THE STRONG LAW OF LARGE NUMBERS FOR A BROWNIAN POLYMER

By M. Cranston ${ }^{1}$ and T. S. Mountrord ${ }^{2}$
University of Rochester and University of California, Los Angeles

We prove the strong law of large numbers for a continuous-time version of reinforced random walk. This extends previous results of Durrett and Rogers.

Introduction. The purpose of this paper is to prove an asymptotic for the behavior of

$$
X(t)=W(t)+\int_{0}^{t} d s \int_{0}^{s} f(X(s)-X(u)) d u
$$

where W is one-dimensional Brownian motion. We will be interested in the case where f satisfies the following assumption.

Assumption A. Let f be a nonnegative, Lipschitz continuous function with compact support. Assume supp $f \subseteq[-k, k]$ and that $f(x)>c>0$ for $\left|x-x_{0}\right|<$ 5δ for some $x_{0} \in[-k / 2, k / 2]$.

For convenience, we will take $k=1,\|f\|_{\infty} \leq 1$ and assume $2 / \delta$ is an integer. Trivial modifications of our proof give the full result. Our interest has been inspired by the article of Durrett and Rogers (1991) in which this and other similar models were treated. Under pretty much the same assumptions as our own, they proved the existence of positive constants c and C such that

$$
c \leq \liminf _{t \rightarrow \infty} \frac{X(t)}{t} \leq \limsup _{t \rightarrow \infty} \frac{X(t)}{t} \leq C \quad \text { a.s. }
$$

We shall prove the following result.
Theorem 1. Under Assumption A, there is a strictly positive constant c such that

$$
\lim _{t \rightarrow \infty} \frac{X(t)}{t}=c \quad \text { a.s. }
$$

[^0]We are indebted to Rick Durrett for the following observation which forms the foundation of our proof. Define for T a large number

$$
X^{T}(t)=W(t)+\int_{0}^{t} d s \int_{(s-T) \vee 0}^{s} f\left(X^{T}(s)-X^{T}(u)\right) d u
$$

Then

$$
\lim _{t \rightarrow \infty} \frac{X^{T}(t)}{t}=c_{T} \quad \text { a.s. }
$$

for c_{T} a positive constant.
To see that

$$
\frac{X^{T}(t)}{t} \rightarrow c_{T} \quad \text { a.s. }
$$

first define

$$
Y_{n}(s) \equiv X^{T}((n-1) T+s)-X^{T}((n-1) T), \quad 0 \leq s \leq T
$$

Then Y_{n} is a Markov process on the state space $C[0, T]$. This is apparent from the following, which is valid for $n \geq 2$,

$$
\begin{aligned}
Y_{n}(s)= & W((n-1) T+s)-W((n-1) T)+\int_{0}^{s} d r \int_{0}^{r} f\left(Y_{n}(r)\right. \\
& \left.-Y_{n}(u)\right) d u+\int_{0}^{s} d r \int_{r}^{T} f\left(Y_{n}(r)+\left(Y_{n-1}(T)-Y_{n-1}(u)\right)\right) d u .
\end{aligned}
$$

Moreover, setting, for $w, y \in C[0, T]$,

$$
b(r, w, y)=\int_{0}^{r} f(w(r)-w(u)) d u+\int_{r}^{T} f(w(r)+(y(T)-y(u))) d u
$$

the transition probability for $\left\{Y_{n}\right\}$ has a density with respect to the Wiener measure, ν_{T}, on $C[0, T]$ given by

$$
\frac{p(y, d w)}{\nu_{T}(d w)}=\exp \left\{\int_{0}^{T} b(r, w, y) d w(r)-\frac{1}{2} \int_{0}^{T} b^{2}(r, w, y) d r\right\}
$$

Furthermore, the key point is that Y_{n} is a Harris-recurrent chain on $C[0, T]$. This will follow [see Revuz (1975)] provided $E_{y}\left(\sum_{0}^{\infty} 1_{K}\left(Y_{n}\right)\right)=\infty$ for any $y \in C[0, T]$ and all compact subsets K of $C[0, T]$ with $\nu_{T}(K)>0$.

However, if $p^{k}(y, d z)$ denotes the k-step transition probability for $\left\{Y_{n}\right\}$, then

$$
\begin{aligned}
P_{n} 1_{K}(y) \equiv & E_{y}\left(1_{K}\left(Y_{n}\right)\right) \\
= & \int_{C[0, T]} p^{n-1}(y, d z) \int_{K} \exp \left\{\int_{0}^{T} b(r, w, z) d w(r)\right. \\
& \left.\quad-\frac{1}{2} \int_{0}^{T} b^{2}(r, w, z) d r\right\} \nu_{T}(d w) \\
\geq & \nu_{T}(K) \inf _{z \in C[0, T]} \exp \left\{\frac { 1 } { \nu _ { T } (K) } \int _ { K } \left(\int_{0}^{T} b(r, w, z) d w(r)\right.\right. \\
& \left.\left.\quad-\frac{1}{2} \int_{0}^{T} b^{2}(r, w, z) d r\right) \nu_{T}(d w)\right\} \\
\geq & \nu_{T}(K) \exp \left\{-\frac{T^{3}}{2}\right\} \quad \\
& \times \inf _{z \in C[0, T)} \exp \left\{\frac{1}{\nu_{T}(K)} \int_{K}\left(\int_{0}^{T} b(r, w, z) d w(r)\right) \nu_{T}(d w)\right\} \\
\geq & \nu_{T}(K) \exp \left\{-\frac{T^{3}}{2}\right\} \quad \\
& \times \inf _{z \in C[0, T]} \exp \left\{-\frac{1}{\nu_{T}(K)}\left(E \int_{0}^{T} b^{2}(r, w, z) d r\right)^{1 / 2} \nu_{T}(K)^{1 / 2}\right\} \\
\geq & \nu_{T}(K) \exp \left\{-\frac{T^{3}}{2}-\frac{T^{3 / 2}}{\nu_{T}(K)^{1 / 2}}\right\}
\end{aligned}
$$

so Harris recurrence follows.
Since $p(y, d w) \ll \nu_{T}(d w)$ and Y_{n} is Harris recurrent, there is [see Revuz (1975)] an invariant measure μ_{T} for the process, $\mu_{T} \ll \nu_{T}$, and, for $f \in L^{1}\left(\mu_{T}\right)$,

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(Y_{k}\right) \rightarrow \int f(w) d \mu_{T}(w) \quad \text { a.s. }
$$

Selecting $f(Y)=Y(T)$, it arises that a.s.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{X^{T}(n T)}{n T} & =\frac{1}{T} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1}^{n} Y_{k}(T) \\
& =\int\left[\frac{w(T)}{T}\right] d \mu_{T}(w) \\
& =c_{T}
\end{aligned}
$$

This suffices for

$$
\lim _{t \rightarrow \infty} \frac{X^{T}(t)}{t}=c_{T}
$$

providing, of course, we can demonstrate the selected f is in $L^{1}\left(\mu_{T}\right)$. To do this, we first show $\mu_{T}(C[0, T])<\infty$.

If μ_{T} is infinite and f is a bounded μ_{T}-integrable function, then one must have [again see Revuz (1975)] $P_{n} f(y) \rightarrow 0$ as $n \rightarrow \infty$ for $y \in C[0, T]$. For our f we select $f(y)=1_{K}(y)$, where $K \subset C[0,1]$ is a compact set such that $\mu_{T}(K)<\infty$ and $\nu_{T}(K)>0$ (note $\mu_{T} \ll \nu_{T}$). Our computation demonstrating recurrence now shows $P_{n} 1_{K}(y) \geq C(K, T)>0$ and so μ_{T} is finite. Finally, we show $f(y)=y(T)$ is in $L^{1}\left(\mu_{T}\right)$:

$$
\begin{aligned}
& \int_{C[0,1]}|y(T)| \mu_{T}(d y) \\
& =\int_{C[0, T]^{2}} \int|y(T)| p(w, d y) \mu_{T}(d w) \\
& =\int_{C[0, T]^{2}} \int|y(T)| \exp \left\{\int_{0}^{T} b(r, y, w) d y(r)\right. \\
& \left.\quad-\frac{1}{2} \int_{0}^{T} b^{2}(r, y, w) d r\right\} \nu_{T}(d y) \mu_{T}(d w) \\
& \leq \int_{C[0, T]}\left(\int_{C[0, T]}|y(T)|^{2} \nu_{T}(d y)\right)^{1 / 2} \\
& \quad \times\left(\int _ { C [0 , T] } \operatorname { e x p } \left\{2 \int_{0}^{T} b(r, y, w) d y(r)\right.\right. \\
& \left.\left.\quad-\int_{0}^{T} b^{2}(r, y, w) d r\right\} \nu_{T}(d y)\right)^{1 / 2} \mu_{T}(d w) \\
& = \\
& \left.\quad T^{1 / 2} \int_{C[0, T]^{2}}\left(\int_{\nu_{T}(d y) \exp \left\{2 \int_{0}^{T} b(r, y, w) d y(r)\right.} \quad-\int_{0}^{T} b^{2}(r, y, u) d r\right\}\right)^{1 / 2} \mu_{T}(d w) \\
& \leq
\end{aligned}
$$

$$
=T^{1 / 2} e^{T^{3} / 2} \mu_{T}(C[0, T])<\infty,
$$

as desired.
Finally, note that we shall often invoke a version of the Borel-Cantelli lemma due to Dubins and Freedman (1965). This states that if G_{n} are F_{n} adapted and $p_{n}=P\left(G_{n} \mid F_{n-1}\right)$, then

$$
\lim _{n \rightarrow \infty} \sum_{m=1}^{n} 1_{G_{m}} / \sum_{m=1}^{n} p_{m}=1 \quad \text { a.s. on }\left\{\sum_{m=1}^{\infty} p_{m}=\infty\right\} .
$$

In particular, $P\left(G_{n} \mid F_{n-1}\right) \leq c$ a.s. $\forall n$ implies

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} 1_{G_{m}} \leq c \quad \text { a.s. }
$$

1. For a process Z and $a, b \in \mathbb{R}^{+}, t>0$, define

$$
T(b, a, t ; Z)=\inf \{s>t: Z(s)=Z(t)+b \text { or } Z(s)=Z(t)-a\} .
$$

When using this stopping time for the process X, we shall abbreviate

$$
T(b, a, t) \equiv T(b, a, t ; X)
$$

Proposition 1.1.
(i) There exists an $\varepsilon>0$ such that, for $t>0$,

$$
P\left(X(T(1,1, t))-X(t)=1 \mid F_{t}\right) \geq \frac{1}{2}+\varepsilon .
$$

(ii) There exist $c, C>0$ such that, for $y>0$,

$$
P\left(T(1,1, t)-t \geq y \mid F_{t}\right) \leq C e^{-c y} .
$$

The proof of this proposition will be by means of several elementary lemmas.
Lemma 1.2. Given $a, b>0$, for every $t>0$,

$$
P\left(X(T(b, a, t))-X(t)=b \mid F_{t}\right) \geq \frac{a}{a+b} .
$$

Proof. Notice that

$$
P(W(T(b, a, t ; W))-W(t)=b)=\frac{a}{a+b}
$$

and, since $f \geq 0$,

$$
\{W(T(b, a, t ; W))-W(t)=b\} \subset\{X(T(b, a, t))-X(t)=b\} .
$$

The following lemma is a simple consequence of a comparison result [cf. Ikeda and Watanabe (1981)] and the scale function for Brownian motion [cf. Karatzas and Shreve (1987)].

Lemma 1.3. Consider the time-inhomogeneous Y with

$$
d Y(t)=d W(t)+h(t) d t,
$$

where W is $\operatorname{BM}\left(\mathbb{R}^{1}\right)$ and h is a predictable, locally bounded process. If $h(s) \geq h$ for $s \in[t, T(d, d, t ; Y)]$, then

$$
P(Y(T(d, d, t ; Y))-Y(t)=d) \geq\left(1+e^{-2 h d}\right)^{-1}
$$

REMARK. We shall use $\left(1+e^{-2 h d}\right)^{-1}=\frac{1}{2}(1+\tanh (h d))$.
Define, for $A \subseteq \mathbb{R}$,

$$
\operatorname{Occ}(t, A)=\int_{0}^{t} d s 1_{A}(X(s))
$$

LEMMA 1.4. There is a $c>0$ such that on the set $G=\{X(t)=a, \operatorname{Occ}(t,(a-$ $\left.\left.\left.x_{0}-4 \delta, a-x_{0}+4 \delta\right)\right) \geq \delta^{2}\right\}$ one has, with c and δ as in Assumption A,

$$
P\left(X(T(\delta, \delta, t))=a+\delta \mid F_{t}\right) \geq\left(\frac{1}{2}+\tanh \left(c \delta^{3}\right)\right)
$$

Proof. The result follows immediately from Lemma 1.3 and Assumption A.

Proof of Proposition 1.1. Set

$$
\begin{aligned}
& A=\{X(T(1,1, t))-X(t)=1\} \\
& B=\left\{T(\delta / 2, \delta / 2, t ; W)>\delta^{2}+t\right\} \\
& C=\{T(2 \delta, 2 \delta, t)<T(\delta / 2, \delta / 2, t ; W)\}
\end{aligned}
$$

We will use $P_{t}(\cdot)$ to denote the conditional probability $P\left(\cdot \mid F_{t}\right)$. Notice that there is a positive constant p, independent of δ, so that $P_{t}\left(B^{c}\right)=p$ and a positive λ such that $P_{t}(C \mid B)=\lambda ; \lambda$ is random but takes values in $[0,1]$.

Now

$$
P_{t}(A)=P_{t}\left(A \mid B^{c}\right) p+P_{t}(A \mid B)(1-p)
$$

and, by the symmetry of Brownian paths and the positivity of f,

$$
P_{t}\left(A \mid B^{c}\right) p \geq \frac{1}{2} p
$$

For the second term,

$$
P_{t}(A \mid B)=P_{t}(A \mid B \cap C) \lambda+P_{t}\left(A \mid B \cap C^{c}\right)(1-\lambda)
$$

We claim

$$
P_{t}(A \mid B \cap C) \geq \frac{1}{2}+\delta
$$

since, if X has left $[X(t)-2 \delta, X(t)+2 \delta]$ before $T(\delta / 2, \delta / 2, t ; W)$, it must have done so by passing through $X(t)+2 \delta$ (f is nonnegative.) Then by Lemma 1.2 we get the result.

For the term $P_{t}\left(A \mid B \cap C^{c}\right)$ we first remark that, by the symmetry of Brownian paths and the positivity of f,

$$
E_{t}[X(T(\delta / 2, \delta / 2, t ; W) \wedge T(2 \delta, 2 \delta, t))-X(t) ; B] \geq 0
$$

However, as previously observed, on C one has

$$
X(T(\delta / 2, \delta / 2, t ; W) \wedge T(2 \delta, 2 \delta, t))-X(t)=2 \delta
$$

Thus

$$
E_{t}\left[X(T(\delta / 2, \delta / 2, t ; W))-X(t) ; B \cap C^{c}\right] \geq-2 \delta P_{t}(B \cap C)
$$

or

$$
\eta \equiv E_{t}\left[X(T(\delta / 2, \delta / 2, t ; W))-X(t) \mid B \cap C^{c}\right] \geq \frac{-2 \delta \lambda}{(1-\lambda)}
$$

We also note, however, that $X(T(\delta / 2, \delta / 2, t ; W) \wedge T(2 \delta, 2 \delta, t))-X(t) \geq-\delta / 2$. Therefore,

$$
\eta \geq\left(-\frac{2 \delta \lambda}{1-\lambda}\right) \vee\left(-\frac{\delta}{2}\right)
$$

Now suppose $-\frac{1}{2} \leq x_{0}<-2 \delta$ and write $\zeta=X(T(\delta / 2, \delta / 2, t ; W))-X(t)$, $S=T\left(1-\zeta, \zeta-x_{0}, T(\delta / 2, \delta / 2, t ; W)\right)$. Notice that S is well defined so long as $1>\zeta>-x_{0}$, which is satisfied on C^{c} :

$$
\begin{aligned}
& P_{t}\left(A \mid B \cap C^{c}\right) \\
&= P_{t}\left(X(S)-X(t)=1 \mid B \cap C^{c}\right) \\
&+P_{t}\left(X(S)-X(t)=x_{0}, X(T(\delta, \delta, S))-X(t)=x_{0}+\delta,\right. \\
&\left.X\left(T\left(1-\left(x_{0}+\delta\right), x_{0}+\delta+1, T(\delta, \delta, S)\right)\right)-X(t)=1 \mid B \cap C^{c}\right) \\
&+P_{t}\left(X(S)-X(t)=x_{0}, X(T(\delta, \delta, S))-X(t)=x_{0}-\delta,\right. \\
&\left.X\left(T\left(1-\left(x_{0}-\delta\right), x_{0}-\delta+1, T(\delta, \delta, S)\right)\right)-X(t)=1 \mid B \cap C^{c}\right) .
\end{aligned}
$$

Using the linearity of the scale function and Lemma 1.2, the first term satisfies

$$
P_{t}\left(X(S)-X(t)=1 \mid B \cap C^{c}\right) \geq \frac{\eta-x_{0}}{1-x_{0}}
$$

For the last two terms we use Lemma 1.2 and the linearity of the scale function. Also, note that, on $B \cap C^{c},|X(s)-X(t)| \leq 2 \delta$ for $t \leq s \leq t+\delta^{2}$. So, using Lemma 1.4 at time S,

$$
\begin{aligned}
& P_{t}\left(X(S)-X(t)=x_{0}, X(T(\delta, \delta, S))-X(t)=x_{0}+\delta, X\left(T \left(1-\left(x_{0}+\delta\right),\right.\right.\right. \\
& \left.\left.\left.\quad x_{0}+\delta+1, T(\delta, \delta, S)\right)\right)-X(t)=1 \mid B \cap C^{c}\right) \\
& \geq \frac{1-\eta}{1-x_{0}}\left(\frac{1}{2}+\alpha\right) \frac{x_{0}+\delta+1}{2}, \\
& P_{t}\left(X(S)-X(t)=x_{0}, X(T(\delta, \delta, S))-X(t)=x_{0}-\delta, X\left(T \left(1-\left(x_{0}-\delta\right),\right.\right.\right. \\
& \left.\left.\left.\quad x_{0}-\delta+1, T(\delta, \delta, S)\right)\right)-X(t)=1 \mid B \cap C^{c}\right) \\
& \geq \frac{1-\eta}{1-x_{0}}\left(\frac{1}{2}-\alpha\right) \frac{x_{0}-\delta+1}{2},
\end{aligned}
$$

where α is random but, by Lemma $1.4, \alpha \geq \frac{1}{2} \tanh \left(c \delta^{3}\right)$. Combining the last four inequalities, we arrive at

$$
\begin{aligned}
& P_{t}\left(A \mid B \cap C^{c}\right) \\
& \geq \frac{\eta-x_{0}}{1-x_{0}}+\frac{1-\eta}{1-x_{0}}\left(\frac{x_{0}+1}{2}+(\delta / 2) \tanh \left(c \delta^{3}\right)\right) \\
& \quad=\frac{1}{2}+\frac{\eta}{2}+\frac{(\delta / 2) \tanh \left(c \delta^{3}\right)}{1-x_{0}} \\
& \quad \geq \frac{1}{2}+\frac{1}{2}\left(\left(-\frac{2 \delta \lambda}{1-\lambda}\right) \vee\left(-\frac{\delta}{2}\right)\right)+\frac{(\delta / 2) \tanh \left(c \delta^{3}\right)}{1-x_{0}}
\end{aligned}
$$

Thus

$$
\left.\begin{array}{rl}
P_{t}(A)= & P_{t}\left(A \mid B^{c}\right) p+P_{t}(A \mid B \cap C)(1-p) \lambda+P_{t}\left(A \mid B \cap C^{c}\right)(1-p)(1-\lambda) \\
\geq & \frac{p}{2}+(1-p)\left(\left(\frac{1}{2}+\delta\right) \lambda\right.
\end{array}+\left(\frac{1}{2}+\frac{1}{2}\left(\left(-\frac{2 \delta \lambda}{1-\lambda}\right) \vee\left(-\frac{\delta}{2}\right)\right), ~+\frac{(\delta / 2) \tanh \left(c \delta^{3}\right)}{1-x_{0}}\right)(1-\lambda)\right) .
$$

However,

$$
\left(-\frac{2 \delta \lambda}{1-\lambda}\right) \vee\left(-\frac{\delta}{2}\right)= \begin{cases}-\frac{\delta}{2}, & \frac{1}{5} \leq \lambda \leq 1 \\ -\frac{2 \delta \lambda}{1-\lambda}, & 0 \leq \lambda<\frac{1}{5}\end{cases}
$$

Thus

$$
P_{t}(A) \geq \frac{1}{2}+\frac{4(1-p)(\delta / 2) \tanh \left(c \delta^{3}\right)}{5\left(1-x_{0}\right)} \quad \text { when } 0 \leq \lambda<\frac{1}{5}
$$

and

$$
P_{t}(A) \geq \frac{1}{2}+(1-p)\left(\frac{\delta(5 \lambda-1)}{4}+\frac{(\delta / 2) \tanh \left(c \delta^{3}\right)(1-\lambda)}{1-x_{0}}\right) \quad \text { when } \frac{1}{5} \leq \lambda<1
$$

In either case, there is a constant $\varepsilon=\varepsilon\left(p, c, \delta, x_{0}\right)>0$ such that

$$
P_{t}(A) \geq \frac{1}{2}+\varepsilon
$$

If $-2 \delta<x_{0}<2 \delta$, set

$$
T_{1}=T\left(\frac{5 \delta}{2}, \frac{5 \delta}{2}, t\right), \quad T_{2}=T\left(\delta, \delta, T_{1}\right)
$$

Then

$$
\begin{aligned}
P_{t}\left(A \mid B \cap C^{c}\right)= & P_{t}\left(X\left(T_{1}\right)-X(t)=\frac{5 \delta}{2}, X\left(T_{2}\right)-X(t)=\frac{7 \delta}{2},\right. \\
& \left.\left.X\left(T\left(1-\frac{7 \delta}{2}, 1+\frac{7 \delta}{2}, T_{2}\right)\right)-X(t)=1 \right\rvert\, B \cap C^{c}\right) \\
+ & P_{t}\left(X\left(T_{1}\right)-X(t)=\frac{7 \delta}{2}, X\left(T_{2}\right)-X(t)=\frac{3 \delta}{2},\right. \\
& \left.\left.X\left(T\left(1-\frac{3 \delta}{2}, 1+\frac{3 \delta}{2}\right)\right)-X(t)=1 \right\rvert\, B \cap C^{c}\right) \\
& +P_{t}\left(X\left(T_{1}\right)-X(t)=\frac{-5 \delta}{2}, X\left(T\left(1+\frac{5 \delta}{2}, 1-\frac{5 \delta}{2}, T_{1}\right)\right)\right. \\
& \left.\quad-X(t)=1 \mid B \cap C^{c}\right) \\
= & \left(\frac{1}{2}+\mu\right)\left(\frac{1}{2}+\alpha\right) \frac{(7 \delta / 2)+1}{2}+\left(\frac{1}{2}+\mu\right)\left(\frac{1}{2}-\alpha\right) \frac{(3 \delta / 2)+1}{2} \\
+ & \left(\frac{1}{2}-\mu\right) \frac{-(5 \delta / 2)+1}{2},
\end{aligned}
$$

with random variables $\mu \geq 0, \alpha \geq \frac{1}{2} \tanh \left(c \delta^{3}\right)$, by Lemmas 1.2 and 1.4 applied at time T_{1}. [Notice that, on $B \cap C^{c},-\delta / 2 \leq X(s)-X(t) \leq 2 \delta$ for $t \leq s \leq t+\delta^{2}$.] However, this is bounded below by

$$
\frac{1}{2}+\left(\frac{1}{2}+\mu\right) \delta \alpha+\mu \frac{10 \delta}{4} \geq \frac{1}{2}+\frac{\delta}{4} \tanh \left(c \delta^{3}\right) .
$$

If $x_{0}>2 \delta$, the argument is analogous to that for $x_{0}<-2 \delta$. For the exponential tail of $T(1,1, t)-t$, note that

$$
\begin{aligned}
P(T & \left.(1,1 ; t)-t>y \mid F_{t}\right) \\
& \leq P(\inf \{r>t: \exists u \in[t, r] \text { s.t. } W(r)-W(u) \geq 2\}-t>y) \\
& =P\left(\inf \left\{r>0: W(r)-\inf _{0 \leq v \leq r} W(v) \geq 2\right\}>y\right) \\
& \leq C e^{-c y},
\end{aligned}
$$

since $W(r)-\inf _{0 \leq v \leq r} W(v)$ is reflecting Brownian motion.
Corollary 1.5. For $0 \leq s<t$, set

$$
A_{s, t}=\{X(w)-X(v) \leq 1 \text { for some } v \in[s, s+1], w \in[t, \infty)\} .
$$

Then there exist positive constants C, d such that

$$
P\left(A_{s, t} \mid F_{s}\right) \leq C e^{-d(t-s)}
$$

If c_{1} is sufficiently small and $B_{s, t}=\left\{X(w)-X(v) \leq 1+c_{1}(t-s)\right.$ for some $v \in[s, s+1], w \in[t, \infty)\}$, then there exist $C_{1}, d_{1}>0$ such that $P\left(B_{s, t} \mid F_{s}\right) \leq$ $C_{1} e^{-d_{1}(t-s)}$.

Proof. Define $\left\{T_{i, s}\right\}, i \geq 0$, by $T_{0, s}=s, T_{i, s}=T\left(1,1, T_{i-1, s}\right)$. Using Proposition 1.1, couple $X_{i} \equiv X\left(T_{i, s}\right)$ and a random walk $\left\{Z_{i}: i \geq 0, Z_{0}=0\right\}$ with transition probabilities $p(k, k+1)=\frac{1}{2}+\varepsilon, p(k, k-1)=\frac{1}{2}-\varepsilon$ in such a way that $X\left(T_{i, s}\right)-X(s) \geq Z_{i}$ for all i a.s.

Now select c_{1} and c_{2} with $0<c_{1}<\frac{4}{3} \varepsilon c_{2}, 0<c_{1}<c_{2}<1$. Then $B_{s, t} \subset$ $A_{1} \cup A_{2} \cup A_{3}$, where

$$
\begin{aligned}
& A_{1}=\left\{\sup _{s-1 \leq u \leq s} W(u)-W(s) \geq \frac{1}{2} c_{1}(t-s)\right\}, \\
& A_{2}=\left\{Z_{n} \leq \frac{3}{2} c_{1}(t-s)+3 \text { for some } n \geq c_{2}(t-s)\right\}, \\
& A_{3}=\left\{T_{\left[c_{2}(t-s)\right]+1, s} \geq t\right\} .
\end{aligned}
$$

This may be seen as follows: if A_{1} fails, then, for $B_{s, t}$ to occur, $X\left(T_{n, s}\right)-X(s)$ must be smaller than $\frac{3}{2} c_{1}(t-s)+3$ for some n such that $T_{n, s} \geq t$. A weaker restriction is that Z_{n} must be smaller than $\frac{3}{2} c_{1}(t-s)+3$ for some n such that $T_{n, s} \geq t$. However,

$$
\begin{aligned}
& \left\{Z_{n} \leq \frac{3}{2} c_{1}(t-s)+3 \text { for some } n \text { such that } T_{n, s} \geq t\right\} \\
& \\
& \subset\left\{Z_{n} \leq \frac{3}{2} c_{1}(t-s)+3 \text { for some } n \text { such that } T_{n, s} \geq t,\right. \\
& \\
& \\
& \quad \cup\left\{T_{\left[c_{2}(t-s)\right]+1, s} \geq t\right\} .
\end{aligned}
$$

Thus the inclusion $B_{s, t} \subset A_{1} \cup A_{2} \cup A_{3}$ a.s. follows.
Now A_{1} and A_{2} have conditional probabilities that decay exponentially in $(t-s)$ (for A_{2} this depends on our choice of c_{1} and c_{2}). As for A_{3}, note that, by Proposition 1.1(ii), $T_{\left[c_{2}(t-s)\right]+1, s}$ is stochastically bounded by a sum of $\left[c_{2}(t-s)\right]+1$ independent random variables, each having an exponential tail. The exponential decay of the conditional probability of $B_{s, t}$ follows by selecting sufficiently small c_{1}, depending on c and C from Proposition 1.1(ii). Since, for $c_{1}>0, A_{s, t} \subset B_{s, t}$ the claim about $A_{s, t}$ follows immediately.

Remark. Corollary 1.5 also holds for X^{T}. This requires a version of Proposition 1.1 for X^{T}. The proof for X^{T} follows the same lines as for X. One gets the upward bias from paths which move more than one by time $T+t$ on the set B.

Corollary 1.6. There exist $\delta>0, C<\infty$ such that, for all $k \geq 1$, all $t, s \geq 0$,

$$
P\left(T(k, \infty, t)>t+s \mid F_{t}\right) \leq C e^{-\delta s / k}
$$

Proof. Fix k, t and note that the constants C_{i}, δ_{i} and δ introduced below do not depend on k or t. Define

$$
R_{0}=t
$$

and, for $n \geq 1$,

$$
R_{n}=T\left(1,1, R_{n-1}\right) .
$$

Proposition 1.1(ii) and standard large deviations imply the existence of positive δ_{1}, C_{1} such that

$$
P\left(R_{n} \geq C_{1} n+t \mid F_{t}\right) \leq C_{1} e^{-\delta_{1} n} \quad \forall n .
$$

Now consider $X_{R_{n}}, n \geq 0$. Proposition 1.1(i) says there is an $\varepsilon>0$ such that, $\forall n$,

$$
\begin{aligned}
& P\left(X_{R_{n}}=X_{R_{n-1}}+1 \mid F_{R_{n-1}}\right) \geq \frac{1}{2}+\varepsilon, \\
& P\left(X_{R_{n}}=X_{R_{n-1}}-1 \mid F_{R_{n-1}}\right) \leq \frac{1}{2}-\varepsilon \quad \forall n \geq 1 .
\end{aligned}
$$

Thus, from elementary bounds on tail probabilities for binomial random variables, there exist positive δ_{2}, C_{2} such that

$$
P\left(X_{R_{n}}-X_{t} \leq \varepsilon n \mid F_{t}\right) \leq C_{2} e^{-\delta_{2} n} \quad \forall n \geq 1 .
$$

Suppose now that s satisfies $\varepsilon\left[s / c_{3}\right] \geq k$, where $c_{3}=\max \left\{C_{1}, C_{2}\right\}$. Notice that, for any n,

$$
\{T(k, \infty, t)>t+s\} \subseteq\left\{R_{n}>t+s\right\} \cup\left\{X_{R_{n}}-X_{t}<k\right\} .
$$

So taking $n=\left[s / c_{3}\right]$ so that $\varepsilon n \geq k$, we have

$$
\begin{aligned}
P\left(X_{R_{n}}-X_{t}<k \mid F_{t}\right) & \leq P\left(X_{R_{n}}-X_{t}<\varepsilon n \mid F_{t}\right) \\
& \leq C_{2} e^{-\delta_{2} n}
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(R_{n}>t+s \mid F_{t}\right) & \leq P\left(R_{n}>t+C_{1} n \mid F_{t}\right) \\
& \leq C_{1} e^{-\delta_{1} n} .
\end{aligned}
$$

Thus, for $\varepsilon\left[s / c_{3}\right] \geq k$, there is a $c^{\prime}>1$ such that

$$
\begin{aligned}
P\left(T(k, \infty, t)>t+s \mid F_{t}\right) & \leq C_{2} e^{-\delta_{2} n}+C_{1} e^{-\delta_{1} n} \\
& \leq c^{\prime} e^{-\delta s} \\
& \leq c^{\prime} e^{-\delta s / k} .
\end{aligned}
$$

This gives the desired inequality for $\varepsilon\left[s / c_{3}\right] \geq k$, and so, for $s \geq 0$,

$$
P\left(T(k, \infty, t)>t+s \mid F_{t}\right) \leq C e^{-\delta s / k},
$$

with $C=c^{\prime} / \inf _{k}\left[\inf _{s}\left\{e^{-\delta s / k}: 0 \leq\left[s / c_{3}\right] \leq k / \varepsilon\right\}\right]$ (which is independent of k).
2. In order to make a comparison with the process X^{T}, we write

$$
X(t)=W(t)+\int_{0}^{t} d s \int_{(s-T) \vee 0}^{s} f(X(s)-X(u)) d u+\int_{0}^{t} r_{T}(s) d s .
$$

In this section we prove

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} r_{T}(u) d u=o(1) \quad \text { as } T \rightarrow \infty
$$

Note that this is made entirely plausible by Corollary 1.5 which implies

$$
\begin{aligned}
\frac{1}{t} E\left[\int_{0}^{t} r_{T}(u) d u\right] & =\frac{1}{t} \int_{0}^{t} d s \int_{0}^{(s-T) \vee 0} d u E(f(X(s)-X(u))) \\
& \leq \frac{1}{t} \int_{0}^{t} d s \int_{0}^{(s-T) \vee 0} d u\|f\|_{\infty} P(X(s)-X(u) \leq 1) \\
& \leq C \frac{1}{t} \int_{0}^{t} d s \int_{0}^{(s-T) \vee 0} d u e^{-d(s-u)} \\
& \leq \frac{C}{d} e^{-d T} .
\end{aligned}
$$

Lemma 2.1. There exists a positive constant c so that for T and t sufficiently large, $\log t \gg T$,

$$
P\left(\frac{1}{t} \int_{0}^{t} r_{T}(u) d u \geq \frac{1}{T}\right) \leq \frac{c}{t^{1 / 3}} .
$$

Proof. Write, assuming $\log t \gg T$,

$$
\begin{aligned}
r_{T}(s) & =\int_{0}^{\left(s-\log ^{2} t\right) \vee 0} f\left(X(s)-X(u) d u+\int_{\left(s-\log ^{2} t\right) \vee 0}^{(s-T) \vee 0} f(X(s)-X(u)) d u\right. \\
& \equiv V_{T, t}(s)+r_{T, t}(s)
\end{aligned}
$$

Now we claim that, with $A_{s, t}$ as in Corollary 1.5,

$$
\left\{\int_{0}^{t} V_{T, t}(s) d s \neq 0\right\} \subset \bigcup_{i=1}^{\left[t-\log ^{2} t\right]+1} A_{i, \log ^{2} t+i-1}
$$

This follows since $\int_{0}^{t} V_{T, t}(s) d s \neq 0$ only when $X(s)-X(u) \leq 1$ for some $s \in\left(\log ^{2} t, t\right), u \in\left(0, s-\log ^{2} t\right)$. Now if i is such that $i-1 \leq u<i$, then $i-1+\log ^{2} t \leq s$ which proves the claim. Consequently,

$$
\begin{aligned}
P\left(\int_{0}^{t} V_{T, t}(s) d s \neq 0\right) & \leq \sum_{i=1}^{\left[t-\log ^{2} t\right]+1} P\left(A_{i, \log ^{2} t+i-1}\right) \\
& \leq C t e^{-d \log ^{2} t} \\
& \leq t^{-1} \quad \text { for } t \text { large. }
\end{aligned}
$$

We now turn our attention to $\int_{0}^{t} r_{T, t}(s) d s$. Partition $[0, t]$ into $\left[t^{1 / 2}\right]$ intervals of length $t /\left[t^{1 / 2}\right]$ and call these $I_{1}, \ldots, I_{\left[t^{1 / 2}\right]}$.

Define the random variables

$$
R_{i}=\int_{I_{i}} r_{T, t}(s) d s
$$

and note that

$$
\int_{0}^{t} r_{T, t}(s) d s=\sum_{i} R_{i}
$$

and the σ-fields

$$
G_{i}=\sigma\left\{X(u): u \in \bigcup_{j=1}^{i-1} I_{j}\right\}
$$

Then, setting $G_{0}=G_{1}$,

$$
\begin{aligned}
E\left(R_{1} \mid G_{0}\right)= & E\left(R_{1}\right) \\
= & E\left(\int_{T}^{\log ^{2} t} d s \int_{0}^{s-T} f(X(s)-X(u)) d u\right) \\
& +E\left(\int_{\log ^{2} t}^{t /\left[t^{1 / 2}\right]} d s \int_{s-\log ^{2} t}^{s-T} f(X(s)-X(u)) d u\right) \\
\leq & \frac{1}{2}\left(\log ^{2} t-T\right)^{2}+\int_{\log ^{2} t}^{t /\left[t^{1 / 2}\right]} d s \int_{s-\log ^{2} t}^{s-T} P\left(A_{u, s}\right) d u \\
\leq & \frac{1}{2} \log ^{4} t+C \int_{\log ^{2} t}^{t /\left[t^{2}\right]} d s \int_{s-\log ^{2} t}^{s-T} e^{-d(s-u)} d u, \quad \text { by Corollary } 1.5 \\
\leq & C\left(\log ^{4} t+t^{1 / 2}\left(e^{-d T}-e^{-d \log ^{2} t}\right)\right),
\end{aligned}
$$

with a possibly new value of C,
and, for $i>1$,

$$
\begin{aligned}
E\left(R_{i} \mid G_{i-1}\right) & =E\left(\int_{(i-1)\left(t /\left[t^{1 / 2}\right]\right)}^{i\left(t /\left[t^{1 / 2}\right]\right)} d s \int_{s-\log ^{2} t}^{s-T} f(X(s)-X(u)) d u \mid G_{i-1}\right) \\
& \leq \int_{(i-1)\left(t /\left[t^{1 / 2}\right]\right)}^{i\left(t /\left[t^{1 / 2}\right]\right)} d s \int_{s-\log ^{2} t}^{s-T} P\left(P\left(A_{u, s} \mid F_{u}\right) \mid G_{i-1}\right) d u \\
& \leq c t^{1 / 2}\left(e^{-d T}-e^{-d \log ^{2} t}\right) .
\end{aligned}
$$

In other words, for $i \geq 1$,

$$
E\left(R_{i} \mid G_{i-1}\right) \leq c t^{1 / 2} e^{-d T} \quad \text { for } t \text { large enough. }
$$

Now an elementary estimate gives

$$
\begin{aligned}
& E\left(\left(\sum_{i} R_{i}-E\left(R_{i} \mid G_{i-1}\right)\right)^{2}\right) \\
& \quad=E\left(\sum_{|i-j| \leq 1}\left(R_{i}-E\left(R_{i} \mid G_{i-1}\right)\right)\left(R_{j}-E\left(R_{j} \mid G_{j-1}\right)\right)\right) \\
& \quad \leq c t^{3 / 2} \log ^{4} t,
\end{aligned}
$$

since there are no more than $3 t^{1 / 2}$ terms and the "inner integral" in the definition of R_{i} is over an interval of length less than $\log ^{2} t$. So by Chebychev,

$$
\begin{aligned}
P\left(\sum_{i} R_{i}>c t e^{-d T}\right) & \leq P\left(\sum_{i} R_{i}-E\left(R_{i} \mid G_{i-1}\right)>c t e^{-d T}\right) \\
& \leq c \frac{\log ^{4} t}{t^{1 / 2}} e^{2 d T} \\
& \leq c t^{-1 / 3}
\end{aligned}
$$

for t large since $\log t \gg T$. Thus, for T large enough so that $c e^{-d T}<1 / T$, we see the proof is complete.

Proposition 2.2. With $r_{T}(s)=\int_{0}^{(s-T) \vee 0} f(X(s)-X(u)) d u$, we have, for T sufficiently large,

$$
P\left(\limsup _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} r_{T}(s) d s \leq \frac{1}{T}\right)=1
$$

Proof. Define $A(n)=\left\{n^{-4} \int_{0}^{n^{4}} r_{T}(s) d s \geq 1 / T\right\}$. Then, by Lemma 2.1 and the Borel-Cantelli lemma, $P(A(n)$ i.o. $)=0$. However,

$$
\{A(n) \text { i.o. }\} \supset\left\{\lim \sup \frac{1}{t} \int_{0}^{t} r_{T}(u) d u>\frac{1}{T}\right\}
$$

and the proposition is proved.
3. The guiding thoughts of this section are, first, given X is "like a random walk with drift" in the sense of Proposition $1.1, X$ should spend most of its time near its maximum, and, second, when X is close to its maximum we have sufficient control on its behavior to make a successful comparison with X^{T}.

We first want to make some remarks of an elementary nature concerning the first point. Let Z_{n} be the random walk of Section 1 with transition probabilities $p(k, k+1)=\frac{1}{2}+\varepsilon, p(k, k-1)=\frac{1}{2}-\varepsilon$. Setting $Z_{n}^{*}=\max _{0 \leq k \leq n} Z_{k}$, the process $Y_{n}=Z_{n}^{*}-Z_{n}$ is a birth and death chain on \mathbb{N} with transition probabilities

$$
p(x, y)= \begin{cases}\frac{1}{2}-\varepsilon, & \text { if } y=x+1, x \geq 0 \\ \frac{1}{2}+\varepsilon, & \text { if } y=x-1, x \geq 1 \\ \frac{1}{2}+\varepsilon, & \text { if } y=x=0\end{cases}
$$

Then $\left\{Y_{n}\right\}$ has an invariant probability distribution given by

$$
\pi(y)=\frac{4 \varepsilon}{1+2 \varepsilon}\left(\frac{1-2 \varepsilon}{1+2 \varepsilon}\right)^{y}, \quad y \in \mathbb{N}
$$

Thus, if $\tau_{y}=\inf \left\{n>0: Y_{n}=y\right\}$,

$$
E_{0} \tau_{0}=\frac{1+2 \varepsilon}{4 \varepsilon}<\infty
$$

so thinking of $\left\{Y_{n}\right\}$ as being composed of independent excursions from 0 , the expected excursion length is $(1+2 \varepsilon) / 4 \varepsilon$. Moreover, letting H denote the maximum height of an excursion, one has

$$
\begin{aligned}
P(H=x)= & \left(\frac{1}{2}-\varepsilon\right) P_{1}\left(\tau_{x}<\tau_{0}\right) P_{x}\left(\tau_{0}<\tau_{x+1}\right) \\
= & \left(\frac{1}{2}-\varepsilon\right) \frac{1}{\sum_{y=0}^{x-1}(((1 / 2)+\varepsilon) /((1 / 2)-\varepsilon))^{y}} \\
& \times \frac{1}{\sum_{y=0}^{x}(((1 / 2)-\varepsilon) /((1 / 2)+\varepsilon))^{y}} \\
\cong & c(\varepsilon)\left(\frac{1-2 \varepsilon}{1+2 \varepsilon}\right)^{x}, \quad x \rightarrow \infty .
\end{aligned}
$$

Or $P(H \geq x) \cong C e^{-c x}$ for some positive constants c and C. This leads to the estimate, using T^{8} as an upper bound for the number of excursions before T^{8},

$$
\begin{aligned}
& P\left(Y_{n}>\sqrt{T} \text { for some } n \leq T^{8}\right) \\
& \quad=1-P\left(Y_{n} \leq \sqrt{T}, \forall n \leq T^{8}\right) \\
& \quad \leq 1-\left(1-C e^{-c \sqrt{T}}\right)^{T^{8}} \\
& \quad \leq C e^{-c \sqrt{T}} \text { for } T \text { large with a change of constants. }
\end{aligned}
$$

Define the stopping times $T_{0}=0$, and, for $i>0, T_{i}=T\left(1,1, T_{i-1}\right)=$ $\inf \left\{t>T_{i-1}:\left|X(t)-X\left(T_{i-1}\right)\right|=1\right\}$ and the random variables $M_{i}=$ $\sup _{0 \leq j \leq i} X\left(T_{j}\right)$. The next lemma follows easily from Proposition 1.1.

Lemma 3.1. Let Z_{n} be the random walk described above. We may couple $\left\{Z_{n}\right\}$ and $\left\{X\left(T_{n}\right)\right\}$ so that:
(i) For each $n, X\left(T_{n}\right) \geq Z_{n}$, a.s.
(ii) For each $n, M_{n}-X\left(T_{n}\right) \leq Z_{n}^{*}-Z_{n}$, a.s.

As a consequence, for some $c>0$,

$$
\begin{equation*}
P\left(\liminf _{t \rightarrow \infty} \frac{X(t)}{t}>c\right)=1 . \tag{iii}
\end{equation*}
$$

Proof. We only show (iii). It follows directly from the coupling of $X\left(T_{i}\right)$ and Z_{i} that

$$
\liminf _{i \rightarrow \infty} \frac{X\left(T_{i}\right)}{i} \geq 2 \varepsilon \quad \text { a.s. }
$$

Also,

$$
\limsup _{i \rightarrow \infty} \frac{T_{i}}{i} \leq c<\infty \quad \text { a.s. }
$$

follows from the fact that T_{i} is stochastically bounded by a sum of i independent random variables distributed like the ones in Proposition 1.1(ii).

Corollary 3.2. If $A(j)=\left\{\exists T_{i} \in\left[j T^{8},(j+1) T^{8}\right]: M_{i}-X\left(T_{i}\right)>\sqrt{T}\right\}$, then there exist positive constants c and C such that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} 1_{A(j)} \leq C e^{-c \sqrt{T}} \quad \text { a.s. }
$$

Proof. Given $\left\{T_{i}\right\}$, consider the subsequence of stopping times defined as follows:

$$
\begin{aligned}
S_{0} & =0 \\
S_{2 n+1} & =\inf \left\{T_{i}>S_{2 n}: M_{i}-X\left(T_{i}\right)>\sqrt{T}\right\}, \quad n \geq 0 \\
S_{2 n} & =\inf \left\{T_{i}>S_{2 n-1}: M_{i}=X\left(T_{i}\right)>X\left(T_{j}\right), \forall j<i\right\}, \quad n \geq 1
\end{aligned}
$$

Now a problem in dealing with the times $T_{i+1}-T_{i}$ is that the drifts which influence their size can be arbitrarily large and thus $T_{i+1}-T_{i}$ can, given $F_{T_{i}}$, be arbitrarily stochastically small. However, by Proposition 1.1(ii), we have exponential upper bounds on this distribution uniformly over $F_{T_{i}}$. Thus, if

$$
V_{n}=\#\left\{j:\left[j T^{8},(j+1) T^{8}\right] \cap\left[S_{2 n-1}, S_{2 n}\right] \neq \varnothing\right\}
$$

then Proposition 1.1(i) and (ii) and basic large deviations estimates yield

$$
P\left(V_{n} \geq k \mid F_{S_{2 n-1}}\right) \leq 2^{-(k-2)}, \quad k \geq 1
$$

for T sufficiently large. This is because, for $k \geq 3$,

$$
\left\{V_{n} \geq k\right\} \subset\left\{T\left(\sqrt{T}+2, \infty, S_{2 n-1}\right) \geq S_{2 n-1}+(k-2) T^{8}\right\}
$$

By Corollary 1.6,

$$
P\left(V_{n} \geq k \mid F_{S_{2 n-1}}\right) \leq C e^{-\delta(k-2) T^{8} / \sqrt{T}+2}
$$

As δ is fixed, this upper bound is less than $2^{-(k-2)}$ for all $k>2$ when T is sufficiently large.

On the other hand, if $M_{i}=X\left(T_{i}\right)>X\left(T_{j}\right), \forall j<i$, then there is a $p>0$ such that if

$$
\begin{aligned}
& A_{1}(i)=\left\{X\left(T_{i+1}\right)-X\left(T_{i}\right)=1, T_{i+1}-T_{i} \leq 1\right\} \\
& A_{2}(i)=\left\{X\left(T_{i+2}\right)-X\left(T_{i+1}\right)=1, T_{i+2}-T_{i} \geq 1\right\}
\end{aligned}
$$

then $P\left(A_{1}(i) \cap A_{2}(i) \mid F_{T_{i}}\right) \geq p$ on $\left\{M_{i}=X\left(T_{i}\right)>X\left(T_{j}\right), \forall j<i\right\}$. Thus we have (with suitable adjustment of constants) from the remarks preceding Lemma 3.1 that if

$$
U_{n}=\#\left\{j:\left[j T^{8},(j+1) T^{8}\right] \subseteq\left[S_{2 n}, S_{2 n+1}\right]\right\}
$$

then $P\left(U_{n} \geq C e^{c \sqrt{T}} \mid F_{S_{2 n}}\right) \geq \frac{1}{2}$ for some strictly positive c, C not depending on T, so long as T is sufficiently large. This can be seen as follows.

Define, for fixed n,

$$
R_{0}=S_{2 n}
$$

and, for $v \geq 0$,

$$
R_{v+1}=\inf \left\{T_{i}>R_{v}: M_{i}=X\left(T_{i}\right)>X\left(T_{j}\right), \forall j<i\right\}
$$

Then, by Lemma 3.1 and the remarks preceding it, for suitable $c, C, c^{\prime}, C^{\prime}$, independent of T,

$$
P\left(R_{\left[C e^{c \sqrt{T}}\right]} \geq S_{2 n+1} \mid F_{S_{2 n}}\right) \leq C^{\prime} e^{-c^{\prime} \sqrt{T}}
$$

By our choice of p and the strong Markov property of Brownian motion,

$$
P\left(R_{j+2}-R_{j}>1 \mid F_{R_{j}}\right) \geq p \quad \forall j
$$

Thus, by standard binomial tail probabilities,

$$
P\left(\left.R_{\left[C e^{c \sqrt{T}}\right]} \geq \frac{p}{2} C e^{c \sqrt{T}}+R_{0} \right\rvert\, F_{R_{0}}\right) \geq 1-C^{\prime \prime} e^{-c^{\prime \prime} \sqrt{T}}
$$

for positive $c^{\prime \prime}, C^{\prime \prime}$ not depending on T. On replacing C by $p C / 2$, we obtain the desired inequality.

These inequalities and the fact that

$$
V_{1}, \ldots, V_{j-1} \in F_{S_{2 j-1}}, \quad U_{1}, \ldots, U_{j-1} \in F_{S_{2 j}}
$$

yield i.i.d. Bernoulli random variables I_{j} such that

$$
U_{j} \geq C e^{c \sqrt{T}} I_{j} \quad \forall j
$$

and i.i.d. geometric with parameter $\frac{1}{2}$ random variables H_{j} such that

$$
V_{j} \leq 1+H_{j} \quad \forall j
$$

Thus

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} U_{j} & \geq C e^{c \sqrt{T}} \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I_{j} \\
& =\frac{C}{2} e^{c \sqrt{T}}
\end{aligned}
$$

Also,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} V_{j} \leq 1+\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} H_{j}
$$

$$
\leq 3
$$

Now, assuming without loss of generality that $S_{2 n+1}<\infty, \forall n$, if $(n+1) T^{8} \in$ [$S_{2 m}, S_{2 m+2}$], then

$$
\sum_{j=1}^{n} 1_{A(j)} \leq \sum_{k=1}^{m+1} V_{k}
$$

and

$$
\sum_{k=1}^{m-1} U_{k} \leq n
$$

Thus, with the new value of C we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} 1_{A(j)} & \leq \limsup _{m \rightarrow \infty}\left(\frac{\sum_{k=1}^{m+1} V_{k}}{\sum_{k=1}^{m-1} U_{k}}\right) \\
& \leq C e^{-c \sqrt{T}}
\end{aligned}
$$

and the proof is complete.
Corollary 3.3. If $B(j)=\left\{\exists t \in\left[j T^{8},(j+1) T^{8}\right]: X(t) \leq 1+\sup _{s \leq t-T} X(s)\right\}$, then there exist positive constants c and C such that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} 1_{B(j)} \leq C e^{-c \sqrt{T}}
$$

Proof. Set $L(j)=\left\{\exists t \in\left[j T^{8},(j+1) T^{8}\right]: \inf _{r \geq t} X(r)-X(t-T) \leq \sqrt{T}+4\right\}$. First, we make the claim: $B(j) \subseteq L(j) \cup A(j-1) \cup A(j)$. Now on $B(j) \backslash L(j)$ we have for some $t \in\left[j T^{8},(j+1) T^{8}\right]$ that

$$
X(t) \leq 1+X^{*}(t-T) \equiv \sup _{s \leq t-T} X(s)
$$

and

$$
X(t)-X(t-T) \geq \sqrt{T}+4
$$

Now take T_{i} so that $T_{i} \leq t-T<T_{i+1}$. Then $T_{i} \in\left[(j-1) T^{8},(j+1) T^{8}\right]$ except on a set of probability not exceeding $C e^{-c\left(T^{8}-T\right)}$ by Proposition 1.1(ii) and

$$
\begin{aligned}
M_{i}-X\left(T_{i}\right)= & \left(M_{i}-X^{*}(t-T)\right)+\left(X^{*}(t-T)-X(t)\right) \\
& +(X(t)-X(t-T))+\left(X(t-T)-X\left(T_{i}\right)\right) \\
\geq & (-1)+(-1)+(\sqrt{T}+4)+(-1) \\
\geq & \sqrt{T}
\end{aligned}
$$

Thus $B(j) \backslash L(j) \subset A(j-1) \cup A(j)$ and the claim is proved. Next set $t_{j, i}=$ $j T^{8}+i T^{-9}$ for $i=0,1, \ldots, T^{17}$, and define $L(j, i)=\left\{\inf _{r \geq t_{j, i}} X(r)-X\left(t_{j, i}-\right.\right.$ $T) \leq \sqrt{T}+5\}$.

By Corollary 1.5, $P\left(L(j, i) \mid F_{j T^{8}}\right) \leq C_{1} e^{-d_{1} T}$ provided T is sufficiently large. By an argument similar to that used in Corollary 3.2, $P(L(j) \backslash$ $\left.\bigcup_{i=0}^{T^{17}} L(j, i) \mid F_{j T^{8}}\right) \leq C e^{-c \sqrt{T}}$ (the probability X moves more than one between $t_{j, i}$ and $t_{j, i+1}$ is small). Since $B(j) \subseteq L(j) \cup A(j-1) \cup A(j)$, the corollary now follows from Corollary 3.2 and Dubins and Freedman (1965).

The next corollary follows easily from Corollary 3.3. It is crucial for our attempt to couple X with X^{T} as it gives many times in $\left[j T^{8},(j+1) T^{8}\right]$ at which X has "almost forgotten" its history.

Corollary 3.4. Define $\sigma_{1}^{j}=\inf \left\{t \geq j T^{8}: X(t)=\sup _{s \leq t} X(s)\right\}$, and, for $i>0, \sigma_{i+1}^{j}=\inf \left\{t \geq \sigma_{i}^{j}+T+4: X(t)=\sup _{s \leq t} X(s)\right\}$. Let τ_{i}^{j} be the analogously defined times for X^{T}. Define $C(j)=\left\{\sigma_{T+1}^{j}>j T^{8}+T^{3}\right\}, D(j)=\left\{\tau_{T+1}^{j}>\right.$ $\left.j T^{8}+T^{3}\right\}$. Then there exist positive constants c and C such that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} 1_{C(j) \cup D(j)} \leq C e^{-c \sqrt{T}} .
$$

Proof. By Corollary 3.2, it suffices to show $P\left(C(j) \cup D(j) \cap A(j)^{c} \mid F_{j T^{8}}\right) \leq$ $C e^{-c \sqrt{T}}$. By definition, on $A(j)^{c}$, one has $X^{*}(t)<X(t)+\sqrt{T}+2, \forall t \in\left[j T^{8}\right.$, $\left.(j+1) T^{8}\right]$. Thus we need to estimate probability bounds for the time to achieve the maximum when the maximum is not greater than $\sqrt{T}+2$ plus the present value. Define, for $j T^{8} \leq t<(j+1) T^{8}, A(j ; t)=\left\{\exists T_{i} \in\left[t,(j+1) T^{8}\right]: M_{i}-\right.$ $\left.X\left(T_{i}\right)>\sqrt{T}\right\}$. From Corollary 3.2 it is clear that $P\left(A(j ; t) \mid F_{t}\right) \leq C e^{-c \sqrt{T}}$. By Corollary 1.5, $P\left(X(u)-X(t) \leq c_{1}(u-t) \mid F_{t}\right) \leq C e^{-c(u-t)}$ so that if $u=T+t$, one has

$$
\begin{aligned}
& P\left(X(T+t)<X^{*}(t) \mid F_{t}\right) \\
& \quad \leq P\left(X(T+t)<X(t)+\sqrt{T}+2 \mid F_{t}\right)+P\left(A(j ; t) \mid F_{t}\right) \\
& \quad \leq P\left(X(T+t)<X(t)+c_{1} T \mid F_{t}\right)+C e^{-c \sqrt{T}} \\
& \quad \leq C e^{-c \sqrt{T}} .
\end{aligned}
$$

This implies $P\left(\sigma_{i+1}^{j}-\sigma_{i}^{j}>2 T+4 \mid F_{\sigma_{i}^{j}}\right) \leq C e^{-c \sqrt{T}}$ and so $P\left(\sigma_{T+1}^{j}>j T^{8}+\right.$ $\left.T^{3} \mid F_{j T^{8}}\right) \leq C e^{-c \sqrt{T}}$. The same argument applies to τ_{i}^{j} and X^{T} (see the remark following Corollary 1.5). These estimates and Dubins and Freedman (1965) complete the proof.

The next result contains the main step in the proof of Theorem 1. The proof will be broken up into a series of lemmas.

Proposition 3.5. There is a coupling of X and X^{T} and an event $V(j) \in$ $F_{(j+1) T^{8}}$ satisfying:
(i) $P\left(V(j) \mid F_{j T^{8}}\right) \leq C e^{-c T}$ for some positive c, C;
(ii) $V(j)^{c} \subset B(j) \cup C(j) \cup D(j) \cup E(j)$, where

$$
\begin{aligned}
E(j)=\{\mid & \int_{j T^{8}}^{(j+1) T^{8}} d s \int_{(s-T) \vee 0}^{s} f(X(s)-X(u)) d u \\
& \left.-\int_{j T^{8}}^{(j+1) T^{8}} d s \int_{(s-T) \vee 0}^{s} f\left(X^{T}(s)-X^{T}(u)\right) d u \mid \leq 3 T^{4}\right\}
\end{aligned}
$$

Note that $B(j)$ is as defined in Corollary 3.3, $C(j)$ and $D(j)$ as in Corollary 3.4.

We can now give the proof of Theorem 1.
Proof of Theorem 1. We have that, as $t \rightarrow \infty$ a.s.,

$$
\frac{1}{t} \int_{0}^{t} d s \int_{(s-T) \vee 0}^{s} f\left(X^{T}(s)-X^{T}(u)\right) d u \rightarrow C_{T}
$$

Using the coupling of Proposition 3.5 and Corollary 3.4 applied to both X and X^{T} and defining $b_{T}(s)=\int_{(s-T) \vee 0}^{s} f(X(s)-X(u)) d u$,

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty}\left|C_{T}-\frac{1}{t} \int_{0}^{t} d s b_{T}(s)\right| \\
&= \limsup _{t \rightarrow \infty} \left\lvert\, \frac{1}{t} \int_{0}^{t} d s \int_{(s-T) \vee 0}^{s} f\left(X^{T}(s)-X^{T}(u)\right) d u\right. \\
& \left.\quad-\frac{1}{t} \int_{0}^{t} d s \int_{(s-T) \vee 0}^{s} f(X(s)-X(u)) d u \right\rvert\, \\
&= \limsup _{n \rightarrow \infty} \left\lvert\, \frac{1}{n T^{8}} \sum_{j=0}^{n-1} \int_{j T^{8}}^{(j+1) T^{8}} d s \int_{(s-T) \vee 0}^{s}(f(X(s)-X(u))\right. \\
& \leq\left.\quad-f\left(X^{T}(s)-X^{T}(u)\right)\right) d u \mid \\
& \quad \limsup _{n \rightarrow \infty} \frac{T}{n} \sum_{j=0}^{n-1} 1_{V(j)}+\limsup _{n \rightarrow \infty} \frac{T}{n} \sum_{j=0}^{n-1} 1_{B(j) \cup C(j) \cup D(j)} \\
& \quad+\limsup _{n \rightarrow \infty} \frac{c T^{4}}{n T^{8}} \sum_{j=0}^{n-1} 1_{E(j)} \\
& \leq C T e^{-c T}+C T e^{-c \sqrt{T}}+\frac{c}{T^{4}} \quad \text { by Dubins and Freedman (1965) } \\
&< \frac{c}{T^{4}} .
\end{aligned}
$$

Together with Proposition 2.2, this implies

$$
\limsup _{t \rightarrow \infty}\left|C_{T}-\frac{1}{t} \int_{0}^{t} d s \int_{0}^{s} f(X(s)-X(u)) d u\right| \leq \frac{c}{T^{4}}+\frac{1}{T}
$$

Letting $T \rightarrow \infty$ and using Lemma 3.1(iii) finishes the proof.
By a coupling we mean a joint distribution and one such is called the maximal coupling for two random variables. Let X and Y be $C[0,1]$-valued random variables which have densities f_{x} and f_{y} with respect to the Wiener measure ν. Then there is a joint distribution such that $P(X=Y)=\int f_{x}(z) \wedge$ $f_{y}(z) \nu(d z)$. See, for example, Pitman (1976).

In our next lemma we shall use the following device: given stopping times σ for X and τ for X^{T}, we say X and X^{T} are driven by the same Brownian motion, β_{t}, after (σ, τ) if

$$
\begin{aligned}
X(\sigma+t) & =X(\sigma)+\beta_{t}+\int_{0}^{\sigma+t} d s \int_{0}^{s} f(X(s)-X(u)) d u \\
X^{T}(\tau+t) & =X^{T}(\tau)+\beta_{t}+\int_{\tau}^{\tau+t} d s \int_{(s-T) \vee 0}^{s} f\left(X^{T}(s)-X^{T}(u)\right) d u
\end{aligned}
$$

LEMMA 3.6. Let σ and τ be stopping times for X and X^{T}, respectively. Let $A \in F_{\sigma, \tau} \equiv F_{\sigma}(X) \vee F_{\tau}\left(X^{T}\right)$ be such that the following hold on A :
(i) $X(\sigma-s)-X(\sigma)=X^{T}(\tau-s)-X^{T}(\tau), 0 \leq s \leq 1$;
(ii) $\sup _{s \leq \sigma-1} X(s)<X(\sigma)-2$;
(iii) $\sup _{s \leq \tau-1} X^{T}(s)<X^{T}(\tau)-2$.

Then if X and X^{T} are driven by the same Brownian motion after (σ, τ), on the set A one has $X(\sigma+s)-X(\sigma)=X^{T}(\tau+s)-X^{T}(\tau)$ for all $s \leq S_{0} \equiv \inf \{t>$ $0: X(\sigma+t)-X(\sigma) \leq-1\} \wedge \inf \left\{t>0: X(\sigma+t)-1 \leq \sup _{r \leq \sigma+t-T} X(r)\right\}$.

Proof. Observe that S_{0} is the first time after σ when X is influenced by times more than T units in its past; that is, the first time it differs from X^{T}.

Lemma 3.7. Suppose σ and τ are stopping times for X and X^{T}, respectively, and that, on a set $A \in F_{\sigma+T, \tau+T}, X(\sigma+s)-X(\sigma)=X^{T}(\tau+s)-X^{T}(\tau)$ for $0 \leq s \leq T$. If X and X^{T} are driven by the same Brownian motion after $(\sigma+T, \tau+T)$, then, on the set A,

$$
\begin{aligned}
& X(\sigma+s)-X(\sigma)=X^{T}(\tau+s)-X^{T}(\tau) \\
& \text { for } 0 \leq s \leq \tilde{S}_{0} \equiv \inf \left\{t>T: X(\sigma+t)-1 \leq \sup _{r \leq \sigma+t-T} X(r)\right\}
\end{aligned}
$$

Proof. As in the previous proof, $\sigma+\tilde{S}_{0}$ is the first time X stops behaving as if it were X^{T}.

LEMMA 3.8. Let σ, τ be stopping times for X and X^{T}, respectively, with $X(\sigma)=\sup _{s \leq \sigma} X(s), X^{T}(\tau)=\sup _{s \leq \tau} X^{T}(s)$. Define stopping times $T_{\sigma, 2}, S_{\tau, 2}$ by $T_{\sigma, 2}=\inf \{s>\sigma: X(s)-X(\sigma)=2\}, S_{\tau, 2}=\inf \left\{s>\tau: X^{T}(s)-X^{T}(\tau)=2\right\}$. There exists a positive constant c, independent of T, and a coupling of $X(\sigma+\cdot)$ and $X^{T}(\tau+\cdot)$ such that, conditional on $F_{\sigma, \tau}$, the following event has probability at least c :

$$
\begin{aligned}
& \left\{X\left(T_{\sigma, 2}+s\right)-X\left(T_{\sigma, 2}\right)=X^{T}\left(S_{\tau, 2}+s\right)-X^{T}\left(S_{\tau, 2}\right), 0 \leq s \leq 1\right\} \\
& \quad \cap\left\{X\left(T_{\sigma, 2}+1\right)-X\left(T_{\sigma, 2}\right)=X^{T}\left(S_{\tau, 2}+1\right)-X^{T}\left(S_{\tau, 2}\right)>2\right\}
\end{aligned}
$$

Proof. On $\left[\sigma, T_{\sigma, 2}\right]$, $\left[\tau, S_{\tau, 2}\right]$ drive X and X^{T} by independent Brownian motions. Set $A_{1}=\left\{T_{\sigma, 2}-\sigma \leq 1\right\}, A_{2}=\left\{S_{\tau, 2}-\tau \leq 1\right\}$. By a simple comparison using the fact that X and X^{T} have positive drift and independence,

$$
P\left(A_{1} \cap A_{2} \mid F_{\sigma, \tau}\right) \geq\left(\sqrt{\frac{2}{\pi}} \int_{2}^{\infty} \exp \left(-\frac{x^{2}}{2}\right) d x\right)^{2}
$$

On the event $A_{1}, Y(s)=X\left(T_{\sigma, 2}+s\right)-X\left(T_{\sigma, 2}\right), 0 \leq s \leq 1$, is a process with drift bounded by 2 so long as Y does not reach -1 . Now consider the space of paths of Y, namely $C[0,1]$. The law of Y is absolutely continuous with respect to Wiener measure on $C[0,1]$ which we denote by ν. The density given by the Cameron-Martin-Girsanov formula will shortly be seen to be "manageable" on the set $F=\{w \in C[0,1]: w(0)=0$, $\inf w(s)>-1, w(1)>2\}$. Similar considerations apply to $Y^{T}(s)=X^{T}\left(S_{\tau, 2}+s\right)-X^{T}\left(S_{\tau, 2}\right), 0 \leq s \leq 1$.

To make this precise, for $w \in C[0,1]$, let

$$
X^{w}(t)= \begin{cases}X(t), & t \leq T_{\sigma, 2} \\ X\left(T_{\sigma, 2}\right)+w\left(t-T_{\sigma, 2}\right) & \\ \quad+\int_{T_{\sigma, 2}}^{t} d s \int_{0}^{s} f\left(X^{w}(s)-X^{w}(u)\right) d u, & t \geq T_{\sigma, 2}\end{cases}
$$

and

$$
b(s, w)=1_{\left\{\inf _{0 \leq r \leq s} w(r) \geq-1\right\}} \int_{0}^{T_{\sigma, 2}+s} f(X(s)-X(u)) d u
$$

Then, on $A_{1},|b(s, w)|<2$ for all w, and, on F, the law of Y has density with respect to ν given by

$$
f_{Y}(w)=\exp \left\{\int_{0}^{1} b(s, w) d w-\frac{1}{2} \int_{0}^{1} b^{2}(s, w) d s\right\}
$$

Noticing that $E\left(\int_{0}^{1} b(s, w) d w\right)^{2}=E \int_{0}^{1} b^{2}(s, w) d s \leq 4$, it follows that we can select n sufficiently large to make

$$
\begin{aligned}
\nu\left(F \cap\left\{f_{Y} \geq \frac{1}{n}\right\}\right) & \geq \nu\left(F \cap\left\{\int_{0}^{1} b(s, w) d w \geq-\log n+4\right\}\right) \\
& \geq \frac{3}{4} \nu(F)
\end{aligned}
$$

A similar argument for Y^{T} shows, for n large enough,

$$
\nu\left(F \cap\left\{f_{Y^{T}} \geq \frac{1}{n}\right\}\right) \geq \frac{3}{4} \nu(F)
$$

Thus, fixing an n which makes both inequalities hold yields a coupling (joint distribution) of Y and Y^{T} such that

$$
P\left(Y=Y^{T}, Y \in F\right) \geq \frac{1}{2 n} \nu(F) .
$$

Proof of Proposition 3.5. Our object is to show that for most j, there are random times σ^{j} and τ^{j} in $\left[j T^{8},(j+1) T^{8}\right]$ such that $\sigma^{j}, \tau^{j} \leq j T^{8}+T^{3}$ and, for $s \leq T^{8}-T^{3}, X\left(\sigma^{j}+s\right)-X\left(\sigma^{j}\right)=X^{T}\left(\tau^{j}+s\right)-X^{T}\left(\tau^{j}\right)$. We attempt to couple X and X^{T} at the times $\sigma_{i}^{j}, \tau_{i}^{j}$ as in Lemma 3.8. On $(C(j) \cup D(j))^{c}$ we will have T attempts over an interval of length T^{3} to link X and X^{T}. It follows that outside of a set of exponentially small probability in T, either $C(j) \cup D(j)$ occurs or there are times $\sigma^{j}, \tau^{j} \leq j T^{8}+T^{3}$ for which $X\left(\sigma^{j}+s\right)-X\left(\sigma^{j}\right)=$ $X^{T}\left(\tau^{j}+s\right)-X^{T}\left(\tau^{j}\right), 0 \leq s \leq T$. By Lemma 3.7, this linkage will prevail for $0 \leq s \leq T^{8}-T^{3}$ unless the event $B(j)$ of Corollary 3.3 occurs. We now give a more detailed account of this argument.

All of the following statements hold on $(B(j) \cup C(j) \cup D(j))^{c}$. There are stopping times for X and $X^{T}, \sigma_{i}^{j}, \tau_{i}^{j} \geq j T^{8}$ with $\sigma_{T+1}^{j}, \tau_{T+1}^{j} \leq j T^{8}+T^{3}$, $\sigma_{i+1}^{j}-\sigma_{i}^{j} \geq T+4, \tau_{i+1}^{j}-\tau_{i}^{j} \geq T+4,0 \leq i \leq T$. By Lemma 3.8 there is a $C>0$ such that, conditional on $F_{\sigma_{1}^{j}, \tau_{1}^{j}}^{j}$, with probability at least C,

$$
\begin{equation*}
X\left(T_{\sigma_{1}^{j}, 2}+s\right)-X\left(T_{\sigma_{1}^{j}, 2}\right)=X^{T}\left(S_{\tau_{1}^{j}, 2}+s\right)-X^{T}\left(S_{\tau_{1}^{j}, 2}\right), \quad 0 \leq s \leq 1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
X\left(T_{\sigma_{1}^{j}, 2}+1\right)-X\left(T_{\sigma_{1}^{j}, 2}\right)=X^{T}\left(S_{\tau_{1}^{j}, 2}+1\right)-X^{T}\left(S_{\tau_{1}^{j}, 2}\right)>2 . \tag{2}
\end{equation*}
$$

Let the event described by (1) and (2) be denoted by L_{1}. On L_{1}, drive X and X^{T} after $T_{\sigma_{1}^{j}, 2}+1, S_{\tau_{1}^{j}, 2}+1$ by the same Brownian motion. Let $K_{1}=$ $\left\{\inf _{t \in[0, T]} X\left(T_{\sigma_{1}^{j}, 2}+t\right)-X\left(T_{\sigma_{1}^{j}, 2}\right) \geq-1\right\}$. By Lemma 3.7, on $L_{1} \cap K_{1}, X\left(T_{\sigma_{1}^{j}, 2}+\right.$ $s)-X\left(T_{\sigma_{1}^{j}, 2}\right)=X^{T}\left(S_{\tau_{1}^{j}, 2}+s\right)-X^{T}\left(S_{\tau_{1}^{j}, 2}\right), 0 \leq s \leq T^{8}-T^{3}$. By Lemma 3.8 and Proposition 1.1, $P\left(L_{1} \cap K_{1} \mid F_{\sigma_{1}^{j}, \tau_{1}^{j}}\right)>\gamma$ for some strictly positive γ not depending on T. If $L_{1} \cap K_{1}$ does not occur, we try again at the times σ_{2}^{j}, τ_{2}^{j} and so on. Setting $V_{j}=\bigcap_{i=1}^{[T]}\left(K_{i} \cap L_{i}\right)^{c}$, the set on which coupling in $\left[j T^{8},(j+1) T^{8}\right]$ fails, $P\left(V_{j} \mid F_{j T^{8}}\right) \leq(1-\gamma)^{[T]} \leq C e^{-\gamma T}$.

Acknowledgments. The authors gratefully acknowledge the referee and the associate editor for their patient efforts in improving this manuscript.

REFERENCES

Dubins, L. and Freedman, D. (1965). A sharper form of the Borel-Cantelli lemma and the strong law. Ann. Math. Statist. 36 800-807.

Durrett, R. and Rogers, L. C. G. (1991). Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92 337-349.
Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam.
Karatzas, I. and Shreve, S. E. (1987). Brownian Motion and Stochastic Calculus. Springer, New York.
Levy, P. (1965). Processus Stochastiques et Mouvement Brownien. Gauthiers-Villars, Paris.
Norris, J. R., Rogers, L. C. G. and Williams, D. (1987). Self-avoiding random walk: a Brownian motion model with local time drift. Probab. Theory Related Fields 74 271-287.
Pitman, J. (1976). On coupling of Markov chains. Z. Wahrsch. Verw. Gebiete 35 315-322. Revuz, D. (1975). Markov Chains. North-Holland.

Department of Mathematics	Department of Mathematics
University of Rochester	University of California
Rochester, New York 14627	LOS Angeles, CALIFORNIA 90024
E-MAIL: cran@math.rochester.edu	E-MAIL: malloy@math.ucla.edu

[^0]: Received August 1992; revised December 1995
 ${ }^{1}$ Research supported by a grant from NSA and the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.
 ${ }^{2}$ Research supported by a grant from the NSF and a grant from the Sloan Foundation. The author also wishes to acknowledge support from FAPSEP.

 AMS 1991 subject classifications. Primary 60F15, 60H05.
 Key words and phrases. Brownian motion, self-avoiding process, coupling.

