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ON THE SAMPLE PATHS OF BROWNIAN MOTIONS ON
COMPACT INFINITE DIMENSIONAL GROUPS

BY ALEXANDER BENDIKOV AND LAURENT SALOFF-COSTE1

Cornell University

We study the regularity of the sample paths of certain Brownian motions
on the infinite dimensional torus T

∞ and other compact connected groups
in terms of the associated intrinsic distance. For each λ ∈ (0,1), we give
examples where the intrinsic distance d is continuous and defines the
topology of T

∞ and where the sample paths satisfy

0 < lim inf
t→0

d(X0,Xt )

t (1−λ)/2
≤ lim sup

t→0

d(X0,Xt )

t (1−λ)/2
< ∞

and

0 < lim
ε→0

sup
0<t<s<1
t−s≤ε

d(Xs,Xt )

(t − s)(1−λ)/2 < ∞.

1. Introduction. Let G be a compact connected metrizable group equipped
with its normalized Haar measure ν. A left-invariant diffusion process on G is a
stochastic process X = (Xt ,P,�) having the following properties:

(B0) X0 = e, the identity element of G.
(B1) X has stationary independent increments. That is, for any 0 < s < t < +∞,

the law of X−1
s Xt depends only of t − s, and, for any 0 < t1 < t2 < · · · <

tk < +∞, the G-valued random variables X−1
ti

Xti+1 , 0 < i < k are
independent.

(B2) X has continuous paths. That is, for P almost all ω ∈ �, t �→ Xt(ω) is a
continuous function from [0,+∞) to G.

In the sequel, we will consider only processes that have the following two
additional properties. For any domain U � e, let τU be the first exit time from U .

(B3) X is symmetric, that is, Xt and X−1
t have the same distribution.

(B4) X is nondegenerate in the following sense. For any domain U � e and for
any open set V in U , (Xt , t < τU) visits V with positive probability.

For simplicity, let us call invariant diffusion a process having properties (B0)–
(B4). Thus, according to this definition, all invariant diffusions are symmetric and
nondegenerate. As we are assuming that G is compact, it is natural to consider one
more property, namely,
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(B5) X is central, that is, for any a ∈ G, Xt and aXta
−1 have the same

distribution.

We call Brownian motion any stochastic process X = (Xt ,P,�) satisfying the
properties (B0)–(B5). Together with (B1), (B5) implies that X is by-invariant.
When G is Abelian, any invariant diffusion as defined above is a Brownian motion.

This work is concerned with some regularity properties of the sample paths of
invariant diffusions in the case where G is infinite-dimensional. The main novel
aspect of our study is related to the fact that the underlying (metrizable) space is
both infinite-dimensional and compact. The restriction to compact groups versus
locally compact groups is not essential but will help us focus on the main original
aspects of our results by avoiding some additional technical difficulties.

In finite-dimensional settings such as Riemannian manifolds, the regularity
of the sample paths of Brownian motion is naturally studied in terms of the
intrinsic (Riemannian) distance associated to the infinitesimal generator of the
process. For Banach space valued processes (see, e.g., [25, 26]), sample path
regularity is measured in terms of various auxiliary distances which are not
canonically attached to the process, simply because there is no intrinsic distance
available. In our infinite-dimensional compact setting, both situations can occur.
For certain invariant diffusions on compact groups, the intrinsic “distance” equals
∞ almost everywhere w.r.t. Haar measure, leaving us in a situation similar to that
of Banach spaces. However, any metrizable compact connected locally connected
group G carries many invariant diffusions which admit an intrinsic distance that is
continuous and defines the topology of G; see [6, 9, 7]. In such cases, it is most
natural to study the regularity of paths of the diffusion in terms of its intrinsic
distance, as one would do on a finite-dimensional Riemannian manifold. The
present paper focuses on this type of situations.

Recall that, on R
n, any invariant, symmetric, nondegenerate diffusion process X

is, up to a change of coordinates, the classical Brownian motion whose distribution
at time t > 0 has density (

1

4πt

)n/2

exp
(

−‖x‖2

4t

)
with respect to Lebesgue measure. Here ‖ · ‖ denote the Euclidean norm on R

n

and we consider that Brownian motion is driven by � = ∑n
1 ∂2

i instead of 1
2�.

With this normalization, Brownian sample paths have the following celebrated
properties (see [24, 27]):

(i) The Lévy–Khinchine law of the iterated logarithm asserts that, almost
surely,

lim sup
t→0

‖Xt‖√
4t log log(1/t)

= 1.
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(ii) Lévy’s result concerning the modulus of continuity of Brownian paths
asserts that, almost surely,

lim
ε→0

sup
0<s<t<1
t−s<ε

‖Xt − Xs‖√
4(t − s) log(1/(t − s))

= 1.

(iii) A theorem of Dvoretzky and Erdös concerning the “rate of escape” of
Brownian motion asserts that, for n ≥ 3 and any continuous increasing positive
function h,

lim inf
t→0

‖Xt‖
h(t)

√
t

=
{+∞

0
a.s. iff

∑
k

[h(2−k)]n−2
{

converges,
diverges.

To make the third statement more explicit, observe that, specializing to hσ (t) =
| log t|−σ , σ > 0, we have

lim inf
t→0

‖Xt‖| log t|σ√
t

=
{+∞

0
a.s. iff σ


>

1

n − 2
,

<
1

n − 2
.

Since we restrict attention to compact groups, let us point out that these three
properties of Brownian paths hold true without change on the finite-dimensional
torus T

n and on any compact Lie group, although there seems to be no good
reference for this fact. Our forthcoming paper [10] gives complete proofs of
these assertions in a general finite-dimensional setting. See also the related
works [18, 19]. Of course, on a compact Lie group, the Euclidean norm ‖ · ‖
must be replaced by the natural Riemannian distance adapted to the considered
Brownian motion.

For our purpose, what is remarkable about the results quoted above is their
stability as the dimension goes to infinity: (i) and (ii) are completely dimension
independent whereas, in (iii), as n goes to infinity, the border line gets closer and
closer to the function

√
t . Since any compact connected group G is the projective

limit of compact connected Lie groups Gα , and any Brownian motion X on G is,
in some sense (see [1, 2]), the projective limit of Brownian motions Xα on Gα ,
one could think that some universal forms of (i), (ii) and maybe (iii), hold true for
such processes. As we shall see, this is not at all the case. For instance, on the
infinite-dimensional torus, we will prove the following result.

THEOREM 1.1. Let X be a Brownian motion on the infinite-dimensional
torus T

∞. Let µt denote the law of Xt and assume that, for all t > 0, µt admits a
continuous density x �→ µt(x) with respect to Haar measure. Assume further that,
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for some λ ∈ (0,1), and constants 0 < c0 ≤ C0 < ∞,

∀ t ∈ (0,1), c0t
−λ ≤ logµt(e) ≤ C0t

−λ.

Then the associated intrinsic distance d is continuous and defines the topology
of T

∞. Moreover, there are constants 0 < c ≤ C < ∞ which depend only on λ

and c0,C0 such that, P-almost surely,

c ≤ lim inf
t→0

d(e,Xt)

t(1−λ)/2
≤ lim sup

t→0

d(e,Xt)

t(1−λ)/2
≤ C

and

c ≤ lim
ε→0

sup
0<s<t<1
t−s<ε

d(Xs,Xt )

(t − s)(1−λ)/2 ≤ C.

Although several aspects of this result are surprising, the proofs involve mostly
technical adaptations of well established ideas: some estimates of the probability
of being in a certain ball in a certain time interval and the use of the Borel–Cantelli
lemma. Theorem 1.1 shows the existence of many different behaviors and this is
the main novel aspect of this work: since many different behaviors are possible,
what does one need to know about a given Brownian motion in order to predict
the (intrinsic) regularity of its sample paths? This paper provide partial answers in
terms of the behavior of t �→ log µt(e) in a rather general context. The companion
paper [11] gives complementary results in a very restricted setting and shows that
predicting the precise path regularity of a given Brownian motion on the infinite
dimensional torus is a rather subtle question.

The structure of this paper is as follows. Section 2 introduces notation and
review well-known facts concerning Brownian motions on compact groups.
Section 3 shows how certain Gaussian upper bounds alone suffice to imply the
upper bounds stated in Theorem 1.1 in a more general context. Section 4 shows
that, in certain circumstances, two-sided Gaussian bounds can be used to provide
lower bounds that match the upper bounds of Section 3. Along the way, several
important intermediate results are obtained. Section 4.1 relates Gaussian bounds to
volume estimates in a way that already captures some of the spirit of Theorem 1.1
(see Theorem 4.7). Section 4.2 develops Green function estimates which are used
in Section 4.3, together with the volume estimates of Section 4.1, to prove the
most difficult result of this paper, that is, the first lower bound in Theorem 1.1.
The Gaussian bounds required to apply these results and obtain concrete examples
have been proved, in certain cases, in our previous works [6, 9].

The main results of this paper relating Gaussian bounds to path regularity are
Theorems 3.6, 3.8 and 4.13. Theorems 1.1, 3.9, 3.11 and 4.17 provide concrete
examples.
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2. Background and notation.

2.1. Gaussian semigroups. Let (µt)t>0 be a weakly continuous convolution
semigroup of probability measures on a group G. This means precisely that each
µt , t > 0, is a probability measure on G and that (µt )t>0 satisfies:

(i) µt ∗ µs = µt+s , t, s > 0;
(ii) µt → δe weakly as t → 0.

Such a semigroup is called Gaussian if it also satisfies

(iii) t−1µt(V
c) → 0 as t → 0 for any neighborhood V of the identity element

e ∈ G.

We say that (µt )t>0 is symmetric if µt(A) = µt(A
−1) for all t > 0 and all Borel

sets A ⊂ G. We say that (µt)t>0 is central if µt is central for all t > 0, that is,
µt(aAa−1) = µt(A) for all Borel sets A and all a ∈ G.

Given a convolution semigroup (µt)t>0, define the associated Markov semi-
group (Ht )t>0 acting on continuous functions by

Htf (x) =
∫
G

f (xy) dµt(y).(2.1)

Thus (Ht )t>0 is given by Htf = f ∗ µ̌t where µ̌(B) = µ(B−1) for any Borel
set B and any Borel measure µ. If (µt )t>0 is symmetric then (Ht)t>0 extends
to L2(G) as a semigroup of self-adjoint contractions. One can then associate to
(Ht )t>0 its L2(G)-infinitesimal generator (−L,Dom(L)) and its Dirichlet form
(E ,Dom(E)) so that Ht = e−tL on L2(G) and E(f, g) = 〈L1/2f,L1/2g〉, f,g ∈
Dom(E) = Dom(L1/2). We will also refer to −L as the infinitesimal generator of
(µt )t>0.

2.2. The projective structure. Let G be a compact connected group. Any
such group is the projective limit of a family of compact connected Lie groups
Gα = G/Kα, α ∈ ℵ, where (Kα)α∈ℵ is a descending family of compact normal
subgroups with trivial intersection. We will not need to understand explicitly
what this important structural fact entails, but here is a simple and important
consequence. Let πα :G → Gα denote the canonical projection onto Gα . Set

Bα(G) = {f = φ ◦ πα :φ ∈ C∞(Gα)}.
That is, Bα(G) is the set of all functions on G that are obtained by lifting to G any
smooth function on one of the Lie groups Gα . The space

B(G) = ⋃
α∈ℵ

Bα(G)

is the space of Bruhat test functions introduced in [14]. The fact that G is the
projective limit of the Gα’s implies that B(G) is dense in Lp(G), 1 ≤ p < +∞
and in C(G), the space of all continuous functions on G.
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Any symmetric Gaussian semigroup (µt )t>0 on G yields by projection a
symmetric Gaussian semigroup (µα,t )t>0 on Gα . By Hunt’s theorem [23] and
the projective structure, it follows that B(G) is contained in the domain of
the infinitesimal generator −L of (µt )t>0. In fact, B(G) is a core for the
corresponding Dirichlet form. For any function f = φ ◦ πα ∈ Bα(G), one has

Lf = [Lαφ] ◦ πα

where −Lα is the infinitesimal generator of (µα,t )t>0. The aforementioned
theorem of Hunt states in particular that each −Lα is a sum of squares of left-
invariant vector fields on Gα , that is Lα = −∑kα

1 X2
α,i . In particular, for any

φ ∈ B(G), Lφ ∈ B(G).
Call a symmetric Gaussian semigroup sub-elliptic if, for any α, Lα =

−∑kα

1 X2
α,i satisfies Hörmander’s condition, that is, the left-invariant vector

fields Xα,i , together with all their Lie brackets, span the Lie algebra of Gα .
This is also equivalent to saying that the projected semigroup (µα,t )t>0 on Gα

is absolutely continuous w.r.t. Haar measure and admits a smooth positive density
(this equivalence is nontrivial as it depends among other things on Hörmander
subellipticity theorem, see [28]).

Call a symmetric Gaussian semigroup elliptic if, for any α, the left-invariant
vector fields Xα,i span the Lie algebra of Gα .

2.3. Invariant diffusion processes and Gaussian semigroups. We now briefly
recall the correspondence between invariant diffusions and Gaussian semigroups.
The book [20] can be used as a detailed reference for this material.

Start with a process X on a connected compact group G satisfying (B0)
and (B1). Let µt be the law of the process at time t > 0. Then (µt)t>0 is a
convolution semigroup. Property (B2), that is, the continuity of the sample paths,
is precisely equivalent to (µt)t>0 being Gaussian. Moreover, (µt )t>0 is symmetric
if and only if (B3) holds. Assuming symmetry, the nondegeneracy property (B4) is
equivalent to the fact that (µt )t>0 is sub-elliptic as defined in the previous section.
Property (B5) is equivalent to (µt )t>0 being central [i.e., µt(aBa−1) = µt(B) for
every a ∈ G and open set B].

Conversely, let a Gaussian convolution semigroup (µt)t>0 be given. If we
assume that G is metrizable, a classical construction yields a stochastic process
X—the associated Hunt process—whose marginal at time t is µt . This process
satisfies (B0) and (B1). Because, (µt)t>0 is Gaussian, X must satisfy (B2) and the
previous discussion concerning properties (B3)–(B5) applies.

THEOREM 2.1. Assume that G is a connected compact metrizable group.
Then there is a one to one correspondence between invariant diffusions on
G [i.e., processes satisfying (B0)–(B4)] and symmetric sub-elliptic Gaussian
convolution semigroups. Moreover, an invariant diffusion is a Brownian motion
[i.e., satisfies (B5)] if and only if the associated sub-elliptic Gaussian semigroup
is central.
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2.4. The intrinsic distance. We are now ready to introduce the crucial notion
of intrinsic distance. Given a Gaussian semigroup (µt)t>0 with infinitesimal
generator −L, consider the field operator �, defined on B(G) × B(G) by the
formula

�(u, v) = 1
2

(
uLv + vLu − L(uv)

)
.

DEFINITION 2.2. Let (µt )t>0 be a symmetric Gaussian semigroup on G. The
intrinsic distance d (+∞ is allowed) is defined by

d(x, y) = sup
{
f (x) − f (y) :f ∈ B(G),�(f,f ) ≤ 1

}
.

We also set d(x) = d(e, x) where e is the identity element in G.

Let us stress the fact that this “distance” can be very degenerated. For instance,
it is a strong hypothesis to assume that d is continuous. Set D = {x ∈ G :d(x) <

+∞}. Then D is always a dense Borel measurable subgroup of G. It follows that
either D is equal to G or it has Haar measure zero. See [6, 9] for details.

The definition of the intrinsic distance emerged in the eighties in various works,
in particular, in connection with the work of Davies on Gaussian upper bounds for
heat kernels; see [15], Section (3.2.9). See also [29] and the references therein.

3. Gaussian upper bounds and some consequences. Concerning statements
such as (i) and (ii) in the Introduction, the upper bounds are generally easier to
prove than the lower bounds. This section is concern with the easier part, that
is, upper bounds on d(Xt ) or d(X−1

s Xt ), on general compact connected locally
connected metric group. These upper bounds will be derived from Gaussian upper
bounds on the density of the Gaussian semigroup (µ)t>0. Of course, in general,
(µt )t>0 needs not have a density at all w.r.t. the Haar measure ν, see [3, 4, 7].

3.1. On-diagonal and Gaussian bounds. Gaussian bounds can be obtained
from certain on-diagonal bounds on the density of µt , assuming that such a density
exists. We will use the following notation.

DEFINITION 3.1. We say that a symmetric Gaussian convolution semigroup
is:

(CK) If, for all t > 0, µt is absolutely continuous w.r.t. Haar measure and admits
a continuous density.

(CKλ) For some λ ∈ (0,∞) if (CK) holds and the continuous density µt(·)
satisfies

sup
t∈(0,1)

tλ logµt(e) < +∞.
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(CKψ ) If (CK) holds and the continuous density µt(·) satisfies

sup
t∈(0,1)

logµt(e)

ψ(1/t)
< +∞

where ψ is a fixed continuous increasing function.

The following simple result from [7] and [9] is useful in the sequel.

LEMMA 3.2. Assume that G is compact, connected and not a Lie group.
Assume that (µt)t>0 is a symmetric Gaussian semigroup satisfying property (CK)
and such that, ∀ t ∈ (0,1), µt(e) ≤ exp(ψ(t)). Then

lim
t→∞

ψ(t)

log(1 + t)
= +∞.

REMARK. Let G be a compact connected group which admits a (CK)
symmetric Gaussian semigroup. By [20] (see also [8]), the group G must then
be locally connected and metrizable. In this case, if G is not a Lie group, G must
be infinite-dimensional in the sense that any sequence Gα of compact connected
Lie groups whose projective limit equals G must have supα nα = +∞ where nα is
the topological dimension of the Lie group Gα . For each Lie group Gα , we have

logµα,t (e) ∼ mα

2
log(1 + 1/t)

where mα ≥ nα (see [30]). This explains the result stated in Lemma 3.2.

Let ψ : (0,+∞) → (0,+∞). Recall that, by definition, ψ is slowly varying if

∀x ∈ (0,+∞), lim
t→+∞ψ(tx)/ψ(t) = 1.

The function ψ is regularly varying of index λ ∈ (−∞,+∞) if t−λψ(t) is slowly
varying. See [12]. Let Rλ denote the class of all λ-regularly varying functions.
We will often consider property (CKψ ) when ψ ∈ Rλ. Note that (CKλ) is nothing
but (CKψ ) with ψ(t) = tλ.

It will be useful to consider also the class R∗ (resp. R∗) of those positive
continuous increasing functions ψ such that there exists k > 1 satisfying

lim sup
s→∞

ψ(ks)

ψ(s)
< k

(
resp. lim inf

s→∞
ψ(ks)

ψ(s)
> 1

)
.(3.1)

LEMMA 3.3. For any positive continuous increasing function ψ , the condition
ψ ∈ R∗ is equivalent to the existence of C0 and θ∗ ∈ (0,1) such that

∀ t > 1, ∀ s ∈ (1, t),
ψ(t)

ψ(s)
≤ C0

(
t

s

)θ∗
.(3.2)
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Similarly, the condition ψ ∈ R∗ is equivalent to the existence of c0 and θ∗ ∈ (0,∞)

such that

∀ t > 1, ∀ s ∈ (1, t),
ψ(t)

ψ(s)
≥ c0

(
t

s

)θ∗
.(3.3)

PROOF. Since the proofs are similar, we only prove the statement concern-
ing R∗. From (3.2), it follows easily that (3.1) holds true for all k large enough.
Conversely, (3.1) implies that there exists θ ∈ (0,1) such that ψ(ks)/ψ(s) ≤ kθ

for all s ≥ s0 and some s0 ≥ 1. Fix t > s ≥ s0 and pick n such that kn−1 ≤
t/s < kn. Then ψ(t) ≤ ψ(kns) ≤ kθnψ(s) ≤ kθ (t/s)θψ(s). The remaining case
where 1 ≤ s ≤ s0 follows by inspection. �

LEMMA 3.4. If ψ is a positive continuous increasing function such that
ψ ∈ Rλ with λ ∈ (0,1) then ψ ∈ R∗ and ψ ∈ R∗.

PROOF. If ψ ∈ Rλ, then for any k > 1,

lim
s→∞

ψ(ks)

ψ(s)
= kλ ∈ (1, k).

Hence, ψ satisfies both properties in (3.1). �

We now recall a Gaussian upper bound taken from [6, 9]. It follows essentially
from [15], Chapter 3.

THEOREM 3.5. Let G be a compact connected group. Fix ψ ∈ R∗. Let
(µt )t>0 be a symmetric Gaussian semigroup satisfying (CK) and such that

∀ t ∈ (0,1), logµt(e) ≤ ψ(1/t).

Then, the intrinsic distance d of Definition 2.2 is continuous and defines the
topology of G. Moreover, for any ε > 0, there exists a constant C = C(ψ, ε) such
that

∀ t ∈ (0,1), ∀x ∈ G, µt(x) ≤ exp
(
Cψ(1/t) − d(x)2

4(1 + ε)t

)
where C(ψ, ε) depends on ψ only through the constants C0, θ∗ in (3.2).

3.2. Modulus of continuity. Our first result deals with the analog of the law of
the iterated logarithm which can be viewed as a result concerning the modulus of
continuity of t �→ Xt at t = 0.
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THEOREM 3.6. Let G be a compact connected group which is not a Lie group.
Assume that (µt )t>0 is a symmetric Gaussian semigroup satisfying property (CK).
Assume further that there exists a continuous left-invariant distance function ρ on
G and a continuous positive increasing function ψ such that tψ(1/t) is increasing
and

∀ t ∈ (0,1), ∀x ∈ G, µt(x) ≤ exp
(
ψ(1/t) − ρ(x)2

t

)
where ρ(x) = ρ(e, x). Let X be the invariant diffusion associated with (µt )t>0.
Then, almost surely,

lim sup
t→0

ρ(Xt )√
tψ(1/t)

≤ 4.

Note that we can always change a given distance ρ to cρ with c > 0 in order
to apply this result. The constant 4 in this statement is not sharp. In what follows,
we denote by Px the probability measure associated to X started at x. We need the
following lemma of independent interest.

LEMMA 3.7. Under the hypothesis of Theorem 3.6, there exists a constant C

such that, for all t ∈ (0,1) and R > 0 with R ≥ 2
√

2tψ(1/t), we have

Pe

(
sup

s∈[0,t]
ρ(Xs) ≥ R

)
≤ C exp

(
−R2

8t

)
.

PROOF. Observe that since sψ(1/s) increases with s, if R ≥ √
2tψ(1/t), then

the postulated Gaussian upper bound gives, for any 0 < s < t ≤ 1,

Pe

(
ρ(Xs) ≥ R

) =
∫
{ρ(z)≥R}

µs(z) dν(z)

≤ exp
(

R2

s

(
sψ(1/s)

R2 − 1
))

≤ exp
(
−R2

2s

)
.

Hence,

sup
s∈[0,t]

Pe

(
ρ(Xs) ≥ R

) ≤ exp
(
−R2

2t

)
.(3.4)

For a fixed r , let τ be the infimum of the time s > 0 such that ρ(Xs) ≥ r . Then

Pe

(
sup

s∈[0,t]
ρ(Xs) ≥ r

)
= Pe(τ ≤ t).
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By the strong Markov property, we have

Pe

(
ρ(Xt) > r/2

) ≥ Pe

(
ρ(Xt) > r/2; τ ≤ t

)
= Pe(τ ≤ t) − Pe

(
ρ(Xt) ≤ r/2; τ ≤ t

)
= Pe(τ ≤ t) − Ee

(
PXτ

(
ρ(Xt−τ ) ≤ r/2

)
1τ≤t

)
≥ Pe(τ ≤ t) − Ee

(
PXτ

(
ρ(Xt−τ ,Xτ ) ≥ r/2

)
1τ≤t

)
≥ Pe(τ ≤ t)

(
1 − sup

s∈[0,t]
Pe

(
ρ(Xs) ≥ r/2

))
.

By (3.4) with R = r/2 ≥ √
2tψ(1/t), this gives

Pe(τ ≤ t)
(
1 − e−r2/8t) ≤ e−r2/8t

from which the desired result follows. �

REMARK. This type of argument has been used before by many authors (the
second author learned this useful trick from Dan Stroock). It replaces André’s
reflection principle which is used in the classical case of Brownian motion in
Euclidean space to prove the well known inequality

P0

(
sup

0≤s≤t

‖Xs‖ ≥ r

)
≤ 2P0(‖Xt‖ ≥ r).

PROOF OF THEOREM 3.6. Fix σ ∈ (0,1) and consider the events

Ai =
{

sup
t∈[0,σ i ]

ρ(Xt) ≥ 4
√

σ iψ(σ−i )

}
By Lemma 3.7, Pe(Ai) ≤ e−2ψ(σ−i ). By Lemma 3.2, the series

∑
Pe(Ai)

converges. Thus, by the Borel–Cantelli lemma, almost surely, for all n large
enough,

sup
t∈[0,σn]

ρ(Xt ) ≤ 4
√

σnψ(σ−n).

Since tψ(1/t) is nondecreasing and ψ(1/t) nonincreasing, it follows that, almost
surely for all t small enough,

ρ(Xt ) ≤ 4
√

(t/σ )ψ(σ/t) ≤ 4σ−1
√

tψ(1/t).

Hence, almost surely,

lim sup
t→0

ρ(Xt)√
tψ(1/t)

≤ 4σ−1.

Since this holds for all σ ∈ (0,1), the conclusion of Theorem 3.6 follows. �

The next theorem concerns the modulus of continuity. In the present context, it
can be seen as an improved version of Theorem 3.6.
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THEOREM 3.8. Referring to the notation and hypotheses of Theorem 3.6, we
have

lim
ε→0

sup
0<s<t<1
t−s<ε

ρ(X−1
s Xt )√

(t − s)ψ(1/(t − s))
≤ 12 almost surely.

The constant 12 in this statement is not sharp.

PROOF OF THEOREM 3.8. We learned the following variation on Lévy’s
original argument from Greg Lawler whom we thank for his remarks. Set M(t) =
ψ(1/t) and let An be the event

An =
{

sup
j∈{0,1,...,2n−1}

t∈[j2−n,(j+1)2−n]

ρ(X−1
j2−nXt )√

(t − j2−n)M(t − j2−n)
≥ 2

√
2

}
.

As t − j2−n ≤ 2−n and M is decreasing, the Markov property and Lemma 3.7
give Pe(An) ≤ 2n exp(−M(2−n)). We claim that there exists a > 0 such that 2n ×
exp(−M(2−n)) ≤ exp(−an) for all n large enough. Indeed, 2n exp(−M(2−n)) =
exp(−M(2−n) + log 2n) and, by Lemma 3.2, M(2−n)/ log 2n tends to infinity.

By the Borel–Cantelli lemma, for almost all ω, there exists n(ω) such that for
all n > n(ω), j ∈ {0, . . . ,2n − 1} and t ∈ [j2−n, (j + 1)2−n],

ρ
(
X−1

j2−nXt

)
< 2

√
2(t − j2−n)M(t − j2−n).

Fix 0 ≤ s < t ≤ 1 with 0 < t − s ≤ 2−n(ω). Let n > n(ω) be the integer such that
2−n−1 ≤ t − s < 2−n. Then we can find an integer k ∈ {1, . . . ,2n − 1} such that
(k − 1)2−n ≤ s < t ≤ (k + 1)2−n. If t ∈ (s, k2−n], then

ρ(X−1
s Xt ) ≤ ρ

(
X−1

s X(k−1)2−n

) + ρ
(
X−1

(k−1)2−nXt

)
< 4

√
2−n+1M(2−n),

whereas, if t ∈ (k2−n, (k + 1)2−n], then

ρ(X−1
s Xt ) ≤ ρ

(
X−1

s X(k−1)2−n

) + ρ
(
X−1

(k−1)2−nXk2−n

) + ρ
(
X−1

k2−nXt

)
< 6

√
2−n+1M(2−n).

As M is decreasing, t �→ tM(t) increasing, and t − s ≥ 2−n−1, we obtain

ρ(X−1
s Xt ) < 12

√
(t − s)M(t − s).

The desired conclusion follows. �
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3.3. Applications and examples. The results of Sections 3.1 and 3.2 yield the
following statement.

THEOREM 3.9. Let G be a compact connected group. Let (µt)t>0 be a
symmetric Gaussian semigroup. Let X = (Xt ,P,�) be the associated invariant
diffusion. Assume that there exists a function ψ ∈ R∗ such that (µt)t>0 satisfies
(CKψ ). Then, there exists a constant C such that, almost surely,

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

d(X−1
s Xt )√

(t − s)ψ(1/(t − s))
≤ C

where d is the intrinsic distance from Definition 2.2.

Given an arbitrary compact connected group G, it is not obvious at all that it
carries any Brownian motion satisfying property (CK). In fact, it is necessary that
G be locally connected and metrizable (see [20], Chapter 6 and the remark at the
end of Section 3.1). One of the main result of [7] is that, for any compact connected
locally connected metrizable group G, for any function ψ such that

lim
t→∞

ψ(t)

log(1 + t)
= +∞,(3.5)

there exists a (CK) Brownian motion on G such that

∀ t ∈ (0,1), logµt(e) ≤ ψ(1/t).

Thus we have the following existence theorem.

THEOREM 3.10. Let G be an arbitrary compact connected locally connected
metrizable group. Let ψ be a slowly varying function satisfying (3.5). Then, there
exists a Brownian motion X = (Xt ,P,�) on G whose associated intrinsic distance
d is continuous and whose sample paths satisfy

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

d(X−1
s Xt )√

(t − s)ψ(1/(t − s))
≤ 1.

In particular, there exists a Brownian motion X = (Xt ,P,�) on G whose
associated intrinsic distance d is continuous and whose sample paths are Hölder
continuous of exponent σ with respect to d , for all σ ∈ (0,1/2).

We now describe some explicit examples, on the infinite-dimensional torus and
on some noncommutative groups.

EXAMPLE 1. On the infinite-dimensional torus T
∞ = (R/2πZ)∞, any

symmetric Gaussian semigroup (µt)t>0 is uniquely determined by an infinite
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symmetric matrix A = (ai,j ) such that for all ξ = (ξi) with finitely many
nonzero entries, 〈Aξ, ξ 〉 = ∑

i,j ai,j ξiξj ≥ 0. Namely, the infinitesimal generator
of (µt)t>0 is the second-order differential operator

∑
i,j ai,j ∂i∂j . Given a matrix

A as above, let (µA
t )t>0 be the associated symmetric Gaussian semigroup and set

WA(s) = #
{
k ∈ Z

(∞) : 〈Ak, k〉 ≤ s
}
.

It turns out (see [6] for details) that

log WA(s) = O(sλ/(1+λ)) as s → ∞
⇐⇒ logµA

t (e) = O(t−λ) as t → 0.

Thus, if for some λ ∈ (0,1) and C0 > 0,

sup
s∈(0,∞)

logWA(s)

(1 + s)λ/(1+λ)
≤ C0,

then there exists C = C(C0, λ) < ∞ such that

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

dA(X−1
s Xt )

(t − s)(1−λ)/2
≤ C

where dA is the associated intrinsic distance.

EXAMPLE 2. Let us now specialize to the case where A is diagonal with
ai,i = ai > 0. Information concerning the behavior of logµA

t (e) in this case can be
found [2, 3]. Here, the intrinsic distance is continuous if and only if

∑
i a

−1
i < ∞

and dA(x) is given by

dA(x) =
( ∞∑

1

a−1
i |xi|2

)1/2

where x = (xi) ∈ T
∞ with xi ∈ (−π,π ]. Together with [2] and [3], Theorem 3.10,

gives the following:

1. Assume that A is diagonal with ai ≥ ci1/λ, for some λ ∈ (0,1). Then there
exists C = C(λ) < ∞ such that

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

dA(X−1
s Xt )

(t − s)(1−λ)/2
≤ C.

2. Assume that A is diagonal with ai ≥ eiσ , for some σ ∈ (0,∞). Then there
exists C = C(σ) < ∞ such that

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

dA(X−1
s Xt )√

(t − s)[log(1 + 1/(t − s))]1+1/σ
≤ C.



1478 A. BENDIKOV AND L. SALOFF-COSTE

We will see below (Proposition 4.9 and Theorem 4.17) that the result in (1) is sharp
when ai = i1/λ. The results in (2) is not sharp even when ai = eiσ . Indeed, in [11],
we use the very special structure of the present set of examples to improve upon (2)
in certain cases. This however requires rather delicate arguments.

EXAMPLE 3. Let G be a metrizable compact connected group. We say that
G is semisimple if G′ = G where G′ = [G,G] is the commutator group. See [21].
In the case of compact connected Lie groups this definition coincides with other
classical ones. Structure theory (see, e.g., [21]) tells us that any metrizable compact
connected semisimple group is isomorphic to the quotient

G ∼= �/H

of a finite or countable direct product � = ∏
�i of compact connected simple Lie

groups �i by a closed central totally disconnected subgroup H. For details on what
follows, we refer to [20, 21] and, more specifically, to [7].

On each �i there is, up to a multiplicative constant, a unique second order
differential operator �i which is bi-invariant and has no zero order term. This
operator is the Laplace–Beltrami operator of the Killing Riemannian metric on �i .
Given a sequence a = (ai) of positive numbers, let (µa

t )t>0 be the Gaussian
semigroup on � whose infinitesimal generator is

∑
i ai�i and let (µa

t )t>0 be
its projection on G. Denote by Xa the sochastic process associated to (µa

t )t>0.
Then the Brownian motions on G, that is, the stochastic processes satisfying the
hypotheses (B0)–(B5) of the Introduction, are exactly the processes Xa, where
a runs over all possible sequences of positive numbers. Let da be the associated
intrinsic distance and set

Na(s) = ∑
i:ai≤s

ni

where ni is the topological dimension of �i . It is proved in [4, 5, 7] that Na
controls the behavior of the semigroup (µa

t )t>0. Using the results of [4, 5, 7] and
Theorem 3.10, we obtain the following.

THEOREM 3.11. Let G be a compact connected semisimple group. Let a be a
sequence of positive numbers. Referring to the notation introduced above, assume
that for some λ ∈ [0,1) and some function ψ ∈ Rλ, we have Na(s) = O(ψ(s)) as
s tend to infinity.

1. If λ ∈ (0,1) then

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

da(X
−1
s Xt )√

(t − s)ψ(1/(t − s))
≤ C < ∞.
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2. If λ = 0 and s → ψ̃(s) = ψ(es) satisfies sups{ψ̃(2s)/ψ̃(s)} < ∞, then

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

da(X
−1
s Xt )√

(t − s) log(1 + 1/(t − s))ψ(1/(t − s))
≤ C < ∞.

EXAMPLE 4. Consider G = ∏∞
1 SO(i + 2). The special orthogonal group

SO(i + 2) has dimension ni = (i + 1)(i + 2)/2. Consider a = (ai) with ai ≥ ciα ,
α, c > 0. Then Na(s) ≤ Cs3/α . Thus, for α > 3, the associated Brownian motion
Xa = (Xt ,P) satisfies

lim
ε→0

sup
0≤s<t≤1
t−s≤ε

d(X−1
s Xt )

(t − s)γ
≤ Cc,α < ∞ with γ = 1

2

(
1 − 3

α

)
.

We believe this result is sharp when ai = ciα but we have no proof of this fact. The
results obtained in Section 4 below could potentially yield a matching lower bound
but the necessary Gaussian lower bounds have not yet been proved for groups such
as the one considered here.

4. Two-sided Gaussian bounds and some consequences. Let G be a
compact connected group equipped with a continuous left-invariant distance
ρ(x, y) which defines the topology of G. Set ρ(x) = ρ(e, x). Consider the
associated volume growth function Vρ = V defined by (recall that ν denotes the
Haar measure)

V (r) = ν
({x ∈ G :ρ(x) < r}).(4.1)

Consider a symmetric Gaussian convolution semigroup (µt )t>0 on G and
assume that this semigroup satisfies property (CK). As before, denote by
x → µt(x) continuous density of the measure µt with respect to Haar measure.

In this section we consider the possibility that there exists a decreasing
continuous function M : (0,+∞) → (0,+∞) and four constants c1,C1, c2,C2 ∈
(0,∞) such that, for all t ∈ (0,1) and x ∈ G, the Gaussian semigroup (µt)t>0
satisfies

c1M(t) − C2
ρ(x)2

t
≤ log µt(x) ≤ C1M(t) − c2

ρ(x)2

t
.(4.2)

For convenience, we set ψ(t) = M(1/t).
Under the hypothesis that such an inequality holds with a suitable function M ,

we give sharp volume growth estimates and sharp Green function estimates. We
then use these estimates to obtain results concerning the local rate of escape of
the associated diffusion, in the spirit of the classical result of Dvoretzky and Erdös
stated in the Introduction.

To reassure the reader that it is not entirely foolish to assume that (4.2) holds,
we quote a result from [6].



1480 A. BENDIKOV AND L. SALOFF-COSTE

THEOREM 4.1. On the infinite-dimensional torus G = T
∞, for any symmetric

Gaussian semigroup (µt )t>0 satisfying (CK), we have

∀x ∈ T
∞, ∀ t > 0, µt(x) ≥ µt(e) exp

(
−d(x)2

4t

)
(4.3)

where d is the associated intrinsic distance.

Using this and Theorem 3.5, we obtain the following important result.

THEOREM 4.2. Let (µt)t>0 be a (CK) symmetric Gaussian semigroup on the
infinite-dimensional torus T

∞. Assume that

cψ(1/t) ≤ log µt(e) ≤ Cψ(1/t)

where ψ ∈ R∗ and c,C ∈ (0,∞). Then there exist constants c1, c2,C1,C2 ∈
(0,∞) such that, for all t ∈ (0,1) and x ∈ G,

c1ψ(1/t) − C2
d(x)2

t
≤ logµt(x) ≤ C1ψ(1/t) − c2

d(x)2

t
.(4.4)

The following technical definition will be used throughout this section.

DEFINITION 4.3. Let M be a continuous decreasing function defined on the
interval (0,1). Assume that lims→0 M(s) = ∞, that s �→ sM(s) is increasing, and
that lims→0 sM(s) = 0. Given c > 0, define the function Fc : (0, cM(1)) → (0,1)

by

Fc(s) = t if and only if ctM(t) = s.(4.5)

Thus Fc(t) is the inverse of ctM(t). Set also F = F1.

Note that Fc is increasing and tends to zero at zero. Moreover, for any two
constants c, b with 0 < c < b, we have Fb < Fc on (0, cM(1)).

4.1. Volume growth. This subsection relates Gaussian bounds to the behavior
of the volume growth function V defined at (4.1). These simple results are new.
Let us point out that estimating the volume function V in the present setting is not
an easy task. As far as we can see, even for simple examples on T

∞ such as those
considered in Example 2, the best way to estimate the volume function V is to
relate it to log µt(e) as done below.

LEMMA 4.4. Let M and Fc be as in Definition 4.3. Consider a distance ρ and
a symmetric Gaussian semigroup (µt)t>0 satisfying (CK).
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1. Assume that there exist C1, c2 > 0 such that

∀ t ∈ (0,1), ∀x ∈ G, µt(x) ≤ exp
(
C1M(t) − c2

ρ(x)2

t

)
.(4.6)

Then the volume growth function V = Vρ satisfies

inf
r∈(0,CM(1))

logV (r)

M ◦ FC(r2)
> −∞,(4.7)

for C = 2C1/c2.
2. Assume that there exist c1,C2 > 0 such that

∀ t ∈ (0,1), ∀x ∈ G, µt(x) ≥ exp
(
c1M(t) − C2

ρ(x)2

t

)
.(4.8)

Then the volume growth function V = Vρ satisfies

sup
r∈(0,cM(1))

log V (r)

M ◦ Fc(r2)
< 0,(4.9)

for c = c1/(2C2).

PROOF OF 1. Set v(s) = V (
√

s). Then we have∫
G

e−c2ρ(x)2/t dν(x) =
∫ ∞

0
e−c2s/t dv(s) = c2

∫ ∞
0

v(st)e−c2s ds.

Hence, for any A ≥ 1, the hypothesis that (4.6) holds true yields

e−C1M(t) ≤ c2

∫ ∞
0

v(st)e−c2s ds

≤ c2

(∫ A

0
v(st)e−c2s ds +

∫ ∞
A

v(st)e−c2s ds

)
≤ c2v(At) + e−c2A.

Taking A = CM(t) with C = 2C1/c2, we obtain

∀ t ∈ (0,1), e−C1M(t)
(
1 − e−C1M(t)

) ≤ c2v(CtM(t)).

As limt→0 M(t) = +∞, for all s small enough,

v(s) ≥ 1

2c2
exp

(−C1M ◦ FC(s)
)
.

Returning to the volume growth function V (s) = v(s2), we obtain

lim inf
r→0

log V (r)

M ◦ FC(r2)
≥ −C1

as desired. �
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PROOF OF 2. By the same token, assuming (4.8), we obtain

e−c1M(t) ≥ C2

∫ ∞
0

v(st)e−C2s ds ≥ v(at)e−aC2,

for any a > 0 and t ∈ (0,1). Choosing a = cM(t) with c = c1/(2C2) yields

e−c1/2M(t) ≥ v(ctM(t)),

that is,

V (r) ≤ exp
(
−c1

2
M ◦ Fc(r

2)

)
for all r small enough. This ends the proof of Lemma 4.4. �

The following simple technical lemma is useful in interpreting the estimates
obtained above.

LEMMA 4.5. Let M and Fc be as in Definition 4.3. Assume further that
ψ(t) = M(1/t) belongs to R∗. Then, for any fixed b, c with 0 < b ≤ c < +∞,
there exists a constant A such that, on (0, bM(1)), we have Fc ≤ Fb ≤ AFc.

PROOF. By Lemma 3.3, ψ(t) = M(1/t) ∈ R∗ is equivalent to the existence
of C0 > 0 and α ∈ (0,1) such that

∀ s, t with 0 < s ≤ t ≤ 1,
sM(s)

tM(t)
≤ C0

(
s

t

)α

.(4.10)

The desired result follows. �

THEOREM 4.6. Assume that (µt)t>0 is (CK) and satisfies the two-sided
Gaussian bound (4.2) with ρ and M,Fc as in Lemma 4.5. Then there are constants
a0, a1 > 0 such that the volume growth function V = Vρ satisfies

∀ r ∈ (
0,M(1)

)
, −a0M ◦ F(r2) ≤ logV (r) ≤ −a1M ◦ F(r2),(4.11)

where F = F1 is the inverse function of s �→ sM(s).

PROOF. It suffices to observe that, for any c > 0, by Lemma 4.5, there exist
two constants C1, c1 > 0 such that

c1
s

F (s)
≤ M ◦ Fc(s) = s

cFc(s)
≤ C1

s

F (s)

for all s small enough. The desired result then follows from s/F (s) = M ◦ F(s).
�

On G = T
∞, two-sided Gaussian bounds are available by (4.4). Hence we

obtain Theorem 4.7. Given two positive functions f,g defined in a neighborhood
of t0 ∈ [0,∞], we write f � g if there are two constants 0 < c ≤ C < ∞ such that
cf ≤ g ≤ Cf in a neighborhood of t0.
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THEOREM 4.7. Let (µt )t>0 be a symmetric (CK) Gaussian semigroup on
the infinite-dimensional torus T

∞. Let V (r) denote the volume growth function
associated with the intrinsic distance d from Definition (2.2).

1. Assume that there exists λ ∈ (0,1) such that logµt(e) � t−λ at 0. Then we have

log
1

V (r)
� r−2λ/(1−λ) at 0.

2. Assume that there exists an increasing slowly varying function ψ satisfying
ψ(tψ(t)) ∼ ψ(t) at infinity and such that logµt(e) � ψ(1/t) at 0. Then

log
1

V (r)
� ψ(1/r2) at 0.

Note that the functions ψ(u) = log1(u) logn(u) where logn(u) = log(1 +
logn−1(u)), log1(u) = log(1 + u), or ψ(u) = [log1(u)]k all satisfy the condition
ψ(tψ(t)) ∼ ψ(t) at infinity.

To illustrate how and why volume estimates, especially upper bounds, are of
interest in the study of the regularity of the sample paths of invariant diffusions,
we offer the following two results.

PROPOSITION 4.8. Referring to the setting and notation introduced above,
assume that there exist λ,β with 0 < λ < 1 and β > 0 such that:

(a) logVρ(r) ≤ −cr−β for all r ∈ (0,1);
(b) (µt)t>0 satisfies (CK) and (4.6) with M(t) ≤ t−λ for all t ∈ (0,1).

Then, setting γ = λ/β , we have

lim sup
t→0

ρ(Xt)

tγ
> 0 almost surely.

PROOF. First, observe that Lemma 4.4 shows that (b) implies

∀ r ∈ (0,1), log Vρ(r) ≥ −Cr−2λ/(1−λ).

Hence (a) and (b) are compatible only if β ≤ 2λ/(1 − λ). Using (a) and (b), we
have for any r, t ∈ (0,1),

P
(
ρ(Xt ) < r

) ≤ Vρ(r)µt(e) ≤ e−cr−β+C1t
−λ

.(4.12)

Let tn be a decreasing sequence tending to zero and set An = {ρ(Xtn) < at
γ
n }

where a ∈ (0,1) will be chosen later. By (4.12),

P(An) ≤ e−(ca−λ−C1)t
−λ
n .

Picking a = [2C1/c]−1/λ and tn = 1/n, we obtain that
∑

n P(An) < +∞. Hence,
by the Borel–Cantelli lemma P-almost surely, ρ(Xtn) > aγ t

γ
n for all n large

enough. This completes the proof of Proposition 4.8. �



1484 A. BENDIKOV AND L. SALOFF-COSTE

PROPOSITION 4.9. Let M and F be as in Definition 4.3. Assume further that
ψ(t) = M(1/t) belongs to both R∗ and R∗. Referring to the setting and notation
introduced above, assume that:

(a) logVρ(r) ≤ −aM ◦ F(r2) for all r ∈ (0,1);
(b) (µt)t>0 satisfies (CK) and (4.6).

Then there exists a constant 0 < c ≤ C < ∞ such that, almost surely,

c ≤ lim sup
t→0

ρ(Xt)√
tM(t)

< C.

The constants c,C depend only on a, on the constants C0, c0, θ
∗, θ∗ of Lemma 3.3,

and on the constants C1, c2 in (4.6).

PROOF. The upper bound lim supt→0
ρ(Xt)√
tM(t)

< 4
√

C1/c1 is proved in Theo-
rem 3.6. For the lower bound, as in the proof of Proposition 4.8, we have for any
r, t ∈ (0,1),

P
(
ρ(Xt) < r

) ≤ e−aM◦F(r2)+C1M(t).(4.13)

For any t ∈ (0,1) small enough, let r = r(t) be defined by

M ◦ F(r2) = 2C1

a
M(t).

Clearly, r(t) is increasing. We claim that there are constants C′c′ > 0 such that

c′tM(t) ≤ r2(t) ≤ C′tM(t).(4.14)

Indeed, we have

r2 = F−1 ◦ M−1(2C1M(t)/a
) = 2C1

a
M(t)M−1(

2C1M(t)/a
)
.

Now, the hypothesis that ψ ∈ R∗ implies that there are constants c0 > 0 and
β ∈ (0,1) such that

∀ s, t with 0 < s ≤ t < 1,
M(s)

M(t)
≥ c0

(
t

s

)β

.(4.15)

Using this and the fact that M(t) is nonincreasing, we see that for any λ > 0, there
exists 1 ≤ aλ < ∞ such that

a−1
λ M−1(t) ≤ M−1(λt) ≤ aλM

−1(t).

This proves (4.14).
Now, set An = {ρ(X1/n) < r(1/n)}. By (4.13) and the definition of r(t),

P(An) ≤ e−C1M(1/n).
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By (4.15), this shows that
∑

n P(An) < +∞. Hence, the Borel–Cantelli lemma
yields that P-almost surely,

ρ(X1/n) ≥ r(1/n) ≥
√

c′(1/n)M(1/n)

for all n large enough. Hence

lim sup
t→0

ρ(Xt)√
tM(t)

≥ √
c′ > 0

as desired. This completes the proof of Proposition 4.9. �

4.2. Green function estimates. Denote by

g =
∫ ∞

0
e−tµt dt

the Green function associated to (µt)t>0. In general, g is simply a probability
measure on G. If this measure is absolutely continuous with respect to Haar
measure and admits a continuous density on G \ {e}, we denote this density by
x �→ g(x). By [6], g admits a continuous density on G \ {e} as soon as (µt)t>0
satisfies (CK) and limt→0 t logµt(e) = 0.

THEOREM 4.10. Let M and Fc be as in Definition 4.3 . Consider a distance ρ

and a symmetric Gaussian semigroup (µt )t>0 satisfying (CK) as above.

1. Assume that (µt)t>0 satisfies the Gaussian upper bound (4.6). Then there exists
a constant C > 0 such that

∀x ∈ G, logg(x) ≤ CM ◦ FC(ρ(x)2).(4.16)

2. Assume that (µt )t>0 satisfies the Gaussian lower bound (4.8). Then there exist
two constants C,c > 0 such that, for all x satisfying ρ(x)2 ≤ cM(1),

log g(x) ≥ cM ◦ Fc

(
ρ(x)2) + C log Fc

(
ρ(x)2) − Fc

(
ρ(x)2)

.(4.17)

PROOF OF 1. As M is decreasing and s �→ sM(s) increasing, for all t ∈ (0,1),
we have

C1M(t) − c2ρ(x)2/t ≤ C1M ◦ FC

(
ρ(x)2)

with C = max{C1/c2,d2/M(1)} where d = maxG ρ is the diameter of the compact
metric space (G,ρ). Indeed, let t0 ∈ (0,1) be such that Ct0M(t0) = ρ(x)2 (such
a t0 exists because C ≥ d2/M(1)). Then, either 0 < t ≤ t0 and we have

C1M(t) − c2
ρ(x)2

t
≤ 1

t

(
C1tM(t) − c1ρ(x)2) ≤ 1

t

(
C1

C
− c1

)
ρ(x)2 ≤ 0,

or t0 < t < 1 and we have

C1M(t) − c2ρ(x)2/t ≤ C1M(t0) = C1M ◦ FC

(
ρ(x)2)

.
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This implies the desired upper bound on logg(x). �

PROOF OF 2. Observe that, for any c > 0, cM ◦ Fc(s) = s/Fc(s). Set
ρ = ρ(x) and assume that ρ2 ≤ cM(1). Choose c = c1/(3C2). As M is decreasing
and Fc increasing, we have

g(x) ≥
∫ Fc(ρ

2)

Fc(ρ2)/2
exp

(
c1M(t) − C2

ρ2

t
− t

)
dt

≥ Fc(ρ
2)

2
exp

(
c1M ◦ Fc(ρ

2) − 2C2
ρ2

Fc(ρ
2)

− Fc(ρ
2)

)

= Fc(ρ
2)

2
exp

((
c1

c
− C2

)
ρ2

Fc(ρ2)
− Fc(ρ

2)

)

= Fc(ρ
2)

2
exp

(
C2

ρ2

Fc(ρ
2)

− Fc(ρ
2)

)

≥ Fc(ρ
2)

2
exp

(
(C1/3)M ◦ Fc(ρ

2) − Fc(ρ
2)

)
. �

REMARK 1. If G is not a Lie group, then Lemma 3.2 shows that M(t) grows
to infinity strictly faster than log(1 + 1/t) as t tends to 0. Thus, in this case,
Theorem 4.10(2) yields the lower bound

logg(x) ≥ cM ◦ Fc

(
ρ(x)2)

for all x such that ρ(x) is small enough.

THEOREM 4.11. Let M and Fc be as in Definition 4.3. Consider a distance ρ

and a symmetric (CK) Gaussian semigroup (µt )t>0 as above.

1. Assume that (µt)t>0 satisfies the two-sided Gaussian bound (4.2). Then there
exist two constants 0 < c ≤ C < ∞ such that, for all x with ρ(x) small enough,

cρ(x)2

Fc(ρ(x)2)
≤ log g(x) ≤ Cρ(x)2

FC(ρ(x)2)
.(4.18)

2. Assume in addition that ψ(t) = M(1/t) belongs to R∗ [i.e., M satisfies (4.10)].
Then for all x with ρ(x) small enough,

logg(x) � log
1

V (ρ(x))
.(4.19)

By (4.4), in the case of the infinite-dimensional torus, we have the following result.

THEOREM 4.12. Let (µt)t>0 be a symmetric (CK) Gaussian semigroup on
the infinite-dimensional torus T

∞.
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1. Assume that there exists λ ∈ (0,1) such that logµt(e) � t−λ at 0. Then, for
all x in a small enough neighborhood of the identity element, the Green function
g satisfies

log g(x) � d(x)−2λ/(1−λ)

where d is the intrinsic distance associated to (µt)t>0.
2. Assume that there exists an increasing slowly varying function ψ satisfying

ψ(tψ(t)) ∼ ψ(t) at infinity and such that logµt(e) � ψ(1/t) at 0. Then, for
all x in a small enough neighborhood of the identity element,

logg(x) � ψ
(
d(x)−2)

.

4.3. Local rate of escape. The aim of this section is to prove a result analogous
to the classic result of Dvoretzky and Erdös. In the present setting it takes a
slightly different form. Indeed, call a positive increasing function h an upper
radius for X if, almost surely, ρ(Xt ) ≤ h(t) for all t small enough. Call it a
lower radius if, almost surely ρ(Xt) ≥ h(t) for all t small enough. For Brownian
motion on R

n, or on any compact Lie group of dimension n, the law of the
iterated logarithm describes an almost optimal upper radius whereas Dvoretzky–
Erdös result describes almost optimal lower radii. In this classic case, these
almost optimal upper and lower radii are significantly different, the former being√

2t log log 1/t , the latter
√

t[log 1/t]−(1+ε)/(n−2). This section shows that, under
some natural hypotheses, in the present infinite-dimensional setting, optimal upper
and lower radii are comparable.

THEOREM 4.13. Let (µt)t>0 be a (CK) symmetric Gaussian semigroup. Let
M and Fc be as in Definition 4.3. Assume that ψ(t) = M(1/t) belongs to both
R∗ and R∗. Assume further that the two-sided Gaussian bound (4.2) holds true.
Then there are constants 0 < c ≤ C < ∞ such that

c ≤ lim inf
t→0

ρ(Xt )√
tM(t)

≤ lim sup
t→0

ρ(Xt)√
tM(t)

≤ C.

The constants c,C depend only on the constants c1,C1, c2,C2 from (4.2) and on
the constants c0,C0, θ

∗, θ∗ corresponding to ψ by Lemma 3.3.

PROOF. The upper bound is proved in Theorem 3.6 under weaker hypotheses.
Thus we now focus on the lower bound

0 < lim inf
t→0

ρ(Xt )√
tM(t)

.(4.20)

Let us observe that all the hypotheses will be needed for our proof of the lower
bound (4.20) itself. Set

An = {
ρ(Xt) < κ

√
anM(an) for some t ∈ [an+1, an]}
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where a ∈ (0,1) is an arbitrary fixed constant and κ > 0 is a constant which will be
chosen later. Our aim is to show that κ > 0 can be chosen so that

∑
P(An) < ∞.

If this is the case, then the Borel–Cantelli lemma shows that, almost surely,

lim inf
t→0

ρ(Xt)√
tM(t)

≥ κ > 0.

Consider the process X1 = (X1
t ) associated with the convolution semigroup

e−tµt . This process takes value in G ∪ {∞} where ∞ is an isolated point added
to G. Set ρ(x,∞) = +∞ for any x ∈ G. The process X1 = (X1

t ) can be obtained
from X in the following way. Let ξ be a real random variable, independent of the
process X and with P(ξ > t) = e−t . Then

X1
t =

{
Xt , if t < ξ ,
∞, if t ≥ ξ .

Thus X1
t is Xt killed at an exponential time. For any 0 < s < s′ ≤ 1, 0 < r ≤ 1, we

have

P
(
ρ(Xt) < r for some t ∈ [s, s′])

= P
(
ρ(Xt) < r for some t ∈ [s, s′]; t ≥ ξ

)
+P

(
ρ(Xt) < r for some t ∈ [s, s′]; t < ξ

)
≤ P(s′ ≥ ξ) + P

(
ρ(X1

t ) < r for some t ≥ s
)

= 1 − e−s′ + P
(
ρ(X1

t ) < r for some t ≥ s
)
.

(4.21)

Since 1 − e−s′ ∼ s′ at 0, (4.21) shows that the series
∑

P(An) converges if and
only if the series

∑
P(Bn) converges where

Bn = {
ρ(X1

t ) < κ
√

anM(an) for some t ≥ an+1}
.(4.22)

Thus it suffices to show that we can choose κ small enough so that
∑

P(Bn)

converges. �

In what follows, we will need some properties of the functions Fc defined
at (4.5) and of t �→ t/Fc(t). By Lemma 4.5, when ψ ∈ R∗, the functions Fc are
all comparable to F = F1. We will use this fact several times in what follows.
Moreover, we have the following simple result.

LEMMA 4.14. Under the hypothesis that ψ(t) = M(1/t) belongs to R∗∩R∗,
there exist K0 and σ > 0 such that

∀ t ∈ (
0,M(1)

)
, ∀ s ∈ (0, t),

t

F (t)
≤ K0

(
s

t

)σ s

F (s)
.(4.23)
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PROOF. Since F is the inverse of s �→ sM(s), (4.23) is equivalent to

∀ t ∈ (0,1), ∀ s ∈ (0, t),
M(t)

M(s)
≤

(
K0

s

t

)σ/(1+σ)

.(4.24)

The hypothesis that ψ(t) = M(1/t) belongs to R∗ ∩R∗, implies that (4.15) holds
true with β ∈ (0,1) and this proves that (4.24) holds true for some K0 and σ > 0.

�

PROPOSITION 4.15. Consider the function

wr(z) = Pz

(
ρ(X1

t ) < r for some t > 0
)
.

Under the hypotheses of Theorem 4.13, there exist two constants 0 < c ≤ C < ∞
such that, for all r small enough and all z with ρ(z)2 ≤ M(1), we have

wr(z) ≤ exp
(

Cρ(z)2

F(ρ(z)2)
− cr2

F(r2)

)
.(4.25)

PROOF. To prove this, note that w = wr is a superharmonic function for the
process X1. That means that H 1

s w ≤ w for all s > 0 where H 1
s f = e−sf ∗ µs .

Since lims→∞ H 1
s w = 0 point-wise, w is a potential [w.r.t. (H 1

t )t>0]. Since the
Gaussian semigroup (µt)t>0 is symmetric and satisfies (CK), the Hunt duality
theory (see [13], Chapter 6) shows that there exists a Borel measure m such that

w = (I + L)−1m = g ∗ m

where −L denote the infinitesimal generator of (µt )t>0 and g is the Green
function defined by g(x) = ∫ ∞

0 e−sµs(x) ds. Since w is X1-harmonic outside the

ball B(e, r), m is supported by B(e, r). Moreover, since w ≡ 1 on B(e, r), the
measure m restricted to B(e, r) coincides with the Haar measure (in the sense of
distributions, we have (I +L)w = m and since w is constant equal to 1 in B(e, r),
we get that m = 1 in B(e, r)). Thus

dm = 1B(e,r) dν + 1∂B(e,r) dm

where ∂B(e, r) = {y :ρ(y) = r} is the boundary of B(e, r). For any z with
ρ(z) ≥ 2r and any y in B(e, r), the upper bound in (4.18), Lemma 4.5 and (4.23)
together give

g(z−1y) ≤ exp
(

Cρ(z)2

F(ρ(z)2)

)
.

Hence

w(z) =
∫
G

g(z−1y) dm(y) ≤
(∫

∂B(e,r)
dm + V (r)

)
exp

(
Cρ(z)2

F(ρ(z)2)

)
.
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By the lower bound in (4.18), we also have

1 = w(e) =
∫
G

g(y) dm(y) ≥
∫
∂B(e,r)

g(y) dm(y) ≥
(∫

∂B(e,r)
dm

)
exp

(
cr2

F(r2)

)
for all r small enough. Hence∫

∂B(e,r)
dm ≤ exp

(
− cr2

F(r2)

)
.

By (4.11) we also have

V (r) ≤ exp
(
− cr2

F(r2)

)
.

Thus, we obtain

w(z) ≤ 2 exp
(

Cρ(z)2

F(ρ(z)2)
− cr2

F(r2)

)
for all z and r with ρ(z) ≥ 2r and r small enough. Since wr is bounded above
by 1 and with the help of (4.23), one easily extends this inequality to all z with
ρ(z)2 ≤ M(1). This ends the proof of Proposition 4.15. �

Now, to complete the proof of Theorem 4.13 it suffices to prove the following
result.

LEMMA 4.16. Under the hypotheses of Theorem 4.13, if κ is small enough,
then

∑
P(Bn) < ∞ where Bn is defined at (4.22).

PROOF. By Proposition 4.15 and the strong Markov property, we have

Px

(
ρ(X1

t ) ≤ r for some t > s
)

= e−s
∫

wr(z)µs(z
−1x) dν(z)

= e−s

(∫
ρ(z)>Kr

wr(z)µs(z
−1x) dν(z)

+
∫
ρ(z)≤Kr

wr(z)µs(z
−1x) dν(z)

)
(4.26)

for any K > 0. If we pick K = max{1,2K0C/c)1/(2σ)} where C,c are the
constants given by Proposition 4.15 and K0, σ are as in (4.23), Proposition 4.15
gives ∫

ρ(z)>Kr
wr(z)µs(z

−1x) dν(z) ≤ exp
(
− cr2

2F(r2)

)
.
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Moreover, since µs(z) ≤ exp(M(s)) for any s ∈ (0,1) and z ∈ G, Theorem 4.6
gives∫

ρ(z)≤Kr
wr(z)µs(z

−1x) dν(z) ≤ V (Kr) exp(M(s)) ≤ exp
(
M(s) − a1(Kr)2

F((Kr)2)

)
.

To obtain an estimate of P(Bn), we pick r = κ
√

anM(an), s = an+1 and obtain

P(Bn) ≤ exp
(
−c

2

κ2anM(an)

F (κ2anM(an))

)
+ exp

(
M(an+1) − a1κ

2K2anM(an)

F (κ2K2anM(an))

)
.

Using Lemma 4.14, the fact that F(tM(t)) = t , and (4.10), we get

P(Bn) ≤ exp
(
−cM(an)

2K0κ
2σ

)
+ exp

(
C0a

α−1M(an) − a1M(an)

K0(κK)2σ

)
.

Thus, for κ small enough, we have P(Bn) ≤ 2 exp(−c′M(an)). By (4.15), this
shows that

∑
P(Bn) < ∞ as desired. This completes the proof of 4.13. �

Theorem 4.2 shows that 4.13 applies nicely when G = T
∞. In this case, it yields

the following result which contains the first part of Theorem 1.1.

THEOREM 4.17. Let X be a Brownian motion on the infinite dimensional
torus T

∞ with associated Gaussian semigroup (µt )t>0. Assume that (µt)t>0
satisfies (CK) and that there exist an increasing function ψ ∈ R∗ ∩ R∗ and two
constants 0 < c1 ≤ C1 < ∞ such that

∀ t ∈ (0,1), c1ψ(1/t) ≤ µt(e) ≤ C1ψ(1/t).

Then there are constants 0 < c ≤ C < ∞ such that

c ≤ lim inf
t→0

d(Xt )√
tψ(1/t)

≤ lim sup
t→0

d(Xt)√
tψ(1/t)

≤ C

where d is the associated intrinsic distance. The constants c,C depend only on
c1,C1 and on the constants c0,C0, θ

∗, θ∗ corresponding to ψ by Lemma 3.3.

For a very explicit example, take (µt )t>0 as in Example 2 of Section 3.3 with
ai � i1/λ for some λ ∈ (0,1). Then (see [2, 3]) logµt(e) � t−λ and

0 < lim inf
t→0

dA(Xt )

t(1−λ)/2 ≤ lim sup
t→0

dA(Xt )

t(1−λ)/2 < +∞.
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