→∞,

bnµ�bn� = O�bnσ�bn�� = o
(√
γn/knσ�λbn�

)
:

We can now conclude that if n is large the probability in (4.4) is bounded below
by

�4:5� P

{ kn∑
j=1

Zn;j > �C+ 3δ�
√

2knγnσ�λbn�
}
;



1402 U. EINMAHL AND D. M. MASON

where Zn;j x= EQ�Vn;j� −Q�Vn;j�; 1 ≤ j ≤ kn.
Further letting

τ2
n x= Var�Zn;1�; n ≥ 1;

it is easy to see that

�4:6� τ2
n ∼ τ2�λbn� as n→∞:

Recalling Fact 4.1, we find that if n is large the probability in (4.5) is
bounded below by

�4:7� P

{ kn∑
j=1

Zn;j > 2K�C+ 3δ�
√
knγnτn

}
:

(iii) To find a lower bound for the last probability, we shall use a blocking
argument in combination with the Berry–Esseen inequality.

Let mn x= �αkn/γn� − 1, where α > 0 will be specified later.
Further, set ln x= �kn/mn�−1. It is now easy to see that if n is large enough

the probability in (4.7) is bounded below by

�4:8� pn�1�ln · pn�2�;
where

pn�1� x= P
{mn∑
j=1

Zn;j > 2K�C+ 3δ�
√
knγnτn/ln

}

≥ P
{mn∑
j=1

Zn;j > 3K
√
αmn�C+ 3δ�τn

}

and

pn�2� x= P
{kn−lnmn∑

j=1

Zn;j > 0
}
:

A straightforward application of the Berry–Esseen inequality yields

�4:9� pn�1� ≥ 1−8
(
3K
√
α�C+ 3δ�

)
−E�Zn;1�3/

√
mnτ

3
n:

Using Facts 2.1(a) and 4.1, we get, for large n,

E�Zn;1�3 ≤ τ2
nQ�1− λbn� ≤ 2Kτ3

n/
√
bn:

Combining this bound with (4.9), we find that, for large n,

�4:10� pn�1� ≥ 1−8�3K√α�C+ 3δ�� − 3K/
√
α:

Letting C = δ = 4α−1 and using the trivial inequality 1−8�t� ≥ 1
2 − t; t > 0,

we readily obtain that the last term is

≥ 1
2 − 51K/

√
α;
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which is equal to 1
8 if we choose α = 1362K2. A slight modification of the above

argument shows that we also have, with this choice of α,

�4:11� pn�2� ≥ 1
8 ;

and we can infer via (4.8) that, for large n,

�4:12� P

{ kn∑
j=1

Zn;j > 2K�C+ 3δ�
√
knγnτn

}
≥ exp�− log�8��ln + 1��:

By the definition of ln, we have, as n→∞,

�4:13� ln + 1 ∼ γn/α = δγn/4;
and we get, for large n,

exp�− log�8��ln + 1�� ≥ exp�−γnδ/2�;
which in combination with (4.5), (4.7) and (4.12) implies (4.3), and conse-
quently the assertion of Lemma 4.1. 2

If ρ x= limn→∞ kn/n < 1, we can define �nj� as in Section 3. In this case,
the events

Aj x=
{
knjµ�bnj� − �Snj −Snj−knj � > Cβ

−1
nj

}
; j = 1;2; : : : ;

are independent, and we obtain (1.16) from Lemmas 3.1 and 4.1 via a standard
Borel–Cantelli argument.

We now turn to the more difficult case, when ρ = 1. In this case, we set, for
j ≥ 1,

nj x= �exp�jλ��;

where 1 < λ < �1− δ�−1 and δ is as in Lemma 4.1.
Define, for any j ≥ 1; mj x= �nj − nj−1� ∧ knj , and consider the events

Bj x=
{
mjµ�bnj� − �Snj −Snj−mj

� ≥ 1
2Cβ

−1
nj

}
;

where C is as in Lemma 4.1.
We then obviously have

P�Bj� ≥ P
{
knjµ�bnj� − �Snj −Snj−knj � ≥ Cβ

−1
nj

}

−P
{
�knj −mj�µ�bnj� −Sknj−mj

≥ 1
2Cβ

−1
nj

}

=x pj�1� − pj�2�:
It is easy to see that, for large j,

pj�2� ≤ P
{
�knj −mj�µ�bnj� −

knj−mj∑
i=1

Q�Ui�1�Ui ≤ 1− bnj� ≥ 1
2Cβ

−1
nj

}
;
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which by Chebyshev’s inequality and Fact 2.1(b) is

≤ 3C−2nj−1/�njγnj�:

It is now evident that

�4:14�
∞∑
j=1

pj�2� <∞:

On the other hand, we obtain, via Lemma 4.1,

�4:15�
∞∑
j=1

pj�1� = ∞;

whence we have

�4:16�
∞∑
j=1

P�Bj� = ∞;

which, in turn, implies by independence and the Borel–Cantelli lemma

�4:17� P�Bj infinitely often� = 1:

We next claim that we have, with probability 1,

�4:18� �knj −mj�µ�bnj� − �Snj−mj
−Snj−knj � = o�β

−1
nj
� as j→∞:

To verify (4.18), we first note that we can show by an obvious modification of
the proof of (4.14), for any ε > 0,

�4:19�
∞∑
j=1

P

{
�knj −mj�µ�bnj�−

nj−mj∑
nj−knj+1

Q�Ui�1�Ui ≤ 1− bnj� ≥ εβ
−1
nj

}
<∞:

Moreover, we have, for j ≥ 1,

P

{
Snj−mj

−Snj−knj 6=
nj−mj∑

nj−knj+1

Q�Ui�1�Ui ≤ 1− bnj�
}

≤ �knj −mj�bnj ≤ nj−1γnj/knj :

Recalling that knj ∼ nj as j→∞, it is easy to see that

�4:20�
∞∑
j=1

nj−1γnj/knj <∞;

and we obtain (4.18) by combining (4.19) and (4.20) with the Borel–Cantelli
lemma.

Statement (4.17) in conjunction with (4.18) now implies our assertion (1.16)
with C1 = C/2.



INCREMENTS OF PARTIAL SUMS 1405

It remains to prove (1.18). It is enough to show that if κn satisfies condition
(1.17), we have

�4:21�
∞∑
n=1

P�Mn�bn; kn� ≤ Cβ−1
n � <∞;

where C > 0 is the constant in Lemma 4.1. Then, using once more the Borel–
Cantelli lemma, we readily obtain (1.18) with C2 = C.

To prove (4.21), set ln x= �n/kn�, and note that

P�Mn�bn; kn� ≤ Cβ−1
n �

≤ P
( ln⋂
j=1

�knµ�bn� − �Sjkn −S�j−1�kn� ≤ Cβ
−1
n �

)
;

which by Lemma 4.1 is

≤ exp�ln log�1− �kn/�n log n��1−δ��:

Using the inequality log�1− t� ≤ −t; 0 < t < 1, we see that the last term is,
for large n,

≤ exp
(
−1

2

(
n

kn

)δ
�log n�δ−1

)
;

which under condition (1.17) is a summable sequence.
This establishes (4.21), thereby completing the proof of Theorem 2. 2

5. Proof of the corollary. Choose K < 0 small enough so that P�X ≤
K� ≤ 1

3 and, consequently, Q�1− b� > K; 0 < b < 1
2 .

Set, for any i ≥ 1,

Yi x= Yi�K� =Xi ∧K
and

Zi x= Zi�K� =Xi −Yi:

Let Q be the quantile function of the distribution function of Z1, and let µ�b�
and σ�b� be defined as µ�b� and σ�b� with Q replacing Q.

Then we have, for any 0 < b < 1
2 ,

�5:1� EY1 + µ�b� = µ�b� +K · b:

Next set, for 0 ≤ k ≤ n,

1n�k� x= max
0≤i≤n−k

max
0≤j≤k

�jEY1 −
i+j∑
l=i+1

Yl�;

and let Mn�b; k� be defined as Mn�b; k� with the Zi’s replacing the Xi’s.
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Using Theorem A and (1.14), respectively, we can infer that, with probabil-
ity 1,

�5:2� lim sup
n→∞

1n�kn�/
√

2knγn ≤ Var�Y1�1/2

and

�5:3� lim sup
n→∞

Mn�bn; kn�/
√

2knγn σ�bn� ≤ 1:

Further observe that, on account of (5.1),

�5:4� Mn�bn; kn� ≤Mn�bn; kn� + 1n�kn� −Kknbn:
After some work one can show that

�5:5� σ�b� ≤ σ�b�; 0 < b < 1:

Combining this with the fact that, under condition (1.5),

�5:6� knbn/
√
knγn→ 0 as n→∞;

we readily obtain, from (5.2)–(5.5),

�5:7� lim sup
n→∞

Mn�bn; kn�/
√

2knγn σ�bn� ≤ 1+ η;

where η = 0 or η = Var�Y1�1/2/Var�X�1/2 according asEX2 = ∞ orEX2 <∞.
Noting that we can make η arbitrarily small in the second case by choosing

K small enough, we obtain (1.14) for not necessarily positive random variables
whose negative parts have finite moment-generating functions.

The proofs of the general versions of (1.15) and Theorem 2 are very similar.
We only mention that one also needs for the proof of Theorem 2 that

�5:8� lim
K→−∞

lim sup
n→∞

σ�bn�/σ�bn� = 1;

which can be proven after some calculation. 2

REFERENCES

Billingsley, P. (1986). Probability and Measure 2nd ed. Wiley, New York.
Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Mar-

tingales, 2nd ed. Springer, New York.
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