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ON THE CONVEX HULL OF PLANAR BROWNIAN SNAKE1

By John Verzani

York University

The planar Brownian snake is a continuous, strong Markov process
taking values in the space of continuous functions in R2 that are stopped at
some time. For a fixed time the snake is distributed like a planar Brownian
motion with a random lifetime. This paper characterizes the convex hull
of the trace of the snake paths that exit the half-plane at the origin. It is
shown that the convex hull at 0 is roughly a factor of x smoother than the
convex hull of a piece of planar Brownian motion at its minimum y-value.

The Brownian snake process of Le Gall is a continuous, strong Markov
process taking its values in the space of paths with a random lifetime. For a
fixed time t the process is distributed as a Brownian path stopped at a random
time, and at a future time s the snake is generated by tracing back on the
path at time t until some random point determined by the lifetime process
where an independent piece of stopped Brownian path is added on.

For a smooth domain D in dimension 2, it is shown in Abraham and
Le Gall [1] that the Brownian snake will, with positive measure, be a path
that exits the domain at a given point; that is, it hits points on the boundary
of D as it exits D. In particular, for the upper half-plane, H, the origin is a
point of exit. Let C̃ denote the convex hull of the trace of those snake paths
which exit H at 0 up until the time of exiting H, let f be a function such
that �x; f�x�� parameterizes ∂C̃ locally near the origin and let T denote the
first time that the Brownian snake is a path which exits H at 0. We establish
the following two theorems for the convex hull. Here Nz denotes the excursion
measure, to be defined later, under which all paths start at z

Theorem 0.1. Let g�x� = x2h�x� be an even, convex, C 2 function satisfying
h�e−k�/h�e−k−1� → 1. Then, N�0;1�-almost surely on the event �T <∞�,

lim inf
x→0

f�x�
g�x� =





0; if
∑
k

h�e−k� = ∞;

∞; if
∑
k

h�e−k� <∞:

Theorem 0.2. Let g�x� = x2h�x� be an even, convex function satisfying
h�2−k�/h�2−k−1� → 1. Then, N�0;1�-almost surely on the event �T <∞�,

lim sup
x→0

f�x�
g�x� =

{
∞; if h�x� → 0;

0; if h�x� → ∞:
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Remark 0.3. It is shown for all finite c that lim supx→0 f�x�/x2 ≥ c with
positive N�0;1� measure, but not almost surely.

Remark 0.4. The family of functions, for n ≥ 1; �ε� < 2,

hn; ε�x� = log�1/x� log2�1/x� · · · �logn�1/x��ε;

satisfy the growth conditions of the theorems.

The convex hull of the two-dimensional Brownian path over �0; 1� at its
minimum value has been studied. In Cranston, Hsu and March [4], lim inf
results are established which yield an integral test similar to our summation
test (cf. [3]). Let f be a function locally giving the convex hull satisfying f�0� =
0, and let g be an even, convex function. Then lim inf f/g = 0�∞� if and only
if
∫

0+ g�x�x−2 = ∞�<∞�.
A sharp characterization of the lim sup of the convex hull is given by Mount-

ford [11] improving upon the work of Burdzy and San Martin [3]. Mountford
establishes that �1/π�x log3�1/x�/ log�1/x� is an upper function for f�x�.

This paper shows that the convex hull in question is a factor of x smoother
than that studied for the Brownian motion.

The paper begins with a preliminary section where facts about the Brown-
ian snake and some general results are presented. The proofs of the theorems
follow, starting with the lim inf result. The proofs for all four bounds are sim-
ilar. A geometric criterion, as in [3], is used to bound the probability of a point
being in C̃ by the probability that a ray is hit by one of the paths.

To describe this, fix z = �x; y� with x; y > 0. Let A be the ray emanating
from z on the line connecting z and 0. Fix 0 < x′ < x. Let B be the ray from
�x′; 0� that intersects z. If a path from �0; 1� to 0 crosses A, then the point z
will be in the convex hull generated by this path, since a point on A and the
origin will be in the convex hull. Similarly, if no snake path from �0; 1� exiting
the half-plane at the origin crosses B, then the point z cannot possibly be in
the convex hull generated by such paths. Hence, to characterize if a point z
is in the convex hull, we need to understand if these rays are hit by snake
paths that exit the half-plane at the origin. This can be done using a known
excursion decomposition of the snake process. (See Figure 1).

To make almost sure statements, a type of 0–1 law is proved that makes use
of a Poisson description of the process started from an initial starting path.

1. Preliminaries. In this paper a measure with an extra bar, such as N,
will denote a measure for the path-valued process. Measures without the extra
bar will represent a Brownian motion which will be denoted generically by a
B. As it is convenient, complex variable notation will be used to describe the
plane R2. In particular, reiθ will denote the point �r cos θ; r sin θ�, where we
will always assume r ≥ 0 and θ ∈ �0; 2π�, and if z = �x; y�, then Re�z� = x.
Finite, positive constants whose values are unimportant will be generically
denoted by ci for some i. For a domain D we denote the Poisson kernel by
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Fig. 1.

pD�z; y� and the Green function by GD�x; y�. Let cone�γ� = �reiα: r > 0; α ∈
�π/2− γ; π/2+ γ�� denote a cone with opening 2γ, γ < π/2.

The path-valued process, or Brownian snake, is a continuous, strong Markov
process on the space of stopped paths from R+ to Rd (cf. [7] and [6] for a
construction). The process has as a state space the set of stopped paths. Let
Wz denote those starting from z ∈ Rd:

Wz = ��w; ζ�: w ∈ C ��0; ∞�;Rd�; w�0� = z; w�ζ� = w�ζ + t� ∀t > 0�:
Let W = ⋃

Wz. We designate the tip or end of the path by ŵ = w�ζ� and
notationally we identify w with W, so that Ws�t� is the value of the path ws
evaluated at t. The notation for the lifetime is usually suppressed.

The path-valued process evolves under the measure E�w0; ζ0�, where the sub-
script denotes the starting path. The evolution of the process is controlled in
some sense by the lifetime process ζ. The process ζ under E�w0; ζ0� is distributed
like a one-dimensional reflecting Brownian motion. The path Ws′�·� at s′ > s is
distributed under E�w0; ζ0� like a Brownian path in R2 stopped at ζs′ . It agrees
up until η = inf�ζu: s ≤ u ≤ s′� with the path Ws�·�, and its distribution after
η is independent of Ws.

Let P∗�w0; ζ0� be the distribution for W killed when the lifetime process first
hits 0. Excursion theory is used to decompose the process into easier-to-
understand pieces. The symbol I = ��αi; βi�� will be used for the collection
of excursion intervals; the lifetime of an excursion will be denoted by a σ .
The excursion measure for excursions of the path-valued process away from
the recurrent state �ζ = 0� will be denoted by Nz, where the point z ∈ R2 is
identified with the trivial stopped path in Wz, �w; 0�, where w�0� = z.

As an example, let ζ0 > 0, and set ms = inf�ζu: u ≤ s�. By the well-known
theorem of Lévy, the process ζs − ms up until inf�s: ζs = 0� is distributed
under P∗�w0; ζ0� like a reflecting Brownian motion started from 0 up until the
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time when its local time at the origin becomes 2ζ0. Let I denote the excursion
intervals of ζ −m from 0, and for each excursion interval �αi; βi� define

Wi
s�t� =W�αi+s�∧βi�ζαi + t�:

Notice Wi
s�t� ∈ WŴαi

. The key tool to understand the process started from a
fixed path is the following result (cf. [10], Proposition 2.5).

Proposition 1.1. The random measure
∑
i∈I δζαi ;Wi under P∗�w0; ζ0� is a Pois-

son random measure with intensity 2dt1t≤ζ0
Nw0�t��·�.

That is, the trace of the process has a backbone, w0�·�, and branching off
this backbone at a rate 2dt are independent excursions of the process W.

To study the boundary behavior, we use the exit measure, as defined in [10].
Let D be a domain in R2. For a path f we define the exit time from D by

τD = τD�f� = inf�t: f�t� 6∈ D�;
with the agreement that τD = ∞ in the event the set in the infimum is empty.
Let ID denote the excursion intervals from 0 of the process �ζs − τD�Ws��+,
that is, the excursions of the path-valued process away from the boundary of
D. (These excursions may enter back into the domain; they are simply the
excursions relating to the times that the path process, W, is a path that has
leftD for some duration.) There is a local time on this set denoted byLD, which
may be derived in terms of the local time from 0 of an associated reflecting
Brownian motion. The exit measure is a random measure supported on the
boundary of D. As defined here, it is a random measure under Nz, z ∈ D,
given by its action on measurable functions φ on ∂D as

�XD; φ� =
∫ σ

0
dLDs φ�Ŵs�:

We will use the following facts about the Brownian snake. LetED
z be the dis-

tribution of �B·∧τD; τD <∞�, where B is a Brownian motion in R2. From [10],
Proposition 3.3, we have the following formula relating the measures Nz and
ED
z .

Proposition 1.2. For every nonnegative, measurable function F on Wz,

Nz
(∫ σ

0
dLDs F�Ws�

)
= ED

z �F�:

In particular, for nonnegative, measurable functions φ on ∂D, Nz��XD; φ�� =
Ez�φ�BτD��.

The exit measure enjoys the following special Markov property (cf. [8], The-
orem 2.3). Let

ηs = inf
{
t:
∫ t

0
du1�ζu ≤ τD�Wu�� > s

}
;
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and let E D be the Nz-completion of the σ-field generated byWηs
, a time change

of the path-valued process corresponding to the times when the paths have
not left D.

Theorem 1.3 (Special Markov property). For every nonnegative, measur-
able function 8 on C0�R+; W �,

Nz
(

exp−
∑
i∈ID

8�Wi� � E D

)
= exp−

∫
XD�dy�Ny�1− exp−8�:

Using the special Markov property, we state the following simple corollary.

Corollary 1.4. For 8 as above, by Proposition 1.2,

Nz
( ∑
i∈ID

8�Wi�
)
= d

dλ
Nz
(

exp−λ
∑
i∈ID

8�Wi�
)
�λ=0

= d

dλ
Nz
(

exp−
∫
XD�dy�Ny�1− exp−λ8�

)
�λ=0

= Nz
(∫

XD�dy�Ny�8�
)

= Ez�NBτ�8��:

We quote the following relationships between the Brownian snake and the
partial differential equation 1u = 4u2. Let D be a bounded, Lipschitz domain
in Rd. Let O ⊂ ∂D be open and K ⊂ ∂D be compact. Define the stopping times
for W:

TD = inf�s: ζs = τD�Ws��;
TK;D = inf�s: ζs = τD�Ws�; Ŵs ∈K�:

When K = �0� we write TK;D = T0;D. The range of the path-valued process
killed on ∂D is

RD = �Ws�t�: ζs = τH�Ws�; 0 ≤ t ≤ ζs ∧ τD�Ws��:

One has �TK;D <∞� = �RD∩K 6= \�. That is, TK;D is finite when the range
of the Brownian snake paths killed on ∂D intersects K. From [1], Proposition
1.2, and [9], Proposition 4.4, we have the following result.

Proposition 1.5. Let u1�z� = Nz�XD�O� > 0� and u2�z� = Nz�TK;D <

∞�. Then u1; u2 satisfy 1u = 4u2 in D. The minimal solution satisfying the
boundary condition limz→y u�z� = ∞ for all y ∈ O is u1. The maximal solution
satisfying the boundary condition limz→y u�z� = 0 for all y ∈K is u2.
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1.1. Calculations.

Lemma 1.6 (Scaling). Let D be some domain such that 0 ∈ D. The dilation
ofD is defined by εD = �εx: x ∈ D�. LetK be a compact subset of the boundary
of D. Then

N0�TK;D <∞� = ε2N0�TεK; εD <∞�:

Proof. Set W�ε�s �t� = ε−1Wε4s�ε2t�. Then, as remarked in Le Gall [10],
Proposition 2.3, due to the scaling properties of Brownian motion and the Îto
measure of excursions the distribution of W�ε�s �t� under N0 is ε−2N0. Thus

ε2N0�TεK; εD <∞� = ε2N0�∃ s ≥ 0: Ŵs ∈ εK; ζs = τεD�

= ε2N0�∃ s ≥ 0: Ŵ�ε�s ∈K; ζ�ε�s = τD�
= N0�∃ s ≥ 0: Ŵs ∈K; ζs = τD�
= N0�TK;D <∞�: 2

By scaling we can calculate Nz�T <∞�.

Lemma 1.7. Let z = reiθ. We have

u�z� = Nz�T <∞� = w�θ�r−2;

where w�θ� is the unique positive solution on �0; π� to the one-dimensional
boundary value problem

w′′�θ� = 4w�θ��1−w�θ��; w�0� = w�π� = 0:(1.1)

Furthermore, there exist positive, nontrivial constants c ≤ C such that, for
0 ≤ θ ≤ π/2,

cθ ≤ w�θ� = w�π − θ� ≤ Cθ:(1.2)

Proof. First, we show that scaling yields u�z� = ŵ�θ�r−2 for some ŵ. Set
H�z; ε� = �ρeiγ: ρ > ε; γ ∈ �0; π��+ z, and let B̄�x; ε� denote the closed ball
of radius ε centered at x. By monotonicity,

Nz�T <∞� = N0�T−z;H−z <∞�
= lim

ε→0
N0�TB̄�−reiθ; ε�;H�−reiθ; ε� <∞�

= lim
ε→0

r−2N0�T�1/r�B̄�reiθ; ε�; �1/r�H�reiθ; ε� <∞�(1.3)

= r−2N0�T�−eiθ�;H−eiθ <∞�(1.4)

= r−2Neiθ�T <∞�:
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In line (1.3), for a fixed r and θ, the dilation of the sets �1/r�B�reiθ; ε� and
�1/r�H�reiθ; ε� is not degenerate and so the limit in (1.4) follows. Setting
ŵ�θ� = Neiθ�T <∞� gives the first result. By symmetry, ŵ�θ� = ŵ�π − θ�.

The proofs in [9], Proposition 4.4, show that u�z� satisfies 1u = 4u2 in H,
with boundary condition u�z� → 0 as z→ ∂H \ 0. Thus ŵ�θ� solves (1.1).

In [1] it is shown for D ⊂ R2, D smooth, that points on the boundary of
D are hit by the path-valued process as it exits the boundary. Thus ŵ�θ� is
positive on �0; π�.

Solutions to 1u = u2 are studied in Gmira and Veron [5]. The uniqueness
of a positive solution to (1.1) under these boundary conditions is classical and
is assured by Proposition 6.5 therein. Hence ŵ = w.

By a simple calculus trick one has the equivalent differential equation forw:
(
dw

dθ

)2

=
(

8
3

)
w3 − 4w2 + �w′�0��2; w�0� = 0; w�π� = 0;

where w′�0� is the one-sided derivative. If w′�0� were 0, then the solution
would be trivial and it is not; hence limθ→0w�θ�/θ = c1 6= 0: Since u�eiθ� is
bounded, for 0 ≤ θ ≤ π/2 there exist constants c and C for which

cθ ≤ w�θ� ≤ Cθ: 2

The next lemma will be used to calculate a lower bound on the event that
there exists a path exiting H at 0 that exits a domain through a specified
subset of the boundary.

Lemma 1.8. For a Greenian domain D, set A = ∑
i∈ID 8�Wi�, where 8 =

82. Let v�z� = Nz�A�. Then

Nz�A > 0� ≥
(

4
∫
GD�z; y�

(
v�y�
v�z�

)2

+ v�z�−1
)−1

:

Proof. The proof follows that of Proposition 2.2 and Theorem 2.3 in [1].
We have by the Cauchy–Schwarz inequality that

Nz�A > 0� ≥ Nz�A�2/Nz�A2�:

It suffices to show that

Nz�A2� = 4
∫
GD�z; y�v�y�2 + v�z�:

First, as in Corollary 1.4,

Nz
((∑

8
)2)
= d2

dλ2
Nz
(
exp−λ

∑
8�Wi�

)
�λ=0

= d2

dλ2
Nz
(

exp−2
∫
XD�dy�Ny�1− exp−λ8�

)
�λ=0
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= Nz
(

2
∫
XD�dy�Ny�82�

)
+ Nz

((
2
∫
XD�dy�Ny�8�

)2)

= v�z� + 4Nz
((∫

XD�dy�Ny�8�
)2)

:

Next, with τ = τD,

Nz
((∫

XD�dy�Ny�8�
)2)

= Nz
(∫ ∫

dLDs dL
D
s′ NŴs

�8�NŴs′
�8�

)

= 2Nz
(∫ ∫

s′>s
dLDs dL

D
s′ NŴs

�8�NŴs′
�8�

)

= 2Nz
(∫

dLDs NŴs
�8�E∗Ws

(∫
dLDs′ NŴs′

�8�
))

(1.5)

= 2Nz
(∫

dLDs NŴs
�8�

∫ ζs
0

2dtNWs�t�

(∫
dLDs′ NŴs′

�8�
))

(1.6)

= 4Nz
(∫

dLDs NŴs
�8�

∫ ζs
0
dtNWs�t���X

D; N · �8���
)

= 4ED
z

(
NBτ�8�

∫ τ
0
dtEBt

�NBτ�8��
)

(1.7)

= 4ED
z

(∫ τ
0
dtEBt

�NBτ�8��
2
)

(1.8)

=
∫
GD�z; y�v�y�2:

Line (1.5) follows from the strong Markov property of the process W, (1.6)
follows from Proposition 1.1, (1.7) is an application of Proposition 1.2 and
(1.8) follows by the Markov property of Brownian motion. 2

The following lemma will allow us to make almost sure statements. It states
that when an event has a positive probability conditioned on T < ∞ for all
starting points in a cone, then one of the excursions in the Poisson point
process of Proposition 1.1 will have the event happen for it almost surely.

Lemma 1.9. Suppose B is an event satisfying:

(i) There exists a constant c > 0 depending on γ but not on z such that,
when z ∈ cone�γ�, Nz�B; T <∞� = Nz�B� ≥ cu�z�.

(ii) If 1 is a subinterval of �0; σ�, then 1B�W� ≥ 1B�W�1��, where W�1� is
the path process �Wt: t ∈ 1�.
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Then Nz�B; T < ∞� = u�z� for all z. That is, B happens almost surely on
�T <∞�.

Proof. Let 1k = ��3/4�2−k; 2−k� and �k = �z: �z� ≤ A2−k/2; d�z; H� ≥
α2−k/2�.

We employ Lemmas 4.2 and 4.3 of [1] as utilized in Theorem 7.1. These
assure us that we can find two constants, α < 1 and A > 1, for which, Nz-
almost surely on �T < ∞�, the following event happens infinitely often (let
ζT − 1k = �ζt − 2−k; ζt − �3/4�2−k�):

�∀ t ∈ ζT − 1k; WT�t� ∈ �k�:

Let κ be the set of k for which this happens [#�κ� = ∞]. Then, for k ∈ κ,
t ∈ ζT − 1k, we have WT�t� = reiθ ∈ cone�cos−1�α/A�� and r > α2−k/2. By
Lemma 1.7 and line (1.2) we have, with c4 = c4�γ�,

NWT�t��B; T <∞� ≥ c3u�WT�t�� ≥ c42k:(1.9)

Considering the excursions from the minimum of ζT+t, we have, from Propo-
sition 1.1,

Nz
(
E∗WT

(∑
i∈I

1B�Wi� = 0
)
; T <∞

)

= lim
λ→∞

Nz
(
E∗WT

(
exp−λ

∑
i∈I

1B�Wi�
)
; T <∞

)

= lim
λ→∞

Nz
(

exp−2
∫ ζT

0
dtNWT�t��1− exp−λ1B�W��; T <∞

)

= Nz
(

exp−2
∫ ζT

0
dtNWT�t��B�; T <∞

)

≤ Nz
(

exp−2
∑
κ

∫ ζT−�3/4�2−k

ζT−2−k
dtNWT�t��B�; T <∞

)

≤ Nz�exp−c5#�κ�� = 0:

This gives

u�z� = Nz�T <∞�

= Nz
(

1− E∗WT

(∑
i∈I

1B�Wi� = 0
)
; T <∞

)

= Nz
(
E∗WT

(∑
i∈I

1B�Wi� > 0
)
; T <∞

)

≤ Nz�1B�W� > 0; T <∞�
= Nz�B�: 2
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We use the following formulas for the Poisson kernel and Green function in
the half-plane (cf. [2], Chapter 2):

pH�z; 0� = pH�reiθ; 0� = 1
π

sin θ
r
;

GH�x; y� =
1
π

log
�x̃− y�
�x− y� ;

(1.10)

where x̃ is the reflection of x through the y-axis.

2. Convex hull. Let Dg denote the domain given by the epigraph of the
function g, and let ID denote the excursion intervals from a domain D. Make
the following definitions:

Rz; α = �z+ reiα: r > 0�;
0z; α =H ∩ �w: w = z+ reiα′ : r > 0; α′ ∈ �α; π + α��;

Aa; α =
∑

i∈I0
aeiα; α

1Raeiα; α
�Ŵi

0�1T<σ�Wi�;

Ba; α =
∑

i∈I0�a;0�; α

1R�a;0�; α�Ŵ
i
0�1T<σ�Wi�;

Cj =
∑
IDg

1�Re�Ŵi
0� ∈ �e−j−1; e−j��1T<σ�Wi�

and

Cnk =
n∑
k

Cj; n ≥ k �including ∞�:

For z = aeiα = �b; 0� + eiθ we have Aa; α is the number of excursions from
the ray emanating from z on the line connecting z to the origin that exit H
at the origin at some time, and Bb; θ is the number of excursions from a ray
emanating from �b; 0� which intersects the point z that exit H at the origin
at some time. As in the Introduction, if Aa; α > 0, then z is in the convex hull;
if Bb; θ = 0, then z is not in the convex hull. Thus

�Aa; α > 0� ⊂ �z ∈ C̃� ⊂ �Bb; θ > 0�:(2.1)

Here Cnk is the number of excursions that exitDg with the tip in the interval
�e−k; e−n� that at some time exit the half-plane at the origin.

Because of the monotone nature of the problem, we may assume (and do)
without loss of generality that for fixed α > 0 we have

xα ≤ h�x� ≤ x−α:(2.2)

We need the following two lemmas about B and A.
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Lemma 2.1. Let z ∈ H, and let φ be the conformal map φ�z� = ��z −
�a; 0��e−iα�β with β = π/�π −α� which maps a wedge to the half-plane. There
exists a constant c1 independent of z for which

Nz�Ba; α� ≤ c1w�α�aβ−2 d�φ�z�; H�−1:

Proof. Let τ be the hitting time of 0�a;0�; α. We use the basic facts about
the Brownian snake from the preliminary section to establish

Nz�Ba; α� = Ez�Bτ ∈ R�a;0�; αy u�Bτ��

=
∫ ∞

0
Pz��Bτ − �a; 0��eiα ∈ dr�u��a; 0� + reiα�

≤ c2

∫ ∞
0
drpH�φ�z�; rβ�rβ−1w�α�r

× ��a+ r cos α�2 + �r sin α�2�−3/2

= c2w�α�aβ−2
∫ ∞

0
drpH�φ�z�; �ar�β�rβ

× ��1+ r cos α�2 + �r sin α�2�−3/2

≤ c3w�α�aβ−2 d�φ�z�; H�−1: 2

Lemma 2.2. Let z ∈ H, ake
iαk = �e−k; g�e−k�� and Ak = Aak; αk

. Let φ be
the conformal map φ�z� = �ze−iα�β with β = π/�π − α� which maps a wedge
to the half-plane.

There exist nontrivial constants independent of z for which

c0h�e−k� inf
�1;2�

p�φ�z�; �av�β� ≤ Nz�Ak� ≤ c1h�e−k�d�φ�z�; H�−1:

Proof. As in the proof of Lemma 2.1, we have

Nz�Ak� =
∫ ∞
a
pH�φ�z�; vβ�w�α�vβ−3 dv

= w�αk�a
βk−2
k

∫ ∞
1
pH�φ�z�; �akv�βk�vβk−3 dv:

A simple consequence of (1.2) and the assumption (2.2) is that there exist
constants c3; c4 for which

c3h�e−k� ≤ w�αk�a
βk−2
k ≤ c4h�e−k�:(2.3)

With this and the bound pH�z; x� ≤ d�z; H�−1, part (i) follows.
Similarly,

Nz�Ak� ≥ c5hk inf
�1;2�

p�φ�z�; �av�β�;(2.4)

since
∫ ∞

1
pH�φ�z�; �akv�βk�vβk−3 dv ≥ inf

�1;2�
p�φ�z�; �akv�βk�

∫ 2

1
vβ−3 dv: 2
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2.1. Proof of Theorem 0.1.

Remark 2.3. We first note that it is enough to show that the one-sided
limit satisfies the bound almost surely. Because g is assumed to be even, the
limit from the left and the limit from the right will share the same bound
almost surely.

Remark 2.4. The assumption that g is C 2 is made for convenience, but is
not essential. One can show that, given g for which

∑
k h�e−k� <∞, there will

exist a C 2 function g1 satisfying the same condition on the sum and for which
g2 ≥ g1. Similarly, if the sum is infinite, one can find a C 2 function bounding
g from below for which the sum is still infinite. The proof of this is to show
that the problem is monotone with respect to the domains Dg, and from here
notice that any convex function g�x� = x2h�x� with h�x� → ∞ has a second
derivative of 0 at the origin.

2.1.1. Case
∑
kh�e−k�<∞. Define ak and αk by ak+ bkeiαk =�e−k; g�e−k��=

zk, and set Bk = Bak; αk . We show first that �zk 6∈ C̃ eventually� happens
almost surely. To do this, we show that

N�0;1��zk ∈ C̃ i.o.� = 0:

This will follow by the Borel–Cantelli argument by showing
∑
k N�0;1��zk ∈

C̃� <∞. By (2.1) and Lemma 2.1, we have
∑
k

N�0;1��zk ∈ C̃� ≤
∑
k

N�0;1��Bk > 0�

≤
∑
k

c1w�αk�a
βk−2
k d�f�z�; H�−1

≤
∑
k

c2h�e−k� <∞:

To finish, we need to interpolate between the points zk. Suppose zk 6∈ C̃.
Then, by convexity, we must have that the point �x; xg�e−k�ek� 6∈ C̃ for x > e−k.
If we can find a c3 independent of k for which xg�e−k�ek ≥ c3g�x� for x ∈
�e−k; e−k+1�, then on �e−k; e−k+1� we have f�x� ≥ c3g�x�. By the first part, zk 6∈
C̃ happens eventually, so we would conclude that f�x� ≥ c3g�x� eventually
or lim inf f�x�/g�x� ≥ c3, N�0;1�-almost surely. Since cg�x� will satisfy the
assumptions for any constant c, we conclude that lim inf f�x�/g�x� = ∞:

To find c3, notice

g�e−k�ek =
(
g�e−k�
g�e−k+1�

e−k+1

e−k

)
g�e−k+1�
e−k+1

≥
(
e
g�e−k�
g�e−k+1�

)
g�x�
x

≥ c3
g�x�
x
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for some nontrivial constant c3. This follows since g�x�x−1 is monotone by
convexity and

g�e−k�
g�e−k+1� → 1/e2

by our assumptions on g.
2.1.2. Case

∑
k h�e−k� = ∞. Fix γ ∈ �0; π/2�. We show that, for k large

enough, we have C∞k > 0 happens infinitely often Nz-almost surely on T <∞
for z in cone�γ� and, in particular, for z = �0; 1�. Thus there is a sequence of
points on the curve γ�x� = �x; g�x�� that converge to 0 corresponding to ex-
cursions leaving from ∂Dg that exit the half-plane at the origin. It is clear that
each of these points is in the convex hull of W as it exits 0 and so we conclude
that lim inf f�x�/g�x� ≤ 1. Again, the assumptions on g are also satisfied by
cg for any nontrivial constant c and so we conclude that lim inf f�x�/g�x� = 0.

Let hj = h�e−j� and 1j = �e−j−1; e−j�. The assumption that g is C 2 assures
us that the Poisson kernel, pDg

�x; y�, is continuous in y ∈ ∂Dg and satisfies
the following conditions:

1. There exist nontrivial constants for which

c1d�z; ∂Dg��z− y�2 ≤ pDg
�z; y� ≤ c2 d�z; ∂Dg��z− y�2:

We remark that when z ∈ cone�γ� there exist two nontrivial constants for
which

c3�z�−1 ≤ pDg
�z; y� ≤ c4�z�−1:(2.5)

2. For all ε > 0 there exists k0 = k0�z� such that, for all k ≥ k0�z�,

1− ε ≤
∣∣∣∣
�1k�−1Pz�BτDg ∈ γ�1k��

pDg
�z; 0�

∣∣∣∣ ≤ 1+ ε:(2.6)

This is because p is continuous and �γ�1k�� �1k�−1 → 1.

We first calculate

Nz�Cj� =
∫
1j

Pz�Re�BτDg � ∈ dr�u�γ�r��

≤ c5

∫
1j

Pz�Re�BτDg � ∈ dr�g�e
−j�eje−2�j+1�

≤ c6hj�1j�−1Pz�BτDg ∈ γ�1j��:

(2.7)

Fix ε > 0 and z. Find k0 = k0�z� as above. Then we have by Lemma 1.8
that

Nz�C∞k � ≥ lim inf
n

(∫
dyGDg

�z; y�
(Ny�Cnk�
Nz�Cnk�

)2

+ �Nz�Cnk��−1
)−1

:(2.8)
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For k ≥ k0 by (2.6),

Nz�Cnk� =
n∑
k

Nz�Cj�

≥
n∑
k

c7hj�1j�−1Pz�BτDg ∈ γ�1j��

≥ c8�1− ε�pDg
�z; 0�

n∑
k

hj→∞:

Thus we need only worry about the first term in (2.8):

lim sup
n

∫
dyGDg

�z; y�
(Ny�Cnk�
Nz�Cnk�

)2

= lim sup
n

∫
dyGDg

�z; y�

×
(( k0�y�∑

k

Ny�Cj�
)2

+ 2
( k0�y�∑

k

Ny�Cj�
)( n∑

k0�y�
Ny�Cj�

)

+
( n∑

k0�y�
Ny�Cj�

)2)

×
(
c9pDg

�z; 0�
n∑
k

hj

)−2

= I+ II+ III:

Since
∑n
k hj → ∞ and the numerator of I does not depend on n, I → 0.

Using
n∑

k0�y�
Ny�Cj� ≤ c10pDg

�y; 0�
n∑

k0�y�
hj ≤ c10pDg

�y; 0�
n∑
k

hj

yields II→ 0 and III ≤ �1− ε�−2p−2
Dg
�z; 0��1+ ε�2

∫
dyGDg

�z; y�p2
Dg
�y; 0�.

To show III <∞, we remark that the monotonicity of the Green function in
the domain yields GDg

�x; y� ≤ GH�x; y� on Dg, and the bound pDg
�z; 0� ≤

pH�z; 0� shows that it is enough to show
∫
dyGH�z; y�p2

H�y; 0� <∞:

This follows readily from the formula of (1.10).
Using the bound in (2.5) for z ∈ cone�π/4�, we have shown that

Nz�C∞k > 0� ≥ c11u�z�:
By Lemma 1.9 we conclude that Nz�C∞k > 0� ≥ u�z�. Thus Nz�C∞k > 0 i.o.� =
u�z�: That is, C∞k > 0 happens infinitely often almost surely on T <∞. 2
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2.2. Proof of Theorem 0.2.
2.2.1. Case h�x� → 0. Let g�x� = x2h�x� with h�x� → 0. For c0 a nontriv-

ial constant, define zk = �e−k; c0g�e−k��. Set ak = e−k/2, and define bk and αk
by zk = �ak; 0� + bkeiαk . Let Bk = Bak; αk . We have �zk ∈ C̃� ⊂ �Bk > 0�.

By Lemma 2.1,

N�0;1��zk 6∈ C̃ i.o.; T <∞� ≥ lim
k
N�0;1��zk 6∈ C̃; T <∞�

= u��0; 1�� − lim
k
N�0;1��zk ∈ C̃; T <∞�

≥ u��0; 1�� − lim
k
N�0;1��Bak; αk > 0; T <∞�

≥ u��0; 1�� − lim
k
N�0;1��Bak; αk�

≥ u��0; 1�� − lim
k
c1h�e−k�d�f�z�; H�−1

= u��0; 1�� = N�0;1��T <∞�:

(2.9)

We note that if the event zk 6∈ C̃ i.o. happens N�0;1�-almost surely on �T <
∞�, then lim sup f�x�/g�x� ≥ c0 happens N�0;1�-almost surely. Since c0 is
arbitrary we conclude that lim sup f�x�/g�x� = ∞, N�0;1�-almost surely on
�T <∞�.

Remark 2.5. From (2.9) one sees that if h�e−k� ≤ c2, then we have for
z = reiθ ∈ cone�π/4� that there exists a constant for which

Nz�zk 6∈ C̃ i.o.; T <∞� ≥ 1
r2
�c3 − c1c2r�:

Thus we have that for r sufficiently small a lower bound of cu�z� applies. If
we could use Lemma 1.9, then we could conclude that lim sup f�x�/x2 ≥ c2,
Nz-almost surely on T <∞. From here we would let c2 →∞ along a countable
subsequence to see that lim sup f�x�/x2 = ∞. However, Lemma 1.9 does not
apply as it is stated, although one thinks that some such lemma should exist.

2.2.2. Case h�x� → ∞. Let zk = �2−k; g�2−k�� = ake
iαk , Ak = Aak; αk

,
0k = 00; αk , and let Xk be the exit measure from 0k. We show first that, N�0;1�-
almost surely on the event �T < ∞�, we have zk ∈ C̃ eventually. This will
follow from the Borel–Cantelli lemma if

∑
k

N�0;1��zk 6∈ C̃� <∞:

By (2.1) we have �zk 6∈ C̃� ⊂ �Ak = 0� on �T < ∞�; hence it is enough
to estimate the latter set. For an excursion from ∂0k, let 9k�W� =
1Rzk; αk

�Ŵ0�1T<σ�W�. Let Yk =
∫

2Xk�dy�Ny�9k�. By the special Markov
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property,

Nz�Ak = 0; T <∞� = lim
λ→∞

Nz
(

exp−
(
λ
∑
I0k

9k�Wi�
)
; T <∞

)

= Nz
(

exp−
(∫

2Xk�dy�Ny�9k > 0�
)
; T <∞

)

= Nz�exp−Yk; T <∞�
≤ Nz�exp−Yk ◦2T; T <∞�
= Nz�E∗WT

�exp−Yk�; T <∞�

= Nz
(

exp−
(∫ ζT

0
dtNWT�t��1− exp−Yk�

)
; T <∞

)
:(2.10)

Line (2.10) follows from the Poisson property of the measure
∑
δζi;Wi under

E∗WT
given by Proposition 1.1.

Let 1j and �j be as defined in Lemma 1.9. Following [1], define Hγ = �z ∈
H: dist�z; ∂H� ≤ γ� and

FA
n0; n
�w� = 1

n− n0

n−1∑
j=n0

1
(

sup
0≤t≤2−j

�w�ζ − t� −w�ζ�� > A2−j/2
)
;

Aα
j =

{
w ∈ W : ζ ≥ 2−j;

{
w�ζ − t�y 3

2
2−j−1 ≤ t ≤ 2−j

}
∩Hα2−j/2 6= \

}
;

8αn0; n
�w� = 1

n− n0

n−1∑
j=n0

1Aα
j�w�:

Set

CAn0; n
=
{
ζT ∈ �2−n0; 2n0�; FA

n0; n
�WT� > 1

4

}
;

Dα
n0; n
=
{
ζT ∈ �4 · 2−n0; 2n0�; 8αn0; n

�WT� > 1
2

}
:

Choose λ large enough so that the sequence �2
√
n4n exp−λ�n − √n�� is

summable. Then, by [1], Lemmas 4.2 and 4.3, there exist 0 < α < A and a
constant c0 for which

N�0;1��CAn0; n
� ≤ N�0;1�

(
∃ s ≥ 0; ζs ∈ �2−n0; 2n0�; FA

n0; n
�Ws� > 1

4

)

≤ c02n04n exp−λ�n− n0�
and

N�0;1��Dα
n0; n
� ≤ c02n04n exp−λ�n− n0�:

Let n ≥ 4, n0 =
√
n, and fix A > α so that the above holds. We remark that

when ζT ∈ �4 ·2−n0; 2n0� holds we have FA
n0;n
�WT� ≤ 1

4 and 8αn0;n
�WT� ≤ 1

2 and
thus

κn = �j ≤ n: WT�ζT − 1j� ⊂ �j� ≥ 1
4�n−

√
n� ≥ 1

8n:(2.11)
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We will use the following lemma whose proof is postponed.

Lemma 2.6. Under the assumptions on g (h→∞) for j ≤ k, the following
bound holds:

inf
�j
Nz�1− exp−2Yk� ≥ c1 inf

�j
u�z� ≥ c22j:

Assuming this lemma, it follows from (2.10) that

N�0;1��Ak = 0; T <∞�

≤ N�0;1�
(

exp−
(

2
∫ ζT

0
dtNWT�t��1− exp−2Yk�

)
; T <∞

)

≤ N�0;1�
(
CA√

k; k
∪DA√

k; k

)

+ N�0;1�
(
ζT ≥ 2

√
k
)
+ N�0;1�

(
ζT ≤ 4 · 2−

√
k
)

+ N�0;1�
(

exp−
(

2
∫ ζT

0
dtNWT�t��1− exp−2Yk�

)
; ζT ∈

[
4 · 2−

√
k; 2

√
k
]
;

FA
n0; n
�WT� ≤ 1

4 ; 8
α
n0; n
�WT� ≤ 1

2 ; T <∞
)

= I+ II+ III+ IV:

By a union bound we have

I ≤ 2c02
√
k4k exp−λ�k−

√
k�:

By the fact that ζ is distributed under N�0;1� as a Brownian excursion from 0,
we have

II ≤ N�0;1�
(

sup
�0; σ�

ζs > 2
√
k
)
= 2−�

√
k+1�:

Let Ru = �Ws�t�: 0 ≤ s ≤ σ; 0 ≤ t ≤ u�, R = �Ws�t�: 0 ≤ s ≤ σ; 0 ≤ t ≤
ζs�. Set δ = dist�z; H�. In order for ζT to be small, it must be that Ru hits
B�z; δ�c with a small u. This event can be bounded by the probability that
the path process exits distant balls which is given by solving the equation in
Proposition 1.5 with an infinite boundary condition, yielding N0�R∩B�0; ε�c 6=
\� = 2ε−2. Thus

III ≤ N�0;1�
(
T�B�z; δ�c� < 4 · 2−

√
k
)

≤ N�0;1�
(
R4·2−

√
k ∩B��0; 1�; δ�c 6= \

)

=
(
4 · 2−

√
k
)
N0
(
R1 ∩B

(
0; 1

4δ22
√
k
)c 6= \

)

≤
(
4 · 2−

√
k
)
N0
(
R ∩B

(
0; 1

4δ22
√
k
)c 6= \

)

= 128
δ2

2−5
√
k:

(2.12)
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Line (2.12) follows from the scaling property of the Brownian snake used in
the proof of Lemma 1.6.

For IV we have by (2.11) that #�κk� ≥ ck. Thus

IV ≤ N�0;1�
(

exp−
(

2
∑
κk

∫
ζT−1j

dt inf
z∈�j

Nz�1− exp−2Yk�
)
;

ζT ∈
[
4 · 2−

√
k; 2

√
k
]
; FA

n0; n
�WT� ≤ 1

4 ; 8
α
n0; n
�WT� ≤ 1

2 ; T <∞
)

≤ N�0;1��exp−c3k; T <∞�
≤ u��0; 1�� exp−c3k:

Since all these sum in k, we have by the Borel–Cantelli lemma that, N�0;1�-
almost surely on �T <∞�, �Ak > 0� eventually.

To finish, we need to extrapolate between the points zk. Following [3], we
let g1�x� = c4g�x� with c4 > 9. Choose k0 = k0�ω� so that for k > k0 one has
g1�2−k� ≥ g�2−k� ≥ f�2−k� and g�2−k−1�/g�2−k� ≥ 1/3. Let Q be the point

(
2−k; 2−kc4

g�2−k�
2−k−1

)

and P the point �2−k−1; c4g�2−k−1��. If the line segment from Q to 0, which
goes through P, is contained in C̃, then �x; c4g�x�� ∈ C̃ for 2−k−1 ≤ x ≤ 2−k.
This will happen if Q lies above �2k; g�2−k�� or

2−k
c4g�2−�k+1��

2−�k+1� ≥ g�2−k�:

This is true by the choice of k0 and c4. 2

Finally, we establish Lemma 2.6.

Proof of Lemma 2.6. Fix z ∈ �j, j < k. Then z = reiθ ∈ cone�cos−1�α/A��
with �z� ≥ ak. For fixed c1 > 0,

Nz�1− exp−2Yk� ≥ Nz�1− e−2c1; Yk > c1�:
By the Cauchy–Schwarz inequality,

Nz�Yk > c1� ≥
�Nz�Yk� − c1�2

Nz�Y2
k �

:

We need bounds on Nz�Yk� and Nz�Y2
k �.

By Lemma 2.2,

Nz�Yk� ≥ c2hk inf
�1;2�

pH�rβeiθ̃; �av�β�

≥ c2hkr
−β�pH�eiθ̃; aβ� ∧ pH�eiθ̃; 2β��

≥ c3hkr
−β:
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By Proposition 2.2 of [1] and scaling, we have, with z = reiθ,

Nz�Y2
k � = 4

∫
G0k
�z; y�Nz�Yk�2

≤ 4
∫
GH�z; y�Nz�Yk�2

= 4
∫
ρdρdγGH�reiθ; ρeiγ�

(∫ ∞
ak

pH�ρβeiγ̃; vβ�vβ−3w�α�
)2

= 4r2−2β(�w�αk�aβ−2
k

) ∫
ρdρdγGH�eiθ; ρeiγ�ρ−2β

×
(∫ ∞

1
pH

(
eiγ̃;

(
a

rρ

)β
vβ
)
vβ−3

)2

:

We show first that there exists a constant c4 independent of x and γ for which
∫ ∞

1
pH�eiγ; �xv�β�vβ−3 < c4:(2.13)

For x < 1/2 we have the left-hand side of (2.13) is equal by a change of
variables to

x−�β−2�
∫ ∞
x
dvpH�eiγ; vβ�vβ−3

= x−�β−2�
(∫ 1/2

x
+
∫ 2

1/2
+
∫ ∞

2

)
dvpH�eiγ; vβ�vβ−3

≤ c5x
−�β−2�

( ∫ 1/2

x
dvvβ−3 + c6

∫ 2

1/2
dvpH�eiγ; vβ�vβ−1

+ c7

∫ ∞
2
dvv−β−3

)

< c8:

Similarly, for x ≥ 1/2 we get the necessary bounds.
Next, by the bounds GH�eiθ; ρeiγ� < c9ρ for small ρ and GH�eiθ; ρeiγ� <

c10�ρ�−1 for large ρ, it follows that
∫
ρdρdγGH�eiθ; ρeiγ�ρ−2β < c11:

These combined with (2.3) yield the bound

Nz�Y2
k � ≤ c12hkr

2−2β:

Thus, for z in cone�cos−1�α/A��,

Nz�Yk > c1� ≥
�c13hkr

−β − c1�2
c14h

2
kr

2−2β

= �c13 − c1/�hkr−β��2
c14r

−2

≥ c15u�z�:
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The last inequality follows since hk→ 0 by the assumption on g. This implies
Lemma 2.6. 2

Acknowledgments The author would like to thank his thesis advisor,
Chris Burdzy, for the original suggestion of the problem and for several helpful
discussions. As well, he would like to thank an anonymous referee for a careful
reading of the paper and for suggestions to improve the presentation of the
material.

REFERENCES

[1] Abraham, R. and Le Gall, J. F. (1994). Sur la mesure de sortie du super mouvement Brown-
ien. Probab. Theory Related Fields 99 251–275.

[2] Bass, R. (1995). Probabilistic Techniques in Analysis. Springer, New York.
[3] Burdzy, K. and San Martin, J. (1989). Curvature of the convex hull of planar Brownian

motion near its minimum point. Stochastic Process. Appl. 33 89–103.
[4] Cranston, M., Hsu, P. and March, P. (1989). Smoothness of the convex hull of planar

Brownian motion. Ann. Probab. 17 144–150.
[5] Gmira, A. and Veron, L. (1991). Boundary singularities of solutions of some nonlinear el-

liptic equations. Duke Math. J. 64 271–324.
[6] Le Gall, J. F. (1991). Brownian excursions, trees and measure-valued branching processes.

Ann. Probab. 19 1399–1439.
[7] Le Gall, J. F. (1993). A class of path-valued Markov processes and its applications to su-

perprocesses. Probab. Theory Related Fields 95 25–46.
[8] Le Gall, J. F. (1995). The Brownian snake and solutions of 1u = u2 in a domain. Probab.

Theory Related Fields 104 393–432.
[9] Le Gall, J. F. (1994). Hitting probabilities and potential theory for the Brownian path-

valued process. Ann. Inst. Fourier 44 277–306.
[10] Le Gall, J. F. (1994). A path-valued Markov process and its connection with partial dif-

ferential equations. Proceedings First European Congress of Mathematics. Birkhaüser,
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