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THE LOWEST CROSSING IN TWO-DIMENSIONAL
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BY J. VAN DEN BERG AND A. A. JÁRAI1

CWI, Amsterdam and University of British Columbia, Vancouver

We study the following problem for critical site percolation on the
triangular lattice. Let A and B be sites on a horizontal line e separated
by distance n. Consider, in the half-plane above e, the lowest occupied
crossing Rn from the half-line left of A to the half-line right of B. We show
that the probability that Rn has a site at distance smaller than m from AB is
of order (log(n/m))−1, uniformly in 1 ≤ m ≤ n/2. Much of our analysis can
be carried out for other two-dimensional lattices as well.

1. Introduction. The idea of the “lowest” crossing between two boundary
pieces of a domain is a well-known and useful tool in the study of two-dimensional
percolation. Here we are interested in the question of how close the lowest crossing
comes to the intermediate boundary piece it has to cross. To be specific, we fix the
domain to be a half-plane and the two boundary pieces to be two disjoint half-lines.

1.1. Statement of the main result. Let T denote the triangular lattice. We note
that much of our discussion applies to other lattices as well. We consider T as a
subset of the Euclidean plane in such a way that the distance between two neighbor
vertices of T is 1 and the integer points on the X-axis e are vertices of T. For
notational convenience, we denote these vertices on e by . . . ,−2,−1,0,1,2, . . . .
Denote the site 0 by A and the site n by B . Let l = (−∞,A) ∩ T, r = (B,∞) ∩ T,
and let H be the half-plane above (and including) e. Each site v ∈ T is occupied
with probability p and vacant with probability 1 − p, independently. The
corresponding probability measure is denoted by Probp , and expectation by Ep .
If S1, S2 are sets of sites, we say that S1 is connected to S2, or S1 ↔ S2, if there
is a path of occupied sites that starts in S1 and ends in S2. We say that S1 ↔ S2
inside S3 if all sites of the path are in S3.

All constants below are strictly positive and finite. We write an � bn to denote
that there are constants C1 and C2 such that C1an ≤ bn ≤ C2an. The exact values
of constants denoted by Ci are not important to us, and Ci may have a different
value from place to place.

REMARK. In the remainder of this paper, “path” will always mean “self-
avoiding path” (i.e., a path that does not visit the same site more than once).
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THE LOWEST CROSSING. Consider all occupied paths between l and r that
stay inside H. If there is such a path, then there is a unique one closest to AB, call
it R (we suppress the dependence of R on n). [See page 317 of Grimmett (1999)
and Kesten (1982) for a discussion of the lowest crossing.] If R contains a site
on AB, we call it a contact point.

We are only interested in contact points at criticality. This is because for p < pc

the probability of an occupied crossing from l to r decays exponentially as n → ∞.
Also, it is not hard to see that for p > pc the fraction of those points on AB that are
contact points is typically bounded away from 0. From now on, we set p = 1/2,
the critical probability for site percolation on T. We write Probcr for Prob1/2.
We note that by a Russo–Seymour–Welsh (RSW) argument [see Section 11.7 of
Grimmett (1999), Theorem 6.1 of Kesten (1982), Russo (1978, 1981) and Seymour
and Welsh (1978)], we have Probcr(R exists)= 1.

Our main result is the following theorem.

THEOREM 1. We have, uniformly in 1 ≤ m ≤ n/2,

Probcr(R has distance < m from AB) � (
log(n/m)

)−1
.

This theorem immediately implies (take m = 1) the following corollary.

COROLLARY 2.

Probcr(R has a contact point) � (logn)−1, n ≥ 1.

REMARKS. (i) Note that it is not even a priori obvious (and a new result in
itself) that this probability goes to 0 as n goes to ∞ [see also (iv) below].

(ii) The statement of Theorem 1 is interesting only when m is small compared
to n; when m is of the same order as n, the result follows easily from an RSW
argument.

(iii) As to the case where m 	 n, a simple RSW argument shows that there
exists an ε > 0 such that the probability that R has distance larger than λn from
AB is smaller than λ−ε, uniformly in n and λ > 2.

(iv) The only prerequisites needed in the proof are classical percolation results
and techniques, in particular, the RSW techniques. We do not use SLE processes,
which were introduced by Schramm and which have, by the work of him and
other mathematicians, recently led to enormous progress [see Smirnov and Werner
(2001) and the references given there]. In fact, we hope that Theorem 1 will be
useful in the study of SLE6. To illustrate this, note that Theorem 1 indicates that
in the scaling limit when the lattice spacing goes to 0 and the length of AB is kept
fixed (say 1), the distribution of the distance of R from AB satisfies

Probcr(R has distance < a from AB) � (
log(1/a)

)−1
, a < 1/2.
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In the scaling limit, R corresponds to the boundary of the hull of the chordal SLE6
process in the half-plane started from 0 and stopped at the first time it hits (1,∞)

[see Corollary 5 of Smirnov (2001)]. In this way, one should obtain an analog of
Theorem 1 in terms of SLE6. The existence of a direct proof for SLE6 of such a
result is not known to us. Werner (private communication) has informed us that
a (quite convoluted) “direct” proof of a weaker form of such a result for SLE6
[namely, that the distance between the boundary of the hull and the interval (0,1)

is a.s. strictly positive] will be included (among other results) in a joint paper by
him, Lawler and Schramm.

(v) Schramm (2000) has proved that, for uniform spanning trees, the analog of
the left-hand side of our Theorem 1 goes to 0 as m/n goes to 0, uniformly in n.
Schramm (private communication) informed us recently that for that model the
more precise behavior we obtained for percolation [i.e., the (log(n/m))−1 order]
also seems to hold.

Apart from the above considerations, we think that Theorem 1 is interesting in
itself.

1.2. Notation, definitions and key ingredients. The theorem follows from the
proposition below. This proposition uses the knowledge of the critical exponent
describing the scaling of the probability that there are two disjoint occupied paths
in H that start at 0 and end at distance n. First, we give some additional definitions
and notation.

For n ≥ 1 and v ∈ AB, define the set

Hn(v) = {u ∈ H : |u − v| < n},
where | · | is the graph distance from the origin. We are also going to need the
half-annulus

Hn,m(v)
def= Hn(v) \ Hm(v) = {u ∈ H : m ≤ |u − v| < n}.

If S is a set of sites, we set

∂S = the set of sites in S that have a neighbor in Sc ∩ H

and

∂̄S = the set of sites in Sc ∩ H that have a neighbor in S.

We define the event

Dn(v) = {∃ two disjoint occupied paths from ∂̄{v} to ∂Hn(v)
}
.

Here, and later, “disjoint” means “vertex disjoint.” We set

ρ(n) = Probcr
(
Dn(0)

)
.
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It is clear that this quantity will be important in our analysis: for a site v ∈ AB to
be a contact point, there must be two disjoint occupied paths from ∂̄{v} to the sets
l and r , respectively; when v is in the bulk of AB, both sets have distance of order n

from v.
We also need a version of Dn for Hn,m(v). For 1 ≤ m < n, let

Dn,m(v) = {∃ two disjoint occupied paths from ∂̄Hm(v) to ∂Hn(v)
}
,

ρ(n,m) = Probcr
(
Dn,m(0)

)
.

We are going to need the following lemma about ρ. This lemma concerns the so-
called “two-arm half-plane exponent.” This exponent is exceptional in the sense
that it can be derived in a quite elementary way, only using RSW, FKG and
symmetry (the self-matching property of site percolation on the triangular lattice).
It seems that this has been “known” for a while [see, e.g., the remark in Aizenman,
Duplantier and Aharony (1999) that this exponent is “directly derivable”], but
until recently there was (as far as we know) no explicit proof in the literature,
although quite similar observations were made by Kesten, Sidoravicius and Zhang
(1998) and Zhang (1999). Lawler, Schramm and Werner (2002), who needed such
a lemma to bridge a step in the much more involved computation of other critical
exponents, have included a proof in Appendix A of their paper.

LEMMA 3. (i) ρ(n) � n−1, n > 1;
(ii) ρ(n,m) � (n/m)−1, uniformly in 1 ≤ m < n.

Finally, we state the following proposition. First, let

Xn,m = |{0 ≤ k ≤ n/m : Hm(km) is visited by R}|, 1 ≤ m ≤ n/2.

PROPOSITION 4. Uniformly in 1 ≤ m ≤ n/2, with n a multiple of m, we have:

(i) EcrXn,m � 1;
(ii) Ecr(Xn,m|Xn,m ≥ 1) � log(n/m);

(iii) EcrX
2
n,m � log(n/m);

(iv) Probcr(Xn,m ≥ 1) � (log(n/m))−1.

1.3. Outline. The rest of the paper is organized as follows. In Section 2.1, we
prove Proposition 4 from which, as we will see in Section 2.2, Theorem 1 follows
immediately. The only part that uses the lattice structure in an essential way is the
proof of the lemma. The rest can easily be modified to suit other two-dimensional
lattices.
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2. Proofs. We will make frequent use of the event defined below. We call a
path π in the half-annulus Hn,m(v) a half-circuit if it connects the two boundary
pieces of Hn,m(v) lying on the boundary of H. Let

Fn,m(v) = {∃ occupied half-circuit in Hn,m(v)}.
2.1. Proof of Proposition 4. Let R, A and B be as in Section 1 and let

1 ≤ m ≤ n/2 with n a multiple of m. Observe that for km ∈ AB we have

R visits Hm(km) if and only if
∃ occupied path from l to r that visits Hm(km),

(1)

and define the events

Ak,n,m = {∃ occupied path from l to r that visits Hm(km)}
= {R visits Hm(km)}, 0 ≤ k ≤ n/m.

Since in what follows n and m are fixed, we simply write Ak for Ak,n,m. We can
write

Xn,m = ∑
0≤k≤n/m

I [Ak],

where I [·] denotes the indicator of an event.
Throughout the proof, we will assume that m ≥ 2. The proof for m = 1 is similar

and, in part (ii), simpler.

PROOF OF (i). We start with a lower bound for EcrXn,m. By inclusion of
events (see Figure 1) and the FKG inequality, we have

Probcr(Ak) ≥ Probcr
(
F2n,n(km) ∩ D2n,m/2(km) ∩ Fm,m/2(km)

)
≥ Probcr

(
F2n,n(km)

)
ρ(2n,m/2)Probcr

(
Fm,m/2(km)

)(2)

for any integer k ∈ [0, n/m]. Here and later, fractions are meant to be replaced by
their integer parts whenever necessary. By an RSW argument, the first and third
factors are bounded below by some constant C1. Therefore, by Lemma 3, we have

EcrXn,m = ∑
0≤k≤n/m

Probcr(Ak) ≥ C2
1C2(n/m)(n/m)−1 = C2

1C2.

For the upper bound, we introduce the event

Gn,m(v) = {∃ occupied path from ∂̄Hm(v) to ∂Hn(v)
}
, 1 ≤ m < n.

The scaling of Probcr(Gn,m) is known for the triangular lattice [see Theorem 3 of
Smirnov and Werner (2001)]. However, for an argument valid on general lattices,
we only use a power law upper bound. An RSW argument [in fact, a simple
modification of Theorem 11.89 of Grimmett (1999)] shows that

Probcr(Gn,m) ≤ C3(n/m)−µ(3)
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FIG. 1. The events that force the occurrence of Ak .

for some positive constants µ and C3.
Let 1 ≤ k ≤ 1

2(n/m) and assume that the event Ak occurs. Then it is easy to see
that the events Dkm,m(km) and Gn/2,km(km) both occur. Since these latter events
are independent, we have, by Lemma 3 and (3),

Probcr(Ak) ≤ Probcr
(
Dkm,m(km)

)
Probcr

(
Gn/2,km(km)

) ≤ C4
1

k

(
km

n

)µ

.

The sum of the right-hand side over these k’s is bounded by some constant C5 inde-
pendent of n and m. A similar argument applies when 1

2(n/m) < k ≤ (n/m) − 1.
Finally, in the case k = 0 or k = n/m, we have Probcr(Ak) ≤ 1. This proves
that EcrXn,m ≤ C6. �

PROOF OF THE LOWER BOUND IN PART (ii). The idea in this proof is, roughly
speaking, as follows: if Ak occurs, there are from Hm(km) disjoint occupied paths
to l and r , respectively. Hence, to “let also Aj occur,” it (almost) suffices to have
two disjoint occupied paths from Hm(jm) to the latter path, and this should, by
RSW arguments, “cost” a probability of order Probcr(D(j−k)m,m(jm)), which by
the lemma is of order 1/(j − k). However, if one does the conditioning in a naive
way, technical difficulties arise because “negative information can seep through.”
Therefore, the argument has to be done very carefully and an auxiliary event
(which we will call F ∗

k below) has to be introduced to “neutralize” this negative
information. We now give the precise arguments.

Let V denote the first intersection of R with the set

U = ⋃
0≤k≤n/m

Hm(km),

if such an intersection exists when R is traversed from left to right. For v ∈ ∂U , let
Bv = {V = v} and define k to be the index for which v ∈ Hm(km), choosing the
smaller if there are two of them. We prove the lower bound

Probcr(Aj |Bv) ≥ C1

j − k
for k + 4 ≤ j ≤ n/m − 1, 1 ≤ k ≤ n/(2m).(4)
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Let

R1 = the piece of R to the left of V , including the site V .

Also, define

S1(v) = the lowest occupied path from l to v that is disjoint from U ,
apart from the site v,

(5)

whenever there is at least one such path. Note that even when the event Bv does
not hold, such paths may exist. We claim that on the event Bv we have R1 = S1(v).
Since V = v, we have that R1 is disjoint from U , apart from v. If S1(v) were lower
than R1, then we would use S1(v) and the piece of R to the right of v to construct
an occupied crossing lower than R, a contradiction.

For a path π , we write {S1(v) = π} as a shorthand for the event that S1(v) exists,
and S1(v) = π . The proof of the lower bound in (ii) is based on the following
observation:

Bv = ⋃
π1

{S1(v) = π1} ∩ �(π1, v) ∩ �(π1, v),(6)

where

�(π1, v) =
{∃ vacant path π∗

2 from ∂̄{v} to AB s.t. π1 is
the occupied path from l to v closest to π∗

2

}
,

�(π1, v) = {∃ occupied path π3 from ∂̄{v} to r disjoint from π1
}
,

and where the union is over all paths π1 from l to v that are disjoint from U , apart
from the site v. We will, for the time being, consider v as fixed, and, to simplify
notation, write S1, �(π1) and �(π1) instead of S1(v), and so on.

We first show that if Bv occurs, then the right-hand side of (6) occurs. Take
π1 = R1. Then by the discussion following (5) the event {S1 = π1} occurs. Since
R is the lowest crossing, there is a vacant path from ∂̄{v} to AB. Take π∗

2 to be the
one closest to π1. We claim that then π1 is also the occupied path closest to π∗

2 .
Let ρ be an occupied path from l to v that is closer to π∗

2 than π1. Since π∗
2 is

below R, ρ is also below R. Now ρ together with the piece of R to the right of v

forms an occupied crossing lower than R, a contradiction. This shows that �(π1)

occurs. Finally, taking π3 to be the piece of R to the right of v shows that �(π1)

occurs.
Next, assume that the right-hand side of (6) occurs and choose the paths π1,

π∗
2 and π3 that show this. The fact that π1, π3 are occupied and that π∗

2 is vacant
implies that R exists and passes through v. Thus, R1, the piece of R to the left of v,
is defined. Also, R lies below the concatenation of π1 and π3. Since π∗

2 is vacant,
R1 lies between π1 and π∗

2 . Since �(π1) occurs, R1 = π1 = S1, and hence v is the
first intersection of R with U , that is, Bv occurs.
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Now we are ready to start the argument for (4). By (6), we can write

Probcr(Aj ∩ Bv) = ∑
π1

Probcr
({S1 = π1} ∩ �(π1) ∩ �(π1) ∩ Aj

)
.(7)

Fix π1 and on the event �(π1) let S3(π1) denote the highest occupied path from
∂̄{v} to r disjoint from π1. The occurrence of the event {S1 = π1} only depends
on the states of v and the sites that are on or below π1 but outside U . Let �(π1)

denote this set. For fixed π1, the occurrence of {S3(π1) = π3} only depends on
sites above the union of π1 and π3 and on the sites on π3. Let �(π1, π3) denote
this set. [It may happen, but is not harmful, that �(π1)∩�(π1, π3) �= ∅.] We have

�(π1) = ⋃
π3

{S3(π1) = π3}.

Thus, we can write

Probcr(Aj ∩ Bv) = ∑
π1

∑
π3

Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1) ∩ Aj

)
.(8)

Now we construct events Kk,j and F ∗
k such that the events Kk,j and {S1 = π1,

S3(π1) = π3} ∩ �(π1) are conditionally independent given F ∗
k , and moreover (on

the event Bv) Kk,j forces the occurrence of Aj . Let ω denote the configuration
of occupied and vacant sites in H and define the configuration ω′ by setting it
equal to a new independent configuration on �(π1)∪�(π1, π3) and equal to ω on
H \ (�(π1) ∪ �(π1, π3)). We let

F ∗
k = {

on ω′ ∃ vacant half-circuit in H2m,m(km)
}
.

If F ∗
k occurs, then there is, in the configuration ω, a vacant path π∗

4 between AB
and π3 creating a block. This means that

the path π∗
2 in the definition of �(π1) can be chosen to

lie on the left-hand side of π∗
4 .

(9)

Next, we define Kk,j as the event that each of the following four occurs on ω′:

• ∃ two disjoint occupied paths from ∂̄Hm/2(jm) to ∂H4(j−k+2)m(jm) that avoid
the set H2m(km);

• F4(j−k+2)m,2(j−k+2)m(jm);
• F2(j−k+2)m,(j−k+2)m(jm);
• Fm,m/2(jm).

We note that the first event we require is “almost” D4(j−k+2)m,m/2(jm). The
only difference between these two events is the avoidance condition, and it is easy
to see that their probabilities differ at most a constant factor. Observe that if Kk,j

occurs, then there is a path π5 that is occupied on ω′, visits Hm(jm) and has both
endpoints to the left of Hm(km) on the boundary of H. Let u be a site on π5
that is in Hm(jm). If u is above the union of π1 and π3, then π3 visits Hm(jm).
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FIG. 2. The dashed and dotted lines represent the event Kk,j that forces the occurrence of Aj ,
given Bv . We used the dashed parts to construct a path that visits Hm(jm).

Otherwise, there are points u′, u′′ ∈ π5 ∩ π3 separated by u, which implies that
there is an occupied path (on ω) from ∂̄{v} to r that visits Hm(jm) (see Figure 2).
Thus, in both cases, Aj occurs.

By this observation and (8), we have

Probcr(Aj ∩ Bv)

≥ ∑
π1

∑
π3

Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1) ∩ F ∗

k ∩ Kk,j

)
.

(10)

By (9) and the construction of Kk,j , it follows that, given F ∗
k , Kk,j is conditionally

independent of �(π1) ∩ {S1 = π1, S3(π1) = π3}. Moreover, Kk,j is independent
of F ∗

k .
This gives that the right-hand side of (10) equals∑

π1

∑
π3

Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1) ∩ F ∗

k

)
Probcr(Kk,j ).(11)

By the FKG inequality, Lemma 3 and RSW arguments, we have

Probcr(Kk,j ) ≥ C2ρ
(
4(j − k + 2)m,m

) ≥ C3

j − k
.(12)

To deal with the rest of the expression on the right-hand side of (11), we condition
on the configuration σ in �(π1) ∪ �(π1, π3). Note that, for fixed π1, π3 and σ ,
the events �(π1) and F ∗

k are decreasing in the site variables in H \ (�(π1) ∪
�(π1, π3)). Thus, the FKG inequality implies that

Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1) ∩ F ∗

k

)
≥ Probcr

({S1 = π1, S3(π1) = π3} ∩ �(π1)
)
Probcr(F

∗
k )(13)

≥ C4Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1)

)
.
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The bounds (10)–(13) [and (6)] yield

Probcr(Aj ∩ Bv) ≥ C3 C4

j − k

∑
π1,π3

Probcr
({S1 = π1, S3(π1) = π3} ∩ �(π1)

)

= C3 C4

j − k
Probcr(Bv).

Summing over j gives, for v having x-coordinate at most n/2,

Ecr(Xn,m|Bv) ≥ C3 log(n/m).(14)

Let

J = {V has x-coordinate ≤ n/2} = ⋃
v:vx≤n/2

Bv,

where the union is over all v ∈ ∂U with x-coordinate at most n/2. By symmetry,
Probcr(J ) ≥ 1

2 Probcr(Xn,m ≥ 1). This and (14) give

Ecr(Xn,m|Xn,m ≥ 1) = Ecr(Xn,m;Xn,m ≥ 1)

Probcr(Xn,m ≥ 1)

≥ Ecr(Xn,m;J )

2Probcr(J )

= 1

2
Ecr(Xn,m|J ) ≥ C3

2
log

(
n

m

)
. �

PROOF OF THE UPPER BOUND IN (iii). In bounding Probcr(Ak ∩ Aj), we
may assume, by symmetry, that k ≤ j and k ≤ n/m − j . We may further assume
that 1 ≤ k ≤ j − 3 by bounding Probcr(Ak ∩ Aj) by Probcr(Aj ) in the cases
k = 0, j − 2, j − 1, j and using (i). We separate three cases.

Case 1 [j − k < 2k]. Let s = �(j − k − 1)/2� and s′ = �(j − k)/2�. (We have
s′ = s if j − k is odd, and s′ = s + 1 if j − k is even.) It is a simple matter to check
the inequalities j − k ≤ k + s′ ≤ n/(2m). It is not difficult to see that if Ak ∩ Aj

occurs, then the following four events occur:

Dsm,m(km), Dsm,m(jm), D(k+s′)m,(j−k)m((k + s′)m),

Gn/2,(k+s′)m((k + s′)m).

Also note that these events are independent. Thus, by Lemma 3 and (3),

Probcr(Ak ∩ Aj) ≤ C1
1

s2

j − k

k + s′
(

(k + s′)m
n/2

)µ

≤ C2
1

(j − k)2

j − k

k

(
km

n

)µ

= C2(j − k)−1kµ−1
(

n

m

)−µ

,

(15)
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where at the second inequality we used k ≤ k + s′ ≤ 2k. The sum of the right-
hand side of (15) over j is bounded by C3(logk)kµ−1(n/m)−µ. The sum of this
quantity over k is bounded by C4(log(n/m))(n/m)µ (n/m)−µ = C4 log(n/m).

Case 2 [2k ≤ j −k ≤ 2(n/m−k)/3]. Define s and s′ as in Case 1. It is simple
to check that k ≤ s′ and k + s′ + (j − k) ≤ n/m. In this case, Ak ∩ Aj implies that
the following independent events occur:

Dkm,m(km), Gs′m,km(km), Dsm,m(jm), Gn−(k+s′)m,(j−k)m((k + s′)m).

Thus, we have

Probcr(Ak ∩ Aj) ≤ C5
1

k

(
k

s′
)µ 1

s

(
j − k

n/m − k − s′
)µ

≤ C6
1

k

(
k

j − k

)µ 1

j − k

(
j − k

n/m

)µ

≤ C6 kµ−1(j − k)−1
(

n

m

)−µ

,

(16)

where in the second step we used that n/m − k − s′ ≥ n/(2m). The sum of the
right-hand side over j is bounded by C7(log(n/m))kµ−1(n/m)−µ. The sum of this
expression over k is bounded by C8(log(n/m))(n/m)µ(n/m)−µ = C8 log(n/m).

Case 3 [j − k > 2(n/m − k)/3]. Our condition implies that (with s and s′ as
before) k ≤ n/m − j < (j − k)/2; hence, k ≤ n/m − j ≤ s. This time Ak ∩ Aj

implies the following independent events:

Dkm,m(km), Gsm,km(km), D(n/m−j)m,m(jm), Gsm,(n/m−j)m(jm).

This gives the bound

Probcr(Ak ∩ Aj) ≤ C9
1

k

(
k

s

)µ 1

n/m − j

(
n/m − j

s

)µ

≤ C10
1

k

(
k

n/m

)µ 1

n/m − j

(
n/m − j

n/m

)µ

≤ C10k
µ−1(n/m − j)µ−1(n/m)−2µ,

(17)

where at the second inequality we used that s ≥ (j − k − 2)/2 > (n/4m) − 1. The
sum of the right-hand side of (17) over j and k is bounded by some C11.

The three cases and the remark about symmetry show that

EcrX
2
n,m = ∑

0≤j,k≤n/m

Probcr(Ak ∩ Aj) ≤ C12 log(n/m).
�

PROOF OF (iv). From (i) and the lower bound in (ii), we get

Probcr(Xn,m ≥ 1) = EcrXn,m

Ecr(Xn,m|Xn,m ≥ 1)
≤ C1

C2 log(n/m)
.(18)
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On the other hand, by the Cauchy–Schwarz inequality,

Ecr(Xn,m) = Ecr(Xn,mI [Xn,m ≥ 1]) ≤ (EcrX
2
n,m)1/2(Probcr(Xn,m ≥ 1)

)1/2
.(19)

The upper bounds in (iii) and (i) imply Probcr(Xn,m ≥ 1) ≥ C3(log(n/m))−1. �

PROOF OF THE UPPER BOUND IN (ii). The equalities in (18) and (i) and (iv)
now give the upper bound in (ii). �

PROOF OF THE LOWER BOUND IN (iii). Similarly, (19) and (i) and (iv) give
the lower bound in (iii). �

2.2. Proof of Theorem 1. The case where n is a multiple of m is (by the
definition of Xn,m) clearly equivalent to part (iv) of Proposition 4. As to the general
case, denote the probability in the statement of the theorem by f (n,m). It is easy
to see, using a simple RSW argument, that if n′ < n < n′ + m, then f (n′,m) and
f (n,m) differ at most a factor C > 0 which does not depend on n, n′ and m. This
observation, together with the special case, gives the general case.
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