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Let X be an exponentially killed Lévy process on Tn, the n-
dimensional torus, that satisfies a sector condition. (This includes
symmetric Lévy processes.) Let Fe denote the extended Dirichlet space
of X. Let h ∈ Fe and let �hy; y ∈ Tn� denote the set of translates of h.
That is, hy�·� = h�· − y�. We consider the family of zero-energy contin-

uous additive functions �N�hy�t ; �y; t� ∈ Tn×R+� as defined by Fukushima.
For a very large class of random functions h we show that

Jρ�Tn� =
∫
�logNρ�Tn; ε��1/2 dε <∞

is a necessary and sufficient condition for the family �N�hy�t ; �y; t� ∈ Tn ×
R+� to have a continuous version almost surely. Here Nρ�Tn; ε� is the
minimum number of balls of radius ε in the metric ρ that covers Tn, where
the metric ρ is the energy metric. We argue that this condition is the
natural extension of the necessary and sufficient condition for continuity
of local times of Lévy processes of Barlow and Hawkes.

Results on the bounded variation and p-variation (in t) of N
�hy�
t , for y

fixed, are also obtained for a large class of random functions h.

1. Introduction. Let X = �Xt; t ∈ R+� be a Markov process with state
space S, a locally compact metric space. We are interested in the joint con-
tinuity of families of continuous (in t) additive functionals of X. Perhaps the
simplest example of such a continuous additive functional of X is

L
f
t =

∫ t
0
f�Xs�ds;(1.1)

where f is a bounded real-valued continuous function on S. This definition
(1.1) of Lft can often be extended to generalized functions f, such as measures
or distributions. In the broadest context we are interested in the dependence
of Lft on f, as f varies in some space of generalized functions. In particular, we
ask: when is �f; t� 7→ L

f
t continuous? In this paper we examine this question

in considerable detail when X is a Lévy process in Tn, the n-dimensional
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torus, and the “family” of distributions consists of the set of translates of a
fixed distribution f on Tn.

In [11], we use the traditional approach of [4], for extending the def-
inition (1.1) of L

f
t to a class of measures f. In [11] we assume that

X = �Xt; t ∈ R+� is a strongly symmetric Markov process with respect
to some σ-finite reference measure m on the state space S. To be more
explicit, let u1�x;y� denote the 1-potential density with respect to m and let
f = µ be a finite positive measure on S such that U1µ�x� =

∫
u1�x;y�dµ�y�,

x ∈ S, is bounded. Then, as is well known, we can define a continuous
additive functional Lµt of X which extends (1.1). Here Lµt is characterized by
the relationship

Ex

(∫ ∞
0
e−t dLµt

)
= U1µ�x�; ∀x ∈ S;

where µ is referred to as the Revuz measure of Lµt . The basic result of [11],
Theorem 1.1, holds in a very general setting. However, it is easier to explain
and more relevent to this paper if we assume that S has a group structure.
Then, as a generalization of the problem of joint continuity of local times, we
considered, in [11], the question of the continuity of the family of continuous
additive functionals �Lµyt ; �y; t� ∈ S × R+�, where µy is the translate of µ
by y, that is, µy�A� = µ�A + y� for all Borel sets A ⊂ S. As is well known,
if u1�x;y� < ∞ for all x, y ∈ S, then X has local times at all x ∈ S. In

the above notation we write the local time process as �Lδyt ; �y; t� ∈ S × R+�,
where δ0 = δ is the point mass at 0 ∈ S. Necessary and sufficient conditions

for the continuity of �Lδyt ; �y; t� ∈ S × R+� were obtained in [10], solely in
terms of the metric

τ�x;y� =
(
u1�x; x� + u1�y;y� − 2u1�x;y�

)1/2
:(1.2)

When X is a Lévy process on R1 or T1, this result is due to Barlow and
Hawkes for sufficiency (see [1] and [3]) and to Barlow for necessity (see [2]).
They do not require that X is symmetric. They show that �Lδyt ; �y; t� ∈ S ×
R+� has a continuous version almost surely if and only if

Jτ��0;1�� =
∫ ∞

0
�logNτ��0;1�; ε��1/2 dε <∞;(1.3)

where Nτ��0;1�; ε� is the minimum number of balls of radius ε in the metric
τ that covers �0;1�.

For symmetric Lévy processes we set u1�x;y� = u1�y− x� = u1�x− y� and
τ�x;y� = τ�y− x�. Thus, in this case,

τ�x− y� =
√

2
(
u1�0� − u1�y− x�

)1/2
:(1.4)

To generalize this result to Markov processes without local times, it is nat-
ural to consider the “energy” metric

τ�x;y� =
(∫ ∫

u1�r; s�d�µx�r� − µy�r��d�µx�s� − µy�s��
)1/2

(1.5)
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and ask whether there are classes of measures µ for which �Lµyt ; �y; t� ∈
S × R+� has a continuous version almost surely if and only if (1.3) holds.
We show in [11] that, at least for many smooth measures, the answer to this
question is no. (This will be discussed further below.) However, we show in
this paper that if we replace µ by a random distribution, then the answer to
this question, roughly speaking, is almost always yes.

From this point on let X be an exponentially killed Lévy process in Tn,
with Lévy exponent ψ, that satisfies a sector condition. That is,

E�eikXt� = e−t�1+ψ�k�� ∀k ∈ Zn;(1.6)

and

�ψ�k�� ≤ CReψ�k� ∀k ∈ Zn;(1.7)

for some constant 0 < C <∞. Note that it follows from (1.6) that Reψ�k� ≥ 0
so that all symmetric Lévy processes trivially satisfy this sector condition,
since, in this case, Imψ�k� = 0. In addition, we assume throughout this paper
that ψ satisfies the following mild regularity condition:

Reψ�k� ≤ CReψ�jk� ∀k ∈ Zn and integers j ≥ 1:(1.8)

If ψ�k� is never purely imaginary and limk→∞�ψ�k�� = ∞, then (1.7) is equiv-
alent to

�ψ�k�� ≤ C�1+ Reψ�k�� ∀k ∈ Zn:(1.9)

In what follows, for k ∈ Zn and x ∈ Tn, we write kx for �k ·x�. The notation
�k� ≤ K is an abbreviation for the set �k ∈ Zn: �k� ≤ K� for some positive
number K.

When f is the trigonometric polynomial

f�x� =
∑

�k�≤K
ake

ikx; ak ∈ C1;(1.10)

the initial formulation of a continuous additive functional of X, (1.1), can be
written as

L
f
t =

∑

�k�≤K
akν̂t�k�;(1.11)

where

ν̂t�k� =
∫ t

0
eikXs ds =

∫
Tn
eiky dνt�y�; k ∈ Zn;(1.12)

are the Fourier coefficients of the occupation measure νt of X. We set

L
fy
t =

∫ t
0
f�Xs − y�ds; y ∈ Tn;(1.13)

where f is as in (1.10) and fy�x� = f�x− y�. This gives us a simple example
of a family of continuous additive functionals of X. Analogous to (1.11), we
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have

L
fy
t =

∑

�k�≤K
akν̂t�k�e−iky:(1.14)

We only consider f real and hence assume that āk = a−k both here and in all
the extensions that follow. Thus, clearly, L

fy
t (and all its extensions) are real.

We employ two methods for extending L
f
t to generalized functions. One

approach is that of Fukushima using the theory of Dirichlet spaces. In the
other, we use results and techniques from the theory of random Fourier series.
Both approaches give rise to the same extension. Indeed, the interplay between
these two approaches is one of the interesting aspects of this paper. It is
because our proofs ultimately employ techniques from the theory of random
Fourier series, that we work with the state space Tn.

We begin with the Fourier series approach which is easier to explain. As
long as �akν̂t�k��k∈Zn ∈ l2, we can extend (1.14) and consider

L�y; t� =
∑
k∈Zn

akν̂t�k�e−iky;(1.15)

where the equality sign denotes the standard identification of a function in
L2�Tn� with its Fourier series. Define

���f���2 =
(∫

Tn
�f�y��2 dy

)1/2

:(1.16)

By Plancherel’s theorem

���L� · ; t����2 = �2π�n
( ∑
k∈Zn

�ak�2�ν̂t�k��2
)1/2

:(1.17)

Consequently, by Corollary 3.1,

E���L� · ; t����2 ≤ Ct1/2
( ∑
k∈Zn

�ak�2
1+ Re ψ�k�

)1/2

:(1.18)

Thus we can extend (1.13) to distributions

f�x� =
∑
k∈Zn

ake
ikx(1.19)

as long as

∑
k∈Zn

�ak�2
1+ Reψ�k� <∞:(1.20)

Under condition (1.20) we want to determine when the family �L�y; ·�; y ∈
Tn�, defined in (1.15), constitutes a continuous family of continuous additive
functionals. By this we mean that not only is L�y; t� a continuous additive
functional in t for each fixed y but it is also almost surely jointly continuous
in �y; t�. (Whenever we write almost surely without qualification, we mean
almost surely with respect to Px for each x ∈ Tn.)
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Since ν̂t�k� is a continuous additive functional for each k, it is clear that
�L�y; ·�, y ∈ Tn� will be a continuous family of continuous additive functionals
whenever the Fourier series (1.15) converges locally uniformly almost surely
in �y; t�. That is, whenever (1.15) converges uniformly almost surely on Tn ×
�0; t∗� for all t∗ > 0.

Let �P0;�′� be the probability space of X. For each fixed t ∈ R+, L�·; t�
is a random Fourier series with respect to �P0;�′�. In order to show that
L�y; t� is almost surely jointly continuous in �y; t�, we must be able to
show that L�·; t� is almost surely continuous in y. However, continuity
properties of random Fourier series are well understood only when the co-
efficients are sign invariant. With respect to (1.15), this means only when
�akν̂t�k��k∈Zn =D �akεkν̂t�k��k∈Zn , where �εk� is an independent identi-
cally distributed sequence of random variables, independent of X, defined
on the probability space �P;��, with P�ε1 = 1� = P�ε1 = −1� = 1/2.
We cannot expect this condition to hold in general but it will if we re-
place the original sequence �ak�k∈Zn by the random sequence �akεk�k∈Zn .
Clearly, if �ak�k∈Zn satisfies (1.20), then so does �akεk�ω�y k ∈ Zn� for each
ω ∈ �. Thus we can define the family of continuous additive functionals
�L�y; t;ω�; �y; t;ω� ∈ Tn ×R+ ×��, given by

L�y; t;ω� =
∑
k∈Zn

akν̂t�k�εk�ω�e−iky:(1.21)

We now ask: when will �L�y; t;ω�; �y; t� ∈ Tn × R+� converge locally uni-
formly almost surely in �y; t� for almost all ω ∈ �? (Whenever �L�y; t;ω�,
�y; t� ∈ Tn ×R+� converges locally uniformly for any ω ∈ �, it constitutes a
continuous [in �y; t�] family of continuous additive functionals of X.) A defini-
tive answer to this question is given in Theorem 1.1. [Note that this question
is actually a special case of the one posed in the paragraph following (1.20).
Rather than asking whether �L�y; ·�; y ∈ Tn� constitutes a continuous family
of continuous additive functionals for a specific sequence �ak� for which (1.20)
holds, we ask if it constitutes a continuous family of continuous additive func-
tionals for almost all sequences �akεk�ω�� for which (1.20) holds.]

Before stating Theorem 1.1 let us recall Fukushima’s method, using Dirich-
let spaces, for extending (1.1) [and hence (1.13)] to generalized functions. Let

Fe =
{
h ∈ L2�Tn; dx� �E �h;h� =def

∑
k∈Zn

�1+ Reψ�k���ĥ�2�k� <∞
}

be the (extended) Dirichlet space of X. Let f be the distribution

f�x� =
∑
k∈Zn

ake
ikx(1.22)

in the dual space

F ∗e =
{
v ∈ S ′�Tn� �E ∗�v; v� =def

∑
k∈Zn

�v̂�2�k�
1+ Reψ�k� <∞

}
:(1.23)

We call the metric induced by the norm E ∗ the energy metric.
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We define Lft to be the zero-energy continuous additive functional, N�h�t ,
which arises in Fukushima’s decomposition of h�Xt�, where

h�x� =
∑
k∈Zn

ak
1+ ψ�k�e

ikx:(1.24)

[Note that by the sector condition, (1.7), h ∈ Fe.] Details will be given in
Section 2.

The condition that f ∈ F ∗e is precisely the condition that �ak; k ∈ Zn�
satisfies (1.20). Of course, if f is in F ∗

e , the same will be true of

fy;ω�x� =
∑
k∈Zn

akεk�ω�eik�x−y�(1.25)

for each �y;ω�. Let

ρ�x;y� = �E ∗�fx − fy; fx − fy��1/2

=
( ∑
k∈Zn

�ak�2
1+ Reψ�k� sin2 �x− y�k

2

)1/2

:
(1.26)

We now give the main result of this paper.

Theorem 1.1. For almost every ω ∈ �; the family of continuous additive

functionals �Lfy;ωt ; �y; t� ∈ Tn × R+� has a version with continuous sample
paths almost surely if and only if

Jρ�Tn� =
∫ ∞

0

(
logNρ�Tn; ε�

)1/2
dε <∞;(1.27)

where Nρ�Tn; ε� is the minimum number of balls of radius ε in the metric ρ
that covers Tn.

Furthermore, if (1.27) holds, then, for almost every ω ∈ �,

L�y; t;ω� =
∑
k∈Zn

akν̂t�k�εk�ω�e−iky(1.28)

converges almost surely locally uniformly in �y; t� ∈ Tn ×R+ and is a contin-

uous version of �Lfy;ωt ; �y; t� ∈ Tn ×R+�.

As mentioned above, by “almost surely” we mean almost surely with re-
spect to Px for each x ∈ Tn. We point out in Section 2 that N�h�t is defined
up to equivalence, that is, Px almost surely for q.e. x. When we say that
L =def L�y; t; ω� is a continuous version of Lf =def L

fy;ω
t , we mean that L is

continuous Px almost surely for each x ∈ Tn and L = Lf, Px almost surely
for q.e. x.

Before commenting further on Theorem 1.1, it is useful to state the next
theorem which describes an important property of the continuous additive
functionals which appear in Theorem 1.1.
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Theorem 1.2. For each y ∈ Tn; for almost all ω ∈ �; the stochastic process
�Lfy;ωt ; t ∈ �0;1�� is of bounded variation in t almost surely, if and only if
�ak� ∈ l2.

1.2.1. The continuous additive functionals that we are considering are dif-
ferent from those usually studied. It is traditional to study continuous additive
functionals, say At; which are positive and hence increasing. This corresponds
to taking At=Lft with f a smooth measure, the Revuz measure of At. More
generally, one studies continuous additive functionals At which are the dif-
ference of two positive continuous additive functionals and hence of bounded
variation. This corresponds, to taking f to be the difference of smooth mea-
sures. (See [5], Chapter 5. The class of smooth measures is quite large. It
contains all bounded Borel measures not charging polar sets. Since smooth
measures may be infinite, the difference of two smooth measures must be
defined with some care.) Theorem 1.2 shows that even if we start with f
a bounded smooth measure, in general, for almost all ω ∈ �; Lfωt will not
be of bounded variation in t; where fω =def f0;ω. Therefore, fω will not be
the difference of smooth measures. Thus we see that the natural framework
for Theorem 1.1 is Fukushima’s approach to the study of continuous additive
functionals via Dirichlet spaces since this approach encompasses distributions
which are not necessarily differences of smooth measures.

1.2.2. We began this presentation by posing the problem of the joint con-
tinuity of the family of continuous additive functionals �Lfyt ; y ∈ Tn� for a
fixed f of the form (1.22) for which the coefficients �ak� satisfy (1.20), and
proceeded to solve a natural modification of this problem to that of the joint
continuity of the family of continuous additive functionals �Lfy;ωt ; y ∈ Tn�
for almost all ω ∈ �. As we remarked in Section 1.2.1, this allows us to
show how the Dirichlet space approach to the study of continuous additive
functionals, based on distributions, enters naturally, even when the original
problem concerned the more traditional case in which f is a bounded smooth
measure. However, from the perspective of Dirichlet spaces, we can look upon
Theorem 1.1 differently. In a certain heuristic sense, it gives necessary and
sufficient conditions for the continuity of the family of continuous additive
functionals �Lfyt ; y ∈ Tn� for “almost every” f in the (dual) Dirichlet space F ∗

e .

1.2.3. Theorem 1.1 shows that under (1.27) both �L�y; t;ω�; �y; t� ∈ Tn×
R+� and �Lfy;ωt ; �y; t� ∈ Tn ×R+� constitute a continuous family of continu-
ous additive functionals, and, furthermore, they are equivalent as stochastic
processes. We show, in the proof of Theorem 1.1, that even when (1.27) does
not hold, we can still identify L�y; t;ω� with L

fy;ω
t for each fixed y ∈ Tn. Thus

we can consider these two processes as interchangeable.

1.2.4. It is interesting to note, as pointed out in [5], that the metric ρ,
which arises so naturally in the study of L�y; t� and L

fy
t , is related to the
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“energy integral” of classical potential theory. Suppose that f is actually a
signed measure, that is, that (1.19) is the Fourier series of a signed measure,
say µ on Tn. Then fy is the Fourier series of a signed measure, µy on Tn, with
µy�A� = µ�A+y� for all measurable sets A ⊆ Tn. In this case ρ is equivalent
to the metric τ given in (1.5). [The sum in (1.26) is the Fourier series of the
integral in (1.5).] Thus Theorem 1.1 does address the question raised in the
paragraph containing (1.5) and extends it. Recall that when �ak� ∈ l2, fy;ω
is the difference of two positive finite measures. Furthermore, fy;ω can be a
positive finite measure. This is discussed in Section 6.

For an important class of Lévy processes and distributions, condition (1.27)
can be made much more explicit. First,

∞∑
j=2

(∑
�l�≥j��al�2/�1+ Reψ�l���

)1/2

j�log j�1/2 <∞(1.29)

always implies (1.27). Also, if ψ�k� and �ak� depend only on �k�, for all k ∈ Zn

and are regularly varying in �k�, then (1.29) and (1.27) are equivalent. (See
Remark 6.1.) This condition on ψ is satisfied by symmetric stable processes.
Radially symmetric Fourier coefficients can be obtained as the Fourier coeffi-
cients of the 1-potential density of any radially symmetric Lévy process.

Let us return now to the problem posed initially: what can be said about
the continuity of L

fy
t on �Tn×R+� for a fixed sequence �ak�? As we remarked

above, this seems to be a very difficult question. However, a reinterpretation
of the necessary and sufficient condition of Barlow and Hawkes for the joint
continuity of local times gives the following result.

Theorem 1.3. Let X = �Xt; t ∈ R+� be a Lévy process in Tn. Assume that
�ν̂t�k��k∈Zn; the Fourier coefficients of the occupation measure νt of Xs up to

time t; is contained in l2. This is a necessary and sufficient condition for the

local time Lxt =def L
δx
t of X to exist, and we can write

Lxt =
∑
k∈Z

ν̂t�k�eikx(1.30)

in the sense of convergence in L2�Tn�. Furthermore, the following are equiva-
lent:

(i) �Lxt ; �x; t� ∈ Tn ×R+� has a continuous version almost surely;

(ii)
∑
k∈Z

εkν̂t�k�eikx; x ∈ Tn;

converges uniformly almost surely, where �εk� is independent of X;
(iii) (1.27) holds (with ak = 1 in (1.26), for all k ∈ Zn).

1.3.1. Fix t = t0 > 0. Theorem 1.3 implies that, almost surely with respect
to �′, �Lxt0; x ∈ Tn� is in the Pisier algebra if and only if �Lxt ; �x; t� ∈ Tn×R+�
has a continuous version. See [7], page 213.
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Theorem 1.3 shows that when the local time exists the continuity of the
randomized and nonrandomized versions of (1.15) are essentially equivalent.
However, this is not the case in general. To see this, we describe some results
from [11] which show that (1.27) is neither a necessary nor a sufficient condi-
tion for the continuity almost surely of �Lfyt ; �y; t� ∈ Tn×R+� for all f of the
form (1.22).

Let f be a finite positive measure µ; that is, suppose that (1.19) is the
Fourier series of a finite positive measure µ on Tn. We show in [11], under the
assumption that X is symmetric, that �Lfyt ; �y; t� ∈ Tn ×R+� has a version
with continuous sample paths if

∫
logNd�Tn; ε�dε <∞;(1.31)

where

d�x;y� =
( ∑
l∈Zn

β�l��al�2 sin2 l�x− y�
2

)1/2

(1.32)

and

β�l� =
∑
k∈Zn

1
�1+ ψ�k− l���1+ ψ�k�� :(1.33)

It is easier to see the relationship between d and τ if we note that, in analogy
with (1.5), we have

d�x;y� =
(∫ ∫
�u1�r; s��2 d�µx�r� − µy�r��d�µx�s� − µy�s��

)1/2

:(1.34)

Clearly, (1.31) is a more restrictive condition than (1.27) (recall that when
f is a finite positive measure τ and ρ are equivalent). In fact, d is only de-
fined for dimension n ≤ 3, since otherwise β�0� = ∞. Furthermore, under
certain smoothness conditions on �ak�k∈Zn and �ψ�k��k∈Zn , which include sta-
ble processes in T3 of index greater than 3/2, Theorem 1.5 of [11] states that
�Lfyt ; �y; t� ∈ Tn ×R+� is continuous almost surely if and only if

∫
�logNd�Tn; ε��1/2 dε <∞:(1.35)

Let us now consider the different results obtained applied to Brownian
motion on T3. By Theorem 1.1, �Lfy;ωt ; �y; t� ∈ Tn ×R+� has a version with
continuous sample paths, for almost all ω ∈ �, if

�ak� = O
(

1
�k�1/2�log �k��1+ε

)
for some ε > 0:(1.36)

However, this assertion is false when ε = 0. By Theorem 1.5 of [11], if f
is a finite positive measure with smooth Fourier coefficients �Lfyt ; �y; t� ∈
Tn ×R+� has a version with continuous sample paths if

�ak� = O
(

1
�k��log �k��1+ε

)
for some ε > 0(1.37)
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and in this case this assertion is also false if ε = 0. Thus we have two differ-
ent sets of necessary and sufficient conditions for the continuity of continuous
additive functionals of Lévy processes according to whether the Fourier coeffi-
cients of the distribution f are smooth or highly oscillatory. Finally, note that
neither of these results is trivial, since �akν̂t�k�� ∈ l1 if

�ak� = O
(

1
�k�2�log �k��1+ε

)
for some ε > 0(1.38)

and not necessarily when ε = 0.
As mentioned above, L

fy;ω
t has zero energy and hence, in a certain sense,

zero quadratic variation (see Theorem 5.2). On the other hand, we saw in
Theorem 1.2 that, in general, L

fy;ω
t is not of bounded variation in t. It is

therefore of interest to study the p-variation in t of L
fy;ω
t . For any function

Nt, we define the dyadic p-variation by

lim
n→∞

2n∑
i=1

�Ni/2n −N�i−1�/2n �p:(1.39)

In order to say something about this we impose some conditions on X and
fy;ω.

We assume that �ψ�k�� and the sequence �ak�, in the definition of fy;ω, sat-
isfy the conditions that for every ε > 0 there exists a constant Cε, independent
of k, such that

C−1
ε �k�β−ε ≤ Reψ�k� ≤ Cε�k�β+ε(1.40)

and

C−1
ε �k�−α−ε ≤ �ak� ≤ Cε�k�−α+ε(1.41)

for all k ∈ Tn, k 6= 0. We also require that 2α < n, and 2α+ β > n, which im-
plies that �ak�k∈Zn /∈ l2 and that (1.20) is satisfied. Therefore, by Theorem 3.1,

for fixed y ∈ Tn, �Lfy;ωt ; t ∈ �0;1�� is continuous almost surely for almost all

ω ∈ �. [Actually under these conditions �Lfy;ωt ; �y; t� ∈ Tn×R+� is continuous
almost surely for almost all ω ∈ �.]

Theorem 1.4. Let fy;ω be a distribution for which �ψ�k�� and �ak� satisfy
the conditions given in (1.40) and (1.41). Let

p0 =
2β

2β+ 2α− n:(1.42)

(So that 1 < p0 < 2.)

(i) If p < p0, then, for almost every ω ∈ �,

lim sup
m→∞

2m∑
i=1

∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p = ∞ a.s.(1.43)
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(ii) If p > p0; then, for almost every ω ∈ �;

lim
m→∞

2m∑
i=1

∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p = 0 a.s.(1.44)

Functions satisfying (1.40) and (1.41) include sequences �ψ�k�� and �ak�
which are regularly varying functions of �k� at ∞ with index β and −α, re-
spectively.

For a more concrete example, let X be the projection onto Tn of the expo-
nentially killed symmetric stable process of order β in Rn and let f be the
probability measure v�x�dx, where v�x� is the 1-potential density of the Lévy
process which is the projection onto Tn of the symmetric stable process of
order n− α in Rn. In this case we can take ψ�k� = �k�β and �ak� = �k�−α.

Certainly Lévy processes on Rn seem more natural than Lévy processes
on Tn. Theorems 1.1–1.3 have versions in Rn and probably Theorem 1.4
does as well. However, on Rn the randomized distributions fy;ω are replaced
by generalized stationary Gaussian processes. Although the mathematics re-
mains the same, the continuous additive functionals that we get for Lévy pro-
cesses on Rn seem so specialized that we do not pursue this line at this time
except to point out in Remark 4.1 what the continuous additive functionals
on Rn look like.

The outline of this paper is as follows. In Section 2 we describe more care-
fully the family of continuous additive functionals L

fy;ω
t and its relation to the

random Fourier series L�y; t;ω� and, assuming Theorems 2.1 and 2.2, which
are results on the uniform convergence of random Fourier series, prove Theo-
rem 1.1. In Section 3 we obtain many interesting properties of the Fourier co-
efficients of the occupation measure of X. These are used in Section 4 to prove
Theorems 2.1 and 2.2. Section 5 deals with the p-variation in t of the zero-
energy continuous additive functionalsL

fy;ω
t . Finally, in Section 6 we briefly

consider the case when fy;ω is a measure or signed measure.

2. Continuous additive functionals of zero energy. In this section we
give a more complete description of the zero-energy continuous additive func-
tionals defined by Fukushima which we denoted by Lft in the Introduction,
and go on to prove Theorem 1.1. Fukushima’s monograph, [5], only considers
symmetric Dirichlet spaces. Consequently, the results in [5] can only be ap-
plied to symmetric Markov processes. In [12] many of the results from [5] are
extended to more general Dirichlet spaces. It is these results that we actually
use in this paper since we only require that X satisfy the sector condition.
Nevertheless, we only give references to [5] and leave it to the reader to check
the details in [12].

By Theorem 5.2.2 of [5] to each h ∈ Fe there is naturally associated, up to
equivalence, a continuous additive functional N�h�t ∈ Nc. Here Nc denotes the
class of continuous additive functionals (in the sense of [5], page 124) Nt such
that Ex��Nt�� < ∞ q.e. for each t > 0 and such that e�N� = 0. (Here q.e. for
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“quasi-everywhere” means for all x ∈ Tn except for a set of capacity zero; see
[5]. The energy e�A� of an additive functional At is defined by

e�A� = lim
t→0

1
2t
Em�A2

t �;(2.1)

whenever the limit exists. Here Em =def
∫
Exm�dx�, where m is Lebesgue

measure on Tn. Two continuous additive functionals At and Bt are said to be
equivalent if At = Bt, Px almost surely for q.e. x.)

The association of N�h�t with h in [5] is made as follows. Choose a version h̃
of h which is quasi-continuous. There is a unique way (up to equivalence) to
decompose h̃�Xt� − h̃�X0� as a sum

h̃�Xt� − h̃�X0� =M�h�t −N�h�t ;(2.2)

where N�h�t ∈ Nc and M
�h�
t ∈ M 0. Here M 0 denotes the class of additive

functionals Mt of finite energy such that, for each t > 0, Ex�M2
t � < ∞ and

Ex�Mt� = 0 q.e. (In this paperN�h�t in this paper is the negative of that used in
[5].) Recall that for any f ∈ F ∗

e we defined Lft to be N�h�t . [See the paragraph
containing (1.22)–(1.24).]

The proof of Theorem 1.1 depends very strongly on the fact that the random
Fourier series L�y; t;ω�, defined in (1.21), converges locally uniformly almost
surely on �P×P0;�×�′�. Let us elaborate on this. Consider

L̃�y; t� =def
∑
k∈Zn

akν̂t�k;ω′�εk�ω�e−iky:(2.3)

Of course, L̃�y; t� is also equal to L�y; t;ω�. We write L�y; t;ω� to emphasize
that for each ω ∈ � we have a stochastic process on �P0;�′�. When we write
L̃�y; t� we emphasize that we have a stochastic process on �P ×P0;� × �′�.
We shall also use the following notation:

L̃N�y; t� =
∑

�k�≤N
akν̂t�k�εke−iky;

L̃cN�y; t� =
∑

�k�>N
akν̂t�k�εke−iky:

(2.4)

The next two theorems give the continuity properties of L̃�y; t�. We state
them here and use them in the proof of Theorem 1.1. They are proved in
Section 4 using several lemmas proved in Section 3.

Theorem 2.1. If (1.27) holds the stochastic process �L̃�y; t�; �y; t� ∈ Tn ×
R+� has a version with continuous sample paths almost surely. If (1.27) does
not hold, then, for almost all ω ∈ �,

sup
N

sup
y∈Tn

∣∣∣∣
∑

�k�≤N
akν̂t�k;ω′�εke−iky

∣∣∣∣ = ∞(2.5)

on a set of measure greater than 0 in �′.
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The following theorem is the key to identifying L�y; t;ω� with the family

of continuous additive functionals L
fy;ω
t .

Theorem 2.2. Let � · �∞ denote supy∈Tn; t∈�0; t∗� � · � for some t∗ > 0; and

L̃Nc = LNc�y; t� =
∑

�k�>N
akν̂t�k�εke−iky(2.6)

and assume that (1.27) holds. Then

lim
N→∞

E
(∥∥L̃Nc

∥∥
∞
)
= 0;(2.7)

which implies, in particular, that, for almost all ω ∈ �, LN�y; t;ω� converges
uniformly in the sup-norm on C �Tn×�0; t∗��; the space of continuous functions
on Tn × �0; t∗�.

Proof of Theorem 1.1. We will first show that (1.27) implies that, for
almost all ω ∈ �, �Lfy;ωt ; �y; t� ∈ �Tn × R+�� has a version with continuous
sample paths. Set

hy;ω�x� =
∑
k∈Zn

ak
1+ ψ�k�εk�ω�e

ik�x−y�:(2.8)

It is easy to see that hy;ω ∈ Fe. [When (1.27) holds we have that, for almost all
ω ∈ �, hy;ω�x� is actually continuous almost surely with respect to �P0;�′�.]
Furthermore, defining

hy;ω;N�x� =
∑

�k�≤N

ak
1+ ψ�k�εk�ω�e

ik�x−y�;(2.9)

we see that limN→∞ hy;ω;N = hy;ω in Fe with respect to the Dirichlet norm E.
[Convergence also holds in C�Tn� with sup-norm for almost all ω ∈ �.]

It is clear that hy;ω;N = U0fy;ω;N; where

fy;ω;N�x� =
∑

�k�≤N
akεk�ω�eik�x−y�:(2.10)

(Note that U0 denotes the zero-resolvent operator with respect to the killed
process, which corresponds to the one-resolvent operator with respect to the
unkilled process.) Therefore, by (5.2.22) of [5] (more precisely, by the analog
for transient processes) or, alternatively, by (5.3.10) of [5] [see, in particular,
the last equation on page 144), we have that

N
�hy;ω;N�
t =

∫ t
0
fy;ω;N�Xs�ds:(2.11)

Obviously,
∫ t

0 fy;ω;N�Xs�ds = L̃N�y; t� =def LN�y; t;ω�. Therefore, for all

ω ∈ �, N
�hy;ω;N�
t = LN�y; t;ω�. We see from Theorems 2.1 and 2.2 that, for

almost all ω ∈ �, N
hy;ω;N
t → L�y; t;ω� uniformly almost surely on every finite

interval of t as N→∞. By Corollary 1(ii) to Theorem 5.2.2 of [5], we also see
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that, for some subsequence Nn →∞, N
�hy;ω;Nn �
t →N

�hy;ω�
t uniformly on every

finite interval of t as Nn→∞, Px almost surely for q.e. x ∈ Tn. (In fact, this
last convergence holds for any choice of the εk’s.) These two observations show
that when (1.27) holds, for almost all ω ∈ �, �L�y; t;ω�, �y; t� ∈ Tn ×R+� is

a continuous version of N
�hy;ω�
t or, equivalently, of L

fy;ω
t .

We now show that when (1.27) does not hold there exists a countable dense
set D ⊂ Tn so that, for almost all ω ∈ �, supy∈DN

�hy;ω�
t or, equivalently,

supy∈DL
fy;ω
t is unbounded with probability greater than 0. Fix y and t. Since

L�y; t;ω� =
∑
k∈Zn

akν̂t�k�εk�ω�e−iky(2.12)

converges in L2�Tn�, there exists a subsequence Nn such that LNn
�y; t� con-

verges to L�y; t� almost surely. As in the first part of this proof, this shows

that, for almost all ω ∈ �, L�y; t;ω� is a version of N
�hy;ω�
t for fixed y and t.

Let D ⊂ Tn be a countable dense set. Then, for almost all ω ∈ �,

L�y; t;ω� =N�hy;ω�t ∀y ∈ D Px a.s. q.e. x:(2.13)

It follows from (2.13) that, for almost all ω ∈ �,

sup
y∈D

N
�hy;ω�
t = sup

y∈D
L�y; t;ω�; Px a.s. q.e. x:(2.14)

Let x ∈ Tn be a point at which (2.14) holds Px almost surely and fix ω′ ∈ �′.
Consider L̃�y; t� defined in (2.3) which we now write as L̃�y; t;ω′� to empha-
size the fact that ω′ is held fixed. Since L̃�y; t;ω′� is a separable process with
respect to �, supy∈D L̃�y; t;ω′� = supy∈Tn L̃�y; t;ω′� almost surely with re-
spect to �. Assume that supy∈Tn L̃�y; t;ω′� < ∞ on a set of positive measure
in �. Then, since this is a tail event, supy∈Tn L̃�y; t;ω′� < ∞ almost surely
with respect to �. It follows from Billard’s theorem (see [5], Chapter 5, The-
orem 3) that the series L̃�y; t;ω′� converges uniformly almost surely with
respect to �. Therefore,

sup
N

sup
y∈Tn

∣∣∣∣
∑

�k�≤N
akν̂t�k;ω′�εke−iky

∣∣∣∣ <∞(2.15)

almost surely with respect to �. However, (2.15) cannot occur for ω′ in a subset
of �′ of measure 1 because that would contradict (2.5). Therefore, for almost
all ω ∈ �, supy∈DL�y; t;ω� = ∞ on a set of Px measure greater than 0. [In
fact, it is the set for which (2.5) holds.] Note that if (2.5) holds on a subset
of �′ with Px measure c greater that 0, then it also holds on a subset of �′

with Py measure c for all y ∈ Tn. This is because the effect on L̃�y; t;ω′� of
shifting a path by some z ∈ Tn is simply to multiply the ν̂t�k� in (2.5) by eikz

and, clearly, this does not change the value of the left-hand side of (2.5). Thus
we see that, for almost all ω ∈ �, supy∈DN

�hy;ω�
t = ∞ on a set of Px measure

greater than 0, q.e. x. 2
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3. Fourier coefficients of occupation measures. The proofs of Theo-
rems 2.1 and 2.2 will follow from fairly standard techniques in the theory of
random Fourier series once we have a good understanding of �ν̂t�k��k∈Zn , the
Fourier coefficients of the occupation measure of X, defined in (1.12). Let Y
be a real- or complex-valued random variable. As usual, we denote �E�Y�q�1/q
by �Y�q.

Lemma 3.1. For any fixed T < ∞; there exists a constant 0 < CT < ∞
independent of t ∈ �0;T�; k ∈ Zn and integers m ≥ 1 such that

�ν̂t�k��2m ≤ CT
√
m�ν̂t�k��2 ∀k ∈ Zn:(3.1)

Furthermore, for any p > 0, there exist finite positive constants Ap;T;Bp;T
independent of t ∈ �0;T� and k ∈ Zn such that

Ap;T�ν̂t�k��2 ≤ �ν̂t�k��p ≤ Bp;T�ν̂t�k��2 ∀k ∈ Zn:(3.2)

A result of this nature is obtained for Brownian motion in [7], Chapter 17,
Section 3.

Proof.

E��ν̂t�k��2m�

= E
(∫ t

0

∫ t
0

exp�ik�Xs −Xr��drds
)m

=
∫
�0; t�2m

E

(
exp

(
ik

( m∑
j=1

Xsj

))
exp

(
−ik

( m∑
j=1

Xrj

))) m∏
j=1

drj dsj

=
∑
π

∫
0≤tπ1

≤···≤tπ2m
≤t
E

(
exp

(
ik

( 2m∑
j=1

επjXtπj

))) 2m∏
j=1

dtj

=
∑
π

∫
0≤tπ1

≤···≤tπ2m≤t

×E
(

exp
(
ik

2m∑
v=1

( 2m∑
j=v

επj

)
�Xtπv

−Xtπv−1
�
)) 2m∏

j=1

dtj

=
∑
π

∫
0≤tπ1

≤···≤tπ2m
≤t

2m∏
v=1

exp
(
−�tπv − tπv−1

�

×
(

1+ ψ
(( 2m∑

j=v
επj

)
k

))) 2m∏
j=1

dtj;

(3.3)

where π runs over all permutations of �1;2; : : : ;2m�, επj = ±1 depending
on whether tπj ∈ �s1; : : : ; sm� or tπj ∈ �r1; : : : ; rm� and we set tπ0

= 0. In
particular, if v is even, then

∑2m
j=v επj 6= 0, so that using (1.7) and (1.8), we see
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that for v even
∣∣∣∣exp

(
−�tπv − tπv−1

�
(

1+ ψ
(( 2m∑

j=v
επj

)
k

)))∣∣∣∣

≤ exp�−C�tπv − tπv−1
��1+ �ψ�k����:

(3.4)

For v odd we simply use the fact that Reψ�k� ≥ 0 so that

E��ν̂t�k��2m� ≤ �2m�!
∫

0≤t1≤···≤t2m≤t

m∏
j=1

exp�−C�tπ2j
− tπ2j−1

�

× �1+ �ψ�k����
2m∏
j=1

dtj

≤ �2m�!
(∫

0≤t1≤t3≤···≤t2m−1≤t

m∏
j=1

dt2j−1

)

×
(∫ t

0
exp�−Cs�1+ �ψ�k����ds

)m

≤ �2m�! t
m

m!

(∫ t
0

exp�−Cs�1+ �ψ�k����ds
)m
:

(3.5)

Therefore,

�ν̂t�k��22m ≤ C1mt

(∫ t
0

exp�−C2s�1+ �ψ�k����ds
)

≤ Cmt2
(

1 ∧ 1
t�1+ �ψ�k���

)
:

(3.6)

On the other hand,

E��ν̂t�k��2� =
∫ t

0

∫ t
0
E�eik�Xs−Xr��drds

= 2 Re
∫ t

0

(∫ t
r
E�eik�Xs−Xr��ds

)
dr

= 2 Re
∫ t

0
e−r

(∫ t
r
e−�s−r��1+ψ�k�� ds

)
dr

= 2 Re
∫ t

0
e−r

(
1− e−�t−r��1+ψ�k��

1+ ψ�k�

)
dr

= 2 Re
∫ t

0

(
e−r − e−t�1+ψ�k��erψ�k�

1+ ψ�k�

)
dr

= 2 Re
(

1− e−t
1+ ψ�k� −

e−t − e−t�1+ψ�k��
ψ�k��1+ ψ�k��

)

= 2 Re
(
e−t�1+ψ�k�� − 1+ �1− e−t��1+ ψ�k��

ψ�k��1+ ψ�k��

)
:

(3.7)
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Let Sδ denote the region in the complex plane defined by

Sδ = �z = x+ iy �x ≥ 0; δ�y� ≤ x�
and let ht�z� be the analytic function defined on �Re z ≥ 0� by

ht�z� =
e−t�1+z� − 1+ �1− e−t��1+ z�

z�1+ z�
for z 6= 0 and h�0� = 0. In view of the above, (3.1) will follow from the next
lemma. Then (3.2) follows easily from (3.1) via Hölder’s inequality (see, e.g.,
[8], the proof of Lemma 4.1). 2

Lemma 3.2. For any δ > 0 we can find some Cδ > 0 such that

Reht�z� ≥ Cδt2e−t
(

1 ∧ 1
t�1+ z�

)
(3.8)

for all z ∈ Sδ.

Proof. Let D denote the region in the complex plane defined by

D = �z = x+ iy �x ≥ 0 and �y� ≤ 1+ x�:
We prove this lemma by first establishing (3.8) for z ∈ D and then for z ∈
Sδ ∩Dc.

Note that on D, for all a ≥ 0,

Re
(∫ a

0
e−u�1+z� du

)
≥ 0:(3.9)

Therefore, comparing the third line of (3.7) with the last, which is 2 Reht�z�,
we see that

Re ht�z� ≥ e−t Re
∫ t

0

(∫ t
r
e−�s−r��1+z� ds

)
dr

= e−tt2 Re
(
e−t�1+z� − 1+ t�1+ z�

�t�1+ z��2
)
:

(3.10)

Let D̃ denote the sector in the complex plane defined by

D̃ = �η = u+ iv � �v� ≤ u�
and let g�η� be the entire analytic function defined by

g�η� = e
−η − 1+ η

η2

for η 6= 0 and g�0� = 0. In order to obtain (3.8) for z ∈ D, we need only show
that there exists a constant C > 0 such that

Reg�η� ≥ C
(

1 ∧ 1
�η�

)
; ∀η ∈ D̃:(3.11)
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To obtain (3.11), we begin by noting that for �η� ≤ 1 we have
∣∣∣∣g�η� −

1
2

∣∣∣∣ =
1
�η�2

∣∣∣∣e
−η − 1+ η− η

2

2

∣∣∣∣

= 1
�η�2

∣∣∣∣
∞∑
n=3

�−η�n
n!

∣∣∣∣

≤
∞∑
n=3

1
n!
≤ 0:3:

(3.12)

Thus we see that

Reg�η� ≥ 0:2 ∀ �η� ≤ 1:(3.13)

Next we note that, for η ∈ D̃, Reη ≥ 0, which implies that
∣∣∣∣
e−η − 1
η2

∣∣∣∣ ≤
2
�η�2 :(3.14)

Also η ∈ D̃ implies that

�η�2 = u2 + v2 ≤ 2u2;(3.15)

so that

Re
1
η
= u

�η�2 ≥
1√
2�η�

:(3.16)

Therefore, since

Re g�η� ≥ Re
1
η
−
∣∣∣∣
e−η − 1
η2

∣∣∣∣;(3.17)

we see that (3.11) holds for all η ∈ D̃ such that �η� ≥ 4
√

2.
Consider

D̃′ = �η ∈ D̃ �1 ≤ �η� ≤ 4
√

2�:
To complete the proof of (3.11), we need only show that

Reg�η� > 0 ∀η ∈ D̃′:(3.18)

Since g is an entire analytic function on D̃′, Reg�η� is harmonic. Therefore,
the restriction of Reg�η� to D̃′ takes its minimum value on the boundary of
D̃′. Since we already know that Reg�η� > 0 on

D̃′ ∩
(
��η� = 1� ∪ ��η� = 4

√
2�
)
;(3.19)

in order to obtain (3.18) it suffices to show that Reg�η� > 0 on D̃′∩�η� �v� = u�,
that is, for �η � �v� = u, 1/

√
2 ≤ �v� ≤ 4�. We have

Reg��v� + iv� = Re
(
e−�v��cosv− i sin v� − 1+ �v� + iv

2i�v�v

)

= �v− e−�v� sin v�/�2�v�v�:
(3.20)
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This last term is an even function of v and is clearly strictly positive for
1/
√

2 ≤ v ≤ 4. Thus we obtain (3.11) and consequently (3.8) for z ∈ D.
Let us now consider the case z ∈ Sδ ∩Dc. We write out explicitly

Re ht�x+ iy�

= Re
(
e−t�1+x��cos ty+ i sin�−ty� − 1+ �1− e−t��1+ x+ iy�

�x2 + x− y2 + i�2x+ 1�y�

)

= 1
�z�1+ z��2

(
�e−t�1+x� cos ty− 1+ �1− e−t��1+ x���x2 + x− y2�

+ �e−t�1+x� sin�−ty� + �1− e−t�y��2x+ 1�y
)

(3.21)

and note that

�e−t�1+x� cos ty− 1+ �1− e−t��1+ x���x2 + x− y2�
+ �e−t�1+x� sin�−ty� + �1− e−t�y��2x+ 1�y
= �e−t − e−t�1+x� cos ty��y2 − x2 − x�
+ �1− e−t��xy2 + y2 + x2 + x3� + e−t�1+x� sin�−ty��2x+ 1�y

= e−t�1+x��1− cos ty��y2 − x2 − x� + e−t�1− e−tx��y2 − x2 − x�
+ �1− e−t��xy2 + y2 + x2 + x3� + e−t�1+x� sin�−ty��2xy+ y�

= e−t�1+x��1− cos ty��y2 − x2 − x�
+
{
1− e−t − e−t�1− e−tx�/x

}
�x2 + x3� + �1− e−t��xy2 + y2�

+ e−t�1− e−tx�y2 + e−t�1+x� sin�−ty��2xy+ y�
≥ e−t�1+x��1− cos ty��y2 − x2 − x�
+ �1− e−t − te−t��x2 + x3� + �1− e−t − te−t�1+x���xy2 + y2�

≥ e−t�1+x��1− cos ty��y2 − x2 − x� + t
2

2
e−t�x2 + x3�

+ te−t�1− e−tx��xy2 + y2�:

Hence, since y2 ≥ x2 + x on Dc, we have that

Re ht�z� ≥
te−t�1− e−tx�xy2

�z�1+ z��2

≥ Cte
−t�1− e−tx�
�1+ z� ;

(3.22)

where we also use the fact that x+ iy ∈ Sδ. This gives the lower bound

C
te−t

�1+ z�
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whenever e−tx ≤ 1/2, while if e−tx ≥ 1/2 we get the lower bound

Ct2e−te−tx
x

1+ x ≥ Ct
2e−t

since, onDc∩Sδ, �1/δ�x ≥ y ≥ 1+x. This completes the proof of the lemma. 2

It is useful to state the following simple corollary of the proof of Lemma 3.1.

Corollary 3.1. For any fixed T <∞; there exists a constant 0 < CT inde-
pendent of t ∈ �0;T�; k ∈ Zn and all integers m ≥ 1 and an absolute constant
C such that, for all k ∈ Zn;

CTt
2
(

1 ∧ 1
t�1+ Reψ�k��

)
≤ �ν̂t�k��22

≤ Ct2
(

1 ∧ 1
t�1+ Reψ�k��

)
:

Proof. The upper bound follows from (3.6). For the lower bound we use
(3.7), Lemma 3.2 and the fact that, by (1.7),

1+ �ψ�k�� ≤ C�1+ Reψ�k��;(3.23)

where C is a constant independent of k. 2

Lemma 3.3.

E exp
(
λ

∣∣∣∣
�1+ Reψ�k��1/2�ν̂t�k� − ν̂s�k��

�t− s�1/2
∣∣∣∣
2)
<∞(3.24)

for some λ > 0 sufficiently small, which can be chosen independently of k; t
and s.

Proof. We recall two properties of the Fourier coefficients �ν̂t�k�� which
follow immediately from their definition (1.12): the additivity property

ν̂t�k� − ν̂s�k� = ν̂t−s�k� ◦ θs for t > s(3.25)

and the transformation property

ν̂t�k��x+ω� = eikxν̂t�k��ω� ∀x ∈ Td;(3.26)

where x + ω denotes the uniform shift of the path ω by x ∈ Td, that is,
Xu�x+ω� = x+Xu�ω� for all u ∈ R+. Using these and the Markov property,
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we see that

E0��ν̂t�k� − ν̂s�k��2m� = E0��ν̂t−s�k��2m ◦ θs�
= E0(EXs��ν̂t−s�k��2m�

)

=
∫
Td
ps�x�Ex��ν̂t−s�k��ω��2m�dx

=
∫
Td
ps�x�E0��ν̂t−s�k��x+ω��2m�dx

= e−sE0��ν̂t−s�k��2m�;

(3.27)

where ps�x� denotes the density of the exponentially killed Lévy process X.
Therefore, by (3.6), we have that

Im =def E

∣∣∣∣
�1+ Reψ�k��1/2�ν̂t�k� − ν̂s�k��

�t− s�1/2
∣∣∣∣
2m

= e−s �1+ Reψ�k��m
�t− s�m �ν̂t−s�k��2m2m

≤ Cmmm:

(3.28)

It is now easy to see that for λ sufficiently small λqIq/q! ≤ δq for some δ < 1;
which gives (3.24). 2

Lemma 3.4. Let t∗ > 0. Then

E sup
0≤t≤t∗

�1+ Reψ�k��1/2�ν̂t�k��2 ≤ Ct∗
(

1 ∨ log
1
t∗

)
;(3.29)

where C is a constant independent of k; and

E sup
�s−t�≤δ

0≤s; t≤t∗

�1+ Reψ�k���ν̂s�k� − ν̂t�k��2 ≤ Ct∗δ
(

1 ∨ log
1
δ

)
;(3.30)

where Ct∗ > 0 is a constant independent of k but, in general, dependent on t∗.

Proof. Set Y�t� = �1+Reψ�k��1/2ν̂t�k�. Since ψ�0� = 0 and ν̂t�0� = t, both
(3.29) and (3.30) are trivially true when k = 0. Otherwise, by Lemma 3.3,

P

(√
2λ �Y�t� −Y�s��
�t− s�1/2 > v

)
≤ Ce−v2/2:(3.31)

It follows from [9], Chapter 2, Theorem 3.1, applied separately to the real and
imaginary parts of Y�t�, that

(
E sup

t≤t∗
�Y�t��2

)1/2
≤ C

(
sup
t≤t∗
�E�Y�t��2�1/2 + �t∗�1/2 +Jq�Tn�

)
;(3.32)
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where q�s; t� = �t−s�1/2/
√

2λ. Note that, given (3.31), we get (3.14) of Theorem
3.1, Chapter 2 of [9]. Now, sinceEY�t� is not constant here, we get (3.32) rather
than (3.5) in [9]. [Of course, by (3.6), supt≤t∗ E�Y�t��2 ≤ t∗.] Equation (3.29) now
follows from a simple estimate of Jq�Tn�. Note that although Theorem 3.1,
Chapter 2 of [9] refers to a version of Y�t�, since Y�t� is continuous in t, we
can take the version to be Y�t� itself.

In an even more direct fashion (3.31) implies (3.4) of Theorem 3.1, Chapter 2
of [9] which implies (3.30) by a simple calculation. 2

Recall that we defined �P0;�′� as the probability space of X and �P;�� as
the probability space of �εk�, where the two probability spaces are indepen-
dent. In addition to �εk�, we also consider �ε′k�k∈Zn , independent Rademacher
random variables, and �gk�k∈Zn and �g′k�k∈Zn , independent normal random
variables with mean 0 and variance 1, all defined on �P;��, with all four se-
quences being independent of each other and of X. We define �ε̃k�k∈Zn , where
ε̃k = εk + iε′k, and �g̃k�, where g̃k = gk + ig′k. Let E0 denote expectation with
respect to the probability space �P0;�′� and let EG denote expectation with
respect to the probability space �P;��. Let E denote expectation with respect
to the product space �×�′.

Lemma 3.5. Let �αk� be complex numbers and assume that

κ�s; t� =def

(
�t− s�

∑
k∈Zn

�αk�2
1+ Reψ�k�

)1/2

<∞:(3.33)

Then

E exp
(
λ

∣∣∣∣
Re�∑k∈Zn αk�ν̂t�k� − ν̂s�k��g̃k�

κ�s; t�

∣∣∣∣
)
<∞(3.34)

and

E exp
(
λ

∣∣∣∣
Re�∑k∈Zn αk�ν̂t�k� − ν̂s�k��ε̃k�

κ�s; t�

∣∣∣∣
)
<∞(3.35)

for some λ > 0 sufficiently small.

Proof. We first prove (3.34). Note that for ω′ fixed, Re�∑k∈Zn αk�ν̂t�k;ω′�−
ν̂s�k;ω′��g̃k� is a normal random variable with mean 0 and variance∑
k∈Zn �αk�2�ν̂t�k;ω′� − ν̂s�k;ω′��2. Hence

Re
( ∑
k∈Zn

αk�ν̂t�k;ω′� − ν̂s�k;ω′��g̃k
)

=D

( ∑
k∈Zn

�αk�2�ν̂t�k;ω′� − ν̂s�k;ω′��2
)1/2

g1
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from which we get

E0EG exp
(
u

∣∣∣∣Re
( ∑
k∈Zn

αk�ν̂t�k� − ν̂s�k��g̃k
)∣∣∣∣
)

= E0 exp
(
u2

2

∑
k∈Zn

�αk�2�ν̂t�k� − ν̂s�k��2
)

≤ E0 exp
(
u2

2

∑
k∈Zn

�αk�2�ν̂t−s�k��2
)

(3.36)

for some u > 0 sufficiently small. In the last step we used the additivity and
transformation properties, (3.25) and (3.26), as well as the Markov property,
as in the proof of Lemma 3.3.

It now follows from the multiple Hölder inequality and (3.6) that

E0
(
u2

2

∑
k∈Zn

�αk�2�ν̂t−s�k��2
)j

=
(
u2

2

)j ∑
k1;:::;kj∈Zn

( j∏
i=1

�αki �
2
)
E

( j∏
i=1

�ν̂t−s�ki��2
)

≤
(
u2

2

)j ∑
k1;:::;kj∈Zn

j∏
i=1

�αki �
2���ν̂t−s�ki��2��j

≤
(
u2

2

)j ∑
k1;:::;kj∈Zn

j∏
i=1

�αki �
2�ν̂t−s�ki��22j

≤
(
u2

2

)j ∑
k1;:::;kj∈Zn

j∏
i=1

C�αki �2j�t− s�
1+ Reψ�ki�

≤
(
u2

2

)j(
Cj

∑
k∈Zn

�αk�2�t− s�
1+ Reψ�k�

)j
:

(3.37)

It is easy to see that, for u = λ1/2/κ�s; t� for some λ > 0 sufficiently small, we
have (3.34). (The argument is similar to the one in the last sentence of the
proof of Lemma 3.3.)

Since we can take g̃k = εk�gk� + iε′k�g′k� for all k ∈ Zn in (3.34) without
changing its value, we get (3.35) by Jensen’s inequality. 2

Theorem 3.1. If (1.20) holds, then, for each fixed y ∈ Tn, the stochastic
process �L̃�y; t�; t ∈ R+� [see (2.3)] has a continuous version almost surely.

Proof. It follows immediately from Lemma 3.5 and Theorem 11.6 of [8]
(see the remark on the bottom of page 300 of [8]) that, for each fixed y ∈ Tn,
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the stochastic process

Re
( ∑
k∈Zn

akν̂t�k�ε̃ke−iky
)
; t ∈ Tn;(3.38)

has a version with continuous sample paths almost surely. This clearly implies
that �L̃�y; t�; t ∈ R+� does also. 2

4. Random Fourier series. We are concerned with the sample path
properties of the random Fourier series L̃�y; t� defined in (2.3). Recall that
the sequences �ν̂t�k��k∈Zn and �εk�k∈Zn are independent of each other. How-
ever, the �ν̂t�k�� are not independent of each other and so L̃�y; t� is not a
sum of independent Banach space–valued random variables. This makes the
proofs of Theorems 2.1 and 2.2 a little more delicate.

Rather than studying L̃�y; t� it is often easier to analyze

H̃�y; t� = Re
( ∑
k∈Zn

akν̂t�k�g̃ke−iky
)
; �y; t� ∈ Tn ×R+;(4.1)

since, for fixed ω′ ∈ �′,

H̃�y; t;ω′� = Re
( ∑
k∈Zn

akν̂t�k;ω′�g̃ke−iky
)
; �y; t� ∈ Tn ×R+;(4.2)

is a stationary Gaussian process. [Recall that �P0;�′� is the probability space
of X.] It is not difficult to pass from results about H̃�y; t;ω′� to results about
L̃�y; t�.

Proof of Theorem 2.1. We say that a stochastic process is continuous
almost surely if it has a version with continuous sample paths almost surely.
Assume that (1.27) is satisfied. We first show that, for P0 almost all ω′ ∈ �′
and any t∗ > 0, �H̃�y; t;ω′�; �y; t� ∈ �Td×�0; t∗��� is continuous almost surely
with respect to �P;��. (See the paragraph preceding Lemma 3.5 for notation.)
We have

EG�H̃�y; s;ω′� − H̃�x; t;ω′��2

≤ 2�EG�H̃�y; s;ω′� − H̃�y; t;ω′��2 +EG�H̃�y; t;ω′� − H̃�x; t;ω′��2�

= 2
∑
k∈Zn

�ak�2�ν̂s�k� − ν̂t�k��2 + 8
∑
k∈Zn

�ak�2�ν̂t�k��2 sin2 �y− x�k
2

≤ 2
∑
k∈Zn

�ak�2�ν̂s�k� − ν̂t�k��2 + 8
∑
k∈Zn

�ak�2 sup
t≤t∗
�ν̂t�k��2 sin2 �x− y�k

2
:

(4.3)

It follows from [7], Chapter 15, Section 3, Theorem 2, that �H�y; t;ω′�; �y; t� ∈
�Tn × �0; t∗��� is continuous almost surely for ω′ in a set of measure 1, if the
two Gaussian processes

U�t;ω′� = Re
( ∑
k∈Zn

akν̂t�k;ω′�g̃k
)
; t ∈ �0; t∗�;(4.4)
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and

V�y;ω′� = Re
( ∑
k∈Zn

ak sup
t≤t∗
�ν̂t�k;ω′��g̃ke−iky

)
; y ∈ Tn;(4.5)

are continuous almost surely for ω′ in a set of measure 1. We shall do this
by showing that both U = �U�t�; t ∈ �0; t∗�� and V = �V�y�; y ∈ Td� are
continuous almost surely on �� × �′�. For U this follows from Lemma 3.5
using precisely the same proof that showed that for fixed y ∈ Tn the process
in (3.38) is continuous almost surely. For V it follows from (3.29) and [9],
Chapter 1, Theorem 1.1, along with [9], Chapter 2, Lemma 3.6, since we can
write

V�y� = Re
( ∑
k∈Zn

ak
�1+ Reψ�k��1/2 sup

t≤t∗
�1+ Reψ�k��1/2�ν̂t�k��g̃ke−iky

)
:(4.6)

This shows that, for almost all ω′ ∈ �′, �H̃�y; t;ω′�; �y; t� ∈ �Td × �0; t∗��� is
continuous almost surely and hence so is

∑
k∈Zn

akν̂t�k;ω′�gke−iky; �y; t� ∈ Tn × �0; t∗�:(4.7)

Using a comparison theorem (Theorem 5.1 of [6]), we see that, for P0 almost
all ω′ ∈ �′,

∑
k∈Zn

akν̂t�k;ω′�εke−iky; �y; t� ∈ Tn × �0; t∗�;(4.8)

is continuous almost surely and so, by Fubini’s theorem, we see that �L̃�y; t�;
�y; t� ∈ Tn×�0; t∗�� is continuous almost surely. Since this is true for all t∗ > 0,
it is true for t ∈ R+. Furthermore, since ν̂t�k;ω′ + x� = ν̂t�k;ω′�eikx, we also
have that this holds for Px almost all ω′ ∈ �′ for each x ∈ Tn.

Suppose that (1.27) does not hold. Write

L̃�y; t� =
∑
k∈Zn

ak
�1+ Reψ�k��1/2 �1+ Reψ�k��1/2�ν̂t�k��εke−iky(4.9)

and note that, by (3.2) and Corollary 3.1,

E��1+ Reψ�k��1/2�ν̂t�k��� ≥ C1�t ∧ t1/2�(4.10)

and

E��1+ Reψ�k���ν̂t�k��2� ≤ C2t(4.11)

for constants 0 < C1 ≤ C2 < ∞, which are independent of t ∈ �0; t∗� and
k. Thus, if we consider L̃�y; t� for fixed t > 0, we see from [9], Chapter 1,
Theorem 1.1, along with [9], Chapter 2, Lemma 3.6, that, for t > 0,

sup
N

sup
y∈Tn

∣∣∣∣
∑

�k�≤N
akν̂t�k�εke−iky

∣∣∣∣ = ∞(4.12)
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on a set of measure greater than 0 in ��×�′�. However, the event in (4.12) is
a tail event with respect to �εk�. Thus we get (2.5). This completes the proof
of Theorem 2.1. 2

Proof of Theorem 2.2. Let

H̃Nc�y; t� = Re
( ∑

�k�>N
akν̂t�k�g̃ke−iky

)
; �y; t� ∈ Tn × �0; t∗�;(4.13)

and, for fixed ω′ ∈ �′,

H̃Nc�y; t;ω′� = Re
( ∑

�k�≥N
akν̂t�k;ω′�g̃ke−iky

)
; �y; t� ∈ Tn × �0; t∗�:(4.14)

By the contraction principle (see, e.g., [9], Chapter 2, Theorem 4.9) and simple
manipulations between real- and complex-valued processes, it is sufficient to
obtain (2.7) with L̃Nc replaced by H̃Nc�y; t�.

Consider the stationary Gaussian process H̃Nc�y; t;ω′�, given in (4.14), and
the metric

d��y; s�; �x; t�� = dNc��y; s�; �x; t�yω′�
= �EG�H̃Nc�y; s;ω′� − H̃Nc�x; t;ω′��2�1/2:

(4.15)

Then, similar to (4.3), we have

d��y; s�; �x; t�� ≤ d1�s; t� + d2�y;x�;(4.16)

where

d1�s; t� =
(

2
∑

�k�>N
�ak�2�ν̂s�k� − ν̂t�k��2

)1/2

(4.17)

and

d2�y;x� =
(

8
∑

�k�>N
�ak�2 sup

t≤t∗
�ν̂t�k��2 sin2 �y− x�k

2

)1/2

:(4.18)

We have d ≤ d1 + d2, where d, d1 and d2 are metrics on T =def T
n × �0; t∗�,

�0; t∗� and Tn, respectively. As usual, for any metric space �S;χ�, we set
Bχ�x; ε� = �y ∈ S � χ�x;y� < ε�. Let λ be the normalized Lebesgue mea-
sure on �0; t∗� (i.e., λ��0; t∗�� = 1), and let θ be the Haar measure on Tn and
let m ≡ λ× θ be the product measure on T. It is easy to see that

Bd��y; s�; ε� ⊃ Bd1
�s; ε/2� ×Bd2

�y; ε/2�(4.19)

and, consequently, that

m�Bd��y; s�; ε�� ≥ λ�Bd1
�s; ε/2��θ�Bd2

�y; ε/2��:(4.20)
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We then have by Theorem 11.18 of [8] (applied to H̃Nc and −H̃Nc ) that

EG��H̃Nc�y; t;ω′��∞� ≤ C
(

sup
s∈�0; t∗�

∫ (
log

1
λ�Bd1

�s; ε��

)1/2

dε

+ sup
y∈Tn

∫ (
log

1
θ�Bd2

�y; ε��

)1/2

dε

)

= I+ II:

(4.21)

We define a new homogeneous metric β on �0; t∗� by

β�u� = β�t+ u; t�

=
(

2
∑

�k�>N
�ak�2 sup

�s−t�≤�u�
�ν̂s�k� − ν̂t�k��2

)1/2

=
(

2
∑

�k�>N

�ak�2
�1+ Reψ�k�� sup

�s−t�≤�u�
�1+ Reψ�k���ν̂s�k� − ν̂t�k��2

)1/2

:

(4.22)

It is clear that d1�s; t� ≤ β��s− t�� = β�0; �s− t��, which implies that Bβ�0; ε�
⊆ Bd1

�s; ε�. Therefore,

I ≤ C
∫ (

log
1

λ�Bβ�0; ε��

)1/2

dε:(4.23)

Recall that β is a random variable on �′. Using [9], Chapter 2, Lemma 2.4,
we see that

E0I ≤ C
∫ ∞

0

(
log

1
λ��x � E0β�x� < ε��

)1/2

dε:(4.24)

By Lemma 3.4,

E0β�x� ≤
(
Ct∗

∑

�k�>N

�ak�2
�1+ Reψ�k��x

(
1 ∨ log

1
x

))1/2

:(4.25)

Note that the upper limit in (4.24) can be taken to be E0β�t∗�. Doing this and
substituting the right-hand side of (4.25) for E0β�x� in (4.24), we see that

E0I ≤ Ct∗
( ∑

�k�>N

�ak�2
�1+ Reψ�k��

)1/2 ∫ �t∗�1∨log 1/t∗��1/2

0

(
log

1
ε4

)1/2

dε

≤ Ct∗
( ∑

�k�>N

�ak�2
�1+ Reψ�k��

)1/2

:

(4.26)

We treat II in a similar fashion. The metric d2 is homogeneous on Tn. We
set γ�u� = d2�t; t+ u�. Similarly to how we obtained (4.24), we have

E0II ≤ C
∫ ∞

0

(
log

1
θ��u � E0γ�u� < ε��

)1/2

dε:(4.27)
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Let

δN�u� =
( ∑

�k�>N
��ak�2/�1+ Reψ�k��� sin2��u�/2�

)1/2

:

By Lemma 3.4,

E0γ�u� ≤ C
(
t∗
(

1 ∨ log
1
t∗

))1/2

δN�u�:(4.28)

Thus, similarly to how we obtained (4.26), we have

E0II ≤ C
(
t∗
(

1 ∨ log
1
t∗

))1/2

×
∫ �∑�k�>N��ak�2/�1+Reψ�k����1/2

0

(
log

1
θ��u � δN�u� < ε��

)1/2

dε:

(4.29)

By (1.26), δN�u� ≤ ρ�a+ u;a� =def ρ�u�. Therefore,

Nρ�Tn; ε� ≥
1

θ��u � ρ�u� < ε��

≥ 1
θ��u � δN�u� < ε��

:

(4.30)

[For the first inequality in (4.30) we simply note that the Haar measure of
Nρ�Tn; ε� balls must be greater than the Haar measure of Tn, which is 1.]
Substituting (4.30) in (4.29), we get

E0II ≤ C
(
t∗
(

1 ∨ log
1
t∗

))1/2

×
∫ �∑�k�>N��ak�2/�1+Reψ�k����1/2

0
�logNρ�Tn; ε��1/2 dε:

(4.31)

Since Jρ�Tn; ε� <∞, the integral in (4.31) goes to 0 as N goes to∞. Combin-
ing (4.26) and (4.31), we get (2.7).

By Lévy’s inequality (see, e.g., [9], Chapter 2, Lemma 4.1), we actually have

lim
N0→∞

E
(

sup
N≥N0

∥∥H̃Nc

∥∥
∞

)
= 0;(4.32)

which verifies the statement about uniform convergence. 2

Remark 4.1. The continuity properties of the random Fourier series in
(1.21) remain the same if the �εk� are replaced by an independent identically
distributed sequence of normal random variables. The resulting Gaussian ran-
dom Fourier series can readily be extended to Rn; the series in (1.21) cannot.
This is one way in which the results of this section can be extended to Rn-
valued Lévy processes X = �Xt; t ∈ R+� for which

EeiξXt = e−t�1+ψ�ξ��:(4.33)
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Let F be a σ-finite positive measure on Rn and let B̃ be rescaled complex-
valued white noise on Rn; that is, for measurable sets A, D ⊂ Rn,

E exp Re�z̄B̃�A�� = exp−F�A��z�2; z ∈ C;(4.34)

and if A ∩D = φ, B̃�A� and B̃�D� are independent. Let � be the probability
space of B̃. We define the generalized Gaussian process

fy;ω�x� = Re
∫
eiξ�x−y�B̃�dξ;ω�; ω ∈ �:(4.35)

As long as

∫ 1
1+ Reψ�ξ� F�dξ� <∞;(4.36)

we can define the continuous additive functional (in t)

L
fy;ω
t = Re

∫
ν̂t�ξ�e−iξyB̃�dξ;ω�;(4.37)

where ν̂t�ξ� is the Fourier transform of the occupation measure of X up to
time t. We can then show that, for almost all ω ∈ �, �Lfy;ωt ; �y; t� ∈ Rn ×R+�
is continuous almost surely with respect to the probability space of X, under
conditions that are completely analogous to those obtained for processes in Tn.

5. p-variation. In this section we prove Theorems 1.2 and 1.4 and also
briefly consider the quadratic variation of �Lfy;ωt ; �y; t� ∈ Tn × �0;1�� in The-
orem 5.2. We precede the proofs of these theorems with a series of auxiliary
results. Recall that the probability space of �εk� is denoted by �P;�� with
expectation operator Eε and the probability space of X is denoted by �PyX;�′�
with expectation operator Ey. Here y denotes the starting point of the Lévy
process. Unless otherwise stated, we assume that the process starts at 0, so
that the expectation operator on the product space � × �′ is E = E0Eε. (In
what follows � · �p is with respect to E.)

In this section we will take t ∈ �0;1�. Actually the inequalities obtained are
valid for t in any bounded interval, but, in general, the constants depend on
the size of the interval.

Lemma 5.1. For all p, q > 0, there exist constants Ap;q; and Bp;q such
that

∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥
p

≤ Ap;q

∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥
q

(5.1)

and

∥∥Lfy;ωt

∥∥
p
≤ Bp;q

∥∥Lfy;ωt

∥∥
q
:(5.2)
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Proof. It follows from the first four lines of (3.37) followed by (3.1) that,
for any p > 0, there exist finite positive constants A′p, B′p independent of
t ∈ �0;1� such that

A′p

∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥

1
≤
∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥
p

≤ B′p
∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥

1
:(5.3)

[For the left-hand side of (5.3), when p < 1, one also needs Hölder’s inequality.]
Clearly, (5.1) follows from (5.3).

To obtain (5.2), we recall that, by definition,

L
fy;ω
t =

∑
k

akεkν̂t�k�e−iky:(5.4)

Furthermore, by the Khintchine inequalities (see, e.g., Lemma 4.1 of [8]) for
any p > 0, there exist finite positive constants A′2; p and B′2; p such that

A′2; p

∣∣∣∣
∑
k

�ak�2�ν̂t�k��2
∣∣∣∣
p/2

≤ Eε

∣∣∣∣
∑
k

akεkν̂t�k�
∣∣∣∣
p

≤ B′2; p
∣∣∣∣
∑
k

�ak�2�ν̂t�k��2
∣∣∣∣
p/2

:

(5.5)

It follows from (5.4) and (5.5) that

A′2; p

∣∣∣∣
∑
k

�ak�2�ν̂t�k��2
∣∣∣∣
p/2

≤ Eε�L
fy;ω
t �p

≤ B′2; p
∣∣∣∣
∑
k

�ak�2�ν̂t�k��2
∣∣∣∣
p/2

:

(5.6)

Consequently, taking expectation with respect to E0 and using first (5.1) and
then (5.6), we get

∥∥Lfy;ωt

∥∥p
p
≤ B′2; p

∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥
p/2

p/2

≤ B′2; pAp/2; q/2

∥∥∥∥
∑
k

�ak�2�ν̂t�k��2
∥∥∥∥
p/2

q/2

≤ B′2; pAp/2; q/2�A′2; q�−1
∥∥Lfy;ωt

∥∥p
q
:

(5.7)

This gives us (5.2). 2

Lemma 5.2. There exist finite positive constants Cp; independent of r; t ∈
�0;1�; such that

C−1
p E

∣∣Lfy;ωt

∣∣p ≤ E
∣∣Lfy;ωr+t −L

fy;ω
r

∣∣p ≤ CpE
∣∣Lfy;ωt

∣∣p:(5.8)
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Proof. We repeat the argument from (5.4)–(5.6) of the previous proof but
with (5.4) replaced by

L
fy;ω
r+t −L

fy;ω
r =

∑
k

akεk�ν̂r+t�k� − ν̂r�k��e−iky(5.9)

to obtain

A′2; p

∣∣∣∣
∑
k

�ak�2�ν̂r+t�k� − ν̂r�k��2
∣∣∣∣
p/2

≤ Eε

∣∣Lfy;ωr+t −L
fy;ω
r

∣∣p

≤ B′2; p
∣∣∣∣
∑
k

�ak�2�ν̂r+t�k� − ν̂r�k��2
∣∣∣∣
p/2

:

(5.10)

Consequently, using the additivity and transformation properties, (3.25) and
(3.26), as well as the Markov property, as in the proof of Lemma 3.3, we see
that

E
∣∣Lfy;ωr+t −L

fy;ω
r

∣∣p ≤ B′2; pE0

∣∣∣∣
∑
k

�ak�2�ν̂t�k��2
∣∣∣∣
p/2

≤
B′2; p
A′2; p

E
∣∣Lfy;ωt

∣∣p:
(5.11)

This gives us the upper bound in (5.8). A similar analysis gives the lower
bound. 2

Lemma 5.3. Let

Vp;m�L
fy;ω
1 � =

2m∑
i=1

∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p(5.12)

and

Dm =
2m∑
i=1

E0(∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p � F�i−1�/2m
)
:(5.13)

There exist constants 0 < C′1; C
′
2 <∞; independent of m; such that

E
(
Vp;m

(
L
fy;ω
1

)
−Dm

)2 ≤ C′12m
∥∥Lfy;ω1/2m

∥∥2p
2(5.14)

and

EεD
2
m ≤ C′2�EεDm�2:(5.15)

Proof. We write

Vp;m

(
L
fy;ω
1

)
−Dm

=
2m∑
i=1

(∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p −E0(∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p � F�i−1�/2m
))(5.16)
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and note that the summands are orthogonal. Therefore, by Lemma 5.2, we
have that

E
((
Vp;m

(
L
fy;ω
1

)
−Dm

)2)

≤
2m∑
i=1

E
((∣∣Lfy;ωi/2m −L

fy;ω
�i−1�/2m

∣∣p −E0(∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p ∣∣F�i−1�/2m
))2)

≤
2m∑
i=1

E
(∣∣Lfy;ωi/2m −L

fy;ω
�i−1�/2m

∣∣2p)

≤ C2p2m
∥∥Lfy;ω1/2m

∥∥2p
2p

≤ C2pB
2p
2p;22m

∥∥Lfy;ω1/2m
∥∥2p

2 :

(5.17)

This gives us (5.14).
We now obtain (5.15). Note that

Dm =
2m∑
i=1

EX�i−1�/2m
∣∣Lfy;ω1/2m

∣∣p:(5.18)

We use X�1�;X�2� to denote two independent copies of X. We use ν�1�, ν�2�

to denote the corresponding versions of ν and �1�L
fy;ω
1/2m and �2�L

fy;ω
1/2m to denote

the corresponding versions of L
fy;ω
1/2m . We use Ey

�1�;E
y
�2� to distinguish between

expectations with respect to X�1� and X�2�. We can thus write

D2
m =

2m∑
i; j=1

E
X�i−1�/2m
�1� E

X�j−1�/2m
�2�

∣∣�1�Lfy;ω1/2m
∣∣p∣∣�2�Lfy;ω1/2m

∣∣p:(5.19)

Thus

Eε�D2
m� =

2m∑
i; j=1

E
X�i−1�/2m
�1� E

X�j−1�/2m
�2� Eε

(∣∣�1�Lfy;ω1/2m
∣∣p∣∣�2�Lfy;ω1/2m

∣∣p)

≤
2m∑

i; j=1

E
X�i−1�/2m
�1� E

X�j−1�/2m
�2� Eε

(
��1�Lfy;ω1/2m �2p

)1/2

×Eε

(∣∣�2�Lfy;ω1/2m
∣∣2p)1/2

≤
( 2m∑
i=1

EX�i−1�/2m
(
Eε

∣∣�Lfy;ω1/2m�
∣∣2p)1/2

)2

:

(5.20)

It follows from (5.6) that

(
Eε

∣∣Lfy;ω1/2m
∣∣2p)1/2 ≤ �B′2; p�1/2�A′2; p�−1/2Eε

∣∣Lfy;ω1/2m
∣∣p:(5.21)
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Thus

Eε�D2
m� ≤

B′2; p
A′2; p

( 2m∑
i=1

EX�i−1�/2m
(
Eε

∣∣(Lfy;ω1/2m
)∣∣p)

)2

(5.22)

=
B′2; p
A′2; p

�Eε�Dm��2;(5.23)

which is (5.15). This completes the proof of Lemma 5.3. 2

Let ζ be an exponential random variable with mean 1 that denotes the
lifetime of X.

Lemma 5.4. There exist constants 0 < C′′1; C
′′
2 <∞; independent of m; such

that

Pε�Dm > C
′′
12m

∥∥Lfy;ω1/2m
∥∥p

2 �1 ∧ ζ�� ≥ C
′′
2 > 0(5.24)

uniformly in X.

Proof. We use the Paley–Zygmund inequality

Pε�Dm > λEε�Dm�� ≥ �1− λ�2
�Eε�Dm��2
Eε�D2

m�
:(5.25)

(See, e.g., [7], Inequality 2, page 8.)
Note that, by (5.6),

Eε�Dm� =
2m∑
i=1

EX�i−1�/2mEε

(∣∣Lfy;ω1/2m
∣∣p)

≥ A′2; p
2m∑
i=1

EX�i−1�/2m

∣∣∣∣
∑
k

a2
k�ν̂1/2m�k��2

∣∣∣∣
p/2

:

(5.26)

Using (3.26), we see that the distribution of ��ν̂t�k��2�∞k=0 is the same for all
starting points of the Lévy process. Hence, by (5.6),

Eε�Dm� ≥ A′2; p
2m∑
i=1

1�ζ>�i−1�/2m�E
0

∣∣∣∣
∑
k

�a�2k�ν̂1/2m�k��2
∣∣∣∣
p/2

≥ A′2; p�B′2; p�−12m
∥∥Lfy;ω1/2m

∥∥p
p
�1 ∧ ζ�

≥ A′2; p�B′2; pB2; p�−12m
∥∥Lfy;ω1/2m

∥∥p
2 �1 ∧ ζ�

(5.27)

uniformly in X. This and (5.15) give us the lemma. 2

Theorem 5.1. Let p ≥ 1 and assume that

lim
m→∞

2m/2p
∥∥Lfy;ω1/2m

∥∥
2 = 0(5.28)
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and

lim
m→∞

2m/p
∥∥Lfy;ω1/2m

∥∥
2 = ∞:(5.29)

Then

lim sup
m→∞

2m∑
i=1

∣∣Lfy;ωi/2m −L
fy;ω
�i−1�/2m

∣∣p = ∞ a.s.(5.30)

Proof. By (5.14) and (5.28),Vp;m�L
fy;ω
1 �−Dm converges to 0 in probability

as m→∞. Hence there exists a subsequence �mj�, such that

lim
mj→∞

�Vp;mj
�Lfy;ω� −Dmj

� = 0 a.s.(5.31)

Thus, in order to prove this theorem, it suffices to show that

lim sup
mj→∞

Dmj
= ∞ a.s.(5.32)

Let

Amj
=
{
Dmj

> C′′12mj
∥∥Lfy;ω1/2mj

∥∥p
2 �1 ∧ ζ�

}
:(5.33)

It follows from Lemma 5.4 and (5.29) that

lim sup
mj→∞

Dmj
= ∞(5.34)

on lim supmj→∞Amj
and

Pε

(
lim sup
mj→∞

Amj

)
≥ C′′2(5.35)

uniformly in X.
It is useful to write out the statements contained in (5.34) and (5.35) in

greater detail. They say that, for almost all paths of the Lévy process X,

lim sup
mj→∞

2mj∑
i=1

E
X�i−1�/2mj

(∣∣∣∣
∑
k

akεkν̂1/2mj �k�
∣∣∣∣
p)
= ∞(5.36)

on a set Q ⊂ � with Pε�Q� ≥ C′′2 > 0. However, it is easy to see that (5.36) is
a tail event in ��;Pε�, since, by (1.12),

2mj∑
i=1

E
X�i−1�/2mj

(∣∣∣∣
∑

�k�≤k0

akεkν̂1/2mj �k�
∣∣∣∣
p)
≤ 2mj�1−p�

∣∣∣∣
∑

�k�≤k0

�ak�
∣∣∣∣
p

≤ C(5.37)

for some finite constant C independent of mj. Thus (5.34) holds almost surely
with respect to Pε uniformly in X, which gives us (5.30). 2
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Let 1m = �0 = t0 < t1 < · · · < tm = 1� be a partition of �0;1� and let
�1m� = max1≤i≤m�ti − ti−1�. Define

�5:38� Vp;1m
�Lfy;ω1 � =

m∑
i=1

∣∣Lfy;ωti
−Lfy;ωti−1

∣∣p:

Proof of Theorem 1.2. Assume that �ak� /∈ l2. We will show that in this
case both (5.28) and (5.29) are satisfied when p = 1. We first consider (5.28).
Let M> 0. We have, by Corollary 3.1, that

t−1
∥∥Lfy;ωt

∥∥2
2 = t

−1∑
k

�ak�2E0�ν̂t�k��2

≤ Ct−1
(
t2

∑

�k�≤M
�ak�2 + 2t

∑

�k�≥M

�ak�2
1+ Reψ�k�

)

= C
(
t
∑

�k�≤M
�ak�2 + 2

∑

�k�≥M

�ak�2
1+ Reψ�k�

)
;

(5.39)

where C is a constant independent of t ∈ �0;1� and M. This shows that, for
all t ≤ t0�M� for some t0�M� sufficiently small,

t−1
∥∥Lfy;ωt

∥∥2
2 ≤ C

∑

�k�≥M

�ak�2
1+ Reψ�k� :(5.40)

Since this holds for all M, we get (5.28). Also, by Corollary 3.1, we have

t−2
∥∥Lfy;ωt

∥∥2
2 ≥ C

∑

tReψ�k�≤1

�ak�2;(5.41)

which gives us (5.29). Therefore, by Theorem 5.1, �Lfy;ωt ; t ∈ R+� is not of
bounded variation.

Assume now that �ak� ∈ l2. We provide two different proofs in this case.
The first one is a direct calculation. Using (3.25), (3.26) and Corollary 3.1, we
see that

E0V1; 1m

(
L
fy;ω
1

)
≤ C

m∑
i=1

(∑
k

�ak�2E0�ν̂ti�k� − ν̂ti−1
�k��2

)1/2

≤ C
( m∑
i=1

�ti − ti−1�
)(∑

k

�ak�2
)1/2

≤ C′

(5.42)

for some constant C′ independent of m. Let �1m� be a sequence of partitions
of �0;1�, such that limm→∞ �1m� = 0. We will show that for this sequence

sup
m
V1; 1m

(
L
fy;ω
1

)
<∞:(5.43)
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It follows from the triangle inequality that adding terms to 1m increases

(5.38). Therefore, we can assume that 1m ⊂ 1m+1. In this case V1; 1m�L
fy;ω
1 � is

increasing in m. By the monotone convergence theorem and (5.42),

E sup
m
V1; 1m

(
L
fy;ω
1

)
= sup

m
EV1; 1m�L

fy;ω
1 � ≤ C′:(5.44)

Thus

sup
m
V1; 1m

(
L
fy;ω
1

)
<∞ a.s.(5.45)

Finally, it follows from Theorem 3.1 that, for each y ∈ Tn for almost all ω,
the stochastic process �Lfy;ωt ; t ∈ R+� is a continuous function of t. This and
(5.45) show that it is also of bounded variation.

The second proof of bounded variation when �ak� ∈ l2 is more abstract.
Consider the distribution

fy;ω =
∑
k

akεke
−iky:(5.46)

By the Schwarz inequality,

Eε

∫
�0;2π�n

�fy;ω�dy ≤ �2π�n
(∑

k

�ak�2
)1/2

:(5.47)

This shows that fy;ω ∈ L1�Tn� almost surely. Thus, almost surely, fy;ω =
f+�ω� − f−�ω�, where f+�ω� and f−�ω� are positive functions on Tn. Let
µ1�ω� be the measure on Tn with density f+�ω� and let µ2�ω� be the measure
on Tn with density f−�ω�. One can check by looking at the potentials of the
corresponding continuous additive functionals that

L
fy;ω
t = Łµ1�ω�

t − Łµ2�ω�
t ;(5.48)

where we use Ł to denote the classical continuous additive functionals with
respect to a positive measure. Since both continuous additive functionals on
the right-hand side of (5.48) are increasing, it follows that L

fy;ω
t is of bounded

variation in t. This completes the proof of Theorem 1.2. 2

The following estimates are used in the proof of Theorem 1.4.

Lemma 5.5. Let X be a symmetric Lévy process and let fy;ω be a distri-
bution for which �ψ�k�� and �ak� satisfy the conditions given in (1.40) and
(1.41). Then, for each ε > 0; there exist positive constants Cε and tε such that,
for all t ≤ tε;

C−1
ε t

γ1 ≤ t−2/p
∥∥Lfy;ωt

∥∥2
2 ≤ Cεt

γ2(5.49)

and

t−1/p
∥∥Lfy;ωt

∥∥2
2 ≤ Cεt

γ3;(5.50)
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where

γ1 = �2β�p/p0 − 1� + 10ε�/�p�β+ ε��;
γ2 = �2β�p/p0 − 1� − 10ε�/�p�β− ε��;
γ3 = �β�2p/p0 − 1� − 10ε�/�p�β− ε��:

Proof. To get (5.49), we note that

t−2/p�Lfy;ωt �22 = t−2/p∑
k

�ak�2E0�ν̂t�k��2:(5.51)

By Corollary 3.1 there exist constants C and C′ such that

Ct2
∑

tReψ�k�≤1

�ak�2 ≤
∑
k∈Zn

�ak�2E0�ν̂t�k��2

≤ C′
(
t2

∑

tReψ�k�≤1

�ak�2 + 2t
∑

tReψ�k�≥1

�ak�2
1+ Reψ�k�

)
:

(5.52)

The rest follows by simple estimates using (1.40) and (1.41). [The two terms in
the last expression in (5.52) are comparable.] The proof of (5.50) is similar. 2

Proof of Theorem 1.4. We first prove (1.44). By Chebyshev’s inequality,
Lemma 5.2 and Lemma 5.1, in that order, we have

P
(
Vp;m

(
L
fy;ω
1

)
> δm

)
≤ E

(
Vp;m

(
L
fy;ω
1

))

δm

= 1
δm

2m∑
i=1

E
∣∣Lfy;ωi/2m −L

fy;ω
�i−1�/2m

∣∣p

≤ Cp
2m

δm

∥∥Lfy;ω1/2m
∥∥p
p

≤ CpBp;2
δm

(
22m/p

∥∥Lfy;ω1/2m
∥∥2

2

)p/2
:

(5.53)

We see from Lemma 5.5, since p > p0, that, for any admissible α, β, p and
p0, we can find an ε > 0 such that

22m/p
∥∥Lfy;ω1/2m

∥∥2
2 ≤ Cε2

−mη(5.54)

for all m sufficiently large, where η > 0. Let δm = 2−mpη/4. It follows from
(5.53) and (5.54) that

P
(
Vp;m

(
L
fy;ω
1

)
> 2−mpη/4

)
≤ Cε2−mpη/4:(5.55)

We get (1.44) by the Borel–Cantelli lemma.
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The proof of (1.43) follows easily from Theorem 5.1 and Lemma 5.5. In this
case, p < p0. Therefore, by the left-hand side of (5.49), we can find an ε > 0
such that

22m/p
∥∥Lfy;ω1/2m

∥∥2
2 ≥ �Cε�

−12mη(5.56)

for all m sufficiently large, where η > 0. This gives (5.29). On the other hand,
since 1 < p0 < 2, 2p/p0−1 > 0 for all p ≥ 1 and hence for all 1 ≤ p < p0. This
shows that (5.28) is satisfied and we get (5.30) for all 1 ≤ p < p0. However,
since, for almost all ω, �Lfy;ωt ; t ∈ R+� is continuous, it is easy to see that it
is also true for all p < p0. Thus we get (1.43). This completes the proof of
Theorem 1.4. 2

Under (1.20) we know by Theorem 5.2.2 of [5] that, for all ω ∈ � and any
y ∈ Tn, L

fy;ω
t is a continuous additive functional of zero energy almost surely

and hence has zero quadratic variation in the sense of (5.2.20) of [5]. It is
rather simple to show this, and a bit more, directly.

Theorem 5.2. If (1.20) holds, then, for almost all ω ∈ �;

lim
�1m�→0

E
∣∣V2; 1m

(
L
fy;ω
1

)∣∣q = 0(5.57)

for all q > 0. That is, the quadratic variation of L
fy;ω
1 is 0, in the sense of

convergence in Lq�Tn� for all q > 0.

Proof. We have

E
∣∣V2; 1m

(
L
fy;ω
1

)∣∣q = E
∣∣∣∣
m∑
i=1

∣∣Lfy;ωti
−Lfy;ωti−1

∣∣2
∣∣∣∣
q

:(5.58)

By Lemmas 5.1 and 5.2 all the moments of �Lfy;ωti
− Lfy;ωti−1

� are equivalent. It
then follows from the proofs of Lemmas 3.5 and 3.1 [see, in particular, (3.37)
and (3.1)] that this property can be extended to linear combinations of these
variables. Thus the last line in (5.58) is less than or equal to

Cq

(
E

m∑
i=1

∣∣Lfy;ωti
−Lfy;ωti−1

∣∣2
)q
:(5.59)

The rest of the proof is straightforward. We have

m∑
i=1

E
∣∣Lfy;ωti

−Lfy;ωti−1

∣∣2 ≤
m∑
i=1

E
∣∣Lfy;ωti−ti−1

∣∣2

=
m∑
i=1

∑
k∈Zn

�ak�2E0�ν̂ti−ti−1
�k��2:

(5.60)
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Choose a sequence δj ↓ 0 and then choose mj such that

∑

�1mj ��1+Reψ�k��≥δj

�ak�2
1+ Reψ�k� ≤ δj:(5.61)

We can assume that �1mj
� is decreasing. Thus, with m = mj, the last term

in (5.60)

≤ C
mj∑
i=1

(
�ti − ti−1�2

∑

�ti−ti−1��1+Reψ�k��≤δj
�ak�2

+ �ti − ti−1�
∑

�ti−ti−1��1+Reψ�k��≥δj

�ak�2
1+ Reψ�k�

)

≤ C
mj∑
i=1

(
�ti − ti−1�δj

∑
k∈Zn

�ak�2
1+ Reψ�k� + �ti − ti−1�δj

)

≤ Cδj
( ∑
k∈Zn

�ak�2
1+ Reψ�k� + 1

)
:

(5.62)

Since this inequality holds for all �1m� ≤ �1mj
�, the proof follows. 2

6. Continuous additive functionals of signed measures. When
�ak�k∈Zn ∈ l2, it follows from Theorem 1.2 that, for each y ∈ Tn and ω ∈ �,

�Lfy;ωt ; t ∈ �0;1�� is a function of bounded variation. The results in this paper
also apply in this case and give some insight into the behavior of these more
classical continuous additive functionals. Let fy;ω be as defined in (1.25) and
consider

φ�x;y� =
( ∑
k∈Zn

�ak�2 sin2 �x− y�k
2

)1/2

:(6.1)

Assume that Jφ�Tn� <∞ [see (1.27)]. This is a necessary and sufficient con-
dition for the continuity almost surely of �fy;ω�x�; x ∈ Tn� for each y ∈ Tn.
(Although since the fy;ω, as y varies, are all translates of each other, it is
enough to know this for y = 0.) Let M�ω� = supx∈Tn �f0;ω�x�� and consider

q�x;ω� = 2M�ω� + f0;ω�x�(6.2)

so that, obviously, q�x;ω� ≥ 0 for ω in a subset O ⊆ � of measure 1. Let ω ∈ O
and consider

L
qy;ω
t =

∫ t
0
q�Xs − y;ω�ds:(6.3)

Since Jφ�Tn� <∞ implies that Jτ�Tn� <∞, Theorem 1.1 shows that �Lqy;ωt ,
�y; t� ∈ Tn×R+� is continuous almost surely for all Lévy processes satisfying
(1.7) and (1.8). Of course, we do not need Theorem 1.1 to tell us this since
Jφ�Td� <∞ implies that �q�x;ω�; x ∈ Tn� is continuous almost surely. Still it
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is interesting to see how (1.27) operates for these positive continuous additive
functionals which are quite different from local times.

Now let us consider that �ak�k∈Zn ∈ l2 but that Jφ�Tn� is not necessarily
finite. In this case fy;ω need not have continuous sample paths, nevertheless,
it is in L1�Tn�. Thus it is the distribution of a signed measure. By Theorems
3.1 and 1.1 the family of continuous (in t) additive functionals

L
fy;ω
t =

∫ t
0
f�Xs − y; ω�ds; �y; t� ∈ Tn ×R+;(6.4)

is continuous in �y; t� almost surely for almost all ω ∈ � if and only if (1.27)
holds. This shows that Theorem 1.1 is applicable and nontrivial for these more
classical types of continuous additive functionals.

Remark 6.1. That (1.29) implies (1.27), without any conditions on �ak� or
�ψ�k��, is well known and follows from [9], Chapter 7, Lemma 1.1. The reverse
implication, when Reψ�k� and �ak� depend only on �k� for all k ∈ Zn and are
regularly varying in �k�, is proved by an argument similar to the one used in
the second half of Lemma 6.3 in [11].

Remark 6.2. Clearly, if (1.15) has a continuous version almost surely, then
Y = ∑

k∈Zn akν̂t�k� must exist as a random variable. What we must show is
that if Y <∞ almost surely, then EY <∞. We can do this, using the Paley–
Zygmund lemma (see, e.g., [7], Inequality 2, page 8), by showing that �E�Y��2 ≥
E��Y��2, but only with some regularity conditions on �ak� and �ψ�k��, such
as the ones in the previous remark.
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69 23–35.

[2] Barlow, M. (1988). Necessary and sufficient conditions for the continuity of local time of
Levy processes. Ann. Probab. 16 1389–1427.

[3] Barlow, M. and Hawkes, J. (1985). Applications de l’entopie métrique á la continuité des
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