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THE STRONG LAW OF LARGE NUMBERS FOR
A BROWNIAN POLYMER

By M. Cranston1 and T. S. Mountford2

University of Rochester and University of California, Los Angeles

We prove the strong law of large numbers for a continuous-time ver-
sion of reinforced random walk. This extends previous results of Durrett
and Rogers.

Introduction. The purpose of this paper is to prove an asymptotic for the
behavior of

X�t� =W�t� +
∫ t

0
ds

∫ s
0
f�X�s� −X�u��du;

where W is one-dimensional Brownian motion. We will be interested in the
case where f satisfies the following assumption.

Assumption A. Let f be a nonnegative, Lipschitz continuous function with
compact support. Assume supp f ⊆ �−k; k� and that f�x� > c > 0 for �x−x0� <
5δ for some x0 ∈ �−k/2; k/2�.

For convenience, we will take k = 1, �f�∞ ≤ 1 and assume 2/δ is an integer.
Trivial modifications of our proof give the full result. Our interest has been
inspired by the article of Durrett and Rogers (1991) in which this and other
similar models were treated. Under pretty much the same assumptions as our
own, they proved the existence of positive constants c and C such that

c ≤ lim inf
t→∞

X�t�
t
≤ lim sup

t→∞

X�t�
t
≤ C a.s.

We shall prove the following result.

Theorem 1. Under Assumption A, there is a strictly positive constant c
such that

lim
t→∞

X�t�
t
= c a.s.
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We are indebted to Rick Durrett for the following observation which forms
the foundation of our proof. Define for T a large number

XT�t� =W�t� +
∫ t

0
ds

∫ s
�s−T�∨0

f�XT�s� −XT�u��du:

Then

lim
t→∞

XT�t�
t
= cT a.s.

for cT a positive constant.
To see that

XT�t�
t
→ cT a.s.;

first define

Yn�s� ≡XT��n− 1�T+ s� −XT��n− 1�T�; 0 ≤ s ≤ T:

Then Yn is a Markov process on the state space C�0;T�. This is apparent from
the following, which is valid for n ≥ 2,

Yn�s� =W��n− 1�T+ s� −W��n− 1�T� +
∫ s

0 dr
∫ r

0 f�Yn�r�

−Yn�u��du+
∫ s

0
dr
∫ T
r
f�Yn�r� + �Yn−1�T� −Yn−1�u���du:

Moreover, setting, for w, y ∈ C�0;T�,

b�r;w;y� =
∫ r

0
f�w�r� −w�u��du+

∫ T
r
f�w�r� + �y�T� − y�u���du;

the transition probability for �Yn� has a density with respect to the Wiener
measure, νT, on C�0;T� given by

p�y;dw�
νT�dw�

= exp
{∫ T

0
b�r;w;y�dw�r� − 1

2

∫ T
0
b2�r;w;y�dr

}
:

Furthermore, the key point is that Yn is a Harris-recurrent chain on
C�0;T�. This will follow [see Revuz (1975)] provided Ey �

∑∞
0 1K�Yn�� = ∞

for any y ∈ C�0;T� and all compact subsets K of C�0;T� with νT�K� > 0.
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However, if pk�y;dz� denotes the k-step transition probability for �Yn�, then

Pn1K�y� ≡ Ey�1K�Yn��

=
∫
C�0;T�

pn−1�y;dz�
∫
K

exp
{∫ T

0
b�r;w; z�dw�r�

− 1
2

∫ T
0
b2�r;w; z�dr

}
νT�dw�

≥ νT�K� inf
z∈C�0;T�

exp
{

1
νT�K�

∫
K

(∫ T
0
b�r;w; z�dw�r�

− 1
2

∫ T
0
b2�r;w; z�dr

)
νT�dw�

}

≥ νT�K� exp
{
−T

3

2

}

× inf
z∈C�0;T�

exp
{

1
νT�K�

∫
K

(∫ T
0
b�r;w; z�dw�r�

)
νT�dw�

}

≥ νT�K� exp
{
−T

3

2

}

× inf
z∈C�0;T�

exp
{
− 1
νT�K�

(
E
∫ T

0
b2�r;w; z�dr

)1/2

νT�K�1/2
}

≥ νT�K� exp
{
−T

3

2
− T3/2

νT�K�1/2
}

so Harris recurrence follows.
Since p�y;dw� � νT�dw� and Yn is Harris recurrent, there is [see Revuz

(1975)] an invariant measure µT for the process, µT � νT, and, for f ∈ L1�µT�,

1
n

n∑
k=1

f�Yk� →
∫
f�w�dµT�w� a.s.

Selecting f�Y� = Y�T�, it arises that a.s.

lim
n→∞

XT�nT�
nT

= 1
T

lim
n→∞

1
n

n∑
1

Yk�T�

=
∫ [w�T�

T

]
dµT�w�

= cT:

This suffices for

lim
t→∞

XT�t�
t
= cT



STRONG LAW FOR BROWNIAN POLYMER 1303

providing, of course, we can demonstrate the selected f is in L1�µT�. To do
this, we first show µT�C�0;T�� <∞.

If µT is infinite and f is a bounded µT-integrable function, then one must
have [again see Revuz (1975)] Pnf�y� → 0 as n → ∞ for y ∈ C�0;T�. For
our f we select f�y� = 1K�y�, where K ⊂ C�0;1� is a compact set such that
µT�K� < ∞ and νT�K� > 0 (note µT � νT). Our computation demonstrating
recurrence now shows Pn1K�y� ≥ C�K;T� > 0 and so µT is finite. Finally, we
show f�y� = y�T� is in L1�µT):

∫
C�0;1�

�y�T��µT�dy�

=
∫
C�0;T�2

∫
�y�T��p�w;dy�µT�dw�

=
∫
C�0;T�2

∫
�y�T�� exp

{∫ T
0
b�r; y;w�dy�r�

− 1
2

∫ T
0
b2�r; y;w�dr

}
νT�dy�µT�dw�

≤
∫
C�0;T�

(∫
C�0;T�

�y�T��2νT�dy�
)1/2

×
(∫

C�0;T�
exp

{
2
∫ T

0
b�r; y;w�dy�r�

−
∫ T

0
b2�r; y;w�dr

}
νT�dy�

)1/2

µT�dw�

= T1/2
∫
C�0;T�2

(∫
νT�dy� exp

{
2
∫ T

0
b�r; y;w�dy�r�

−
∫ T

0
b2�r; y;u�dr

})1/2

µT�dw�

≤ T1/2eT
3/2
∫
C�0;T�

(∫
C�0;T�

νT�dy� exp
{∫ T

0
2b�r; y;w�dy�r�

− 1
2

∫ T
0
�2b�2�r; y;w�dr

})1/2

µT�dw�

= T1/2eT
3/2µT�C�0;T�� <∞;

as desired.
Finally, note that we shall often invoke a version of the Borel–Cantelli

lemma due to Dubins and Freedman (1965). This states that if Gn are Fn

adapted and pn = P�Gn�Fn−1�, then

lim
n→∞

n∑
m=1

1Gm

/ n∑
m=1

pm = 1 a.s. on
{ ∞∑
m=1

pm = ∞
}
:
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In particular, P�Gn�Fn−1� ≤ c a.s. ∀n implies

lim sup
n→∞

1
n

n∑
m=1

1Gm
≤ c a.s.

1. For a process Z and a, b ∈ �+; t > 0, define

T�b; a; tyZ� = inf�s > t:Z�s� = Z�t� + b or Z�s� = Z�t� − a�:

When using this stopping time for the process X, we shall abbreviate

T�b; a; t� ≡ T�b; a; tyX�:

Proposition 1.1.

(i) There exists an ε > 0 such that, for t > 0;

P�X�T�1;1; t�� −X�t� = 1�Ft� ≥ 1
2 + ε:

(ii) There exist c; C > 0 such that, for y > 0;

P�T�1;1; t� − t ≥ y�Ft� ≤ Ce−cy:

The proof of this proposition will be by means of several elementary lemmas.

Lemma 1.2. Given a; b > 0; for every t > 0;

P�X�T�b; a; t�� −X�t� = b�Ft� ≥
a

a+ b:

Proof. Notice that

P�W�T�b; a; tyW�� −W�t� = b� = a

a+ b
and, since f ≥ 0,

�W�T�b; a; tyW�� −W�t� = b� ⊂ �X�T�b; a; t�� −X�t� = b� : 2

The following lemma is a simple consequence of a comparison result [cf.
Ikeda and Watanabe (1981)] and the scale function for Brownian motion
[cf. Karatzas and Shreve (1987)].

Lemma 1.3. Consider the time-inhomogeneous Y with

dY�t� = dW�t� + h�t�dt;

where W is BM��1� and h is a predictable, locally bounded process. If h�s� ≥ h
for s ∈ �t;T�d;d; tyY��; then

P�Y�T�d;d; tyY�� −Y�t� = d� ≥ �1+ e−2hd�−1:
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Remark. We shall use �1+ e−2hd�−1 = 1
2�1+ tanh�hd��.

Define, for A ⊆ �,

Occ�t;A� =
∫ t

0
ds1A�X�s��:

Lemma 1.4. There is a c > 0 such that on the setG = �X�t� = a;Occ�t; �a−
x0 − 4δ; a− x0 + 4δ�� ≥ δ2� one has, with c and δ as in Assumption A,

P�X�T�δ; δ; t�� = a+ δ�Ft� ≥
( 1

2 + tanh�cδ3�
)
:

Proof. The result follows immediately from Lemma 1.3 and Assumption
A. 2

Proof of Proposition 1.1. Set

A = �X�T�1;1; t�� −X�t� = 1�;
B = �T�δ/2; δ/2; tyW� > δ2 + t�;
C = �T�2δ;2δ; t� < T�δ/2; δ/2; tyW��:

We will use Pt�·� to denote the conditional probability P� · �Ft�. Notice that
there is a positive constant p, independent of δ, so that Pt�Bc� = p and a
positive λ such that Pt�C�B� = λ; λ is random but takes values in �0;1�.

Now

Pt�A� = Pt�A�Bc�p+Pt�A�B��1− p�
and, by the symmetry of Brownian paths and the positivity of f,

Pt�A�Bc�p ≥ 1
2p:

For the second term,

Pt�A�B� = Pt�A�B ∩C�λ+Pt�A�B ∩Cc��1− λ�:
We claim

Pt�A�B ∩C� ≥ 1
2 + δ

since, if X has left �X�t�−2δ;X�t�+2δ� before T�δ/2; δ/2; tyW�, it must have
done so by passing through X�t� + 2δ (f is nonnegative.) Then by Lemma 1.2
we get the result.

For the term Pt�A�B∩Cc� we first remark that, by the symmetry of Brown-
ian paths and the positivity of f,

Et�X�T�δ/2; δ/2; tyW� ∧T�2δ;2δ; t�� −X�t�yB� ≥ 0:

However, as previously observed, on C one has

X�T�δ/2; δ/2; tyW� ∧T�2δ;2δ; t�� −X�t� = 2δ:

Thus

Et�X�T�δ/2; δ/2; tyW�� −X�t�yB ∩Cc� ≥ −2δPt�B ∩C�
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or

η ≡ Et�X�T�δ/2; δ/2; tyW�� −X�t��B ∩Cc� ≥
−2δλ
�1− λ� :

We also note, however, that X�T�δ/2; δ/2; tyW�∧T�2δ;2δ; t��−X�t� ≥ −δ/2.
Therefore,

η ≥
(
− 2δλ

1− λ

)
∨
(
−δ

2

)
:

Now suppose − 1
2 ≤ x0 < −2δ and write ζ = X�T�δ/2; δ/2; tyW�� − X�t�,

S = T�1− ζ; ζ−x0;T�δ/2; δ/2; tyW��. Notice that S is well defined so long as
1 > ζ > −x0, which is satisfied on Cc:

Pt�A�B ∩Cc�
= Pt�X�S� −X�t� = 1�B ∩Cc�
+Pt�X�S� −X�t� = x0; X�T�δ; δ;S�� −X�t� = x0 + δ;
X�T�1− �x0 + δ�; x0 + δ+ 1;T�δ; δ;S��� −X�t� = 1�B ∩Cc�
+Pt�X�S� −X�t� = x0; X�T�δ; δ;S�� −X�t� = x0 − δ;
X�T�1− �x0 − δ�; x0 − δ+ 1;T�δ; δ;S��� −X�t� = 1�B ∩Cc�:

Using the linearity of the scale function and Lemma 1.2, the first term satisfies

Pt�X�S� −X�t� = 1�B ∩Cc� ≥ η− x0

1− x0
:

For the last two terms we use Lemma 1.2 and the linearity of the scale func-
tion. Also, note that, on B∩Cc, �X�s�−X�t�� ≤ 2δ for t ≤ s ≤ t+δ2. So, using
Lemma 1.4 at time S,

Pt�X�S� −X�t� = x0;X�T�δ; δ;S�� −X�t� = x0 + δ;X�T�1− �x0 + δ�;
x0 + δ+ 1;T�δ; δ;S��� −X�t� = 1�B ∩Cc�

≥ 1− η
1− x0

(
1
2
+ α

)
x0 + δ+ 1

2
;

Pt�X�S� −X�t� = x0;X�T�δ; δ;S�� −X�t� = x0 − δ;X�T�1− �x0 − δ�;
x0 − δ+ 1;T�δ; δ;S��� −X�t� = 1�B ∩Cc�

≥ 1− η
1− x0

(
1
2
− α

)
x0 − δ+ 1

2
;
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where α is random but, by Lemma 1.4, α ≥ 1
2 tanh�cδ3�. Combining the last

four inequalities, we arrive at

Pt�A�B ∩Cc�

≥ η− x0

1− x0
+ 1− η

1− x0

(
x0 + 1

2
+ �δ/2� tanh�cδ3�

)

= 1
2
+ η

2
+ �δ/2� tanh�cδ3�

1− x0

≥ 1
2
+ 1

2

((
− 2δλ

1− λ

)
∨
(
−δ

2

))
+ �δ/2� tanh�cδ3�

1− x0
:

Thus

Pt�A� = Pt�A�Bc�p+Pt�A�B ∩C��1− p�λ+Pt�A�B ∩Cc��1− p��1− λ�

≥ p
2
+ �1− p�

((
1
2
+ δ

)
λ+

(
1
2
+ 1

2

((
− 2δλ

1− λ

)
∨
(
−δ

2

))

+ �δ/2� tanh�cδ3�
1− x0

)
�1− λ�

)

= 1
2
+ �1− p�

(
δλ+ 1

2

((
− 2δλ

1− λ

)
∨
(
−δ

2

))
�1− λ�

+ �δ/2� tanh�cδ3�
1− x0

�1− λ�
)
:

However,

(
− 2δλ

1− λ

)
∨
(
−δ

2

)
=





−δ
2
;

1
5
≤ λ ≤ 1;

− 2δλ
1− λ; 0 ≤ λ < 1

5
:

Thus

Pt�A� ≥
1
2
+ 4�1− p��δ/2� tanh�cδ3�

5�1− x0�
when 0 ≤ λ < 1

5

and

Pt�A� ≥
1
2
+�1−p�

(
δ�5λ−1�

4
+�δ/2� tanh�cδ3��1−λ�

1−x0

)
when

1
5
≤λ<1:

In either case, there is a constant ε = ε�p; c; δ; x0� > 0 such that

Pt�A� ≥ 1
2 + ε:

If −2δ < x0 < 2δ, set

T1 = T
(

5δ
2
;

5δ
2
; t

)
; T2 = T�δ; δ;T1�:
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Then

Pt�A�B ∩Cc� = Pt�X�T1� −X�t� =
5δ
2
; X�T2� −X�t� =

7δ
2
;

X�T�1− 7δ
2
; 1+ 7δ

2
; T2�� −X�t� = 1�B ∩Cc�

+Pt�X�T1� −X�t� =
7δ
2
;X�T2� −X�t� =

3δ
2
;

X

(
T

(
1− 3δ

2
;1+ 3δ

2

))
−X�t� = 1�B ∩Cc�

+Pt�X�T1� −X�t� =
−5δ

2
; X�T�1+ 5δ

2
; 1− 5δ

2
; T1��

−X�t� = 1�B ∩Cc�

=
(

1
2
+ µ

)(
1
2
+ α

)�7δ/2� + 1
2

+
(

1
2
+ µ

)(
1
2
− α

)�3δ/2� + 1
2

+
(

1
2
− µ

)−�5δ/2� + 1
2

;

with random variables µ ≥ 0, α ≥ 1
2 tanh�cδ3�, by Lemmas 1.2 and 1.4 applied

at time T1. [Notice that, on B∩Cc, −δ/2 ≤X�s�−X�t� ≤ 2δ for t ≤ s ≤ t+δ2.]
However, this is bounded below by

1
2
+
(

1
2
+ µ

)
δα+ µ10δ

4
≥ 1

2
+ δ

4
tanh�cδ3�:

If x0 > 2δ, the argument is analogous to that for x0 < −2δ. For the expo-
nential tail of T�1;1; t� − t, note that

P�T�1;1y t� − t > y�Ft�
≤ P�inf�r > t x ∃u ∈ �t; r�s:t:W�r� −W�u� ≥ 2� − t > y�

= P
(

inf
{
r > 0:W�r� − inf

0≤v≤r
W�v� ≥ 2

}
> y

)

≤ Ce−cy;
since W�r� − inf 0≤v≤rW�v� is reflecting Brownian motion. 2

Corollary 1.5. For 0 ≤ s < t; set

As; t = �X�w� −X�v� ≤ 1 for some v ∈ �s; s+ 1�;w ∈ �t;∞��:
Then there exist positive constants C; d such that

P�As; t�Fs� ≤ Ce−d�t−s�:
If c1 is sufficiently small and Bs;t = �X�w� −X�v� ≤ 1 + c1�t − s� for some
v ∈ �s; s + 1�, w ∈ �t;∞��; then there exist C1; d1 > 0 such that P�Bs;t�Fs� ≤
C1e

−d1�t−s�.
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Proof. Define �Ti; s�, i ≥ 0, by T0; s = s, Ti; s = T�1;1;Ti−1; s�. Using
Proposition 1.1, couple Xi ≡ X�Ti; s� and a random walk �Zi: i ≥ 0;Z0 = 0�
with transition probabilities p�k; k+ 1� = 1

2 + ε, p�k; k− 1� = 1
2 − ε in such a

way that X�Ti; s� −X�s� ≥ Zi for all i a.s.
Now select c1 and c2 with 0 < c1 <

4
3εc2, 0 < c1 < c2 < 1. Then Bs; t ⊂

A1 ∪A2 ∪A3, where

A1 =
{

sup
s−1≤u≤s

W�u� −W�s� ≥ 1
2c1�t− s�

}
;

A2 =
{
Zn ≤ 3

2c1�t− s� + 3 for some n ≥ c2�t− s�
}
;

A3 = �T�c2�t−s��+1; s ≥ t�:
This may be seen as follows: if A1 fails, then, for Bs; t to occur, X�Tn;s�−X�s�
must be smaller than 3

2c1�t − s� + 3 for some n such that Tn;s ≥ t. A weaker
restriction is that Zn must be smaller than 3

2c1�t−s�+3 for some n such that
Tn; s ≥ t. However,

�Zn ≤ 3
2c1�t− s� + 3 for some n such that Tn; s ≥ t�
⊂ �Zn ≤ 3

2c1�t− s� + 3 for some n such that Tn; s ≥ t;
n > �c2�t− s�� + 1�

∪ �T�c2�t−s��+1; s ≥ t�:
Thus the inclusion Bs; t ⊂ A1 ∪A2 ∪A3 a.s. follows.

Now A1 and A2 have conditional probabilities that decay exponentially
in �t − s� (for A2 this depends on our choice of c1 and c2). As for A3, note
that, by Proposition 1.1(ii), T�c2�t−s��+1; s is stochastically bounded by a sum
of �c2�t − s�� + 1 independent random variables, each having an exponential
tail. The exponential decay of the conditional probability of Bs; t follows by
selecting sufficiently small c1, depending on c and C from Proposition 1.1(ii).
Since, for c1 > 0, As; t ⊂ Bs; t the claim about As; t follows immediately. 2

Remark. Corollary 1.5 also holds for XT. This requires a version of Propo-
sition 1.1 for XT. The proof for XT follows the same lines as for X. One gets
the upward bias from paths which move more than one by time T+ t on the
set B.

Corollary 1.6. There exist δ > 0; C < ∞ such that, for all k ≥ 1; all
t; s ≥ 0;

P�T�k;∞; t� > t+ s�Ft� ≤ Ce−δs/k:

Proof. Fix k, t and note that the constants Ci, δi and δ introduced below
do not depend on k or t. Define

R0 = t
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and, for n ≥ 1,

Rn = T�1;1;Rn−1�:
Proposition 1.1(ii) and standard large deviations imply the existence of positive
δ1, C1 such that

P�Rn ≥ C1n+ t�Ft� ≤ C1e
−δ1n ∀n:

Now consider XRn
, n ≥ 0. Proposition 1.1(i) says there is an ε > 0 such that,

∀n,

P�XRn
=XRn−1

+ 1
∣∣FRn−1

� ≥ 1
2 + ε;

P�XRn
=XRn−1

− 1
∣∣FRn−1

� ≤ 1
2 − ε ∀n ≥ 1:

Thus, from elementary bounds on tail probabilities for binomial random vari-
ables, there exist positive δ2, C2 such that

P�XRn
−Xt ≤ εn � Ft� ≤ C2e

−δ2n ∀n ≥ 1:

Suppose now that s satisfies ε�s/c3� ≥ k, where c3 = max�C1;C2�. Notice that,
for any n,

�T�k;∞; t� > t+ s� ⊆ �Rn > t+ s� ∪ �XRn
−Xt < k�:

So taking n = �s/c3� so that εn ≥ k, we have

P�XRn
−Xt < k � Ft� ≤ P�XRn

−Xt < εn � Ft�
≤ C2e

−δ2n

and

P�Rn > t+ s � Ft� ≤ P�Rn > t+C1n�Ft�
≤ C1e

−δ1n:

Thus, for ε�s/c3� ≥ k, there is a c′ > 1 such that

P�T�k;∞; t� > t+ s � Ft� ≤ C2e
−δ2n +C1e

−δ1n

≤ c′e−δs

≤ c′e−δs/k:
This gives the desired inequality for ε�s/c3� ≥ k, and so, for s ≥ 0,

P�T�k;∞; t� > t+ s � Ft� ≤ Ce−δs/k;
with C = c′

/
inf k�inf s�e−δs/k: 0 ≤ �s/c3� ≤ k/ε�� (which is independent of k). 2

2. In order to make a comparison with the process XT, we write

X�t� =W�t� +
∫ t

0
ds
∫ s
�s−T�∨0

f�X�s� −X�u��du+
∫ t

0
rT�s�ds:
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In this section we prove

lim sup
t→∞

1
t

∫ t
0
rT�u�du = o�1� as T→∞:

Note that this is made entirely plausible by Corollary 1.5 which implies

1
t
E

[∫ t
0
rT�u�du

]
= 1
t

∫ t
0
ds
∫ �s−T�∨0

0
duE�f�X�s� −X�u���

≤ 1
t

∫ t
0
ds

∫ �s−T�∨0

0
du�f�∞P�X�s� −X�u� ≤ 1�

≤ C1
t

∫ t
0
ds
∫ �s−T�∨0

0
due−d�s−u�

≤ C
d
e−dT:

Lemma 2.1. There exists a positive constant c so that forT and t sufficiently
large, log t� T;

P

(
1
t

∫ t
0
rT�u�du ≥

1
T

)
≤ c

t1/3
:

Proof. Write, assuming log t� T,

rT�s� =
∫ �s−log2 t�∨0

0
f�X�s� −X�u�du+

∫ �s−T�∨0

�s−log2 t�∨0
f�X�s� −X�u��du

≡ VT; t�s� + rT; t�s�:
Now we claim that, with As; t as in Corollary 1.5,

{∫ t
0
VT; t�s�ds 6= 0

}
⊂
�t−log2 t�+1⋃

i=1

Ai; log2 t+i−1:

This follows since
∫ t

0 VT; t�s�ds 6= 0 only when X�s� − X�u� ≤ 1 for some
s ∈ �log2 t; t�; u ∈ �0; s − log2 t�. Now if i is such that i − 1 ≤ u < i, then
i− 1+ log2 t ≤ s which proves the claim. Consequently,

P

(∫ t
0
VT; t�s�ds 6= 0

)
≤
�t−log2 t�+1∑

i=1

P�Ai; log2 t+i−1�

≤ Cte−d log2 t

≤ t−1 for t large:

We now turn our attention to
∫ t

0 rT; t�s�ds. Partition �0; t� into �t1/2� inter-
vals of length t/�t1/2� and call these I1; : : : ; I�t1/2�.

Define the random variables

Ri =
∫
Ii

rT; t�s�ds
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and note that
∫ t

0
rT; t�s�ds =

∑
i

Ri

and the σ-fields

Gi = σ
{
X�u�:u ∈

i−1⋃
j=1

Ij

}
:

Then, setting G0 = G1,

E�R1�G0� = E�R1�

= E
(∫ log2 t

T
ds

∫ s−T
0

f�X�s� −X�u��du
)

+E
(∫ t/�t1/2�

log2 t
ds

∫ s−T
s−log2 t

f�X�s� −X�u��du
)

≤ 1
2�log2 t−T�2 +

∫ t/�t1/2�
log2 t

ds
∫ s−T
s−log2 t

P�Au; s�du

≤ 1
2 log4 t+C

∫ t/�t1/2�
log2 t

ds
∫ s−T
s−log2 t

e−d�s−u� du; by Corollary 1.5

≤ C
(

log4 t+ t1/2
(
e−dT − e−d log2 t

))
;

with a possibly new value of C;

and, for i > 1,

E�Ri�Gi−1� = E
(∫ i�t/�t1/2��
�i−1��t/�t1/2��

ds
∫ s−T
s−log2 t

f�X�s� −X�u��du
∣∣Gi−1

)

≤
∫ i�t/�t1/2��
�i−1��t/�t1/2��

ds
∫ s−T
s−log2 t

P�P�Au; s�Fu��Gi−1�du

≤ ct1/2�e−dT − e−d log2 t�:
In other words, for i ≥ 1,

E�Ri�Gi−1� ≤ ct1/2e−dT for t large enough.

Now an elementary estimate gives

E

((∑
i

Ri −E�Ri�Gi−1�
)2)

= E
( ∑

�i−j�≤1

�Ri −E�Ri�Gi−1���Rj −E�Rj�Gj−1��
)

≤ ct3/2 log4 t;
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since there are no more than 3t1/2 terms and the “inner integral” in the defi-
nition of Ri is over an interval of length less than log2 t. So by Chebychev,

P

(∑
i

Ri > cte
−dT

)
≤ P

(∑
i

Ri −E�Ri�Gi−1� > cte−dT
)

≤ c log4 t

t1/2
e2dT

≤ ct−1/3

for t large since log t � T. Thus, for T large enough so that ce−dT < 1/T, we
see the proof is complete. 2

Proposition 2.2. With rT�s� =
∫ �s−T�∨0

0 f�X�s�−X�u��du; we have, for T
sufficiently large,

P

(
lim sup
t→∞

1
t

∫ t
0
rT�s�ds ≤

1
T

)
= 1:

Proof. Define A�n� = �n−4
∫ n4

0 rT�s�ds ≥ 1/T�. Then, by Lemma 2.1 and
the Borel–Cantelli lemma, P�A�n� i.o.� = 0. However,

�A�n� i.o.� ⊃
{

lim sup
1
t

∫ t
0
rT�u�du >

1
T

}

and the proposition is proved. 2

3. The guiding thoughts of this section are, first, given X is “like a random
walk with drift” in the sense of Proposition 1.1, X should spend most of its
time near its maximum, and, second, when X is close to its maximum we have
sufficient control on its behavior to make a successful comparison with XT.

We first want to make some remarks of an elementary nature concerning
the first point. Let Zn be the random walk of Section 1 with transition prob-
abilities p�k; k + 1� = 1

2 + ε, p�k; k − 1� = 1
2 − ε. Setting Z∗n = max0≤k≤nZk,

the process Yn = Z∗n − Zn is a birth and death chain on � with transition
probabilities

p�x;y� =





1
2 − ε; if y = x+ 1; x ≥ 0;
1
2 + ε; if y = x− 1; x ≥ 1;
1
2 + ε; if y = x = 0:

Then �Yn� has an invariant probability distribution given by

π�y� = 4ε
1+ 2ε

(
1− 2ε
1+ 2ε

)y
; y ∈ �:
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Thus, if τy = inf�n > 0:Yn = y�,

E0τ0 =
1+ 2ε

4ε
<∞;

so thinking of �Yn� as being composed of independent excursions from 0,
the expected excursion length is �1+ 2ε�/4ε. Moreover, letting H denote the
maximum height of an excursion, one has

P�H = x� =
(

1
2
− ε

)
P1�τx < τ0�Px�τ0 < τx+1�

=
(

1
2
− ε

)
1

∑x−1
y=0���1/2� + ε�/��1/2� − ε��y

× 1∑x
y=0���1/2� − ε�/��1/2� + ε��y

∼= c�ε�
(

1− 2ε
1+ 2ε

)x
; x→∞:

Or P�H ≥ x� ∼= Ce−cx for some positive constants c and C. This leads to the
estimate, using T8 as an upper bound for the number of excursions before T8,

P�Yn >
√
T for some n ≤ T8�

= 1−P�Yn ≤
√
T;∀n ≤ T8�

≤ 1− �1−Ce−c
√
T�T8

≤ Ce−c
√
T for T large with a change of constants.

Define the stopping times T0 = 0, and, for i > 0, Ti = T�1;1;Ti−1� =
inf�t > Ti−1: �X�t� − X�Ti−1�� = 1� and the random variables Mi =
sup0≤j≤iX�Tj�. The next lemma follows easily from Proposition 1.1.

Lemma 3.1. Let Zn be the random walk described above. We may couple
�Zn� and �X�Tn�� so that:

(i) For each n; X�Tn� ≥ Zn; a.s.
(ii) For each n; Mn −X�Tn� ≤ Z∗n −Zn; a.s.

As a consequence, for some c > 0;

(iii) P

(
lim inf
t→∞

X�t�
t

> c

)
= 1.

Proof. We only show (iii). It follows directly from the coupling of X�Ti�
and Zi that

lim inf
i→∞

X�Ti�
i
≥ 2ε a.s.
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Also,

lim sup
i→∞

Ti
i
≤ c <∞ a.s.

follows from the fact that Ti is stochastically bounded by a sum of i indepen-
dent random variables distributed like the ones in Proposition 1.1(ii).

Corollary 3.2. If A�j� = �∃Ti ∈ �jT8; �j + 1�T8�:Mi −X�Ti� >
√
T�;

then there exist positive constants c and C such that

lim sup
n→∞

1
n

n∑
j=1

1A�j� ≤ Ce−c
√
T a.s.

Proof. Given �Ti�, consider the subsequence of stopping times defined as
follows:

S0 = 0;

S2n+1 = inf�Ti > S2n:Mi −X�Ti� >
√
T�; n ≥ 0;

S2n = inf�Ti > S2n−1:Mi =X�Ti� > X�Tj�;∀j < i�; n ≥ 1:

Now a problem in dealing with the times Ti+1−Ti is that the drifts which
influence their size can be arbitrarily large and thus Ti+1−Ti can, given FTi

,
be arbitrarily stochastically small. However, by Proposition 1.1(ii), we have
exponential upper bounds on this distribution uniformly over FTi

. Thus, if

Vn = #�j: �jT8; �j+ 1�T8� ∩ �S2n−1; S2n� 6=∅�;

then Proposition 1.1(i) and (ii) and basic large deviations estimates yield

P�Vn ≥ k�FS2n−1
� ≤ 2−�k−2�; k ≥ 1;

for T sufficiently large. This is because, for k ≥ 3,

�Vn ≥ k� ⊂ �T�
√
T+ 2;∞; S2n−1� ≥ S2n−1 + �k− 2�T8�:

By Corollary 1.6,

P�Vn ≥ k � FS2n−1
� ≤ Ce−δ�k−2�T8

/√
T+2 :

As δ is fixed, this upper bound is less than 2−�k−2� for all k > 2 when T is
sufficiently large.

On the other hand, if Mi =X�Ti� > X�Tj�; ∀j < i, then there is a p > 0
such that if

A1�i� = �X�Ti+1� −X�Ti� = 1 ; Ti+1 −Ti ≤ 1�;
A2�i� = �X�Ti+2� −X�Ti+1� = 1 ; Ti+2 −Ti ≥ 1�;
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then P�A1�i� ∩ A2�i� � FTi
� ≥ p on �Mi = X�Ti� > X�Tj�; ∀j < i�. Thus

we have (with suitable adjustment of constants) from the remarks preceding
Lemma 3.1 that if

Un = #�j: �jT8; �j+ 1�T8� ⊆ �S2n; S2n+1��;

then P�Un ≥ Cec
√
T � FS2n

� ≥ 1
2 for some strictly positive c, C not depending

on T, so long as T is sufficiently large. This can be seen as follows.
Define, for fixed n,

R0 = S2n

and, for v ≥ 0,

Rv+1 = inf�Ti > Rv:Mi =X�Ti� > X�Tj�;∀j < i�:

Then, by Lemma 3.1 and the remarks preceding it, for suitable c, C, c′, C′,
independent of T,

P�R�Cec√T� ≥ S2n+1 � FS2n
� ≤ C′e−c′

√
T:

By our choice of p and the strong Markov property of Brownian motion,

P�Rj+2 −Rj > 1 � FRj
� ≥ p ∀j:

Thus, by standard binomial tail probabilities,

P�R�Cec√T� ≥
p

2
Cec

√
T +R0 � FR0

� ≥ 1−C′′e−c′′
√
T

for positive c′′, C′′ not depending on T. On replacing C by pC/2, we obtain
the desired inequality.

These inequalities and the fact that

V1; : : : ;Vj−1 ∈ FS2j−1
; U1; : : : ;Uj−1 ∈ FS2j

yield i.i.d. Bernoulli random variables Ij such that

Uj ≥ Cec
√
TIj ∀j;

and i.i.d. geometric with parameter 1
2 random variables Hj such that

Vj ≤ 1+Hj ∀j:

Thus

lim inf
n→∞

1
n

n∑
j=1

Uj ≥ Cec
√
T lim inf

n→∞
1
n

n∑
j=1

Ij

= C
2
ec
√
T:
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Also,

lim sup
n→∞

1
n

n∑
j=1

Vj ≤ 1+ lim sup
n→∞

1
n

n∑
j=1

Hj

≤ 3:

Now, assuming without loss of generality that S2n+1 < ∞, ∀n, if �n+ 1�T8 ∈
�S2m; S2m+2�, then

n∑
j=1

1A�j� ≤
m+1∑
k=1

Vk

and
m−1∑
k=1

Uk ≤ n:

Thus, with the new value of C we have

lim sup
n→∞

1
n

n∑
j=1

1A�j� ≤ lim sup
m→∞

(∑m+1
k=1 Vk∑m−1
k=1 Uk

)

≤ Ce−c
√
T

and the proof is complete. 2

Corollary 3.3. If B�j�= �∃ t∈ �jT8; �j+1�T8�:X�t� ≤ 1+ sups≤t−TX�s��;
then there exist positive constants c and C such that

lim sup
n→∞

1
n

n∑
j=1

1B�j� ≤ Ce−c
√
T:

Proof. SetL�j� = �∃ t ∈ �jT8; �j+1�T8�: inf r≥tX�r�−X�t−T� ≤
√
T+4�.

First, we make the claim: B�j� ⊆ L�j� ∪A�j− 1� ∪A�j�. Now on B�j� \L�j�
we have for some t ∈ �jT8; �j+ 1�T8� that

X�t� ≤ 1+X∗�t−T� ≡ sup
s≤t−T

X�s�

and

X�t� −X�t−T� ≥
√
T+ 4:

Now take Ti so that Ti ≤ t−T < Ti+1. Then Ti ∈ ��j−1�T8; �j+1�T8� except
on a set of probability not exceeding Ce−c�T

8−T� by Proposition 1.1(ii) and

Mi −X�Ti� = �Mi −X∗�t−T�� + �X∗�t−T� −X�t��
+ �X�t� −X�t−T�� + �X�t−T� −X�Ti��

≥ �−1� + �−1� + �
√
T+ 4� + �−1�

≥
√
T:
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Thus B�j� \ L�j� ⊂ A�j − 1� ∪A�j� and the claim is proved. Next set tj;i =
jT8+ iT−9 for i = 0, 1; : : : ;T17, and define L�j; i� = �inf r≥tj; iX�r�−X�tj; i−
T� ≤

√
T+ 5�.

By Corollary 1.5, P�L�j; i��FjT8� ≤ C1e
−d1T provided T is sufficiently

large. By an argument similar to that used in Corollary 3.2, P�L�j� \⋃T17

i=0L�j; i��FjT8� ≤ Ce−c
√
T (the probability X moves more than one between

tj; i and tj; i+1 is small). Since B�j� ⊆ L�j� ∪ A�j − 1� ∪ A�j�, the corollary
now follows from Corollary 3.2 and Dubins and Freedman (1965). 2

The next corollary follows easily from Corollary 3.3. It is crucial for our
attempt to couple X with XT as it gives many times in �jT8; �j + 1�T8� at
which X has “almost forgotten” its history.

Corollary 3.4. Define σ
j
1 = inf�t ≥ jT8:X�t� = sups≤tX�s��; and, for

i > 0; σji+1 = inf�t ≥ σji +T+4:X�t� = sups≤tX�s��. Let τ
j
i be the analogously

defined times for XT. Define C�j� = �σjT+1 > jT8 + T3�;D�j� = �τjT+1 >

jT8 +T3�. Then there exist positive constants c and C such that

lim sup
n→∞

1
n

n∑
j=1

1C�j�∪D�j� ≤ Ce−c
√
T:

Proof. By Corollary 3.2, it suffices to show P�C�j�∪D�j�∩A�j�c�FjT8� ≤
Ce−c

√
T. By definition, on A�j�c, one has X∗�t� < X�t� +

√
T + 2, ∀ t ∈ �jT8;

�j+1�T8�. Thus we need to estimate probability bounds for the time to achieve
the maximum when the maximum is not greater than

√
T+2 plus the present

value. Define, for jT8 ≤ t < �j + 1�T8, A�jy t� = �∃Ti ∈ �t; �j + 1�T8�:Mi −
X�Ti� >

√
T�. From Corollary 3.2 it is clear that P�A�jy t��Ft� ≤ Ce−c

√
T. By

Corollary 1.5, P�X�u� −X�t� ≤ c1�u− t��Ft� ≤ Ce−c�u−t� so that if u = T+ t,
one has

P�X�T+ t� < X∗�t��Ft�
≤ P�X�T+ t� < X�t� +

√
T+ 2�Ft� +P�A�jy t��Ft�

≤ P�X�T+ t� < X�t� + c1T�Ft� +Ce−c
√
T

≤ Ce−c
√
T:

This implies P�σji+1 − σ
j
i > 2T + 4�Fσ

j
i
� ≤ Ce−c

√
T and so P�σjT+1 > jT8 +

T3�FjT8� ≤ Ce−c
√
T. The same argument applies to τji and XT (see the remark

following Corollary 1.5). These estimates and Dubins and Freedman (1965)
complete the proof. 2

The next result contains the main step in the proof of Theorem 1. The proof
will be broken up into a series of lemmas.
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Proposition 3.5. There is a coupling of X and XT and an event V�j� ∈
F�j+1�T8 satisfying:

(i) P�V�j��FjT8� ≤ Ce−cT for some positive c;Cy
(ii) V�j�c ⊂ B�j� ∪C�j� ∪D�j� ∪E�j�; where

E�j� =
{∣∣∣∣
∫ �j+1�T8

jT8
ds
∫ s
�s−T�∨0

f�X�s� −X�u��du

−
∫ �j+1�T8

jT8
ds
∫ s
�s−T�∨0

f�XT�s� −XT�u��du
∣∣∣∣ ≤ 3T4

}
:

Note that B�j� is as defined in Corollary 3.3, C�j� and D�j� as in Corollary
3.4.

We can now give the proof of Theorem 1.

Proof of Theorem 1. We have that, as t→∞ a.s.,

1
t

∫ t
0
ds

∫ s
�s−T�∨0

f�XT�s� −XT�u��du→ CT:

Using the coupling of Proposition 3.5 and Corollary 3.4 applied to both X and
XT and defining bT�s� =

∫ s
�s−T�∨0 f�X�s� −X�u��du,

lim sup
t→∞

∣∣∣∣CT −
1
t

∫ t
0
ds bT�s�

∣∣∣∣

= lim sup
t→∞

∣∣∣∣
1
t

∫ t
0
ds

∫ s
�s−T�∨0

f�XT�s� −XT�u��du

− 1
t

∫ t
0
ds

∫ s
�s−T�∨0

f�X�s� −X�u��du
∣∣∣∣

= lim sup
n→∞

∣∣∣∣
1
nT8

n−1∑
j=0

∫ �j+1�T8

jT8
ds

∫ s
�s−T�∨0

�f�X�s� −X�u��

− f�XT�s� −XT�u���du
∣∣∣∣

≤ lim sup
n→∞

T

n

n−1∑
j=0

1V�j� + lim sup
n→∞

T

n

n−1∑
j=0

1B�j�∪C�j�∪D�j�

+ lim sup
n→∞

cT4

nT8

n−1∑
j=0

1E�j�

≤ CTe−cT +CTe−c
√
T + c

T4
by Dubins and Freedman (1965)

<
c

T4
:
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Together with Proposition 2.2, this implies

lim sup
t→∞

∣∣∣∣CT −
1
t

∫ t
0
ds

∫ s
0
f�X�s� −X�u��du

∣∣∣∣ ≤
c

T4
+ 1
T
:

Letting T→∞ and using Lemma 3.1(iii) finishes the proof. 2

By a coupling we mean a joint distribution and one such is called the max-
imal coupling for two random variables. Let X and Y be C�0;1�-valued ran-
dom variables which have densities fx and fy with respect to the Wiener
measure ν. Then there is a joint distribution such that P�X = Y� =

∫
fx�z� ∧

fy�z�ν�dz�. See, for example, Pitman (1976).
In our next lemma we shall use the following device: given stopping times

σ for X and τ for XT, we say X and XT are driven by the same Brownian
motion, βt, after �σ; τ� if

X�σ + t� =X�σ� + βt +
∫ σ+t

0
ds
∫ s

0
f�X�s� −X�u��du;

XT�τ + t� =XT�τ� + βt +
∫ τ+t
τ

ds
∫ s
�s−T�∨0

f�XT�s� −XT�u��du:

Lemma 3.6. Let σ and τ be stopping times for X and XT; respectively. Let
A ∈ Fσ; τ ≡ Fσ�X� ∨Fτ�XT� be such that the following hold on A x

(i) X�σ − s� −X�σ� =XT�τ − s� −XT�τ�; 0 ≤ s ≤ 1;
(ii) sups≤σ−1X�s� < X�σ� − 2;

(iii) sups≤τ−1X
T�s� < XT�τ� − 2.

Then if X and XT are driven by the same Brownian motion after �σ; τ�; on the
set A one has X�σ + s� −X�σ� =XT�τ + s� −XT�τ� for all s ≤ S0 ≡ inf�t >
0:X�σ + t� −X�σ� ≤ −1� ∧ inf�t > 0:X�σ + t� − 1 ≤ supr≤σ+t−TX�r��.

Proof. Observe that S0 is the first time after σ when X is influenced
by times more than T units in its past; that is, the first time it differs from
XT. 2

Lemma 3.7. Suppose σ and τ are stopping times for X and XT, respec-
tively, and that, on a set A ∈ Fσ+T; τ+T; X�σ + s�−X�σ� =XT�τ+ s�−XT�τ�
for 0 ≤ s ≤ T. If X and XT are driven by the same Brownian motion after
�σ +T; τ +T�; then, on the set A;

X�σ + s� −X�σ� =XT�τ + s� −XT�τ�

for 0 ≤ s ≤ S̃0 ≡ inf
{
t > T:X�σ + t� − 1 ≤ sup

r≤σ+t−T
X�r�

}
:

Proof. As in the previous proof, σ + S̃0 is the first time X stops behaving
as if it were XT. 2
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Lemma 3.8. Let σ; τ be stopping times for X and XT; respectively, with
X�σ� = sups≤σX�s�; XT�τ� = sups≤τX

T�s�. Define stopping times Tσ;2; Sτ;2
by Tσ;2 = inf�s > σ :X�s�−X�σ� = 2�, Sτ;2 = inf�s > τ:XT�s�−XT�τ� = 2�.
There exists a positive constant c; independent of T; and a coupling of X�σ+·�
andXT�τ+·� such that, conditional onFσ; τ; the following event has probability
at least c x

�X�Tσ;2 + s� −X�Tσ;2� =XT�Sτ;2 + s� −XT�Sτ;2�;0 ≤ s ≤ 1�
∩ �X�Tσ;2 + 1� −X�Tσ;2� =XT�Sτ;2 + 1� −XT�Sτ;2� > 2�:

Proof. On �σ;Tσ;2�, �τ;Sτ;2� drive X and XT by independent Brownian
motions. SetA1 = �Tσ;2−σ ≤ 1�,A2 = �Sτ;2−τ ≤ 1�. By a simple comparison
using the fact that X and XT have positive drift and independence,

P�A1 ∩A2�Fσ;τ� ≥
(√

2
π

∫ ∞
2

exp
(
−x

2

2

)
dx

)2

:

On the event A1, Y�s� = X�Tσ;2 + s� −X�Tσ;2�;0 ≤ s ≤ 1, is a process with
drift bounded by 2 so long as Y does not reach −1. Now consider the space of
paths of Y, namely C�0; 1�. The law of Y is absolutely continuous with respect
to Wiener measure on C�0; 1� which we denote by ν. The density given by the
Cameron–Martin–Girsanov formula will shortly be seen to be “manageable”
on the set F = �w ∈ C�0;1�:w�0� = 0, inf w�s� > −1, w�1� > 2�. Similar
considerations apply to YT�s� =XT�Sτ;2 + s� −XT�Sτ;2�, 0 ≤ s ≤ 1.

To make this precise, for w ∈ C�0;1�, let

Xw�t� =





X�t�; t ≤ Tσ;2;
X�Tσ;2� +w�t−Tσ;2�

+
∫ t
Tσ;2

ds
∫ s

0
f�Xw�s� −Xw�u��du; t ≥ Tσ;2;

and

b�s;w� = 1�inf 0≤r≤sw�r�≥−1�
∫ Tσ;2+s

0
f�X�s� −X�u��du:

Then, on A1, �b�s;w�� < 2 for all w, and, on F, the law of Y has density with
respect to ν given by

fY�w� = exp
{∫ 1

0
b�s;w�dw− 1

2

∫ 1

0
b2�s;w�ds

}
:

Noticing that E�
∫ 1

0 b�s;w�dw�2 = E
∫ 1

0 b
2�s;w�ds ≤ 4, it follows that we can

select n sufficiently large to make

ν

(
F ∩

{
fY ≥

1
n

})
≥ ν

(
F ∩

{∫ 1

0
b�s;w�dw ≥ − log n+ 4

})

≥ 3
4
ν�F�:
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A similar argument for YT shows, for n large enough,

ν

(
F ∩

{
fYT ≥ 1

n

})
≥ 3

4
ν�F�:

Thus, fixing an n which makes both inequalities hold yields a coupling (joint
distribution) of Y and YT such that

P�Y = YT;Y ∈ F� ≥ 1
2n
ν�F�: 2

Proof of Proposition 3.5. Our object is to show that for most j, there
are random times σj and τj in �jT8; �j+ 1�T8� such that σj, τj ≤ jT8 +T3

and, for s ≤ T8−T3, X�σj+s�−X�σj� =XT�τj+s�−XT�τj�. We attempt to
couple X and XT at the times σji , τji as in Lemma 3.8. On �C�j� ∪D�j��c we
will have T attempts over an interval of length T3 to linkX andXT. It follows
that outside of a set of exponentially small probability in T, either C�j�∪D�j�
occurs or there are times σj, τj ≤ jT8 + T3 for which X�σj + s� −X�σj� =
XT�τj + s� −XT�τj�, 0 ≤ s ≤ T. By Lemma 3.7, this linkage will prevail for
0 ≤ s ≤ T8 −T3 unless the event B�j� of Corollary 3.3 occurs. We now give a
more detailed account of this argument.

All of the following statements hold on �B�j� ∪ C�j� ∪ D�j��c. There are
stopping times for X and XT, σji , τji ≥ jT8 with σ

j
T+1, τjT+1 ≤ jT8 + T3,

σ
j
i+1−σ

j
i ≥ T+4, τji+1−τ

j
i ≥ T+4, 0 ≤ i ≤ T. By Lemma 3.8 there is a C > 0

such that, conditional on Fσ
j
1 ; τ

j
1
, with probability at least C,

X�Tσj1 ;2 + s� −X�Tσj1 ;2� =X
T�Sτj1 ;2 + s� −X

T�Sτj1 ;2�; 0 ≤ s ≤ 1;(1)

and

X�Tσj1 ;2 + 1� −X�Tσj1 ;2� =X
T�Sτj1 ;2 + 1� −XT�Sτj1 ;2� > 2:(2)

Let the event described by (1) and (2) be denoted by L1. On L1, drive X
and XT after Tσj1 ;2 + 1; Sτj1 ;2 + 1 by the same Brownian motion. Let K1 =
�inf t∈�0;T�X�Tσj1 ;2+t�−X�Tσj1 ;2� ≥ −1�. By Lemma 3.7, on L1∩K1,X�Tσj1 ;2+
s� −X�Tσj1 ;2� = X

T�Sτj1 ;2 + s� −X
T�Sτj1 ;2�, 0 ≤ s ≤ T8 − T3. By Lemma 3.8

and Proposition 1.1, P�L1 ∩K1�Fσ
j
1 ; τ

j
1
� > γ for some strictly positive γ not

depending on T. If L1∩K1 does not occur, we try again at the times σj2 , τj2 and
so on. SettingVj =

⋂�T�
i=1�Ki∩Li�c, the set on which coupling in �jT8; �j+1�T8�

fails, P�Vj�FjT8� ≤ �1− γ��T� ≤ Ce−γT. 2
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