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EXACT RATES OF CONVERGENCE FOR A BRANCHING
PARTICLE APPROXIMATION TO THE SOLUTION

OF THE ZAKAI EQUATION

BY DAN CRISAN

Imperial College

In Crisan, Gaines and Lyons [SIAM J. Appl. Probab. 58 (1998) 313–342]
we describe a branching particle algorithm that produces a particle approx-
imation to the solution of the Zakai equation and find an upper bound for
the rate of convergence of the mean square error. In this paper, the exact rate
of convergence of the mean square error is deduced. Also, several variations
of the branching algorithm with better rates of convergence are introduced.

1. Introduction. Let (�,F ,Ft , P ) be a filtered probability space on which
we define a pair of stochastic processes satisfying the following (d + m)-
dimensional system of stochastic differential equations

dXt = f (Xt) dt + σ(Xt) dVt ,(1)

dYt = h(Xt) dt + dWt,(2)

where V = {Vt,Ft; t ≥ 0} and W = {Wt,Ft ; t ≥ 0} are mutually independent
n-dimensional, respectively, m-dimensional standard Brownian motions. Let
πt be the conditional distribution of the X at time t given the σ -field Yt �
σ(Ys,0 ≤ s ≤ t). Then πt is defined so that

πt(ϕ) �
∫

Rd
ϕ(x)πt (dx) = E[ϕ(Xt)|Yt ], P -a.s.

for any bounded measurable function ϕ. One can prove that πt has an un-
normalized version that satisfies the linear stochastic partial differential equation
(cf. [20]; see also [12] and [17])

pt(ϕ) = π0(ϕ) +
∫ t

0
ps(Aϕ)ds +

∫ t

0
ps(h

∗ϕ)dYs.(3)

In (3), h∗ is the row vector (h1, . . . , hm), A is the infinitesimal generator associated
to X and ϕ is an arbitrary continuous bounded function belonging to D(A), the
domain of A.

In [4], we describe a system of moving and branching particles whose empirical
distribution at time t , denoted by UN(t), converges almost surely to pt . Further,
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we find the following upper bound for the rate of convergence of UN(t):

Ẽ
[((

UN(t), ϕ
) − pt(ϕ)

)2] ≤ c(t)√
N

,

where c(t) is a constant independent of N and Ẽ is the expectation with respect to a
probability measure P̃ absolutely continuous with respect to P [as defined in (6)].
Intuitively, the component particles explore the state space following the law of
the signal. Successive branching steps are added to gradually incorporate the new
information (the observation Y ) into the system. The branching procedure also
reduces the variance of the system by removing particles with unlikely positions
given the accumulated information and multiplying those that stay on the right
track, thus speeding up the convergence to pt . However, in [4], we leave a number
of questions unanswered.

First, based on numerical experiments, the branching particle approximation is
superior to the Monte Carlo approximation, that is, to the approximation given by

�N(t) � 1

N

N∑
i=1

µi(Vi(t))δVi (t),

where V1(t), . . . , VN(t) are independent realizations of the signal process Xt and
the weights µi(Vi(t)) are defined as

µi(Vi(t)) = exp
(∫ t

0
h∗(Vi(s)) dYs − 1

2

∫ t

0
‖h(Vi(s))‖2 ds

)
.

Here, the accumulated information (the observation Y ) is incorporated into the
system only at the end of the procedure by attaching weights to the particles,
weights that depends on Y . The motion of the particle is not influenced by the
observation Y . It is universally accepted among practitioners (cf. e.g., [7]) that the
(raw) Monte Carlo method is vastly improved when linked up with some sort of
variance reduction procedure. The general term used for such a reduced-variance
Monte Carlo method is that of a sequential Monte Carlo method or a particle
filter. The algorithm based on the above construction is a member of this class
of methods. It is easy to check that (see Section 5)

Ẽ
[((

�N(t), ϕ
) − pt(ϕ)

)2] = c�(t)

N
,(4)

where c�(t) is a constant independent of N . Furthermore, in [14] and [15], the
authors prove that an upper bound of the same order holds true in a very general
setup. So, apparently, it seems that the Monte Carlo approximation offers, at least
theoretically, better rates of convergence, a fact that contradicts the numerical
results.

Second, in contrast to the continuous case, if the branching algorithm is set up in
a discrete-time framework, then both methods (Monte Carlo method and branching
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method) have the same order of convergence (see [3]). Is there something that
changes in the continuous-time setup and makes the branching method converge
slower?

Third, the convergence proof in [4] does not say anything about the way in
which the corrective branching procedure actually improves on the Monte Carlo
method. In other words, the intuition does not get translated into the mathematics
of the proofs at all. Moreover, the whole philosophy behind the proof in [4] is
fallacious, as it represents the branching algorithm as a perturbation of the Monte
Carlo approximation.

In this paper, we give a (partial) answer to the above questions. In the following,
we determine the exact rates of convergence for the branching algorithm. That is,
we prove that, if the length of the interbranching times is (of order) 1/N2α, where
1
3 < α < 1, then

lim
N→∞N1−αẼ

[((
UN(t), ϕ

) − pt(ϕ)
)2] = c(t).(5)

Moreover, if t is chosen to be a branching time for all N , then (5) holds true for
0 < α < 1. Hence, the branching method will have a slower rate of convergence
as long as the interbranching times are taken to converge to 0.

However, if the interbranching times are fixed (independent of the number
of particles), then the exact rate of convergence of the branching algorithm is
indeed of order 1/N , just as the rate of the Monte Carlo approximation, and
it is a safe conjecture that c�(t) increases exponentially faster than c(t). In all
numerical experiments, the interbranching times are fixed, the reason being that the
observation Y does not arrive in a continuous manner, but at discrete intervals and
branchings occur only at these arrival times. By contrast, the number of particles
can be increased as much as we want or, more likely, as much as the computer
hardware constraints permit us to do so.

Finally, the analysis in Section 4 is fundamentally more refined than its
equivalent in [4]. It hinges on the unexpected representation formula (23) of the
variance of the branching mechanism in terms of the local time(s) of an exponential
martingale.

The paper is structured as follows. In Section 2, the proper theoretical
framework for the filtering problem is set up. Then, in Section 3, we review the
construction of the branching particle system presented in [4] and state some
preliminary results that are proved in [4]. In Section 4, we prove the main result
of the paper, that is, the asymptotic rate of convergence of UN , and in Section 5,
we present several variations of the branching algorithm with improved rates of
convergence.

2. Filtering framework. In the following, we will assume that f : Rd → Rd

and σ : Rd → L(Rn,Rd) � Rnd are globally Lipschitz and that X0 is a square-
integrable, F0-measurable random variable, independent of V and W. Under these
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conditions, (1) has a unique solution. We will also assume that h = (hi)
m
i=1 :

Rd → Rm is continuous and bounded and Y0 = 0. The process X is usually called
the signal process and the process Y is called the observation process.

The filtering problem consists of computing πt , the conditional distribution
of the signal at time t given the observation accumulated in the interval [0, t].
As already stated, πt is the conditional distribution of the Xt given the σ -field
Yt = σ(Ys,0 ≤ s ≤ t). Let also Y be the total observation σ -field, Y � σ(Ys,0 ≤
s < ∞). We note that π0 coincides with the initial distribution of X0 (as Y0 ≡ 0), so
we will use the same notation for both. One can prove that the (random) probability
measure πt satisfies the Kushner–Stratonovitch equation (cf. [9] and [16]; see also
[1] and [18])

πt(ϕ) = π0(ϕ) +
∫ t

0
πs(Aϕ)ds

+
∫ t

0

(
πs(ϕh∗) − πs(ϕ)πs(h

∗)
)(

dYs − πs(h) ds
)
,

where h∗ is the row vector (h1 . . . hm), A :Cb(R
d) → Cb(R

d) [Cb(R
d) is the set

of real-valued continuous bounded functions defined on Rd ] is the infinitesimal
generator associated to X,

A �
d∑

i=1

fi

∂

∂xi

+ 1

2

d∑
i,j=1

d∑
k=1

σikσkj

∂2

∂xi ∂xj

,

and ϕ is an arbitrary continuous bounded function belonging to D(A). As stated
in the Introduction, πt has an unnormalized version pt , which satisfies (3), called
the Zakai equation. The standard way to arrive at pt is as follows. First, we define
a new probability measure P̃ absolutely continuous with respect to P :

P̃ (A) = E[1AZt ] for all A ∈ Ft , t ≥ 0,(6)

where E[·] is the expectation with respect to P and Z = {Zt,Ft ; t ≥ 0} is the
exponential martingale

Zt = exp
(
−

∫ t

0
h∗(Xs) dWs − 1

2

∫ t

0
‖h(Xs)‖2

2 ds

)
.(7)

In (7) and later, h∗(Xs) is the row vector (h1(Xs) . . . hm(Xs)) and, if ξ =
(ξi)

m
i=1 ∈ Rm, then we denote by ‖ξ‖2

2 the sum
∑m

i=1 ξ2
i . Hence, in (7), ‖h(Xs)‖2

2 =∑m
i=1 hi(Xs)

2. Since h is a continuous bounded function, we have

‖h‖ � max
i=1,m

sup
x∈Rm

|hi(x)| < ∞.(8)

Hence, ‖h(Xs)‖2
2 ≤ m‖h‖2. Under the new measure P̃ , Y becomes a Brownian
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motion independent of X (Girsanov’s theorem). One defines, for all bounded
measurable functions ϕ,

pt(ϕ) � Ẽ

[
ϕ(Xt) exp

(∫ t

0
h∗(Xs) dYs − 1

2

∫ t

0
‖h(Xs)‖2 ds

)∣∣∣Yt

]
,(9)

where Ẽ is the expectation with respect to P̃ . Then pt as defined in (9) can
be viewed as a (random) measure that satisfies the Kallianpur–Striebel formula
(cf. [10]):

πt (ϕ) = pt(ϕ)

pt (1)
, P -a.s.,(10)

and hence it is an un-normalized version of πt . Further, (3) uniquely identifies pt

as a measure-valued process. More precisely, under the conditions set up above, if
Ut is a Yt -adapted, cadlag, measure-valued process satisfying, for all t ≤ T and
for a suitably large class of test functions ϕ, the integral equation

Ut(ϕ) = π0(ϕ) +
∫ t

0
Us(Aϕ)ds +

∫ t

0
Us(h

∗ϕ)dYs,

then Ut = pt for t ≤ T almost surely (cf. [13] and [19]).

3. Branching particle system. Let {UN(t); t ≥ 0} be a sequence of measure-
valued processes representing empirical distributions of systems of branching
particles. For each N, UN(0) is the empirical measure of N (random) particles
of equal mass 1/N . More precisely,

UN(0) = 1

N

N∑
i=1

δxN
i
,

where xN
i are independent and identically distributed random variables with

common distribution π0 for every i,N ∈ N. In general, UN(t) is the occupation
measure of mN(t) particles of mass 1/N . Note that the number of particles can
vary, but their mass stays constant. We partition the time interval [0,∞) into
subintervals of equal length δt and describe the evolution of the particles on the
interval [i δt, (i + 1) δt], i = 0,1, . . . .

(a) During the interval, the particles move independently with the same law as
the signal X. More precisely, if V (s), s ∈ [i δt, (i + 1) δt), is the trajectory of a
generic particle in the interval, then V satisfies

dV (t) = f (V (t)) dt + σ(V (t)) dBt ,

where B is a Brownian motion independent of Y and independent of all other
random variables in the system.

(b) At the end of the interval, each particle branches into a random number of
particles with a branching mechanism depending on its trajectory in the interval
and the observation Ys , s ∈ [i δt, (i + 1) δt]. The branching is chosen so that the
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mean number of offspring of the particle with trajectory V (s), s ∈ [i δt, (i +1) δt),

given the σ -field F(i+1) δt− = σ(Fs , s < (i+1) δt) of events up to time (i+1) δt , is

µi
N(V )


= exp
(∫ (i+1) δt

i δt
h∗(V (t)) dYt − 1

2

∫ (i+1) δt

i δt
h∗h(V (t)) dt

)
.(11)

The variance, denoted by νi
N (V ), of the number of offspring is minimal, consistent

with the number of offspring being an integer. The particles branch independently
of each other, given F(i+1) δt−, and each offspring inherits the space position of its
parent.

The branching variance νi
N (V ) satisfies

νi
N (V ) = {µi

N(V )}(1 − {µi
N(V )})

and so is always less than 1
4 ({x} is the fractional part of x, {x} � x − [x], where

[x] is the largest integer smaller that x).
We now state a number of preliminary results. They were stated and proved

in [4] for the particular interbranching time δt ≡ 1/N . As the proofs for arbitrary
interbranching times are identical, we will omit them here.

We aim to keep the same notation as in [4], that is:

• mN(t) is the number of particles alive at time t . Just before the (i + 1)st
branching, we will have mN(i δt) particles as there is no change in the number
of particles in the interval [i δt, (i + 1) δt).

• UN((i + 1) δt−) is the state of the process just before the (i + 1)st branching.
• V

j
N(s), s ∈ [i δt, (i + 1) δt), is the trajectory of the j th particle alive during the

interval.
• q

j
N((i + 1) δt) is the number of offspring of the j th particle with 1 ≤ j ≤

mN(i δt) at time (i + 1) δt .
• λ

i,j
N (r) is the exponential martingale

exp
(∫ r

i δt
h∗(

V
j
N(t)

)
dYt − 1

2

∫ r

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

)
, r ∈ [i δt, (i + 1) δt].(12)

Of course, µi
N(V

j
N) = λ

i,j
N ((i + 1) δt).

PROPOSITION 1. The mass process mN(t) is an F[t/δt] δt -adapted square-
integrable martingale which satisfies the following (we will always work under
the new probability measure P̃ and all the expectations will be considered with
respect to P̃ ):

(i) Ẽ[mN(t)] = N ;
(ii) Ẽ[m2

N(t)] ≤ N2e‖h‖2[t/δt] δt + 1
4

∑
k≤[t/δt] ek‖h‖2 δt , ∀n ≥ 0.

COROLLARY 2. For any bounded measurable function ϕ, the process
(UN(t), ϕ) is square integrable.
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PROPOSITION 3. If ϕ ∈ D(A), then the process (UN(t), ϕ) satisfies the
following evolution equation:(

UN(t), ϕ
) = (

UN(0), ϕ
) +

∫ t

0

(
UN(s),Aϕ

)
ds + S

ϕ
N(t) + M

ϕ
N

([
t

δt

])

+
[t/δt]∑
i=1

1

N

mN(i δt)∑
j=1

ϕ
(
V

j
N(i δt)

)(
µi

N(V
j
N) − 1

)
,

(13)

where {(Sϕ
N(t), Ft ), t ∈ [0,1]} is a local martingale with quadratic variation

process

〈Sϕ
N〉(t) = 1

N

∫ t

0

(
UN(s),‖σ ∗Dϕ‖2

2
)
ds,(14)

‖σ ∗Dϕ‖2
2 �

m∑
i=1

(
m∑

j=1

σij

∂ϕ

∂xi

)2

=
m∑

j,k=1

(
m∑

i=1

σijσik

)
∂ϕ

∂xi

∂ϕ

∂xk

and {(Mϕ
N(l), F(l+1)δt−), l = 0,1, . . . , n} is a discrete martingale with angle-

brackets process

〈Mϕ
N 〉(l) = 1

N

l∑
i=1

(
UN

(
(i + 1)δt−)

, νi
Nϕ2).(15)

By applying Itô’s rule, we get from (13) that(
UN(t), ϕ

) = (
UN(0), ϕ

) +
∫ t

0

(
UN(s),Aϕ

)
ds + S

ϕ
N(t) + M

ϕ
N

([
t

δt

])

+ 1

N

∫ [t/δt] δt
0

mN([s/δt] δt)∑
j=1

ϕ

(
V

j
N

(([
s

δt

]
+ 1

)
δt

))
×λ

[s/δt],j
N (s)h∗(

V
j
N(s)

)
dYs.

(16)

LEMMA 4. For all i = 1,2, . . . , we have

Ẽ

[
mN(i δt)∑

j=1

νi
N(V

j
N)

]
≤ cN

√
δt,(17)

where c is a constant independent of N and δt .

Now let ϕ ∈ Cb(R
d) be a continuous bounded function with bounded first- and

second-order partial derivatives and let {ψs}0≤s≤t be the solution of the following
backward stochastic partial differential equation:

dψs = −Aψs ds − h∗ψs d̄Ys, s ≤ t,

ψt = ϕ,
(18)
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the integral form of (18) being

ψr = ψs −
∫ r

s
Aψp dp −

∫ r

s
h∗ψp d̄Yp, 0 ≤ s ≤ r ≤ t,(19)

where
∫ r
s h∗ψp d̄Yp is a backward Itô integral. Obviously, {ψs}0≤s≤t has the

representation ψs = ψ̄t−s , where {ψ̄s}0≤s≤t is the solution of the (forward)
stochastic partial differential equation

dψ̄s = Aψ̄s ds + h∗ψ̄s dȲs, s ≤ t,

ψ̄0 = ϕ,

where Ȳs � Yt −Yt−s . Equation (18) has been extensively studied; see [1] and [18]
for results of the existence and uniqueness of a solution of (18) in appropriate
spaces of solutions. In the following, we will assume that f, σ and h satisfy
sufficient conditions so that ψs ∈ D(A) for all s ∈ [0, t] and

Ẽ

[
sup

s∈[0,t]
‖ψs‖2∞

]
+ Ẽ

[
sup

s∈[0,t]
‖σ ∗Dψs‖2

2

]
< ∞(20)

for test functions ϕ ∈ M∪{1}, where M = {ϕk, k ≥ 1} is a countable set uniformly
dense in the set of all continuous bounded functions over Rd with compact support.
In essence, we want M ∪ {1} to be convergence determining for the set of finite
measures over Rd (see [8]). One can find sufficient conditions on f , σ and h under
which (20) holds in [2].

THEOREM 5. If ϕ is a test function for which (20) holds true, then

lim
N→∞,δt→0
N

√
δt→∞

Ẽ
[((

UN(t), ϕ
) − pt(ϕ)

)2] = 0.(21)

REMARK 1. In (21), it is important that, for each N , the length δt = δtN of
the corresponding interbranching times is chosen so that limN→∞N

√
δt = ∞. If,

say, limN→∞ N
√

δt exists and it is finite, then UN converges (in distribution) to a
different measure-valued process.

4. Exact rate of convergence of particle approximation. The essential
ingredient in the proof of Theorem 5 is the upper bound (17) on the sum of
νi
N (V

j
N), j = 1,2, . . . , the variance of the individual branching mechanisms. The

size of νi
N(V

j
N) is important as it measures the amount of extra randomness

introduced in the system at branching times. To obtain the exact rate of
convergence of UN, we need a better estimate on νi

N(V
j
N). For the following result,

we need to introduce the σ -fields: Y(i+1) δt � σ(Ys − Y(i+1) δt | s ≥ (i + 1) δt) and
Bj,N � σ(Bj,N(s), s ∈ [i δt, (i +1) δt]), where Bj,N is the Brownian motion that
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generates V
j
N of the j th particle; in other words, V

j
N satisfies

dV
j
N(t) = f

(
V

j
N(t)

)
dt + σ

(
V

j
N(t)

)
dB

j,N
t , t ∈ [i δt, (i + 1) δt].

Also, let H i,j,N be the σ -field H i,j,N � Fi δt ∨ Y(i+1) δt ∨ Bj,N . Then the
following proposition holds true.

PROPOSITION 6. For all i = 0,1, . . . , we have∣∣∣∣∣Ẽ[
νi
N(V

j
N)|H i,j,N ] −

√
2

π

√∫ (i+1) δt

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

∣∣∣∣∣ ≤ c δt,(22)

where c is a constant independent of N and δt .

PROOF. First, let us note that νi
N(V

j
N) = �(µi

N(V
j
N)), where

�(x) � {x}(1 − {x}) = x(1 − x) + 2
∑
k≥1

(x − k)+.

Hence, the function � is a linear combination of convex functions. By applying
the generalized Itô formula to the exponential martingale λ

i,j
N [as defined in (12)]

and the function �, we obtain the following representation for νi
N(V

j
N):

νi
N (V

j
N) =

∫ (i+1) δt

i δt
D−

�
(
λ

i,j
N (t)

)
λ

i,j
N (t)h∗(

V
j
N(t)

)
dYt

−
∫ (i+1) δt

i δt
λ

i,j
N (t)2∥∥h(

V
j
N(t)

)∥∥2
2 dt + 2

∑
k≥1

L(i+1) δt (k).

(23)

In (23), Lr(k) is the local time at k associated to the martingale r → λ
i,j
N (r) and

D−� is the left derivative of �:

D−
�(x) =

(
1 −2x +2

∑
k≥1

1(k,∞)(x)

)
=

{−1, if x ∈ N,

(1 − 2{x}), if x /∈ N,
x > 0.

Hence, |D−�(x)| ≤ 1 for all x > 0. We estimate now each of the three terms on
the right-hand side of (23).

Using the independent increments property of the Brownian motion Y and the
independence of Bj,N , it is easy to check that the process

r →
∫ r

i δt
D−

�
(
λ

i,j
N (t)

)
λ

i,j
N (t)h∗(

V
j
N(t)

)
dYt

is a genuine martingale with respect to the enlarged filtration r → Fr ∨ Y(i+1) δt ∨
Bj,N , r ≥ i δt . Hence, its conditional expectation with respect to H i,j,N is 0.
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For the second term in (23), we first observe that

λ
i,j
N (r)2 = exp

(∫ r

i δt
2h∗(

V
j
N(t)

)
dYt −

∫ r

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

)

= exp
(∫ r

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

)
exp

(∫ r

i δt
2h∗(V j

N(t)
)
dYt

− 1
2

∫ r

i δt

∥∥2h
(
V

j
N(t)

)∥∥2
2 dt

)(24)

and, since

r → exp
(∫ r

i δt
2h∗(V j

N(t)
)
dYt − 1

2

∫ r

i δt

∥∥2h
(
V

j
N(t)

)∥∥2
2 dt

)
is also an exponential martingale with respect to the enlarged filtration r →
Fr ∨ Y(i+1)δt ∨ Bj,N , we have

Ẽ
[
λ

i,j
N (t)2|H i,j,N

] = exp
(∫ r

i δt

∥∥h(
V (t)

)∥∥2
2 dt

)
≤ exp

(
(r − i δt)m‖h‖2)

.

Thus (using the fact that eθ − 1 ≤ eθ θ for θ ≥ 0),

Ẽ

[∫ (i+1) δt

i δt
λ

i,j
N (t)2∥∥h(

V
j
N(t)

)∥∥2
2 dt

∣∣∣H i,j,N

]
≤ (

eδtm‖h‖2 − 1
)

≤ m‖h‖2eδtm‖h‖2
δt(25)

≤ m‖h‖2em‖h‖2
δt.

Finally, let us analyze the third term. First, observe that for all x > 0 we have

2
∑
k≥2

(x − k)+ ≤ 2
∑
k≥2

∫ k

k−1
(x − u)+ du = 2

∫ ∞
1

(x − u)+ du = (x − 1)2.

Hence,

2
∑
k≥2

(
λ

i,j
N

(
(i + 1) δt

) − k
)
+ ≤ (

λ
i,j
N

(
(i + 1) δt

) − 1
)2

and since

2
∑
k≥2

(
λ

i,j
N

(
(i + 1) δt

) − k
)
+ = 2

∫ (i+1) δt

i δt

∑
k≥2

1(k,∞)

(
λ

i,j
N (t)

)
h∗(

V
j
N(t)

)
dYt

+2
∑
k≥2

L(i+1) δt (k),

(
λ

i,j
N

(
(i + 1) δt

) − 1
)2 = 2

∫ (i+1) δt

i δt

(
λ

i,j
N

(
(i + 1) δt

) − 1
)
h∗(

V
j
N(t)

)
dYt

+
∫ (i+1) δt

i δt
λ

i,j
N (t)2∥∥h(

V
j
N(t)

)∥∥2
2 dt,
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it follows, by taking conditional expectation, that

Ẽ

[
2

∑
k≥2

L(i+1) δt (k)
∣∣∣H i,j,N

]
≤ Ẽ

[∫ (i+1) δt

i δt
λ

i,j
N (t)2∥∥h(

V
j
N(t)

)∥∥2
2 dt

∣∣∣H i,j,N

]
and, consequently, we obtain the following upper bound [using (25)]:

Ẽ

[
2

∑
k≥2

L(i+1) δt (k)
∣∣∣H i,j,N

]
≤ m‖h‖2em‖h‖2 δt δt.(26)

The only term left to estimate is 2L(i+1) δt (1). Using again the generalized Itô
formula, we obtain∣∣∣∣∫ (i+1) δt

i δt
λ

i,j
N (t)h∗(

V
j
N(t)

)
dYt

∣∣∣∣
= ∣∣λi,j

N

(
(i + 1)δt

) − 1
∣∣

= 2L(i+1) δt (1) +
∫ (i+1) δt

i δt
sgn

(
λ

i,j
N (t) − 1

)
λ

i,j
N (t)h∗(

V
j
N(t)

)
dYt .

Thus,

Ẽ
[
2L(i+1) δt (1)|H i,j,N ] = Ẽ

[∣∣∣∣∫ (i+1) δt

i δt
λ

i,j
N (t)h∗(

V
j
N(t)

)
dYt

∣∣∣∣∣∣∣H i,j,N

]
.(27)

It is straightforward to show that∣∣∣∣Ẽ[∣∣∣∣∫ (i+1) δt

i δt

(
λ

i,j
N (t) − 1

)
h∗(

V
j
N(t)

)
dYt

∣∣∣∣∣∣∣H i,j,N

]∣∣∣∣ ≤ m‖h‖2em‖h‖2 δt δt.(28)

From (27) and (28), we obtain∣∣∣∣Ẽ[
2L(i+1) δt (1)−

∣∣∣∣ ∫ (i+1) δt

i δt
h∗(

V
j
N(t)

)
dYt

∣∣∣∣∣∣∣H i,j,N

]∣∣∣∣ ≤ m‖h‖2em‖h‖2 δt δt.(29)

Finally, since the process r → (Yr − Yiδt ) is independent of H i,j,N , then, given
H i,j,N , the random variable

∫ (i+1) δt
i δt h∗(V j

N(t)) dYt has a Gaussian distribution

with mean 0 and variance
∫ (i+1) δt
i δt ‖h(V

j
N(t))‖2

2 dt :∫ (i+1) δt

i δt
h∗(

V
j
N(t)

)
dYt ∼ N

(
0,

∫ (i+1) δt

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

)
.

Hence,

Ẽ

[∣∣∣∣∫ (i+1) δt

i δt
h∗(

V
j
N(t)

)
dYt

∣∣∣∣∣∣∣H i,j,N

]
=

√
2

π

√∫ (i+1) δt

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt,

which completes the proof of the proposition. �
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LEMMA 7. Let {Vr, r ∈ [s, t]} be a realization of the signal process, that is,

dVr = f (Vr) dr + σ(Vr) dBr,

where B is a Brownian motion independent of Y, and let ξr be the exponential
martingale

ξr = exp
(∫ r

s
h∗(Vp) dYp − 1

2

∫ r

s
‖h(Vp)‖2

2 dp

)
.

Then we have the following formulas:

ψr(Vr) = ψs(Vs) −
∫ r

s
ψp(Vp)h∗(Vp) d̄Yp +

∫ r

s

(
Dψp(Vp)

)∗
σ(Vp) dBp,(30)

ψr(Vr)ξr = ψs(Vs) +
∫ r

s
ξp

(
Dψp(Vp)

)�
σ (Vp) dBp,(31)

ψr(Vr)
2 = ψs(Vs)

2 − 2
∫ r

s
ψp(Vp)2h∗(Vp) d̄Yp

+2
∫ r

s
ψp(Vp)

(
Dψp(Vp)

)∗
σ(Vp) dBp(32)

−
∫ r

s
ψp(Vp)2‖h(Vp)‖2

2 ds +
∫ r

s
‖σ ∗Dψp(Vp)‖2

2 dp.

PROOF. We will only prove (30), as (31) and (32) have similar proofs. For this,
we follow an argument similar to that contained in the proofs of Theorems 4.1.2
and 4.2.1 in [1]. Let us state first a density result whose proof is identical to that of
Lemma 4.1.4, in [1]. Let b(r) and c(r), r ∈ [s, t], be bounded, Borel measurable,
deterministic functions with values in Rd , respectively, Rm. Le θb and θc be the
following processes:

θb(r) � exp
(
i

∫ r

s
b∗(p) dYp + 1

2

∫ r

s
‖b(p)‖2 dp

)
,(33)

θc(r) � exp
(
i

∫ r

s
c∗(p) dBp + 1

2

∫ r

s
‖c(p)‖2 dp

)
.(34)

Then we have the following result.

PROPOSITION 8. Let W be an integrable random variable, measurable with
respect to the σ -field Fs ∨ Yt

s ∨ B t
s, where Yt

s � σ(Yr − Ys | r ∈ [s, t]) and
B t

s � σ(Br − Bs | r ∈ [s, t]) such that

Ẽ[Wζθb(t)θc(t)] = 0

for any choice of b and c in (33), respectively, (34) and any bounded
Fs-measurable random variable ζ. Then necessarily W = 0, P̃ almost surely.
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As a corollary to the above result, if we show that

Ẽ
[(

ψr(Vr) − ψs(Vs)
)
ζθb(t)θc(t)

]
= Ẽ

[(
−

∫ r

s
ψp(Vp)h∗(Vp) d̄Yp

+
∫ r

s

(
Dψp(Vp)

)∗
σ(Vp) dBp

)
ζθb(t)θc(t)

]
,

(35)

then we have proved (30). First, observe that

Ẽ
[
ψr(Vr)ζ θb(t)θc(t)|Fs ∨ Yr

s ∨ Br
s

] = �r(Vr)ζ θb(r)θc(r),

where

�r � Ẽ

[
ψr

θb(t)

θb(r)

∣∣∣Fs ∨ Yr
s ∨ Br

s

]
= Ẽ

[
ψr θ̃b(r)|Fs ∨ Yr

s ∨ Br
s

]
and

θ̃b(r) � exp
(
i

∫ t

r
b∗(p) dYp + 1

2

∫ t

r
‖b(p)‖2 dp

)
.

Hence,

θ̃b(r) = 1 −
∫ t

r
ib∗(p)θ̃b(p) d̄Yp.(36)

Now since both ψr and θ̃b(r) are measurable with respect to the σ -field Yt
r , which

is independent of Fs ∨ Yr
s ∨ Br

s , we get that �r = E[ψr θ̃b(r)|Fs ∨ Yr
s ∨ Br

s ] =
E[ψr θ̃b(r)]. Also,

Ẽ[ψr(Vr)ζ θb(t)θc(t)|Fs ∨ Br
s ] = E[�r(Vr)ζ θb(r)θc(r)|Fs ∨ Br

s ]
= �r(Vr)ζ θc(r).

By Itô’s rule, from (18) and (36) and the fact that Y is a Brownian motion, we get
that

dψr θ̃b(r) = (−Aψr θ̃b(r) − ih∗b(r)ψr θ̃b(r)
)
dr − (

h∗ + ib∗(r)
)
ψr θ̃b(r) d̄Yr .

Thus, we have consecutively

d�r = (−A�r − ih∗b(r)�r

)
dr,

d�r(Vr) = −ih∗(Vr)b(r)�r(Vr) dr + (
D�r(Vr)

)∗
σ(Vr) dBr,

d�r(Vr)θc(r) = −ih∗(Vr)b(r)�r(Vr)θc(r) dr + (
D�r(Vr)

)∗
σ(Vr)θc(r) dBr

+ i�r(Vr)θc(r)c
∗(r) dBr + ic(r)

(
D�r(Vr)

)∗
σ(Vr)θb(r) dr,
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which implies

Ẽ
[(

ψr(Vr) − ψs(Vs)
)
ζθb(t)θc(t)

]
= Ẽ

[
ζ
(
�r(Vr)θc(r) − �s(Vs)θc(s)

)]
= − i

∫ r

s
Ẽ

[
ζθc(p)h∗(Vp)b(r)�r(Vr)

]
dp

+ i

∫ r

s
Ẽ

[
ζθc(p)c(r)

(
D�r(Vr)

)∗
σ(Vr)

]
dp.

(37)

Next, we have, as before, that

Ẽ

[(∫ t

r
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

∣∣∣Fs ∨ Yt
r ∨ B t

s

]

=
(∫ t

r
ψp(Vp)h∗(Vp) d̄Yp

)
θ̃b(r)ζ θc(t).

Further, since(∫ t

r
ψp(Vp)h∗(Vp) d̄Yp

)
θ̃b(r) =

∫ t

r
ψp(Vp)θ̃b(p)

(
h∗(Vp) − ib∗(p)

)
d̄Yp

+ i

(∫ t

s
h∗(Vr)b(r)ψp(Vp)θ̃b(p) dp

)
,

it follows that

Ẽ

[(∫ t

r
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

∣∣∣Fs ∨ B t
s

]

= i

(∫ t

r
h∗(Vp)b(p)�r(Vp) dp

)
ζθc(t)

(38)

and, similarly, that

Ẽ

[(∫ t

s
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

∣∣∣Fs ∨ B t
s

]

= i

(∫ t

s
h∗(Vr)b(r)�r(Vr) dp

)
ζθc(t).

(39)

From (38) and (39), we deduce that

Ẽ

[(∫ r

s
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

]

= Ẽ

[(∫ t

s
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

]

− Ẽ

[(∫ t

r
ψp(Vp)h∗(Vp) d̄Yp

)
ζθb(t)θc(t)

]
(40)
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= Ẽ

[
i

(∫ r

s
h∗(Vr)b(r)�r(Vr) dp

)
ζθc(t)

]
= i

∫ r

s
Ẽ[ζθc(p)h∗(Vp)b(r)�r(Vr)]dp.

Finally, one proves in a similar fashion that

Ẽ

[(∫ r

s

(
Dψp(Vp)

)∗
σ(Vp) dBp

)
ζθb(t)θc(t)

]
= i

∫ r

s
Ẽ

[
ζθc(p)c(r)

(
D�r(Vr)

)∗
σ(Vr)

]
dp

(41)

and, from (37), (40) and (41), we deduce (35). �

PROPOSITION 9. If (20) is satisfied, then:

(i) pr(ψr) = pt(ϕ) for all r ≥ 0, in particular, pt(ϕ) = π0(ψ0);
(ii) {UN((i δt),ψi δt ),Fi δt ∨ Y} is a discrete martingale, in particular,

Ẽ[UN(i δt)|Y] = pi δt .

PROOF. (i) From (31), it follows that

ψr(Xr)ξr = ψ0(X0) +
∫ r

0
ξp

(
Dψp(Xp)

)∗
σ(Xp)dVp

and, since r → ∫ r
0 ξp(Dψp(Xp))∗σ(Xp)dVp, r ∈ [0, t], is a martingale with

respect to the filtration Fr ∨ Y, we have

pt(ϕ) = Ẽ[ϕ(Xt)ξt |Y] = Ẽ[ψt(Xt )ξt |Y]
= Ẽ

[
Ẽ[ψt (Xt )ξt |Fr ∨ Y]|Y] = Ẽ[ψr(Xr)ξr |Y] = pr(ψr).

(42)

In (42), we used the fact that ψt ≡ ϕ. In particular, as p0 = π0,

pt (ϕ) = π0(ψ0).(43)

(ii) For i = 1,2, . . . , we have the following identity:

Ẽ
[(

UN

(
(i + 1) δt

)
,ψ(i+1) δt

)∣∣F(i+1) δt− ∨ Y
]

=
mN(i δt)∑

j=1

ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

))
Ẽ

[
q

j
N

(
(i + 1) δt

)∣∣F(i+1) δt−
]

=
mN(i δt)∑

j=1

ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

))
µi

N(V
j
N).
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But from (31), Ẽ[ψ(i+1) δt (V
j
N((i +1) δt))µi

N(V
j
N)|Fi δt ∨Y] = ψi δt (V

j
N(i δt)), so

Ẽ
[(

UN

(
(i + 1) δt

)
,ψ(i+1 )δt

)∣∣Fi δt ∨ Y
]

=
mN(i δt)∑

j=1

Ẽ
[
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

))
µi

N(V
j
N)

∣∣Fi δt ∨ Y
]

(44)

= (
UN(i δt),ψi δt

)
.

Hence, {UN(i δt,ψi δt ), Fi δt ∨ Y} is a discrete martingale. Finally, as Ẽ[(UN(0),

ψ0)|Y] = π0(ψ0) = pt(ϕ), we have that

Ẽ
[(

UN(i δt), ϕ
)|Y] = Ẽ

[(
UN(i δt),ψi δt

)|Y]
= Ẽ

[
Ẽ

[(
UN(i δt),ψi δt

)∣∣F0 ∨ Y
]|Y]

= Ẽ
[(

UN(0),ψ0
)|Y]

= pt(ϕ)

for all functions ϕ for which (20) holds true. Since these functions form a
convergence-determining set and hence, separating, it follows that Ẽ[UN(i δt)|
Y] = pt . �

We now have all the results needed to prove our main theorem. In the theorem
below, we will assume that the interbranching times δt = δt (N) are chosen so that
the fixed time t is an integer multiple of δt , for all N, t = i(N) δt (N) = i δt . In the
corollary following the theorem, we also look at times t that may fall in between
branching times.

THEOREM 10. If ϕ satisfies (20), h is assumed to be Lipschitz and t is a
branching time for all N , then

lim
N→∞,δt→0
N

√
δt→∞

N
√

δtẼ
[((

UN(t), ϕ
) − pt(ϕ)

)2] =
√

2

π

∫ t

0
Ẽ

[
ps(ψ

2
s ‖h‖2)

]
ds.(45)

PROOF. Since {UN((i δt),ψi δt ), Fi δt ∨ Y} is a discrete martingale, we have
that

Ẽ
[((

UN(t), ϕ
) − pt(ϕ)

)2]
=

t/δt−1∑
i=0

Ẽ
[((

UN

(
(i + 1) δt

)
,ψ(i+1) δt

) − (
UN(i δt),ψi δt

))2]
+ Ẽ

[((
UN(0),ψ0

) − π0(ψ0)
)2]

.
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Also, we have

Ẽ
[((

UN

(
(i + 1) δt

)
,ψ(i+1) δt

) − (
UN(i δt),ψi δt

))2]
= Ẽ

[((
UN

(
(i + 1) δt

)
,ψ(i+1) δt

)
− Ẽ

[(
UN

(
(i + 1) δt

)
,ψ(i+1) δt

)|F(i+1) δt− ∨ Y
])2]

+ Ẽ
[(

Ẽ
[(

UN

(
(i + 1) δt

)
,ψ(i+1) δt

)|F(i+1) δt− ∨ Y
]

− (
UN(i δt),ψi δt

))2]
.

(46)

From (31), we get that

Ẽ
[(

UN

(
(i + 1) δt

)
,ψ(i+1) δt

)|F(i+1) δt− ∨ Y
] − (

UN(i δt
)
,ψi δt

)
=

mN(i δt)∑
j=1

ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

))
µi

N(V
j
N) − ψi δt

(
V

j
N(i δt)

)

+
mN(i δt)∑

j=1

∫ (i+1) δt

i δt
λ

i,j
N (p)

(
Dψp

(
V

j
N(p)

))∗
σ

(
V

j
N(p)

)
dBj,N

p .

Thus, the last term in (46) is of order δt/N :

Ẽ
[(

Ẽ
[(

UN

(
(i + 1) δt

)
,ψ(i+1) δt )

∣∣F(i+1) δt− ∨ Y
] − (

UN(i δt),ψi δt

))2]
≤ c

δt

N
.

(47)

The first term in (46) satisfies

Ẽ
[((

UN

(
(i + 1) δt

)
,ψ(i+1) δt

)
− Ẽ

[(
UN

(
(i + 1) δt

)
,ψ(i+1) δt

)∣∣F(i+1) δt− ∨ Y
])2

]

= 1

N2
Ẽ

[
mN(i δt)∑

j=1

(
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2
νi
n(V

j
N)

]
.

(48)

Finally, since UN(0) = (1/N)
∑N

i=1 δxN
i
, where xN

i are i.i.d. random variables with

common distribution π0 and ψ0 ∈ D(A) ⊂ Cb(E), P̃ -a.s., we have that

Ẽ
[((

UN(0),ψ0
) − π0(ψ0)

)2] = Ẽ[π0(ψ
2
0 )]

N
.(49)
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In (49), 0 ≤ π0(ψ
2
0 ) ≤ ‖ψ0‖2. Hence, based on (20), the integral on the right-hand

side of (49) is finite. From (46)–(49), it follows that

lim
N→∞,δt→0
N

√
δt→∞

N
√

δtẼ
[((

UN(t), ϕ
) − pt(ϕ)

)2]
= lim

N→∞,δt→0
N

√
δt→∞

√
δt

N

t/δt−1∑
i=0

Ẽ

[
mN(i δt)∑

j=1

(
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2
νi
n(V

j
N)

]
.

(50)

Now (50) and Proposition 6 give

lim
N→∞,δt→0
N

√
δt→∞

√
δt

N
Ẽ

[((
UN(t), ϕ

) − pt(ϕ)
)2]

=
√

2

π
lim

N→∞,δt→0
N

√
δt→∞

√
δt

N

t/δt−1∑
i=0

Ẽ

[
mN(i δt)∑

j=1

(
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2(51)

×
√∫ (i+1) δt

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

]
and, using (32) and the Lipschitz condition on h, we get that

lim
N→∞,δt→0
N

√
δt→∞

√
δt

N

t/δt−1∑
i=0

Ẽ

[
mN(i δt)∑

j=1

(
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2

×
√∫ (i+1) δt

i δt

∥∥h(
V

j
N(t)

)∥∥2
2 dt

]

= lim
N→∞,δt→0
N

√
δt→∞

1

N

t/δt−1∑
i=0

Ẽ

[
mN(i δt)∑

j=1

(
ψi δt

(
V

j
N(i δt)

))2∥∥h(
V

j
N(i δt)

)∥∥
2

]
δt

= lim
N→∞,δt→0
N

√
δt→∞

∫ t

0
Ẽ

[(
UN

([
s

δt

]
δt

)
,ψ2[s/δt] δt‖h‖2

)]
ds.

(52)

But since Ẽ[UN(i δt)|Y] = pi δt for i = 0,1, . . . (Proposition 9), we finally get,
using (51) and (52), that

lim
N→∞,δt→0
N

√
δt→∞

N
√

δtẼ
[(

(UN(t), ϕ) − pt(ϕ)
)2]

=
√

2

π
lim

N→∞,δt→0
N

√
δt→∞

∫ t

0
Ẽ[p[s/δt] δt (ψ2[s/δt] δt‖h‖2)]ds

=
√

2

π

∫ t

0
Ẽ[ps(ψ

2
s ‖h‖2)]ds
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by using the dominated convergence theorem with the upper bound

Ẽ
[
p[s/δt] δt (ψ2[s/δt] δt‖h‖2)

] ≤ ‖h‖√mẼ

[
sup

s∈[0,t]
‖ψs‖2∞

]
. �

COROLLARY 11. If the interbranching times δt = δt (N) are chosen so that
limN→∞ N(δt)3/2 = 0, then the limit (45) holds true for arbitrary t (not just for t

being an integer multiple of δt).

PROOF. From Proposition 9, we get that pt(ϕ) = p[t/δt] δt (ψ[t/δt] δt ). Also,

from (30), it is easy to show that Ẽ[((UN(t), ϕ) − (UN([t/δt ] δt),ψ[t/δt ] δt ))
2] is

of order O(δt). Hence, since we assumed that limN→∞ N(δt)3/2 = 0, it follows
that

lim
N→∞,δt→0
N

√
δt→∞

N
√

δtẼ

[((
UN(t), ϕ

) −
(
UN

([
t

δt

]
δt

)
,ψ[t/δt] δt

))2]
= 0.(53)

Also, from the proof of Theorem 10, it follows that

lim
N→∞,δt→0
N

√
δt→∞

∣∣∣∣∣N√
δtẼ

[((
UN

([
t

δt

]
δt

)
,ψ[t/δt] δt

)
− p[t/δt ] δt (ψ[t/δt] δt )

)2]

−
√

2

π

∫ [t/δt] δt
0

Ẽ
[
ps(ψ

2
s ‖h‖2)

]
ds

∣∣∣∣∣ = 0.

(54)

The claim then follows from (53) and (54). �

COROLLARY 12. If the length of the interbranching times is 1/Nα , where
α ∈ (2

3 ,2), then

lim
N→∞N1−α/2Ẽ

[((
UN(t), ϕ

) − pt(ϕ)
)2]

=
√

2

π

∫ t

0
Ẽ

[
ps(ψ

2
s ‖h‖2)

]
ds.

In particular, if δt = δt (N) = 1/N , then

lim
N→∞

√
NẼ

[((
UN(t), ϕ

) − pt(ϕ)
)2]

=
√

2

π

∫ t

0
Ẽ

[
ps(ψ

2
s ‖h‖2)

]
ds.

(55)

PROOF. Direct consequence of the previous corollary. �

It is clear now that the upper bound proved in [4] was sharp. However, the
choice δt = 1/N for the length of the interbranching times is suboptimal. We chose
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δt = 1/N in [4] because this particle approximation was inspired by the Dawson–
Watanabe construction of a superprocess. We discussed this in greater detail in
an earlier paper [6], where we followed closely the original construction and
used branching mechanisms with fixed variance and not with minimal variance.
In effect, in [6] we construct a superprocess in a random environment, the
environment being the given trajectory of the observation process Y . By choosing a
fixed value for the variance, we introduce much more randomness into the system
and, as a result, the limiting process is not the solution of the Zakai equation,
but rather a measure-valued process whose conditional expectation, given the
environment Y , is pt .

As we saw in the last corollary, the larger the length of the interbranching times
is, the better the rate is. However, the order of the length of the interbranching
times cannot be larger than 1/N2/3 as the last part of the evolution of the system
is not corrected and hence a bias is introduced. We can resolve this problem by
attaching weights to the particles, weights that only correspond to this last part of
their path, that is, the path corresponding to the interval between the last branching
time and the current time. The result is a partially weighted approximation that
converges to pt no matter how large the interbranching times are (see the next
section for details).

At the other end of the spectrum, if the interbranching times are of order
1/N2 (hence N

√
δt � ∞), then UN no longer converges to pt . By branching

so often, the randomness introduced in the system at branching times overpowers
the corrective effect and, as a result, just as in the case when the branching variance
is fixed, the limiting process is a measure-valued process whose conditional
expectation, given the environment Y , is pt .

5. Improved branching algorithms. We saw in the last section that the
branching particle approximation has the asymptotic rate of convergence c(t)/

N1−α/2, when the interbranching times are of order 1/Nα and c(t) is the constant

c(t) �
√

2

π

∫ t

0
Ẽ

[
ps(ψ

2
s ‖h‖2)

]
ds.

By comparison, the rate of convergence of �N(t), the particle approximation
obtained by using the Monte Carlo method, is of order 1/N . As stated in the
Introduction, �N(t) is the approximation given by

�N(t) � 1

N

N∑
i=1

µt
iδ{Vi(t)},

where V1(t),V2(t), . . . , VM(t) are independent realizations of the signal (and
independent of Y ) and µt

i are their corresponding likelihoods/weights

µt
i = exp

(∫ t

0
h∗(Vi(t)) dYs − 1

2

∫ t

0
‖hVi(t)‖2

2 ds

)
.(56)
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PROPOSITION 13. If �N(t) is the above approximation, then

Ẽ
[((

�N(t), ϕ
) − pt(ϕ)

)2] = c�(t)

N
,

where c(t) is a constant independent of N , which admits the following representa-
tions:

c�(t) = E

[
exp

(∫ t

0
‖h(Vp)‖2

2 dp

)
(ϕ(Vt))

2
]

− E[pt(ϕ)2](57)

=
∫ t

0
Ẽ

[
exp

(∫ s

0
‖h(Vp)‖2

2 dp

)
‖σ ∗Dψs(Vs)‖2

2

]
ds

+ Ẽ
[
π0(ψ

2
0 ) − π0(ψ0)

2],(58)

where Vt is a realization of the signal process.

PROOF. The representation (57) follows immediately, using the i.i.d. property
of the random variables Vi(t) and the identities

Ẽ
[
ϕ(Vi(t))µ

t
i |Y

] = pt(ϕ),

Ẽ
[(

µtϕ(Vt )
)2] = Ẽ

[
exp

(∫ t

0
‖h(Vp)‖2

2 dp

)
(ϕ(Vt))

2
]
.

Further, using Proposition 9 and identity (31), we deduce (58). �

From (45) and Proposition 13, it is clear now that the order of rate of conver-
gence of the Monte Carlo approximation is better than the order of the approxima-
tion given by the branching algorithm as long as we choose asymptotically small
interbranching times. As we stated at the end of Section 4, we can improve the
branching algorithm by attaching weights to the particles, weights that only corre-
spond to this last part of their path, that is, the path corresponding to the interval
between the last branching time and the current time. Let V 1

N(t), . . . , V
mN(t)
N (t) be

the positions of the mN(t) particles alive at time t obtained using the branching
algorithms and define

ŪN(t) = 1

N

mN(t)∑
J=1

µ̄t
j,Nδ{V j

N (t)},

where µ̄t
j,N are defined as

µ̄t
j,N = exp

(∫ t

[t/δ] δt
h∗(

V
j
N(t)

)
dYs − 1

2

∫ t

[t/δ] δt
∥∥h(

V
j
N(t)

)∥∥2
2 ds

)
.

Let us observe that ŪN(t) = UN(t) if t is a branching time, that is, t = i δt . Hence,
if we are only interested in the value of the approximation at branching times,
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then we cannot distinguish between the two. This remark is important as in the
following we will show that we can get better rates of convergence for ŪN(t) than
for UN(t), and hence these rates will also apply to UN(t) if t is always a branching
time regardless of N .

PROPOSITION 14. If ϕ is chosen so that (20) is satisfied, then {ŪN((r),ψr),

Fr ∨ Y}, r ∈ [0, t], is a square-integrable martingale. In particular,
Ẽ[ŪN(t)|Y] = pt for all t ≥ 0.

PROOF. Similar to that of Proposition 9. �

The following theorem shows that ŪN(t) has the same asymptotic rate of
convergence as UN(t). More important, now we no longer need to impose the
constraint that the interbranching times should be larger (in order) than 1/N2/3.
Hence, we can obtain rates of convergence as close to 1/N as we want to,
as the corollary following the theorem shows. It can be also interpreted as an
interpolation result between the case when the interbranching times converge to 0
as the number of particles increases and the case when the interbranching times
are kept fixed regardless of the number of particles.

THEOREM 15. If ϕ is chosen so that (20) is satisfied and h is assumed to be
Lipschitz, then

lim
N→∞,δt→0
N

√
δt→∞

N
√

δtẼ
[((

ŪN(t), ϕ
) − pt(ϕ)

)2] =
√

2

π

∫ t

0
Ẽ[ps(ψ

2
s ‖h‖2)]ds.(59)

PROOF. From Propositions 9 and 14, it follows that

Ẽ
[((

ŪN(t), ϕ
) − pt(ϕ)

)2]
= Ẽ

[(
ŪN(t), ϕ

)2] − Ẽ[pt(ϕ)2]

= Ẽ

[((
ŪN(t), ϕ

) −
(
ŪN

([
t

δt

]
δt

)
,ψ[t/δt] δt

))2]

+ Ẽ

[((
ŪN

([
t

δt

]
δt

)
,ψ[t/δt] δt

)
− p[t/δt] δt (ψ[t/δt] δt )

)2]
.

From (31), one proves that the term Ẽ[((ŪN (t), ϕ) − (ŪN([t/δt] δt),ψ[t/δt ] δt ))2]
is of order δt/N . Then, since ŪN([t/δt ] δt) = UN([t/δt ] δt), as the weights µ̄t

j,N

are reinitialized to 1 at branching times, we have, following (54), the required
asymptotic rate for ŪN(t). �
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COROLLARY 16. If the length of the interbranching times is 1/Nα, where
α ∈ (0,2), then

lim
N→∞N1−α/2Ẽ

[((
UN(t), ϕ

) − pt(ϕ)
)2] =

√
2

π

∫ t

0
Ẽ

[
ps(ψ

2
s ‖h‖2)

]
ds.

PROOF. Direct consequence of the previous corollary. �

For the following theorem, we need to introduce a couple of functions. First, let
us observe that, based on the independent increments property of Y and Bj,N (the
Brownian path that generates V

j
N ), we have

Ẽ

[
exp

(∫ s

i δt

∥∥h(
V

j
N(s)

)∥∥2
2 dp

)∥∥σ ∗Dψs

(
V

j
N(s)

)∥∥2
2

∣∣Fi δt

]

= Ẽ

[
exp

(∫ s

i δt

∥∥h(
V

j
N(s)

)∥∥2
2 dp

)∥∥σ ∗Dψs

(
V

j
N(s)

)∥∥2
2

∣∣V j
N(i δt)

]
for s ∈ [i δt, (i + 1) δt]. Hence, there exists a measurable function ϒi δt

s (x) such
that

Ẽ

[
exp

(∫ s

i δt

∥∥h(
V

j
N(s)

)∥∥2
2 dp

)∥∥σ ∗Dψs

(
V

j
N(s)

)∥∥2
2

∣∣Fi δt

]
= ϒi δt

s

(
V

j
N(i δt)

)
.(60)

Similarly, there exists a measurable function ϒ̂ i δt (x) such that

Ẽ
[(

ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2
νi
N(V

j
N)

∣∣Fi δt

] = ϒ̂ i δt (V j
N(i δt)

)
.(61)

THEOREM 17. If (20) is satisfied and h is assumed to be Lipschitz, then

Ẽ
[((

ŪN(t), ϕ
) − pt(ϕ)

)2] = c̄(t)

N
,

where c̄(t) is a constant independent of N with the following representation:

c̄(t) =
∫ t

0
Ẽ

[
p[t/δt] δt (ϒ [t/δt] δt

s )
]
ds +

[t/δt]∑
i=1

Ẽ
[
pi δt (ϒ̂

i δt )
]

+E
[
π0(ψ

2
0 ) − π0(ψ0)

2]
.

(62)

PROOF. Since t → (ŪN(t),ψt ) is a square-integrable martingale,

Ẽ
[((

ŪN(t), ϕ
) − (

ŪN(0),ψ0
))2]

= Ẽ

[((
ŪN(t), ϕ

) −
(
ŪN

([
t

δt

]
δt

)
,ψ[t/δt] δt

))2]

+
[t/δt]−1∑

i=0

Ẽ
[((

UN

(
(i + 1) δt

)
,ψ(i+1) δt

) − (
UN(i δt),ψi δt

))2]
(63)
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+ Ẽ
[((

ŪN(0),ψ0
) − π0(ψ0)

)2]
= Ẽ

[((
ŪN(t), ϕ

) −
(
ŪN

([
t

δt

]
δt

)
,ψ[t/δt] δt

))2]

+
[t/δt]−1∑

i=0

Ẽ
[((

UN

(
(i + 1) δt

)
,ψ(i+1) δt

) − (
UN(i δt),ψi δt

))2]

+ E[π0(ψ
2
0 ) − π0(ψ0)

2]
N

.

Then, using yet again (31), one shows that

Ẽ

[((
ŪN(t), ϕ

) −
(
ŪN

([
t

δt

]
δt

)
,ψ[t/δt] δt

))2]

= 1

N

∫ t

[t/δt] δt
Ẽ

[(
UN

([
t

δt

]
δt

)
,ϒ [t/δt] δt

s

)]
ds(64)

= 1

N

∫ t

[t/δt] δt
Ẽ

[
p[t/δt] δt

(
ϒ [t/δt] δt

s

)]
ds.

Similarly,

Ẽ
[(

Ẽ
[(

ŪN

(
(i + 1) δt

)
,ψ(i+1) δt

)|F(i+1) δt− ∨ Y
] − (

ŪN(i δt),ψi δt

))2
]

= 1

N

∫ (i+1) δt

i δt
Ẽ

[(
UN(i δt),ϒi δt

s

)]
ds(65)

= 1

N

∫ (i+1) δt

i δt
Ẽ

[
pi δt (ϒ

i δt
s )

]
ds

and

Ẽ
[((

ŪN

(
(i + 1) δt

)
,ψ(i+1) δt

)
− Ẽ

[(
ŪN

(
(i + 1) δt

)
,ψ(i+1) δt

)|F(i+1) δt− ∨ Y
])2

]
(66)

= 1

N2 Ẽ

[
mN(i δt)∑

j=1

(
ψ(i+1) δt

(
V

j
N

(
(i + 1) δt

)))2
νi
n(V

j
N)

]
= 1

N
pi δt (ϒ̂

i δt ).

Finally, by plugging (64)–(66) into (63), we get the required expectation. �

Hence, when the interbranching times have fixed size, then both the Monte
Carlo approximation �N(t) and the (weighted) branching approximation ŪN(t)

have the same order 1/N .
A variation of the previous algorithm is to use random interbranching times. For

example, let V1(t), . . . , VmN(t)(t) be the positions of the mN(t) particles alive at
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time t obtained using the branching algorithms when the branching times are

τ1 = inf
{
t ≥ 0; max

i=1,...,n
exp

(∫ t

0

∥∥h(
V

j
N(t)

)∥∥2
2 ds

)
≥ 2

}
,

τj+1 = inf
{
t ≥ τj ; max

i=1,...,mN (τj )
exp

(∫ t

τ i

∥∥h(
V

j
N(t)

)∥∥2
2 ds

)
≥ 2

}
, j = 1,2, . . . .

Then define ÛN (t) � (1/N)
∑mN(t)

i=1 µ̂t
iδ{Vi(t)}, where, for t ∈ [τn, τn+1), µ̂t

i , i =
1,2, . . . , mN(t), are defined as µ̂t

i = exp(
∫ t
τN

h∗(Vi(t)) dYs − 1
2

∫ t
τN

‖Vi(t)‖2
2 ds).

The reason we chose the particular bound 2 is because at τj there will be at

least one particle so that Ẽ[(µ̂t
i)

2|Vi] = exp(
∫ t
τ i ‖h(V

j
N(s))‖2

2 ds) = 2. Hence, on
average, µ̂t

i is “considerably” larger than 1, so it is time to branch (we can replace
the lower bound 2 by any constant k > 1). Then it is easy to see that, for all
j = 0,1, . . . , there exist i = ij such that

exp
(
d‖h‖2(τi+1 − τi)

) ≥ exp
(∫ τi+1

τ i

∥∥h(
Vij (t)

)∥∥2
2 ds

)
= 2.

Thus, τi+1 − τi ≥ ln 2/d‖h‖2. Therefore, we have only a finite number of
branching times and we would obtain the same upper bound as the upper bound
corresponding to ŪN(t) with deterministic interbranching times ln 2/d‖h‖2. But
we should expect ÛN(t) to perform better since we introduce less randomness into
the system by branching less often.

Finally, we can modify the previous algorithm and only branch those particles
whose corresponding weights reach 2. More precisely, let V1(0), . . . , VmN(t)(t) be
the positions of the mN(t) particles alive at time t and let µ̂t

i , i = 1,2, . . . , mN(t),
be their corresponding weights

µ̂t
i = exp

(∫ t

τt,Vi

h∗(Vi(t)) dYs − 1
2

∫ t

τt,Vi

‖Vi(t)‖2
2 ds

)
,

where τt,Vi
is the last time before time t , when the ith particle branched. The ith

particle will branch again the first time that µ̂t
i is equal to 2. At branching times,

each particle splits into two particles with the same positions as their mother’s.
As before, in between branchings, the particles follow the equation of the signal.
In this case, there will be no errors introduced at branching time with the added
bonus that all the weights will stay bounded by 2. The drawback is that particles
with small weights are not eliminated and it is likely that the number of particles
will increase exponentially (one can prove that the number of particles does not
explode in finite time).
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