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THE L1-NORM DENSITY ESTIMATOR PROCESS
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St. Petersburg Branch of the Steklov Mathematical Institute

The notion of an L1-norm density estimator process indexed by a
class of kernels is introduced. Then a functional central limit theorem
and a Glivenko–Cantelli theorem are established for this process. While
assembling the necessary machinery to prove these results, a body of
Poissonization techniques and restricted chaining methods is developed,
which is useful for studying weak convergence of general processes indexed
by a class of functions. None of the theorems imposes any condition at all
on the underlying Lebesgue density f . Also, somewhat unexpectedly, the
distribution of the limiting Gaussian process does not depend on f .

1. Introduction: The L1-norm density estimator process. Let X,X1,

X2, . . . be a sequence of independent and identically distributed random variables
in R with common Lebesgue density f . Further, let {hn}∞n=1 be a sequence of
positive constants such that, as n → ∞, hn → 0 and nhn → ∞. The classical
kernel estimator is defined as

fn,K(x) := 1

nhn

n∑
i=1

K

(
x − Xi

hn

)
, x ∈ R,

where K is a kernel with compact support satisfying∫
R

K(u)du = 1.(1.1)

For notational convenience, we will usually assume

K(u) = 0 for |u| > 1/2.(1.2)

Since Lebesgue density functions, by definition, sit in L1(R,B,m), where
m denotes Lebesgue measure, Devroye and Györfi have long advocated that the
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natural distance to measure the error in estimation between a density function f

and its estimator fn,K is the L1-norm of their difference:

Jn(K) := ‖fn,K − f ‖1 =
∫

R
|fn,K(x) − f (x)|dx.(1.3)

In their book, Devroye and Györfi (1985), they posed the challenging problem of
finding the asymptotic distribution of ‖fn,K − f ‖1.

Csörgő and Horváth (1988) were the first to prove a central limit theorem for
‖fn,K − f ‖p , the Lp-norm distance, p ≥ 1. Their proof relied on the Mason–
van Zwet (1987) refinement of the KMT inequality. Horváth (1991) introduced a
Poissonization technique into the study of central limit theorems for ‖fn,K −f ‖p .
The results of Csörgő and Horváth (1988) and Horváth (1991) required numerous
regularity conditions.

Beirlant and Mason (1995) developed a general method, based on a somewhat
different Poissonization, coupled with Fourier inversion, for deriving the asymp-
totic normality of the Lp-norm of empirical functionals. Mason [see Theorem 8.9,
Chapter 2, in Eggermont and LaRiccia (2001)] recently applied their method to the
special case of the L1-norm of the kernel density estimator to prove that, whenever
hn → 0 and

√
nhn → ∞ and K satisfies (1.2) and ‖K‖∞ < ∞,

ξn(K) := √
n
{‖fn,K − Efn,K‖1 − E‖fn,K − Efn,K‖1

}
converges in distribution to a normal random variable σ(K)Z, with

σ 2(K) := ‖K‖2
2

∫ 1

−1
Cov

(∣∣√1 − ρ2(t)Z1 + ρ(t)Z2
∣∣, |Z2|

)
dt,

where, here and elsewhere in this paper, Z, Z1 and Z2 are independent standard
normal random variables and

ρ(t) :=
∫

R K(u)K(u + t) du

‖K‖2
2

, t ∈ R.

The variance σ 2(K) has an interesting alternate representation. Using the formulas
for the absolute moments of a bivariate normal random variable of Nabeya (1951),
we can write

σ 2(K) = ‖K‖2
2

∫
R

ϕ(ρ(t)) dt,

where

ϕ(ρ) = 2

π

(
ρ arcsinρ +

√
1 − ρ2 − 1

)
, ρ ∈ [−1,1].

As a byproduct of our work, here we will extend this central limit theorem by
showing that ξn(K) remains asymptotically σ(K)Z when ‖K‖∞ < ∞ is replaced
by ‖K‖2

2 < ∞.



THE L1-NORM DENSITY ESTIMATOR PROCESS 721

It is natural to consider ξn(K) as a process indexed by a class K of square-
integrable functions on R satisfying (1.2) and, in light of the asymptotic normality
result, conjecture that, under suitable assumptions on the class K , the sequence of
processes {ξn(K) :K ∈ K}∞n=1 converges weakly to a mean-zero Gaussian process
{ξ(K) :K ∈ K} with covariance function defined for K1,K2 ∈ K by

σ(K1,K2) := ‖K1‖2‖K2‖2

∫ 1

−1
Cov

(∣∣∣√1 − ρ2(K1,K2, t)Z1

+ ρ(K1,K2, t)Z2

∣∣∣|Z2|
)
dt,

which, by using Nabeya’s (1951) formulas, becomes

σ(K1,K2) = ‖K1‖2‖K2‖2

∫ 1

−1
ϕ(ρ(K1,K2, t)) dt,

where

ρ(K1,K2, t) :=
∫

R K1(u)K2(u + t) du

‖K1‖2‖K2‖2
, t ∈ R.

Notice that σ(K,K) = σ 2(K) and ρ(K,K, t) = ρ(t). Clearly, ρ(t) is a contin-
uous function of t and ρ(0) = 1. Moreover, it is readily checked that ϕ(0) = 0
and ϕ(ρ) > 0 for ρ ∈ [−1,1], ρ �= 0. Therefore σ 2(K) > 0; that is, the process
{ξ(K) :K ∈ K} is never degenerate, unless K = {0}. Note also that this process
does not depend on the density f .

We will use the notation, for p > 0,

∂p(K1,K2) :=
(∫

R
|K1(x) − K2(x)|p dx

)1/p

.

Before stating any results, we should recall a couple of definitions from
empirical processes that we will use throughout. Given a metric space (T , d), for
each ε > 0, the covering number N (T , d, ε) is defined as the minimal number
of open d-balls of radius at most ε and centers in T required to cover T , and
the packing number D(T,d, ε) as the cardinality of a maximal ε-separated subset
of T . Both quantities are essentially equivalent. Given processes with bounded
trajectories Xn(t) and X(t), t ∈ T , such that the law of X(t) is defined by a
tight Borel measure on �∞(T ), we say that Xn converges weakly in �∞(T ) to X

if E∗H(Xn) → EH(X) for all bounded continuous functions H :�∞(T ) 	→ R,
where E∗H(Xn) = EH ∗(Xn) denotes outer expectation of H(Xn), which equals
the expected value of the measurable envelope H ∗(Xn) of H(Xn). See van der
Vaart and Wellner (1996) or de la Peña and Giné (1999) for expansions and
comments on these definitions. In our case, (T , d) will be (K, ∂2).
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Our main result is as follows:

THEOREM 1.1. Let K be a class of measurable functions, each satisfy-
ing (1.2), uniformly bounded by a positive constant κ and such that∫ ∞

0
log N(K, ∂2, ε) dε < ∞.(1.4)

If hn → 0 and
√

nhn → ∞, then the sequence of processes {ξn(K) :K ∈ K}∞n=1
converges weakly in �∞(K) to a mean-zero Gaussian process {ξ(K) :K ∈ K}
with covariance function σ(K1,K2).

Note that if Theorem 1.1 holds for a separable class of kernels K , then, in
particular, by the continuous mapping theorem,

sup
K∈K

|ξn(K)| d→ sup
K∈K

|ξ(K)|

for all densities f , where the distribution of the right-hand random variable does
not depend on f . Moreover, the same is true for any other continuous functional
on �∞(K).

Theorem 1.1, of course, includes the central limit theorem for one kernel or
jointly for a finite number of kernels; however, in these cases, Theorem 1.2,
as well as its multivariate counterpart, which we omit, is better as it does not
assume boundedness of the kernel or kernels. The following example shows that
condition (1.4) is satisfied by quite large, infinite classes of kernels.

EXAMPLE 1.1. Let K be a uniformly bounded class of measurable functions,
which are 0 off the interval [−1/2,1/2]. Write

[−1
2 , 1

2

] =
m⋃

i=1

Ii,

where Ii , i = 1, . . . ,m, are disjoint intervals. Let Ji denote the interior of Ii .
Assume that each K ∈ K is differentiable on Ji , i = 1, . . . ,m, with derivative K ′
satisfying

sup
x∈Ji

sup
K∈K

|K ′|(x) ≤ D and sup
x,y∈Ji

sup
K∈K

[ |K ′(x) − K ′(y)|
|x − y|δ

]
≤ D,

where D > 0 and 0 < δ < 1 are constants depending on K . In this case, one can
apply Theorem 7.1.1 of Dudley (1984) to show that, for some constant D1 > 0,

logN(K, ∂2, ε) ≤ D1ε
−1/(1+δ),

which implies (1.4).
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EXAMPLE 1.2. Here is another class of functions that satisfies (1.4). Let K be
a fixed bounded function, which is equal to 0 off the interval [−1/2,1/2]. Assume
that K is of bounded variation. The class

K = {K(·λ) :λ ≥ 1},
which consists of functions that are equal to 0 on [−1/2,1/2]c, satisfies

N(K, ∂2, ε) ≤ Cε−2 + 1

for ε ≤ C1/2 and, therefore, condition (1.4). The constant C can be taken to be
C = 2MV , where M = ‖K‖∞ and V is the total variation of K on any closed
interval [−a, a] with a > 1/2, for example, a = 1. To see this, let P (x) and N(x)

be respectively the positive and negative variations of K on [−1, x], which are
monotone nondecreasing and nonnegative functions, such that P (x) = N(x) = 0
for x < 1/2 and P (x) = N(x) = V/2 for x > 1/2; then, for 1 ≤ λ < µ,∫ ∞

−∞
|P (λx) − P (µx)|dx

=
(∫ 0

−1
P (x) dx −

∫ 1

0
P (x) dx + V

2

)
(λ−1 − µ−1),

with a similar equality holding for N(x), so that

∂2
2
(
K(·λ),K(·µ)

) ≤ M

∫ ∞
−∞

|K(λx) − K(µx)|dx

≤ M

∫ ∞
−∞

|P (λx) − P (µx)|dx

+ M

∫ ∞
−∞

|N(λx) − N(µx)|dx

≤ 2MV (λ−1 − µ−1).

Now, with this bound, it is easy to estimate the covering numbers of K for
the ∂2 distance: the open balls of radius ε and centers at K(·λk), with λk :=
C/(C − kε2), k = 0,1, . . . , k0, where k0 is the largest integer strictly smaller than
C/ε2, cover K .

EXAMPLE 1.3. Under certain regularity conditions on the kernel K and the
density f , the optimal choice of hn, in terms of the value of hn that minimizes
E‖fn,K − f ‖1, is of the form λ−1n−1/5, where λ > 0 is a smoothing parameter,
which in practical estimation problems must be estimated from the data. For
details, refer to Theorem 2.21, Chapter 2, in Eggermont and LaRiccia (2001). This
suggests viewing ξn(Kλ), with hn = n−1/5, as a process indexed by the class of
kernels

{Kλ(·) = λK(·λ) :λ > 0}.
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Suppose one could establish that this process, restricted to any compact interval
[a, b] ⊂ (0,∞), converges weakly to a mean-zero Gaussian process ξ(Kλ)

continuous in λ. Then, if λn is a sequence of data-driven smoothing parameter
estimators, which converges in probability to some fixed value λ0, one could
conclude that ξn(Kλn) converges in distribution to the normal random variable
ξ(Kλ0). For a thorough discussion of smoothing parameter estimators, that have
this property, consult Berlinet and Devroye (1994) and the references therein. It is
easy to see, building on Example 1.2, that if K is a kernel of bounded variation
vanishing off a compact set, and if 0 < a < b < ∞, then the class of kernels

K = {λK(·λ) :λ ∈ [a, b]}
satisfies condition (1.4).

Concerning the previous example, note that if

K = {λK(λ·) :λ ∈ [a,∞)},(1.5)

with a > 0, then the finite-dimensional distributions of the sequence of processes
{ξn(K) :K ∈ K} satisfy the central limit theorem for all densities, but the
processes themselves do not converge in law in �∞(K) for any densities [the
limiting Gaussian process ξ(K) fails to be sample bounded]. This is shown in
Example 6.1.

The tools that we develop to prove Theorem 1.1 permit us to extend the
asymptotic normality of ξn(K) to kernels satisfying ‖K‖2 < ∞.

THEOREM 1.2. Assume K satisfies (1.2) and ‖K‖2 < ∞. If hn → 0 and√
nhn → ∞, then, as n → ∞,

ξn(K)
d→ ξ(K)

d= σ(K)Z(1.6)

and

Var(ξn(K)) → σ 2(K).(1.7)

Notice that, somewhat remarkably, neither in Theorem 1.1 nor in Theorem 1.2
did we impose any assumption on the Lebesgue density f . Also, we did not require
that K satisfy (1.1).

Of course, one may ask when Efn,K(x) can be replaced by f (x) in ξn(K)

in (1.6). An obvious sufficient condition is that
√

n‖f − Efn,K‖1 → 0 as n → ∞.(1.8)

However, (1.8) need not always hold. For instance, if K(x) = I (x ∈ [−1/2,1/2])
and X is a Uniform(0,1) random variable, then

√
n‖f − Efn,K‖1 =

√
nhn

2
,
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which implies that (1.8) is not satisfied under the condition for asymptotic
normality

√
nhn → ∞ as n → 0. One set of sufficient conditions for (1.8) is

the following: in addition to the assumptions that K satisfies (1.1) and (1.2) and
‖K‖2 < ∞, assume that K(x) = K(−x), for all x ∈ R,∫

x2K(x)dx = 0 and
∫

R
|x|3|K(x)|dx < ∞.

Also assume that the density f is three times continuously differentiable on R
and

∫
R |f ′′′(x)|dx < ∞. Applying Lemma 22 of Devroye and Györfi (1985),

Chapter 5, we get

√
n‖f − Efn,K‖1 ≤

√
nh3

n

6

∫
R

|x|3|K(x)|dx

∫
R

|f ′′′(x)|dx.

Thus
√

nh3
n → 0 and

√
nhn → ∞ as n → ∞ imply both (1.8) and asymptotic

normality. (Note that the choice hn = λn−1/5, λ > 0, fulfills these conditions.)
A similar comment applies for the replacement of Efn,K(x) by f (x) in Theo-
rem 1.1.

The results just described are further evidence of the difference in asymptotic
behavior between the sup norm and the L1-norm of the discrepancy between the
kernel density estimator and its mean (or the density). In particular, Theorem 1.2
should be compared to the Bickel and Rosenblatt (1973) result on weak
convergence of the sup norm of fn,K − Efn,K over compact intervals: the
hypotheses are more restrictive, the centering is different and the rate is slower
for the sup norm.

Devroye and Györfi [(1985), Chapter 3, Theorem 1] prove the law of large
numbers for Jn(K) [defined in (1.3)], with K ∈ L1. Just as with the central limit
theorem, we may ask for conditions under which this law of large numbers holds
uniformly in K ∈ K , for all densities f . This turns out to be a much easier problem
than the central limit theorem; at least this is the case for the following Glivenko–
Cantelli result.

THEOREM 1.3. Let K be a relatively compact subset of L1(R,B,m)

satisfying (1.1) for all K ∈ K . If hn → 0 and nhn → ∞, then

lim
n→∞E∗ sup

K∈K
Jn(K) = 0.(1.9)

The following notation, already encountered above in the definition of weak
convergence in �∞(T ), is used in this statement and will be used thoughout: if
X is a not necessarily measurable random function, X∗ denotes its measurable
envelope, and we set E∗X = EX∗ [see van der Vaart and Wellner (1996) for
calculus with nonmeasurable functions].

Theorem 1.3 implies that the law of large numbers for Jn(K) holds uniformly
over many classes of kernels. However, we will see in Example 7.1 that this is not
so for the class of kernels (1.5).
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The bulk of this paper is devoted to the proof of Theorem 1.1. The proof
consists of two main steps. We must first prove that the finite-dimensional
(f.d.) distributions of the processes {ξn(K) :K ∈ K}∞n=1 converge in law to the
corresponding f.d. distributions of {ξ(K) :K ∈ K}, and then we must also show
that these processes are uniformly tight, that is, that they satisfy the asymptotic
equicontinuity condition

lim
δ→0

lim sup
n→∞

Pr
{

sup
∂2(K1,K2)≤δ,K1,K2∈K

|ξn(K1) − ξn(K2)| > ε

}
= 0(1.10)

[see either van der Vaart and Wellner (1996) or de la Peña and Giné (1999)]. In fact,
we will prove a result stronger than tightness, namely, that the increments of the
process satisfy a uniform exponential integrability condition. After establishing
some necessary preliminary results in Sections 2–4, tightness will be proved in
Section 5 and f.d. convergence in Section 6, where the proof of Theorem 1.2 is
also given. In the process of proving Theorem 1.1, we will develop a body of
Poissonization techniques and restricted chaining methods useful for studying the
weak convergence of general processes indexed by a class of functions. These are
detailed in Sections 2 and 4 and should be of independent interest. The Glivenko–
Cantelli theorem is proved in Section 7.

2. Poissonization techniques. One of the main ingredients in the proof of
the central limit theorem for the sequence of processes {ξn(K) :K ∈ K}∞n=1 is
Poissonization of the empirical process, the reason being that, as is well known,
if η is a Poisson random variable independent of the i.i.d. sequence Xi , i ∈ N,
X0 = 0, and if Ak, k ∈ N, are disjoint measurable sets, then the processes∑η

i=0 I (Xi ∈ Ak)δXi
, k = 1,2, . . . , are independent. The following lemma is basic

for the tightness part of the proof. Its idea may be traced back to Pyke and Shorack
[(1968), proof of Lemma 2.2] through Einmahl (1987) and Deheuvels and Mason
(1992) [see also Einmahl and Mason (1997)], and we give it here in an abstract
form suitable for our purposes. See Borisov (2002) for a slight generalization
of this lemma and extra historical remarks. Here is some convenient notation.
We say that a set D is a (commutative) semigroup if it has a commutative and
associative operation, in our case sum, with a zero element. If D is equipped with
a σ -algebra D for which the sum, + : (D ×D,D ⊗D) 	→ (D,D), is measurable,
then we say the (D,D) is a measurable semigroup.

LEMMA 2.1. Let (D,D) be a measurable semigroup; let X0 = 0 ∈ D and let
Xi , i ∈ N, be independent identically distributed D-valued random variables; for
any given n ∈ N, let η be a Poisson random variable with mean n independent of
the sequence {Xi}; and let B ∈ D be such that Pr{X1 ∈ B} ≤ 1/2. Then

Pr

{
n∑

i=0

I (Xi ∈ B)Xi ∈ C

}
≤ 2 Pr

{
η∑

i=0

I (Xi ∈ B)Xi ∈ C

}
(2.1)
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for all C ∈ D . In particular, if H :D 	→ R is nonnegative and D -measurable, then

EH

(
n∑

i=0

I (Xi ∈ B)Xi

)
≤ 2EH

( η∑
i=0

I (Xi ∈ B)Xi

)
.(2.2)

PROOF. Set pB = Pr{X1 ∈ B} and pBc = 1 −pB . Let τ0 = 0 ∈ R, Y0 = 0 ∈ D

and let τi , Yi , i ∈ N, be independent random variables such that Pr{τi = 1} =
1 − Pr{τi = 0} = Pr{X1 ∈ B} and Yi

d= (X1|X1 ∈ B) for all i ≥ 1. It is easy to
see that

I (X1 ∈ B)X1
d= τ1Y1.

Therefore, if ηB is Poisson with mean npB independent of the variables τi and Yi ,
i = 1,2, . . . , it follows that

η∑
i=0

I (Xi ∈ B)Xi
d=

η∑
i=0

τiYi
d=

ηB∑
i=0

Yi,

where the last identity is classical. We can assume η = ηB +ηBc , where ηB and ηBc

are independent Poisson respectively with parameters npB and npBc , independent
of the other variables. We then have

Pr

{
n∑

i=0

I (Xi ∈ B)Xi ∈ C

}

= Pr

{
n∑

i=1

τiYi ∈ C

}

= I (0 ∈ C)Pr

{
n∑

i=1

τi = 0

}
+

n∑
k=1

Pr

{
n∑

i=1

τiYi ∈ C,

n∑
i=1

τi = k

}

=
n∑

k=0

(
n

k

)
pk

Bpn−k
Bc Pr

{
k∑

i=0

Yi ∈ C

}

= n!en

nn

n∑
k=0

(npB)k

k!ek

(npBc)
n−k

(n − k)!en−k
Pr

{
k∑

i=1

Yi ∈ C

}

= 1

Pr{η = n}
n∑

k=0

Pr

{
k∑

i=0

Yi ∈ C,ηB = k

}
Pr
{
ηBc = n − k

}

≤ max0≤k≤n Pr{ηBc = n − k}
Pr{η = n} Pr

{
ηB∑
i=0

Yi ∈ C

}

= Pr{ηBc = [npBc ]}
Pr{η = n} Pr

{
η∑

i=0

I (Xi ∈ B)Xi ∈ C

}
.
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Now, Stirling’s formula, n! = (n/e)n
√

2πneθn/n for some 0 < θn < 1/12, gives
that Pr{ηBc = [npBc ]}/Pr{η = n} ≤ 2 if pBc > 1/2 and n ≥ 5; direct computation
shows that this inequality is also true for 1 ≤ n ≤ 4, proving the first inequality in
the lemma. The second inequality follows from the first by the usual integration-
by-parts formula for expected values. �

REMARK 2.1. We will apply the preceding lemma to the semigroup D

generated by the point masses, D = {0,
∑n

i=1 δxi
:n ∈ N, xi ∈ S}, where (S,S)

is a measurable space, with the σ -algebra D generated by the functions
fn,B(x1, . . . , xn) = ∑n

i=1 I (xi ∈ B)δxi
, n ∈ N, B ⊂ S. It is easy to see that, for

any measurable function h :S 	→ R, the map µ 	→ ∫
hdµ is D -measurable [just

note that f −1
n,B{µ ∈ D,

∫
hdµ ≤ t} = {(x1, . . . , xn) :

∑
I (xi ∈ B)h(xi) ≤ t} is a

measurable set of Sn]. Our functions H will have the general form

H

(
n∑

i=1

I (xi ∈ B)δxi

)

= exp

{
λ

∣∣∣∣∣
∫
A

∣∣∣∣∣
n∑

i=1

K

(
x − xi

h

)
− b(x)

∣∣∣∣∣− c(x) dx

∣∣∣∣∣
}
,

where A is a union of intervals and B is the h/2-neighborhood of A. H can be
shown to be D -measurable by approximation by Riemann sums.

We will need to estimate moments of Poissonized sums in both parts of the
proof of the central limit theorem. The following lemma extends to Poissonized
sums the sharpest bounds for moments of sums of independent random variables.
Before stating it, we will recall the Johnson–Schechtman–Zinn improvement on
Rosenthal’s inequality: if ξi are independent centered random variables, then, for
every p ≥ 2 and n ∈ N,

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
p

≤
(

15p

log p

)p

max

[(
n∑

i=1

Eξ2
i

)p/2

,

n∑
i=1

E|ξi|p
]

(2.3)

[obtained by symmetrization of the inequality in Theorem 4.1 from Johnson,
Schechtman and Zinn (1985)]. This bound has a version for sums of independent
nonnegative random variables ζi , namely: for every p ≥ 1 and n ∈ N,

E

(
n∑

i=1

ζi

)p

≤ 2p

(
p

logp

)p

max

[(
n∑

i=1

Eζi

)p

,

n∑
i=1

Eζ
p
i

]
(2.4)

[Johnson, Schechtman and Zinn (1985), Theorem 2.5].
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LEMMA 2.2. If r ≥ 2 and F is a continuous function of two real variables,
nondecreasing in each of them separately, and such that the inequality

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
r

≤ F(nEξ2, nE|ξ |r)(2.5)

holds for all n ∈ N and all sequences of independent, identically distributed and
centered random variables ξ, ξ1, ξ2, . . . , then the inequality

E

∣∣∣∣∣
η∑

i=0

ζi − γEζ

∣∣∣∣∣
r

≤ F(γEζ 2, γE|ζ |r)(2.6)

holds for any γ > 0, any sequence of independent identically distributed random
variables ζ, ζ1, ζ2, . . . , a Poisson random variable η with mean γ independent of
the variables {ζi}∞i=1 and ζ0 = 0.

PROOF. The distribution of
∑η

i=0 ζi − γEζ is infinitely divisible; in fact, for
any N ∈ N, we can write

η∑
i=0

ζi − γEζ =
N∑

i=1

(
ωi − γ

N
Eζ

)
,

where ω,ω1,ω2, . . . (dependent on N ) are i.i.d., with

ω
d=

ηN∑
i=0

ζi, ηN
d= Pois

(
γ

N

)
,

and ηN independent of ζ1, ζ2, . . . . Clearly, Eωi = (γ /N)Eζ . Applying inequal-
ity (2.5) to the sequence {ωi}, we get

E

∣∣∣∣∣
η∑

i=0

ζi − γEζ

∣∣∣∣∣
r

= E

∣∣∣∣∣
N∑

i=1

(
ωi − γ

N
Eζ

)∣∣∣∣∣
r

(2.7)

≤ F

(
NE

(
ω − γ

N
Eζ

)2

,NE

∣∣∣∣ω − γ

N
Eζ

∣∣∣∣
r
)
.

The first argument of F in this inequality is just

NE

(
ω − γ

N
Eζ

)2

= γEζ 2.
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Regarding the second argument, we have

E

∣∣∣∣ω − γ

N
Eζ

∣∣∣∣
r

=
∞∑

j=0

E

∣∣∣∣∣
j∑

i=0

ζi − γ

N
Eζ

∣∣∣∣∣
r

Pr{ηN = j}

≤
∣∣∣∣ γN Eζ

∣∣∣∣
r

+
∞∑

j=1

(
E

∣∣∣∣∣
j∑

i=1

ζi

∣∣∣∣∣
r

+ rγ

N
|Eζ |E

∣∣∣∣∣
∣∣∣∣∣

j∑
i=1

ζi

∣∣∣∣∣+ γ

N
|Eζ |

∣∣∣∣∣
r−1)

Pr{ηN = j}.

Taking into account inequality (2.4) applied to {|ζi |} and that Pr{ηN = j} =
e−γ /N(γ /N)j/j !, we obtain that

lim sup
N→∞

NE

∣∣∣∣ω − γ

N
Eζ

∣∣∣∣
r

≤ γE|ζ |r .
Now (2.6) follows by combining these estimates with inequality (2.7). �

Inequality (2.4) together with the previous lemma gives the following extension
of Rosenthal’s inequality to Poissonized sums.

LEMMA 2.3. If, for each n ∈ N, ζ, ζ1, ζ2, . . . , ζn, . . . are independent identi-
cally distributed random variables, ζ0 = 0, and η is a Poisson random variable
with mean γ > 0 and independent of the variables {ζi}∞i=1, then, for every p ≥ 2,

E

∣∣∣∣∣
η∑

i=0

ζi − γEζ

∣∣∣∣∣
p

≤
(

15p

log p

)p

max
[
(γEζ 2)p/2, γE|ζ |p].(2.8)

Moreover, specializing to ζ ≡ 1, we have, for every p ≥ 2,

E|η − γ |p ≤
(

15p

log p

)p

max[γ p/2, γ ].(2.9)

Here is the basic result that we will apply in order to “de-Poissonize” in the
process of establishing f.d. convergence.

LEMMA 2.4 [Beirlant and Mason (1995)]. Let N1,n and N2,n be independent
Poisson random variables with N1,n being Poisson(n(1 − α)) and N2,n being
Poisson(nα), where α ∈ (0,1). Denote Nn = N1,n + N2,n and set

Un = N1,n − n(1 − α)√
n

and Vn = N2,n − nα√
n

.

Let {Sn}∞n=1 be a sequence of random variables such that:
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(i) for each n ≥ 1, the random vector (Sn,Un) is independent of Vn;
(ii) for some σ 2 < ∞,

(Sn,Un)
w→ (

σZ1,
√

1 − αZ2
)

as n → ∞.

Then, for all x,

Pr{Sn ≤ x|Nn = n} → Pr{σZ1 ≤ x}.

We provide a proof here for the convenience of the reader. It is somewhat
different from the original one given by Beirlant and Mason (1995).

PROOF OF LEMMA 2.4. Consider the characteristic function

φn(t, u) := E exp(itSn + iuNn)

=
∞∑

k=0

eiukE
(
exp(itSn)|Nn = k

)
Pr(Nn = k).

From this, we see by Fourier inversion that the conditional characteristic function
of Sn, given Nn = n, is

ψn(t) := E
(
exp(itSn)|Nn = n

) = 1

2π Pr(Nn = n)

∫ π

−π
e−iunφn(t, u) du.

Applying Stirling’s formula, we obtain, as n → ∞,

2π Pr(Nn = n) = 2πe−nnn−1/(n − 1)! ∼ (2π/n)1/2,(2.10)

which, after changing variables from u to v/
√

n and using assumption (i), gives

ψn(t) = (2π)−1/2(1 + o(1)
) ∫ π

√
n

−π
√

n
E exp(itSn + ivUn)E exp(ivVn) dv.

We shall deduce our proof from this expression for the conditional characteristic
function ψn(t) after we have collected some facts about the asymptotic behavior
of the components in ψn(t).

First, by assumption (ii),

E exp(itSn + iuUn) → φ(t, v),(2.11)

where

φ(t, v) = exp
(−(

σ 2t2 + (1 − α)v2)/2
)
.

Next, the proof of Theorem 3 on pages 490–491 of Feller (1966) shows that, as
n → ∞,∫ π

√
n

−π
√

n

∣∣E exp(ivVn) − exp(−αv2/2)
∣∣dv +

∫
|v|>π

√
n

exp(−αv2/2) dv → 0,
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which implies that

∫ π
√

n

−π
√

n

∣∣E exp(itSn + iuUn)
(
E exp(ivVn) − exp(−αv2/2)

)∣∣dv → 0.(2.12)

Now, by putting (2.11) and (2.12) together with the Lebesgue dominated
convergence theorem, we get

ψn(t) → 1√
2π

∫
R

φ(t, v) exp(−αv2/2) dv = exp(−σ 2t2/2). �

REMARK 2.2. Note that the version of Lemma 2.4 given in Beirlant and
Mason (1995) is a bit more general. It allows the limiting bivariate normal
random variable in (ii) to have nonzero correlation. However, the version given
above suffices for our needs. Lemma 2.4 is not original to Beirlant and Mason.
A preliminary version was prov ed by Beirlant, Györfi and Lugosi (1994). A
similar partial inversion is used by Holst (1979). The idea of partial inversion,
itself, goes back at least to Bartlett (1938).

REMARK 2.3. Lemma 2.4 can be generalized to distributions other than the
Poisson. In particular, let X1,X2, . . . be i.i.d. integer-valued random variables with
mean 1 and variance 1 and set, for any 0 < α < 1,

Nn =
n∑

i=1

Xi, N2,n =
[nα]∑
i=1

Xi, N1,n = Nn − N2,n.

Then, by using Theorem 3 on page 490 of Feller (1966), one can repeat the proof
of Lemma 2.4 to show that it remains true with these definitions of Nn, N1,n

and N2,n.

3. Moments of the increments of the L1-norm kernel density estimator
process. This section contains a crucial estimate for the increments of the
L1-norm kernel density estimator process. Then tightness will follow by a slight
modification of a standard metric entropy argument. Given a density f on R,

let N0 = N0(f ) < ∞ be such that supi∈N
∫ (i+3)hn

ihn
f (x) dx ≤ 1/2 for all n > N0.

Such an N0 exists by absolute continuity if hn → 0 as n → ∞, which we assume
throughout.

PROPOSITION 3.1. Let Ki , i = 1,2, be two bounded kernels satisfying (1.2)
and such that

∂2(K1,K2) ≥ ρ

n1/2(3.1)
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for some ρ > 0 and n > N0. Set κ = max(‖K1‖∞,‖K2‖∞) and C1 := C1(κ, ρ) =
supm≥2(1 + (2κ/ρ)m−2)1/m. Then

E exp
{
t
|ξn(K1) − ξn(K2)|

C1∂2(K1,K2)

}
≤ 4 exp

{ ∞∑
m=2

(
720et

log m

)m
}

(3.2)

for all t ≥ 0.

PROOF. Let X,X1,X
′
1,X2,X

′
2, . . . be i.i.d. random variables. Given two

bounded, integrable kernels K1,K2, and n > N0, we set, for x ∈ R,

�n(x) =
∣∣∣∣∣ 1

hn

√
n

n∑
i=1

{
K1

(
x − Xi

hn

)
− EK1

(
x − X

hn

)}∣∣∣∣∣
−
∣∣∣∣∣ 1

hn

√
n

n∑
i=1

{
K2

(
x − Xi

hn

)
− EK2

(
x − X

hn

)}∣∣∣∣∣,
and �0(x) = 0. Further, for n ≥ 1, we let ηn be a Poisson random variable with
mean n, independent of X1,X2, . . . , and set

�ηn(x) =
∣∣∣∣∣ 1

hn

√
n

{
ηn∑
i=1

K1

(
x − Xi

hn

)
− nEK1

(
x − X

hn

)}∣∣∣∣∣
−
∣∣∣∣∣ 1

hn

√
n

{
ηn∑
i=1

K2

(
x − Xi

hn

)
− nEK2

(
x − X

hn

)}∣∣∣∣∣.
Then

ξn(K1) − ξn(K2) =
∫

R

(
�n(x) − E�n(x)

)
dx,(3.3)

and we define, for convenience,

ξn(K1) − ξn(K2) =
∫

R

(
�n(x) − E�ηn(x)

)
dx.(3.4)

Let �′
n(x) be defined as �n(x) using the X′

1,X
′
2, . . . variables and let E′ denote

integration with respect to the variables X′
i only. Then, for λ ∈ R,

E exp{λ|ξn(K1) − ξn(K2)|}
= E exp

{
λ

∣∣∣∣
∫

R

(
�n(x) − E�n(x)

)
dx

∣∣∣∣
}

≤ exp
{
λ

∣∣∣∣
∫

R

(
E�n(x) − E�ηn(x)

)
dx

∣∣∣∣
}
E exp

{
λ|ξn(K1) − ξn(K2)|},
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and, by Jensen’s inequality,

exp
{
λ

∣∣∣∣
∫

R

(
E�n(x) − E�ηn(x)

)
dx

∣∣∣∣
}

= exp
{
λ

∣∣∣∣
∫

R

(
E′�′

n(x) − E�ηn(x)
)
dx

∣∣∣∣
}

≤ E′ exp
{
λ

∣∣∣∣
∫

R

(
�′

n(x) − E�ηn(x)
)
dx

∣∣∣∣
}

= E exp
{
λ|ξn(K1) − ξn(K2)|}.

Hence

E exp{λ|ξn(K1) − ξn(K2)|} ≤ (
E exp

{
λ|ξn(K1) − ξn(K2)|})2

(3.5)
≤ E exp

{
2λ|ξn(K1) − ξn(K2)|}.

Let Is , s = 1, . . . ,6, be a partition of the integers Z such that:

(i) if i �= j ∈ Is , then |i − j | ≥ 2, and
(ii) for every s = 1, . . . ,6,

∑
i∈Is

Pr{X ∈ ((i − 1/2)hn, (i + 3/2)hn]} ≤ 1/2,
and set

As = ⋃
i∈Is

(
ihn, (i + 1)hn

]
, s = 1, . . . ,6,

and

Bs = ⋃
i∈Is

(
(i − 1/2)hn, (i + 3/2)hn

]
, s = 1, . . . ,6.

Then condition (ii) becomes Pr{X ∈ Bs} ≤ 1/2. Note that the sets As partition R
and that if x ∈ As and X /∈ Bs then K((x − X)/hn) = 0. (To see that such a
partition exists for n > N0, take first I′

0 = {2n :n ∈ Z}; then the corresponding
extended set B ′

0 coincides with R; by further decomposing I′
0 into three parts

if necessary, we get three sets Is , s = 1,2,3, whose union is I′
0 and whose

corresponding Bs satisfy Pr{X ∈ Bs} ≤ 1/2; the same can be done with I′
1 =

{2n + 1 :n ∈ Z}.) Then we have

∣∣ξn(K1) − ξn(K2)
∣∣ ≤ 6∑

s=1

∣∣∣∣
∫
As

(
�n(x) − E�ηn(x)

)
dx

∣∣∣∣,(3.6)

and, by Hölder’s inequality,

E exp{2λ|ξn(K1) − ξn(K2)|}
(3.7)

≤
6∏

s=1

(
E exp

{
12λ

∣∣∣∣
∫
As

(
�n(x) − E�ηn(x)

)
dx

∣∣∣∣
})1/6

.
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Let us fix s. Since, for every measurable function g,

∫
As

g

(
n∑

i=1

K

(
x − Xi

hn

))
dx =

∫
As

g

(
n∑

i=1

I (Xi ∈ Bs)K

(
x − Xi

hn

))
dx

(if the integrals exist), it follows from the properties of Bs that we can apply
Lemma 2.1 (see also Remark 2.1) to conclude

E exp
{

12λ

∣∣∣∣
∫
As

(
�n(x) − E�ηn(x)

)
dx

∣∣∣∣
}

(3.8)

≤ 2E exp
{

12λ

∣∣∣∣
∫
As

(
�ηn(x) − E�ηn(x)

)
dx

∣∣∣∣
}
.

Since the intervals building up Bs are disjoint, it follows from the properties of the
Poissonized process that the random variables δj,n, j ∈ Is , defined as

δj,n :=
∫ (j+1)hn

jhn

(
�ηn(x) − E�ηn(x)

)
dx,(3.9)

are independent. Therefore, since e|x| ≤ ex + e−x ,

E exp
{

12λ

∣∣∣∣
∫
As

(
�ηn(x) − E�ηn(x)

)
dx

∣∣∣∣
}

≤ E exp
{

12λ

∫
As

(
�ηn(x) − E�ηn(x)

)
dx

}
(3.10)

+ E exp
{
−12λ

∫
As

(
�ηn(x) − E�ηn(x)

)
dx

}

= ∏
j∈Is

E exp{12λδj,n} + ∏
j∈Is

E exp{−12λδj,n}

for any λ > 0. To estimate the right-hand side of (3.10), we will obtain bounds on
E|δj,n|m for m ≥ 2 (note that Eδj,n = 0).

Let �′
ηn

be an independent copy of �ηn . By Jensen’s inequality and the
generalized Minkowski inequality [e.g., Folland (1999), page 194],

E|δj,n|m ≤ E

∣∣∣∣
∫ (j+1)hn

jhn

(
�ηn(x) − �′

ηn
(x)

)
dx

∣∣∣∣
m

≤
[∫ (j+1)hn

jhn

(
E
∣∣�ηn(x) − �′

ηn
(x)

∣∣m)1/m
dx

]m

.
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Now

E
∣∣�ηn(x) − �′

ηn
(x)

∣∣m
≤ 2mE

∣∣�ηn(x)
∣∣m

= 2m

(
√

nhn)m
E

∣∣∣∣∣
∣∣∣∣∣

ηn∑
i=0

K1

(
x − Xi

hn

)
− nEK1

(
x − X

hn

)∣∣∣∣∣
−
∣∣∣∣∣

ηn∑
i=0

K2

(
x − Xi

hn

)
− nEK2

(
x − X

hn

)∣∣∣∣∣
∣∣∣∣∣
m

≤ 2m

(
√

nhn)
m

E

∣∣∣∣∣
ηn∑
i=0

(K1 − K2)

(
x − Xi

hn

)
− nE(K1 − K2)

(
x − X

hn

)∣∣∣∣∣
m

,

which by Lemma 2.3 is less than or equal to(
30m

hn log m

)m
[(

E(K1 − K2)
2
(

x − X

hn

))m/2

(3.11)

+ 1

nm/2−1
E

∣∣∣∣(K1 − K2)

(
x − X

hn

)∣∣∣∣
m
]
.

Thus, by Jensen’s inequality,

E|δj,n|m

≤
(

60m

logm

)m
[(∫ (j+1)hn

jhn

1
hn

E(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

+ 1

nm/2−1

∫ (j+1)hn

jhn

1

hn

E

∣∣∣∣(K1 − K2)

(
x − X

hn

)∣∣∣∣
m

dx

]
.

(3.12)

It follows from these estimates, from Eδj,n = 0 and from Stirling’s formula, that

E exp{12λδj,n}

≤ 1 +
∞∑

m=2

(
720eλ

logm

)m
[(∫ (j+1)hn

jhn

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

+ 1

nm/2−1

∫ (j+1)hn

jhn

1

hn

E

∣∣∣∣(K1 − K2)

(
x − X

hn

)∣∣∣∣
m

dx

]
,

and the same bound holds as well for E exp{−12λδj,n}. Then, plugging this
estimate into (3.10) and using the elementary inequality∏

(1 + xi) ≤ exp
(∑

xi

)
, xi ∈ R,
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we obtain

exp
{

12λ

∣∣∣∣
∫
As

(
�ηn(x) − E�ηn(x)

)
dx

∣∣∣∣
}

≤ 2 exp

{∑
j∈Is

∞∑
m=2

(
720eλ

log m

)m

(3.13)

×
[(∫ (j+1)hn

jhn

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

+ 1

nm/2−1

∫ (j+1)hn

jhn

1

hn

E

∣∣∣∣(K1 − K2)

(
x − X

hn

)∣∣∣∣
m

dx

]}
.

Now, by a change of variables,

∑
j∈Is

(∫ (j+1)hn

jhn

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

≤
(∑

j∈Is

∫ (j+1)hn

jhn

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

≤
(
E

∫
R

1

hn

(K1 − K2)
2
(

x − X

hn

)
dx

)m/2

=
(∫

R
(K1 − K2)

2(x) dx

)m/2

= ∂m
2 (K1,K2).

We now restrict to n such that ∂2(K1,K2) ≥ ρ/n1/2. For these n, we similarly
have

1

nm/2−1

∑
j∈Is

∫ (j+1)hn

jhn

1

hn

E

∣∣∣∣(K1 − K2)

(
x − X

hn

)∣∣∣∣
m

dx

≤ 1

nm/2−1
∂m
m(K1,K2)

≤ (2κ)m−2

nm/2−1
∂2

2 (K1,K2)

≤
(

2κ

ρ

)m−2

∂m
2 (K1,K2).



738 E. GINÉ , D. M. MASON AND A. YU. ZAITSEV

Then, combining these estimates with (3.13), we obtain

E exp
{

12λ

∣∣∣∣
∫
As

(
�ηn(x) − E�ηn(x)

)
dx

∣∣∣∣
}

≤ 2 exp

{ ∞∑
m=2

(
720eλC1(κ, ρ)∂2(K1,K2)

log m

)m
}
.

Setting

λ = t

C1(κ, ρ)∂2(K1,K2)

in this inequality and combining it with inequalities (3.7), (3.8) and (3.5), we
obtain (3.2). �

It is not clear that inequality (3.2) exhibits the best integrability for |ξn(K1) −
ξn(K2)|, but this seems to be the best order of exponential integrability we can get
using Poissonization.

Let � be a Young modulus, that is, a convex increasing unbounded function
� : [0,∞) 	→ [0,∞) satisfying �(0) = 0. For a random variable X its L� -Orlicz
norm is defined to be

‖X‖� = inf
{
c > 0 :E�

( |X|
c

)
≤ 1

}
.

The function

�1(x) = ex − 1

4
(3.14)

is a Young modulus. Moreover, it is easy to see that for every m ≥ 1 there
exists cm < ∞ such that the inequality ‖X‖m ≤ cm‖X‖�1 holds for any random
variable X. Proposition 3.1 implies the following bound for the �1-norm of
ξn(K1) − ξn(K2), which will be needed to establish the tightness part of the proof
of Theorem 1.1.

COROLLARY 3.1. Under the hypotheses of Proposition 3.1, there exists a
constant C(κ,ρ) < ∞ such that, for all n ≥ N0,

‖ξn(K1) − ξn(K2)‖�1 ≤ C(κ,ρ)∂2(K1,K2).(3.15)

PROOF. Let t0 be such that
∑∞

m=2(720et0/ logm)m = log(5/4). Then inequal-
ity (3.2) yields (3.15) with C(κ,ρ) = C1(κ, ρ)/t0. �
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The next moment bound will be useful for proving Theorem 1.2.

PROPOSITION 3.2. Let Ki , i = 1,2, be two square-integrable kernels
satisfying (1.2). Then, for some universal constant C > 0 and for all n > N0,

E
(
ξn(K1) − ξn(K2)

)2 ≤ C∂2
2 (K1,K2).

PROOF. We keep the same notation as in the proof of Proposition 3.1. Observe
that from (3.3) and (3.4) we get

ξn(K1) − ξn(K2) = ξn(K1) − ξn(K2) +
∫

R
E
[
�ηn(x) − �n(x)

]
dx,

which by arguing as in the proof of (3.5) gives

E
(
ξn(K1) − ξn(K2)

)2 ≤ 4E
(
ξn(K1) − ξn(K2)

)2
.(3.16)

Next, as in (3.11) but replacing Lemma 2.3 by direct computation, we obtain

E
(
�ηn(x) − �′

ηn
(x)

)2 ≤ 4

h2
n

E(K1 − K2)
2
(

x − X

hn

)
,

which gives

Eδ2
j,n ≤ 4

∫ (j+1)hn

jhn

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx.(3.17)

Thus, from (3.6), the convexity of y = x2 and Lemma 2.1 and using independence,
we get

E
(
ξn(K1) − ξn(K2)

)2 ≤ 6
6∑

s=1

E

(∫
As

(
�n(x) − E�ηn(x)

)
dx

)2

≤ 12
6∑

s=1

E

(∫
As

(
�ηn(x) − E�ηn(x)

)
dx

)2

(3.18)

= 12
6∑

s=1

∑
j∈Is

Eδ2
j,n,

which by (3.17) is less than or equal to

48
∫

R

1

hn

E(K1 − K2)
2
(

x − X

hn

)
dx =: C

4
∂2

2 (K1,K2).(3.19)

Inequalities (3.16) and (3.19) prove the proposition. �
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4. Tightness of general processes. The standard theorems on the tightness
of processes using metric entropy (or, equivalently, packing numbers) apply
to processes {ξn(K) :K ∈ K} that satisfy inequalities such as (3.15) for all
K1, K2 ∈ K , whereas in our case such an inequality holds only for K1 and K2
not too close in the ∂2 pseudometric, namely, satisfying inequality (3.1). The
observation we will make in order to deal with this problem applies to any of
several entropy bounds for moments or for Orlicz norms in the literature [among
them, e.g., the oldest one, valid only for Orlicz norms of exponential type such
as, e.g., in de la Peña and Giné (1999), Theorems 5.1.4 and 5.1.5, or the ones
coming from Pisier’s improvement on chaining such as, e.g., Theorem 2.2.4 in van
der Vaart and Wellner (1996) or its modification for any moduli based on Pisier’s
maximal inequality, as indicated in the notes on page 269 of van der Vaart and
Wellner (1996)]. Here we will only consider the bound for exponential moduli as
it is the one we use.

We say that a Young modulus is of exponential type if the following two
conditions are satisfied:

lim sup
x∧y→∞

�−1(xy)

�−1(x)�−1(y)
< ∞ and lim sup

x→∞
�−1(x2)

�−1(x)
< ∞.

Note that �1 defined in (3.14) satisfies these conditions [as �−1
1 (x)= log(4x +1)].

In what follows, if a variable X is not necessarily measurable, we write ‖X‖∗
� for

‖|X|∗‖� , where |X|∗ is the measurable envelope of |X|.
PROPOSITION 4.1. Let � be a Young modulus of exponential type, let (T , d)

be a totally bounded pseudometric space and let {Xt : t ∈ T } be a stochastic
process indexed by T , with the property that there exist C < ∞ and 0 < γ <

diam(T ) such that

‖Xs − Xt‖� ≤ C d(s, t),(4.1)

whenever γ ≤ d(s, t) < diam(T ). Then there exists a constant L depending only
on � such that, for any γ < δ ≤ diam(T ),∥∥∥∥ sup

d(s,t)≤δ

|Xs − Xt |
∥∥∥∥
∗

�

(4.2)

≤ 2
∥∥∥∥ sup
d(s,t)≤γ

|Xs − Xt |
∥∥∥∥
∗

�

+ CL

∫ δ

γ /2
�−1(D(T,d, ε)

)
dε.

PROOF. Let Tγ be a maximal subset of T satisfying d(s, t) ≥ γ for s �= t ∈ Tγ .
Then Card(Tγ ) = D(T,d, γ ). If s, t ∈ T and d(s, t) ≤ δ, let sγ and tγ be points
in Tγ such that d(s, sγ ) < γ and d(t, tγ ) < γ , which exist by the maximality
property of Tγ . Then d(sγ , tγ ) < δ + 2γ < 3δ. Since

|Xs − Xt | ≤
∣∣Xs − Xsγ

∣∣+ ∣∣Xt − Xtγ

∣∣+ ∣∣Xsγ − Xtγ

∣∣,
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we obtain∥∥∥∥ sup
d(s,t)≤δ

|Xs − Xt |
∥∥∥∥
∗

�

≤ 2
∥∥∥∥ sup
d(s,t)<γ

|Xs − Xt |
∥∥∥∥
∗

�

+
∥∥∥∥∥ max

d(s,t)<3δ
s,t∈Tγ

|Xs − Xt |
∥∥∥∥∥
�

.(4.3)

Now the process Xs restricted to the finite set Tγ satisfies inequality (4.1) for all
s, t ∈ Tγ , and therefore we can apply to the restriction to Tγ of Xs/C the entropy
bound in Theorem 5.1.4 of de la Peña and Giné (1999) [see also (5.1.10) there] to
the effect that∥∥∥∥∥ max

d(s,t)<3δ
s,t∈Tγ

|Xs − Xt |/C

∥∥∥∥∥
�

≤ L

∫ 3δ

0
ψ−1(D(Tγ , d, ε)

)
dε

(4.4)

≤ 3L

∫ δ

0
ψ−1(D(Tγ , d, ε)

)
dε,

where L is a constant that depends only on � . Now we note that D(Tγ , d, ε) ≤
D(T,d, ε) for all ε > 0 and that, moreover, D(Tγ , d, ε) = Card(Tγ ) = D(T,d, γ )

for all ε ≤ γ . Hence∫ δ

0
�−1(D(Tγ , d, ε)

)
dε ≤ γ�−1(D(T,d, γ )

)+
∫ δ

γ
�−1(D(T,d, ε)

)
dε

≤ 3
∫ δ

γ /2
�−1(D(T,d, ε)

)
dε,

and this, in combination with the previous inequalities (4.3) and (4.4), gives the
proposition. �

Proposition 4.1 constitutes an example of restricted or stopped chaining. Giné
and Zinn (1984) use restricted chaining with γ = n−1/4 at stage n, whereas for the
processes we have in mind we will use γ = ρn−1/2, ρ arbitrary.

5. Proof of the tightness part of Theorem 1.1. The following corollary of
the above lemmas and propositions obviously implies the asymptotic equicontinu-
ity (or tightness) of the sequence of processes {ξn(K) :K ∈ K} from Theorem 1.1.
Recall the definition of N0 given at the beginning of Section 3.

THEOREM 5.1. If the class of kernels K is bounded by a constant κ and
satisfies (1.2) and the entropy condition∫ ∞

0
logN(K, ∂2, ε) dε < ∞,(5.1)

then

lim
δ→0

sup
n>N0

∥∥∥∥ sup
∂2(K1,K2)≤δ, K1,K2∈K

∣∣ξn(K1) − ξn(K2)
∣∣∥∥∥∥

∗

�1

= 0.(5.2)
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PROOF. Corollary 3.1 and Proposition 4.1 give that, for n > N0,∥∥∥∥ sup
∂2(K1,K2)≤δ, K1,K2∈K

∣∣ξn(K1) − ξn(K2)
∣∣∥∥∥∥

∗

�1

≤ 2
∥∥∥∥ sup
∂2(K1,K2)≤ρ/n1/2, K1,K2∈K

∣∣ξn(K1) − ξn(K2)
∣∣∥∥∥∥

∗

�1

(5.3)

+ C(ρ, κ)L

∫ δ

0
�−1

1

(
D(K, ∂2, ε)

)
dε.

The entropy hypothesis (5.1) on K readily implies that the second term on the
right-hand side of this inequality tends to 0 as δ → 0. As for the first term, we note
that, for all n ∈ N and K1 and K2 satisfying ∂2(K1,K2) ≤ ρ/n1/2, we have∣∣ξn(K1) − ξn(K2)

∣∣
≤ √

n

∫
R

∣∣fn,K1(x) − fn,K2(x) − E
[
fn,K1(x) − fn,K2(x)

]∣∣dx

+ √
n

∫
R

E
∣∣fn,K1(x) − fn,K2(x) − E

[
fn,K1(x) − fn,K2(x)

]∣∣dx

≤ 4
√

n

∫ 1/2

−1/2

∣∣K1(x) − K2(x)
∣∣dx ≤ 4

√
n∂2(K1,K2)

≤ ρ.

Therefore the first term on the right-hand side of inequality (5.3) is dominated by
2‖4ρ‖�1 = 8ρ/ log 5. Hence, letting first δ tend to 0 and then ρ go to 0 in (5.3),
we obtain the limit (5.2). �

So the tightness part of the proof of Theorem 1.1 is completed, and, on the
way, we have also shown that the increments of the processes {ξn(K)} enjoy some
uniform exponential integrability.

6. Proof of the finite-dimensional convergence part of Theorem 1.1 and
proof of Theorem 1.2. The next theorem gives convergence of the finite-
dimensional distributions in Theorem 1.1. Its proof will be divided into several
lemmas.

THEOREM 6.1. For any Lebesgue density f , any sequence of positive
constants {hn}∞n=1 satisfying hn → 0 and

√
nhn → ∞ as n → ∞ and any finite

collection K := {K1,K2, . . . ,Km} ⊂ K , m ≥ 1, the random vector ξn(K) =
(ξn(K1), . . . , ξn(Km)) ∈ Rm converges in distribution to a mean-zero m-variate
normal distribution having covariance matrix with entries als = σ(Kl,Ks),
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l, s = 1, . . . ,m. Moreover, for all 1 ≤ l, s ≤ m,

lim
n→∞ Cov

(
ξn(Kl), ξn(Ks)

)
= lim

n→∞nCov
(∥∥fn,Kl

− Efn,Kl

∥∥
1,
∥∥fn,Ks − Efn,Ks

∥∥
1

)
(6.1)

= σ(Kl,Ks).

In particular, for all 1 ≤ s ≤ m,

lim
n→∞nVar

(∥∥fn,Ks − Efn,Ks

∥∥
1

) = σ 2(Ks).(6.2)

The following lemma on convolutions will be crucial for our proof.

LEMMA 6.1. Suppose that H is a finite class of uniformly bounded real-
valued functions H , which are equal to 0 off a compact interval. Then, for any
H ∈ H ,

|f ∗ Hh(z) − J (H)f (z)| → 0 as h ↘ 0 for almost all z ∈ R,(6.3)

where

J (H) =
∫

R
H(u)du

and

f ∗ Hh(z) := h−1
∫

R
f (x)H

(
z − x

h

)
dx.

Moreover, for all 0 < ε < 1, there exist M,ν > 0 and a Borel set C of finite
Lebesgue measure m(C) such that

C ⊂ [−M + ν,M − ν],(6.4)

∫
|x|>M

f (x) dx = α > 0,(6.5)

∫
C

f (x) dx > 1 − ε,(6.6)

f is bounded, continuous and bounded away from 0 on C(6.7)

and, uniformly in H ∈ H ,

sup
z∈C

|f ∗ Hh(z) − J (H)f (z)| → 0 as h ↘ 0.(6.8)
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PROOF. First, (6.3) follows from Theorem 3 in Chapter 2 of Devroye and
Györfi (1985). Using the continuity of our measure, we may find an interval
[−M,M] and a number ν > 0 so that

α =
∫
|x|>M

f (x) dx = ε

8

and ∫
|x|>M−ν

f (x) dx = ε

4
.

The rest of the proof is inferred from Lusin’s theorem followed by Egorov’s
theorem [see Dudley (1989), Theorems 7.5.1 and 7.5.2]. By Lusin’s theorem, we
can find a Borel set F such that f is continuous on F and∫

F
f (x) dx > 1 − ε

4
.

Clearly, we can extract a compact subset D of R such that f is bounded,
continuous and bounded away from 0 on D ∩ F , and∫

D∩F
f (x) dx > 1 − ε

2
.

Finally, using (6.3), coupled with Egorov’s theorem, we can find a Borel subset C

of [−M + ν,M − ν] ∩D ∩F such that (6.4) and (6.7) are satisfied and (6.8) holds
uniformly in H ∈ H . �

In the proof of Theorem 6.1 we shall apply Lemma 6.1 with

H = H0 :=
m⋃

s=1

{
Ks, |Ks |,K2

s , |Ks |3}.(6.9)

Let C be from this lemma. Denote

εn = sup
z∈C,H∈H0

∣∣f ∗ Hhn(z) − J (H)f (z)
∣∣.(6.10)

By Lemma 6.1,

εn → 0 as n → ∞.(6.11)

Assume that n ≥ n0 is so large that εn ≤ δ min{J (H) :H ∈ H0}/2, where δ > 0 is
defined by

δ = inf
x∈C

f (x).

Then, for any z ∈ C and H ∈ H0, we have

f (z)J (H)/2 ≤ f ∗ Hhn(z) ≤ 2f (z)J (H).(6.12)

The proof consists of three basic steps. First, we “truncate,” then we “Pois-
sonize” and, finally, we “de-Poissonize.” Our next lemma provides the truncation
step.
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LEMMA 6.2. Whenever hn → 0 and nhn → ∞, we have that, for any Borel
subset B of R, any K ∈ K and any sequence of functions an ∈ L1(R,B,m),

lim sup
n→∞

E

(√
n

∫
B

{|fn,K(x) − an(x)| − E|fn,K(x) − an(x)|}dx

)2

≤ 4κ2
∫
B

f (x) dx,

where κ = ‖K‖∞.

PROOF. Applying the theorem in Pinelis (1994), we get

E

(√
n

∫
B

{|fn,K(x) − an(x)| − E|fn,K(x) − an(x)|}dx

)2

≤ 4E

(
1

hn

∫
B

∣∣∣∣K
(

x − X

hn

)∣∣∣∣dx

)2

(6.13)

≤ 4‖K‖∞E
1

hn

∫
B

∣∣∣∣K
(

x − X

hn

)∣∣∣∣dx

≤ 4κ2h−1
n

∫
B

Pr
{
X ∈ [x − hn/2, x + hn/2]}dx.

Now

h−1
n

∫
B

Pr
{
X ∈ [x − hn/2, x + hn/2]}dx

≤
∫
B

f (x) dx +
∫

R

∣∣h−1
n Pr

{
X ∈ [x − hn/2, x + hn/2]}− f (x)

∣∣dx.

By a special case of Theorem 1 in Chapter 2 of Devroye and Györfi (1985),∫
R

∣∣h−1
n Pr

{
X ∈ [x − hn/2, x + hn/2]}− f (x)

∣∣dx → 0

as n → ∞, which completes the proof of Lemma 6.2. �

We shall apply Lemma 6.2 in the case where an(x) = Efn,K(x). Note that
in this situation we could get the same bound with 16 instead of 4 by applying
Theorem 2.1 of de Acosta (1981). Also see Devroye (1991), who obtained the
bound (6.13) with an(x) = f (x).

Next, we shall “Poissonize.” Let η be a Poisson(n) random variable, that is,
a Poisson random variable with mean n, independent of X, X1,X2, . . . , and set

fη,K(x) := 1

nhn

η∑
i=1

K

(
x − Xi

hn

)
, K ∈ K,
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where the empty sum is defined to be 0. Notice that

Efη,K(x) = Efn,K(x) = h−1
n EK

(
x − X

hn

)
,(6.14)

kn(K,x) := nVar(fη,K(x)) = h−2
n EK2

(
x − X

hn

)
(6.15)

and

nVar(fn,K(x)) = h−2
n EK2

(
x − X

hn

)
−
{
h−1

n EK

(
x − X

hn

)}2

.(6.16)

Choose any Borel set C with m(C) < ∞ satisfying (6.7) and (6.8) with H = H0.
Clearly, for any such set C,

sup
x∈C,K∈K

∣∣∣√nVar(fη,K(x)) −
√

nVar(fn,K(x))
∣∣∣

(6.17)

≤ sup
x∈C,K∈K

√
hn(f ∗ Khn(x))2√

f ∗ K2
hn

(x)
= O(

√
hn)

[see (6.7), (6.12), (6.15) and (6.16)].
We shall require the following fact, which follows from Theorem 1 of Sweeting

(1977) and is related to the classical Berry–Esseen theorem.

FACT 6.1. Let (ω, ζ ), (ω1, ζ1), (ω2, ζ2), . . . be a sequence of i.i.d. random
vectors such that each component has variance 1, mean 0 and finite absolute
moments of the third order. Further, let (Z1,Z2) be bivariate normal with mean
vector 0, Var(Z1) = Var(Z2) = 1 and Cov(Z1,Z2) = Cov(ω, ζ ) = ρ. Then there
exist universal positive constants A1,A2 and A3 such that∣∣∣∣∣E

∣∣∣∣
∑n

i=1 ζi√
n

∣∣∣∣− E|Z1|
∣∣∣∣∣ ≤ A1√

n
E|ζ |3(6.18)

and, whenever ρ2 < 1,∣∣∣∣∣E
∣∣∣∣
∑n

i=1 ωi√
n

·
∑n

i=1 ζi√
n

∣∣∣∣− E|Z1Z2|
∣∣∣∣∣ ≤ A2

(1 − ρ2)3/2

1√
n
(E|ω|3 + E|ζ |3)(6.19)

and ∣∣∣∣∣E
[∑n

i=1 ωi√
n

·
∣∣∣∣
∑n

i=1 ζi√
n

∣∣∣∣
]∣∣∣∣∣ ≤ A3

(1 − ρ2)3/2

1√
n
(E|ω|3 + E|ζ |3).(6.20)

The next lemma shows that the centering part of ξn(K) is asymptotically
equivalent to its Poissonized counterpart. Recall that Z denotes a standard normal
random variable.
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LEMMA 6.3. Whenever hn → 0,
√

nhn → ∞ and C satisfies (6.7) and (6.8)
with H = H0, we have, for all K ∈ K,

lim
n→∞

∫
C

{√
nE|fη,K(x) − Efn,K(x)| − E|Z|

√
nVar(fη,K(x))

}
dx = 0(6.21)

and

lim
n→∞

∫
C

{√
nE|fn,K(x) − Efn,K(x)| − E|Z|

√
nVar(fη,K(x))

}
dx = 0.(6.22)

PROOF. Let η1 denote a Poisson random variable with mean 1, independent
of X1,X2, . . . , and set

Yn(x) =
[∑

j≤η1

K

(
x − Xj

hn

)
− EK

(
x − X

hn

)]/√
EK2

(
x − X

hn

)
.(6.23)

Now VarYn(x) = 1 and, for some constant A > 0 independent of Yn and x,

E|Yn(x)|3 ≤ A
h

−3/2
n E|K((x − X)/hn)|3

(h−1
n EK2((x − X)/hn))

3/2
.

Using (6.8) and that f (x) ≥ δ > 0 for all x ∈ C, we get that, for all large enough n

uniformly in x ∈ C for some constant B0 > 0,

sup
x∈C

E|Yn(x)|3 ≤ h−1/2
n B0.(6.24)

Let Y
(1)
n (x), . . . , Y

(n)
n (x) be i.i.d. Yn(x). Clearly,

T K
η (x) :=

√
n{fη,K(x) − Efn,K(x)}√
h−2

n EK2((x − X)/hn)

d=
∑n

i=1 Y
(i)
n (x)√
n

.(6.25)

Therefore, by (6.18),

sup
x∈C

∣∣∣∣∣E|√n{fη,K(x) − Efn,K(x)}|√
h−2

n EK2((x − X)/hn)

− E|Z|
∣∣∣∣∣≤ A1√

n
sup
x∈C

E|Yn(x)|3.(6.26)

Now, by (6.24), in combination with (6.26) and

sup
x∈C

√
h−2

n EK2
(

x − X

hn

)
= sup

x∈C

√
nVar(fη,K(x)) = O(h−1/2

n ),(6.27)

we get that∣∣∣∣
∫
C

{√
nE|fη,K(x) − Efn,K(x)| − E|Z|

√
nVar(fη,K(x))

}
dx

∣∣∣∣
= O

(
1√
nh2

n

)
.
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Similarly, we obtain, by Fact 6.1,∣∣∣∣
∫
C

{√
nE|fn,K(x) − Efn,K(x)| − E|Z|

√
nVar(fn,K(x))

}
dx

∣∣∣∣
= O

(
1√
nh2

n

)
,

which by (6.17) implies∣∣∣∣
∫
C

{√
nE|fn,K(x) − Efn,K(x)| − E|Z|

√
nVar(fη,K(x))

}
dx

∣∣∣∣
= O

(
1√
nh2

n

+√
hn

)
. �

LEMMA 6.4. Whenever hn → 0, nhn → ∞ and C has finite Lebesgue
measure m(C), we have

IC(x + hnt) converges in measure to IC(x) = 1 on C × [−1,1](6.28)

and

f (x +hnt) IC(x +hnt) converges in measure to f (x) on C ×[−1,1],(6.29)

as functions of x and t .

PROOF. Notice that∫
C

∫ 1

−1
IC(x + hnt) dt dx =

∫
C

∫ x+hn

x−hn

h−1
n IC(y) dy dx.

Now, by Theorem 3 in Chapter 2 of Devroye and Györfi (1985), applied to
K(x) = I[−1,1](x) and f (x) = IC(x), for almost every x,

1
2

∫ x+hn

x−hn

h−1
n IC(y) dy → IC(x).

Thus, by the dominated convergence theorem,∫
C

∫ x+hn

x−hn

h−1
n IC(y) dy dx → 2 m(C),

which, in other words, says

(m × m)
{
(x, t) ∈ C × [−1,1] : 1 − IC(x + hnt) �= 0

}
= 2m(C) −

∫
C

∫ 1

−1
IC(x + hnt) dt dx → 0,

yielding (6.28).
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To prove (6.29), just note that, by the continuity of f on C,

(
f (x + hnt) − f (x)

)
IC(x + hnt) → 0

for all (x, t) ∈ C × [−1,1], and that, by (6.28),

f (x)
(
IC(x + hnt) − IC(x)

) → 0

in measure on C × [−1,1]. �

Set, for K,K1,K2 ∈ K ,

σn(C,K1,K2) := nE
∏

s=1,2

(∫
C

{∣∣fη,Ks (x) − Efn,Ks (x)
∣∣

(6.30)

− E
∣∣fη,Ks (x) − Efn,Ks (x)

∣∣}dx

)
,

σ 2
n (C,K) := σn(C,K,K)

= E

(√
n

∫
C

{|fη,K(x) − Efn,K(x)|(6.31)

− E|fη,K(x) − Efn,K(x)|}dx

)2

and

P (C) =
∫
C

f (x) dx = Pr{X ∈ C}.(6.32)

LEMMA 6.5. Whenever hn → 0, nhn → ∞ and C satisfies (6.7) and (6.8)
with H = H0, we have, for Kl,Ks ∈ K, l, s = 1, . . . ,m,

lim
n→∞σn(C,Kl,Ks) = P (C)σ (Kl,Ks).(6.33)

In particular, for K ∈ K,

lim
n→∞σ 2

n (C,K) = P (C)σ 2(K).(6.34)

PROOF. Without loss of generality, we shall only consider the case l = 1,
s = 2. Notice that, whenever |x − y| > hn, the random variables |fη,K1(x) −
Efn,K1(x)| and |fη,K2(y) − Efn,K2(y)| are independent. This follows from the
fact that they are functions of independent increments of a Poisson process with
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intensity nf . Therefore

σn(C,K1,K2) = n

∫
C

∫
C

Cov
(|fη,K1(x) − Efn,K1(x)|,

|fη,K2(y) − Efn,K2(y)|)dx dy

=
∫
C

∫
C

I (|x − y| ≤ hn)Cov
(|T K1

η (x)|, |T K2
η (y)|)

×
√

kn(K1, x)kn(K2, y) dx dy.

Keeping (6.15), (6.7), (6.8) and (6.25) in mind and noting that, with m(C) < ∞,∫
C

∫
C

I (|x − y| ≤ hn) dx dy ≤ 2hnm(C),

we see that

σn(C,K1,K2) = σn(C,K1,K2) + o(1),

where

σn(C,K1,K2) =
∫
C

∫
C

I (|x − y| ≤ hn)Cov
(|T K1

η (x)|, |T K2
η (y)|)

× h−1
n ‖K1‖2‖K2‖2

√
f (x)f (y) dx dy.

Now let (Z1,n(x),Z2,n(y)), x, y ∈ R, be a mean zero bivariate Gaussian process
such for each (x, y) ∈ R2, (Z1,n(x),Z2,n(y)) and (T K1

η (x), T K2
η (y)) have the same

covariance structure. In particular, we have

(
Z1,n(x),Z2,n(y)

) d=
(√

1 − (
ρ∗

n(x, y)
)2

Z1 + ρ∗
n(x, y)Z2,Z2

)
,

where Z1 and Z2 be independent standard normal random variables, and

ρ∗
n(x, y) := E

[
T K1

η (x)T K2
η (y)

]
.

Set

τn(C,K1,K2) =
∫
C

∫
C

I (|x − y| ≤ hn)Cov
(|Z1,n(x)|, |Z2,n(y)|)

× h−1
n ‖K1‖2‖K2‖2

√
f (x)f (y) dx dy,

which by the change of variables y = x + thn equals∫
C

∫ 1

−1
gn(x, t) dx dt,
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where

gn(x, t) := IC(x)IC(x + thn)Cov
(|Z1,n(x)|, |Z2,n(x + thn)|)

× ‖K1‖2‖K2‖2

√
f (x)f (x + thn).

Also observe that

ρ∗
n(x, x + thn) = h−1

n E[K1((x − X)/hn)K2((x − X)/hn + t)]√
h−1

n EK2
1 ((x − X)/hn)h

−1
n EK2

2 ((x − X)/hn + t)
.

We will show that, as n → ∞,

τn(C,K1,K2) → P (C)σ (K1,K2)(6.35)

and then, as n → ∞,

τn(C,K1,K2) − σn(C,K1,K2) → 0,(6.36)

which will complete the proof of the lemma.
First, consider (6.35). Applying (6.3) of Lemma 6.1, with H(u) = K1(u)×

K2(u + t), we get, for each t , as n → ∞, for almost every x ∈ R, hence for almost
every x ∈ C,

h−1
n E

[
K1

(
x − X

hn

)
K2

(
x − X

hn

+ t

)]
→ f (x)

∫
R

K1(u)K2(u + t) du.

Moreover, we get with H(u) = K2
1 (u) and H(u) = K2

2 (u + t), respectively, for
almost every x ∈ C, both

h−1
n EK2

1

(
x − X

hn

)
→ f (x)‖K1‖2

2

and

h−1
n EK2

2

(
x − X

hn

+ t

)
→ f (x)‖K2‖2

2.

Notice that we do not need the just-mentioned functions H(·) to belong to H0. The
limit result (6.3) is applied to each of these functions separately. Thus, for each t

and almost every x ∈ C, as n → ∞,

ρ∗
n(x, x + thn) → ρ(K1,K2, t),

and thus

Cov
(|Z1,n(x)|, |Z2,n(x + thn)|)
→ Cov

(∣∣√1 − ρ2(K1,K2, t)Z1 + ρ(K1,K2, t)Z2
∣∣, |Z2|

)
.



752 E. GINÉ , D. M. MASON AND A. YU. ZAITSEV

Combining these observations with Lemma 6.4, we readily conclude that gn(x, t)

converges in measure on C × [−1,1] to

IC(x)‖K1‖2‖K2‖2 Cov
(∣∣√1 − ρ2(K1,K2, t)Z1

+ ρ(K1,K2, t)Z2
∣∣, |Z2|

)
f (x).

Since f is bounded on C, the function gn(x, t) is for all n ≥ 1 uniformly bounded
on C × [−1,1]. Thus we get by the Lebesgue bounded convergence theorem, as
n → ∞, τn(C,K1,K2) converges to

P (C)‖K1‖2‖K2‖2

∫ 1

−1
Cov

(∣∣√1 − ρ2(K1,K2, t)Z1

+ ρ(K1,K2, t)Z2
∣∣, |Z2|

)
dt,

which, since ρ(K1,K2, t) = 0 whenever |t| > 1, equals P (C)σ (K1,K2). This
completes the proof of (6.35).

Now we turn to (6.36). Set

Gn(x, t) = ‖K1‖2‖K2‖2IC(x)IC(x + thn)
√

f (x)f (x + thn).

Notice that ∫
C

∫ 1

−1
Gn(x, t) dx dt ≤ 2m(C)‖K1‖2‖K2‖2B =: β,(6.37)

where B is the bound of f on C. We see that

|τn(C,K1,K2) − σn(C,K1,K2)|

≤
∫
C

∫ 1

−1

∣∣E|Z1,n(x)|E|Z2,n(x + thn)|

− E|T K1
η (x)|E|T K2

η (x + thn)|
∣∣Gn(x, t) dx dt

+
∫
C

∫ 1

−1

∣∣|EZ1,n(x)Z2,n(x + thn)|

− E|T K1
η (x)T K2

η (x + thn)|
∣∣Gn(x, t) dx dt

=: �n(1) + �n(2).

First, using (6.37) and (6.18) of Fact 6.1 with (6.24), we get

�n(1) = O

(
1√
nhn

)
.

Choose any 0 < ε < 1 and set

An(ε) = {
(x, t) : 1 − (

ρ∗
n(x, x + thn)

)2 ≥ ε
}
.
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Now

�n(2) ≤
∫
C

∫ 1

−1

∣∣1 − |EZ1,n(x)Z2,n(x + thn)|
∣∣1Ac

n(ε)
(x, t)Gn(x, t) dx dt

+
∫
C

∫ 1

−1

∣∣1 − E|T K1
η (x)T K2

η (x + thn)|
∣∣1Ac

n(ε)(x, t)Gn(x, t) dx dt

+
∫
C

∫ 1

−1

∣∣|EZ1,n(x)Z2,n(x + thn)| − E|T K1
η (x)T K2

η (x + thn)|
∣∣

× 1An(ε)(x, t)Gn(x, t) dx dt

=: �n,1(2, ε) + �n,2(2, ε) + �n(2, ε)

=: �n(2, ε) + �n(2, ε).

To bound �n(2, ε), we use the elementary fact that if X and Y are mean-zero and
variance-one random variables with ρ = E(XY), then 1 − E|XY | ≤ 1 − |ρ| ≤
1 − ρ2 , in combination with (6.37), to get that

�n(2, ε) ≤ 2εβ.

Next, we use (6.37) and (6.19) of Fact 6.1 with (6.24) to get

�n(2, ε) = O

(
1√
nhn

)
.

Thus, for all 0 < ε < 1,

lim sup
n→∞

∣∣τn(C,K1,K2) − σn(C,K1,K2)
∣∣ ≤ 2εβ,

which, since ε > 0 can be chosen arbitrarily small, yields (6.36). This finishes the
proof of Lemma 6.5. �

Suppose that our set C satisfies Lemma 6.1 with H = H0. Let M,ν,α be the
numbers from (6.4) and (6.6). Let, for K ∈ K ,

�K
n (x) := √

n
{|fη,K(x) − Efn,K(x)| − E|fη,K(x) − Efn,K(x)|}.

We shall prove the asymptotic normality of the random vector

�n(K) :=
(∫

C
�K1

n (x) dx, . . . ,

∫
C

�Km
n (x) dx

)
.

It suffices to prove it for any linear combination of the form

µ1

∫
C

�K1
n (x) dx + · · · + µm

∫
C

�Km
n (x) dx,

where µ1, . . . ,µm ∈ R, without loss of generality, satisfy

|µ1| + · · · + |µm| = 1.
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Assume that n is so large that hn ≤ ν and hn ≤ M/2. Define mn = [M/hn]
and h∗

n = M/mn, where [x] denotes the integer part of x. Clearly, we have
M/(2hn) ≤ mn ≤ M/hn. Hence

hn ≤ h∗
n ≤ 2hn.(6.38)

Set, for any integer i,

αi,n :=
∫ (i+1)h∗

n

ih∗
n

IC(x)�n(x) dx

σn(C,µ,K)
,

where

�n(x) := µ1 �K1
n (x) + · · · + µm�Km

n (x),

σ 2
n (C,µ,K) := Var

(
µ1

∫
C

�K1
n (x) dx + · · · + µm

∫
C

�Km
n (x) dx

)

=
m∑

l,s=1

µlµs σn(C,Kl,Ks).

By Lemma 6.5, we have

lim
n→∞σ 2

n (C,µ,K) = P (C)

m∑
l,s=1

µlµsσ (Kl,Ks).(6.39)

Therefore we can assume from now on without loss of generality that

P (C)

m∑
l,s=1

µlµsσ (Kl,Ks) > 0.(6.40)

LEMMA 6.6. Whenever hn → 0, nhn → ∞ and C satisfies Lemma 6.1 with
H = H0, there exists a constant B1 > 0 such that, uniformly in i and for all n

sufficiently large,

E|αi,n|3 ≤ B1h
3/2
n .(6.41)

PROOF. Notice that

σ 3
n (C,µ,K)E|αi,n|3

≤
∫
Ii,n

IC(x)IC(y) IC(z)E|�n(x)�n(y)�n(z)|dx dy dz,

where Ii,n = [ih∗
n, (i + 1)h∗

n)
3.

Clearly,

E|�n(x)�n(y)�n(z)| ≤ E
{|�n(x)| + |�n(y)| + |�n(z)|}3

,
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which by repeated applications of Jensen’s inequality is, for some constant Dm >0,
less than or equal to

Dmn3/2
m∑

j=1

(
E
∣∣fη,Kj

(x) − Efn,Kj
(x)

∣∣3

+ E
∣∣fη,Kj

(y) − Efn,Kj
(y)

∣∣3 + E
∣∣fη,Kj

(z) − Efn,Kj
(z)

∣∣3).
Notice that by Lemma 2.3 we get, for any 1 ≤ j ≤ m and w ∈ C,

n3/2E
∣∣fη,Kj

(w) − Efn,Kj
(w)

∣∣3
≤
(

45

log 3

)3

max
{[

1

h2
n

E

(
K2

j

(
w − X

hn

))]3/2

, E

(
1√
nh3

n

|Kj |3
(

w − X

hn

))}
,

which by Lemma 6.1 with the choice of H = H0 is, for some constant B > 0,
uniformly in 1 ≤ j ≤ m, w ∈ C and all n ≥ n0, with n0 large enough,

≤ B

[
1

h
3/2
n

+ 1√
nh2

n

]
.

Thus, uniformly in x, y, z ∈ C and all n ≥ n0,

E|�n(x)�n(y)�n(z)| ≤ 3mBDm

[
1

h
3/2
n

+ 1√
nh2

n

]
,

which implies that, uniformly in i,∫
Ii,n

IC(x)IC(y)IC(z)E|�n(x)�n(y)�n(z)|dx dy dz

≤ 6mBDm

[
h3/2

n + hn√
n

]
.

This last bound is, for some B0 > 0, uniformly in n, less than or equal to B0h
3/2
n .

Now (6.41) follows from (6.39) and (6.40). �

Our goal now is to set things up to apply Lemma 2.4. Define

Sn =
mn−1∑
i=−mn

αi,n,(6.42)

Un = 1√
n

{
η∑

j=1

I (Xj ∈ [−M,M]) − nPr{X ∈ [−M,M]}
}

(6.43)

and

Vn = 1√
n

{
η∑

j=1

I (Xj /∈ [−M,M]) − nPr{X /∈ [−M,M]}
}
.(6.44)
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Clearly, (Sn,Un) is independent of Vn. To check this assertion, it suffices to use the
independence described at the beginning of Section 2 for the case A1 = [−M,M]
and A2 = R\[−M,M] (recall that we have C ⊂ [−M + ν,M − ν] and hn ≤ ν).
Observe that

Var(Sn) = 1 and Var(Un) = 1 − α,(6.45)

where 1 > α = Pr{X /∈ [−M,M]} > 0.

LEMMA 6.7. Whenever hn → 0, nhn → ∞ and C satisfies Lemma 6.1 with
H = H0, there exists a constant B2 > 0 such that, for all n sufficiently large,

|Cov(Sn,Un)| ≤ B2√
nhn

.(6.46)

PROOF. Notice that

σn(C,µ,K)|Cov(Sn,Un)|

=
∣∣∣∣∣Cov

(
m∑

i=1

µi

√
n

∫
C

∣∣fη,Ki
(x) − Efn,Ki

(x)
∣∣dx,Un

)∣∣∣∣∣.
Therefore it suffices to show that there exists a constant B3 such that, for any
K ∈ K for all n sufficiently large,∣∣∣∣Cov

(√
n

∫
C

|fη,K(x) − Efn,K(x)|dx,Un

)∣∣∣∣ ≤ B3√
nhn

.(6.47)

Now, for any x ∈ C,

(√
n(fη,K(x) − Efn,K(x))√

kn(K,x)
,

Un√
P [−M,M]

)
d=
(

n∑
i=1

(
Y (i)

n (x),U(i)
))

,

where (Y
(i)
n (x),U(i)), i = 1, . . . , n, are i.i.d. (Yn(x),U), with

Yn(x) =
[∑

j≤η1

K

(
x − Xj

hn

)
− EK

(
x − X

hn

)]/√
EK2

(
x − X

hn

)
(6.48)

and

U =
[∑

j≤η1

I (Xj ∈ [−M,M]) − Pr{X ∈ [−M,M]}
]/√

Pr{X ∈ [−M,M]},

η1 denoting a Poisson random variable with mean 1, independent of X1,X2, . . . .
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Notice that EYn(x) = EU = 0, VarYn(x) = VarU = 1 and

∣∣Cov
(
Yn(x),U

)∣∣ =
∣∣∣∣∣ E[K((x − X)/hn)I (X ∈ [−M,M])]√

EK2((x − X)/hn)
√

Pr{X ∈ [−M,M]}

∣∣∣∣∣

≤ E|K((x − X)/hn)|√
EK2((x − X)/hn)

√
Pr{X ∈ [−M,M]}

.

This last bound is, for some D > 0 and all n ≥ 1, uniformly for x ∈ C, less than or
equal to D

√
hn, which, in turn, is less than or equal to ε for all large enough n and

any 0 < ε < 1. This, in combination with (6.9), (6.12) and (6.24), gives, by using
(6.18) and (6.20) in Fact 6.1 and Lemma 2.3, that, for some constant A, uniformly
on x ∈ C, ∣∣Cov

(√
n|fη,K(x) − Efn,K(x)|,Un

)∣∣
=

∣∣∣∣Cov
(√

n|fη,K(x) − Efn,K(x)|√
kn(K,x)

,
Un√

P [−M,M]
)∣∣∣∣

(6.49)
×√

kn(K,x)P [−M,M]

≤ A√
nhn

√
kn(K,x).

Notice that by Lemma 6.1 we get, for some B4 > 0 for all large enough n,

sup
x∈C

√
kn(K,x) ≤ h−1/2

n B4,

which, when combined with (6.49) and m(C) < ∞, completes the proof of (6.47).
This in turn, by (6.39) and (6.40), gives (6.46). �

Hence, by (6.45) and (6.46), as n → ∞,

Var(λ1Sn + λ2Un) → λ2
1 + λ2

2(1 − α).(6.50)

The proof of the next lemma uses a version of the central limit theorem for one-
dependent random variables, which we state here for the reader’s convenience.

FACT 6.2 [Shergin (1979), Corollary 2]. Let {Xi,kn : i = 1, . . . , kn, n ≥ 1}
denote a triangular array of mean-zero one-dependent random variables such that
for all n ≥ 1:

(i) Var(
∑kn

i=1 Xi,kn) → 1 as n → ∞, and

(ii) for some 2 < s ≤ 3,
∑kn

i=1 E|Xi,kn |s → 0 as n → ∞.
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Then

kn∑
i=1

Xi,kn

d→ Z,

where Z is a standard normal random variable.

LEMMA 6.8. Whenever hn → 0,
√

nhn → ∞ and C satisfies Lemma 6.1 with
H = H0, we have

(Sn,Un)
d→ (Z1,

√
1 − αZ2)(6.51)

as n → ∞, where Z1 and Z2 are independent standard normal random variables.

PROOF. We will show that, for any λ1 and λ2, as n → ∞,

λ1Sn + λ2Un
d→ λ1Z1 + λ2

√
1 − αZ2.(6.52)

Set

ui,n := 1√
n

{ η∑
j=1

I
(
Xj ∈ [ih∗

n, (i + 1)h∗
n]
)−nPr

{
X ∈ [ih∗

n, (i + 1)h∗
n]
}}

(6.53)

and

yi,n := λ1αi,n + λ2ui,n.

Now, by Jensen’s inequality,

E|yi,n|3 ≤ 4
[|λ1|3E|αi,n|3 + |λ2|3E|ui,n|3].(6.54)

By Lemma 6.6,

mn−1∑
i=−mn

E|αi,n|3 ≤ 2mnB1h
3/2
n → 0.(6.55)

Set

pi,n = Pr
{
X ∈ [ih∗

n, (i + 1)h∗
n]
}
.

By Lemma 2.3, there is a universal constant A such that

mn−1∑
i=−mn

E|ui,n|3 ≤ An−3/2
mn−1∑
i=−mn

(
(npi,n)

3/2 + npi,n

)
(6.56)

≤ A max−mn≤i≤mn−1

(√
pi,n + n−1/2) → 0.
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Combining (6.54)–(6.56), we obtain

mn−1∑
i=−mn

E|yi,n|3 → 0.

Moreover, note that the sequence yi,n, −mn ≤ i ≤ mn − 1, is one-dependent and,
by (6.50),

Var

(
mn−1∑
i=−mn

yi,n

)
→ λ2

1 + λ2
2(1 − α).

Thus we can apply Fact 6.2 to infer that, as n → ∞,

mn−1∑
i=−mn

yi,n
d→
√

λ2
1 + λ2

2(1 − α)Z.

Since

mn−1∑
i=−mn

yi,n = λ1Sn + λ2Un,

we can prove (6.51) by the Cramér–Wold device [e.g., Billingsley (1968)]. �

Set

Ln(C) =
√

n

σn(C,µ,K)

m∑
s=1

µs

∫
C

{∣∣fn,Ks (x) − Efn,Ks (x)
∣∣

(6.57)
− E

∣∣fn,Ks (x) − Efn,Ks (x)
∣∣}dx.

LEMMA 6.9. Whenever hn → 0,
√

nhn → ∞ and C satisfies Lemma 6.1 with
H = H0, we have

Ln(C)
d→ Z(6.58)

as n → ∞, where Z is a standard normal random variable.

PROOF. Recall the notation in (6.42). Note that

Sn =
√

n

σn(C,µ,K)

m∑
s=1

µs

∫
C

{∣∣fη,Ks (x) − Efn,Ks (x)
∣∣

− E
∣∣fη,Ks (x) − Efn,Ks (x)

∣∣}dx
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and, conditioned on η = n,

Sn
d=

√
n

σn(C,µ,K)

m∑
s=1

µs

∫
C

{∣∣fn,Ks (x) − Efn,Ks (x)
∣∣

− E
∣∣fη,Ks (x) − Efn,Ks (x)

∣∣}dx.

Next, by Lemma 6.8, we can apply Lemma 2.4 to Sn and conclude that√
n

σn(C,µ,K)

m∑
s=1

µs

∫
C

{∣∣fn,Ks (x) − Efn,Ks (x)
∣∣

− E
∣∣fη,Ks (x) − Efn,Ks (x)

∣∣}dx
d→ Z.

Assertion (6.58) now follows from Lemma 6.3. �

COMPLETION OF THE PROOFS OF THEOREMS 1.1 AND 6.1. To finish the
proof, we obtain by a straightforward application of Lemma 6.1 with H = H0 a
sequence of Borel sets {Ck}k≥1, each with finite Lebesgue measure such that, for
each k ≥ 1, both (6.7) and (6.8) hold and

lim
n→∞

∫
Cc

k

f (x) dx = 0.(6.59)

Notice that, for each k ≥ 1, by Lemma 6.9, as n → ∞,

Ln(Ck)
d→ Z,

and, by (6.39),

lim
n→∞σ 2

n (Ck,µ,K) = P (Ck)

m∑
l,s=1

µlµsσ (Kl,Ks).

Further, by Lemma 6.2,

lim sup
n→∞

E

(√
n

m∑
s=1

µs

∫
Cc

k

{∣∣fn,Ks (x) − Efn,Ks (x)
∣∣

− E
∣∣fη,Ks (x) − Efn,Ks (x)

∣∣}dx

)2

≤ 4m max
1≤s≤m

‖Ks‖2∞
∫
Cc

k

f (x) dx.

Now, by (6.59), combined with a standard argument [see Theorem 4.2 of
Billingsley (1968)], we conclude, as n → ∞,

√
n

m∑
s=1

µs

{∥∥fn,Ks − Efn,Ks

∥∥
1 − E

∥∥fn,Ks − Efn,Ks

∥∥
1

}
(6.60)

d→
√√√√ m∑

l,s=1

µlµsσ (Kl,Ks)Z.
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This provides the needed weak convergence by the Cramér–Wold device. Finally,
by Theorem 2.3 of Pinelis (1990), we have, for all r > 2, K ∈ K ,

E
∣∣√n

{‖fn,K − Efn,K‖1 − E‖fn,K − Efn,K‖1
}∣∣r

≤ 21+r/2�(1 + r/2)‖K‖r
2 < ∞,

which permits us to infer the relationship

lim
n→∞ Var

(
m∑

s=1

µsξn(Ks)

)
=

m∑
l,s=1

µlµsσ (Kl,Ks)(6.61)

from (6.60) [see Theorem 6.4 of Billingsley (1968)]. Taking into account that

Cov
(
ξn(Kl), ξn(Ks)

)
= 1

4 Var
(
ξn(Kl) + ξn(Ks)

)− 1
4 Var

(
ξn(Kl) − ξn(Ks)

)
,

we derive (6.1) from (6.61). This completes the proof of Theorem 6.1. Now
Theorem 1.1 follows from Theorems 5.1 and 6.1 by well-known facts on the
weak convergence of processes [e.g., Theorem 5.1.2 in de la Peña and Giné
(1999)]. �

The following example shows that not all classes of bounded kernels satisfy
Theorem 1.1.

EXAMPLE 6.1. Let K = {K� := �I(−1/(2�),1/(2�)) :� ∈ N}. We will prove that
the sequence of processes {ξn(K�) :� ∈ N}∞n=1 does not converge weakly in �∞(N).
Note that the finite-dimensional distributions do converge by Theorem 6.1. Hence,
if these processes converge, then the limiting process is the Gaussian process
ξ(K�), � ∈ N, prescribed by Theorem 1.1, and then, in particular, this process
must be sample continuous with respect to its intrinsic L2-distance. Therefore it is
enough to prove that ξ is not sample continuous. In fact, we show that ξ is not even
sample bounded. For this, by Sudakov’s minorization [e.g., Ledoux and Talagrand
(1991), pages 79–81], it suffices to see that N([0,∞), d2, ε) = ∞ for some ε > 0,
where d2

2 (�, s) = E(ξ(K�) − ξ(Ks))
2. It readily follows from the definition of

σ 2(K) that

σ 2(K�) = 2
∫ 1

0
Cov

(∣∣√1 − (1 − u)2Z1 + (1 − u)Z2
∣∣, |Z2|

)
du < ∞

independently of � ∈ N. As indicated in the Introduction, σ 2(K�) > 0. Moreover,
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for s > �,

σ(K�,Ks) =
(√

s

�
−
√

�

s

)
Cov

(∣∣∣∣
√

1 − �

s
Z1 +

√
�

s
Z2

∣∣∣∣, |Z2|
)

+ 2
∫ (

√
s/�+√

�/s)/2

(
√

s/�−√
�/s)/2

Cov

(∣∣∣∣∣
√√√√1 −

[
1

2

(√
s

�
+
√

�

s

)
− u

]2

Z1

+
[

1

2

(√
s

�
+
√

�

s

)
− u

]
Z2

∣∣∣∣∣, |Z2|
)

du.

So d2
2 (�, s) = 2σ 2(K1) − 2σ(K�,Ks) := f (s/�). If we show that f (u) →

2σ 2(K1) as u → ∞, then there will exist a large enough integer A such that
d2(A

k,Am) ≥ σ(K1) > 0 for all 1 ≤ k < m < ∞, and therefore N([0,∞), d2,

σ (K1)/2) = ∞. And this is indeed the case: it is easy to show that
lims→∞ σ(K1,Ks) = 0 by a straightforward computation based on the fact
that

lim
x→∞ Cov(|xZ1 + Z2|, |Z2|)

= lim
x→∞E

[|Z2|(|xZ1 + Z2| − x|Z1|)]+ lim
x→∞

2

π

(
x −

√
x2 + 1

)

= lim
x→∞E

[
2xZ1Z2|Z2| + |Z2|3
|xZ1 + Z2| + x|Z1|

]

= E
Z1Z2|Z2|

|Z1| = 0,

which is justified by dominated convergence.

PROOF OF THEOREM 1.2. Choose any constant M > 0 and set KM(x) =
K(x)I (|K(x)| ≤ M). Since KM is bounded, ξn(KM) is asymptotically normal
with variance σ 2(KM). Applying Proposition 3.2, we get

E
(
ξn(K) − ξn(KM)

)2 ≤ C∂2
2 (KM,K),

and clearly

∂2
2 (KM,K) → 0 as M → ∞.

Moreover, it can be easily checked that ‖K‖2 < ∞ implies σ 2(K) < ∞. Thus we
readily conclude that

σ 2(KM) → σ 2(K) as M → ∞,

Var(ξn(K)) → σ 2(K) as n → ∞
and

ξn(K)
d→ σ(K)Z as n → ∞. �
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7. Proof of Theorem 1.3. Replacing Efn,K(x) by f (x) in Theorem 1.3 is
much easier than in Theorems 1.1 and 1.2. For any integrable kernel K and n ∈ N,
set

Dn(K) :=
∫

R
|fn,K(x) − Efn,K(x)|dx.

So we will prove Theorem 1.3 and the following proposition together.

PROPOSITION 7.1. Let K be a relatively compact subset of L1(R,B,m). If
hn → 0 and nhn → ∞, then

lim
n→∞E∗ sup

K∈K
Dn(K) = 0.(7.1)

PROOF OF THEOREM 1.3 AND PROPOSITION 7.1. Theorem 1, Chapter 3, in
Devroye and Györfi (1985) shows that

lim
n→∞Jn(K) = 0 in probability,

(7.2)
lim

n→∞Dn(K) = 0 in probability,

for all K ∈ L1 (
∫

K = 1 is not needed for the second limit). Now

Dn(K) = 1

nhn

∫
R

∣∣∣∣∣
n∑

i=1

K

(
x − Xi

hn

)
− nEK

(
x − X

hn

)∣∣∣∣∣dx

≤ 1

nhn

n∑
i=1

∫
R

∣∣∣∣K
(

x − Xi

hn

)∣∣∣∣dx + 1

hn

E

∫
R

∣∣∣∣K
(

x − X

hn

)∣∣∣∣dx

= 2
∫

R
|K(u)|du

and

Jn(K) =
∫

R

∣∣∣∣∣ 1

nhn

n∑
i=1

K

(
x − Xi

hn

)
− f (x)

∣∣∣∣∣dx

≤
∫

R

∣∣∣∣∣ 1

nhn

n∑
i=1

K

(
x − Xi

hn

)∣∣∣∣∣dx + 1

≤
∫

R
|K(u)|du + 1,

by a change of variables. Since supK∈K

∫
R |K(u)|du < ∞ by relative compact-

ness, the random variables in (7.2) are dominated by a constant and, by (7.2), the
bounded convergence theoremthen gives

lim
n→∞EJn(K) = 0 and lim

n→∞EDn(K) = 0.(7.3)
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A computation similar to the ones above gives that, for all K,K̄ ∈ L1,

|Jn(K) − Jn(K̄)| ≤
∫

R
|fn,K(x) − fn,K̄(x)|dx ≤ ∂1(K, K̄)(7.4)

and

|Dn(K) − Dn(K̄)| ≤ 2
∫

R
|K(x) − K̄(x)|dx = 2∂1(K, K̄).(7.5)

Since K is relatively compact in L1, it is totally bounded in L1 [e.g., Folland
(1999), page 15]. Given ε > 0, let Tε be a maximal subset of K satisfying that if
K,K̄ ∈ Tε and K �= K̄ , then ∂1(K, K̄) ≥ ε. Then Card Tε = D(K, ∂1, ε) < ∞ by
total boundedness. We then have, by (7.4) and (7.5),

E∗ sup
K∈K

Jn(K) ≤ E max
K∈Tε

Jn(K) + E∗ sup
K1,K2∈K, ∂1(K1,K2)≤ε

|Jn(K1) − Jn(K2)|

≤ D(K, ∂1, ε) max
K∈Tε

EJn(K) + ε

and

E∗ sup
K∈K

Dn(K) ≤ D(K, ∂1, ε) max
K∈Tε

EDn(K) + 2ε.

Now both Theorem 1.3 and Proposition 7.1 follow from (7.3) and the finiteness of
D(K, ∂1, ε) for all ε > 0, by first letting n tend to ∞ and then ε tend to 0 in these
inequalities. �

Note that, in contrast with Theorems 1.1 and 1.2, the kernels K ∈ K in
Theorem 1.3 and in Proposition 7.1 need not be compactly supported.

REMARK 7.1. A subset K of L1(R,B,m) is relatively compact if and only
if:

(i) supK∈K

∫
R |K(x)|dx < ∞,

(ii) limM→∞ supK∈K

∫
[−M,M]c |K(x)|dx = 0 and

(iii) limy→0 supK∈K

∫
R |K(x + y) − K(x)|dx = 0

[e.g., Dunford and Schwartz (1966), page 298]. In particular, if K satisfies
conditions (i) and (ii) and, moreover, supK∈K supx �=y,|x−y|<δ |K(x) − K(y)|/
|x −y|β ≤ C for some C < ∞, δ > 0 and β ∈ (0,1], then K satisfies Theorem 1.3
and Proposition 7.1.

REMARK 7.2. Suppose(
sup

K∈K
Jn(K)

)∗
→ 0 in probability,(7.6)

where, in addition, we are assuming hn → 0, nhn → ∞ and
∫

R K(x)dx = 1 for
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all K ∈ K . Let {εi} be an i.i.d. sequence of Rademacher variables (Pr{εi = 1} =
Pr{εi = −1} = 1/2), independent of the sequence {Xi}. Then

sup
K∈K

∫
R

|K(x)|dx < ∞,(7.7)

E∗ sup
K∈K

∫
R

∣∣∣∣∣ 1

nhn

n∑
i=1

εiK

(
x − Xi

hn

)∣∣∣∣∣dx → 0(7.8)

and

E∗ sup
K∈K

Jn(K) → 0.(7.9)

To see this, we first note that by a comparison theorem of Montgomery-Smith
(1993) [see, e.g., de la Peña and Giné (1999), Corollary 1.1.6 and Remarks 1.1.7
and 1.1.8, page 7], if (7.6) holds, then
(

sup
K∈K

∫
R

∣∣∣∣∣ 1

nhn

n∑
i=1

εi

(
K

(
x − Xi

hn

)
− hnf (x)

)∣∣∣∣∣dx

)∗
→ 0 in probability.

But the term in f (x) tends to 0 in probability because
∑n

i=1 εi/n → 0, so that we
have (

sup
K∈K

∫
R

∣∣∣∣∣ 1

nhn

n∑
i=1

εiK

(
x − Xi

hn

)∣∣∣∣∣dx

)∗
→ 0 in probability.(7.10)

Then, by Lévy’s inequality,

max
1≤i≤n

(
sup

K∈K

∫
R

∣∣∣∣ 1

nhn

εiK

(
x − Xi

hn

)∣∣∣∣dx

)∗
→ 0 in probability,(7.11)

but, by change of variables, this implies (7.7). Now (7.8) and (7.9) follow from this
last observation and (7.10) and (7.6) respectively, both by Hoffmann-Jørgensen’s
inequality [e.g., de la Peña and Giné (1999), Theorem 1.2.3 and Remarks 1.2.4
and 1.2.9]. A similar remark applies to the processes Dn.

EXAMPLE 7.1. Let

K = {
K� := �I(−1/(2�),1/(2�)) :� ∈ N

}
be the class of kernels from Example 6.1 [and from (1.5)]. We will show that none
of the sequences {

sup
K∈K

Jn(K)

}∞

n=1
and

{
sup
K∈K

Dn(K)

}∞

n=1
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converges in probability. By the previous remark, it suffices to show that the
sequence

E sup
K∈K

1

nhn

∫
R

∣∣∣∣∣
n∑

i=1

εiK

(
x − Xi

hn

)∣∣∣∣∣dx, n ∈ N,

does not tend to 0. Given X1(ω), . . . ,Xn(ω), we choose � so that the intervals
Ii := (Xi(ω) − hn/(2�),Xi(ω) + hn/(2�)), i = 1, . . . , n, are disjoint which we
can do, for any given n, for almost every ω. Then

∫
R

∣∣∣∣∣
n∑

i=1

εiK�

(
x − Xi(ω)

hn

)∣∣∣∣∣dx

≥
∫
⋃n

j=1 Ij

∣∣∣∣∣
n∑

i=1

εiK�

(
x − Xi(ω)

hn

)∣∣∣∣∣dx

=
n∑

j=1

∫
Ij

∣∣∣∣∣
n∑

i=1

εiK�

(
x − Xi(ω)

hn

)∣∣∣∣∣dx

=
n∑

j=1

∫
Ij

K�

(
x − Xj(ω)

hn

)
dx = nhn.

Therefore, for all n ≥ 1,

sup
K∈K

1

nhn

∫
R

∣∣∣∣∣
n∑

i=1

εiK

(
x − Xi

hn

)∣∣∣∣∣dx ≥ 1 a.s.,

which contradicts (7.8).
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