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DARLING–ERDŐS THEOREM FOR SELF-NORMALIZED SUMS1

BY MIKLÓS CSÖRGŐ, BARBARA SZYSZKOWICZ AND QIYING WANG

Carleton University, Carleton University and Carleton University and Australian
National University

Let X, X1, X2, . . . be i.i.d. nondegenerate random variables, Sn =∑n
j=1 Xj and V 2

n = ∑n
j=1 X2

j . We investigate the asymptotic behavior in
distribution of the maximum of self-normalized sums, max1≤k≤n Sk/Vk , and
the law of the iterated logarithm for self-normalized sums, Sn/Vn, when
X belongs to the domain of attraction of the normal law. In this context,
we establish a Darling–Erdős-type theorem as well as an Erdős–Feller–
Kolmogorov–Petrovski-type test for self-normalized sums.

1. Introduction and main results. Let X, X1, X2, . . . be a sequence of
nondegenerate i.i.d. random variables and put Sn = ∑n

j=1 Xj for their partial sums,
n ≥ 1. Darling and Erdős (1956) proved the following remarkable limit theorem
for the maximum of the standardized sums.

RESULT A. If EX = 0 and E|X|3 < ∞, then, for every t ∈ R,

lim
n→∞P

{
a(n) max

1≤k≤n
Sk/(σ

√
k) ≤ t + b(n)

}
= exp(−e−t ),(1)

where σ 2 = EX2, a(n) = (2 log logn)1/2 and

b(n) = 2 log log n + 1
2 log log log n − 1

2 log(4π).

We assume throughout that logx = log(max{e, x}).
Darling and Erdős (1956) actually established Result A for independent random

variables that are not necessarily identically distributed. Several extensions have
relaxed their third-moment condition in the i.i.d. case. Oodaira (1976) and
Shorack (1979) independently showed that (1) holds when an absolute moment
of order 2 + δ is finite for some δ > 0. Einmahl (1989) and Einmahl and Mason
(1989) proved that the Darling–Erdős theorem holds for i.i.d. random variables
whenever

EX2I(|X|≥x) = o
(
(log log x)−1)

as x → ∞.(2)
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DARLING–ERDŐS THEOREM 677

Einmahl (1989) showed the condition (2) to also be necessary in the i.i.d. case.
Einmahl (1989) also concluded that if only EX = 0 and EX2 < ∞ are assumed,
then σ

√
k in Result A needs to be replaced by the less natural Bk as in his theorem

that follows.

RESULT B. If EX = 0 and EX2 < ∞, then, for every t ∈ R,

lim
n→∞P

{
a(n) max

1≤k≤n
Sk/Bk ≤ t + b(n)

}
= exp(−e−t ),(3)

where B2
n = ∑n

j=1 EX2I(|X|≤√
j/(log log j)2).

For an extension of the Darling–Erdős theorem to stable law, we refer to
Bertoin (1998). In this paper, we show that Results A and B can be merged
into one result via the use of the natural random normalizer. Furthermore, in this
context even the second-moment condition is not required anymore, for it is seen
below that a Darling–Erdős-type theorem for self-normalized sums holds true if
only X belongs to the domain of attraction of the normal law under some weak
additional conditions.

Write V 2
n = ∑n

j=1 X2
j and l(x) = EX2I(|X|≤x). The following is our main

theorem.

THEOREM 1. Suppose that EX = 0 and l(x) is a slowly varying function
at ∞, satisfying l(x2) ≤ Cl(x) for some C > 0. Then, for every t ∈ R, we have

lim
n→∞P

{
a(n) max

1≤k≤n
Sk/Vk ≤ t + b(n)

}
= exp(−e−t ).(4)

The proof of Theorem 1 is based on an extension of the truncation techniques of
Feller (1946) and Theorem 1 of Einmahl and Mason (1989) for the maximum of
normalized sums of bounded independent random variables. Utilizing this method,
we also succeed in refining the self-normalized law of the iterated logarithm (LIL).
In fact, we obtain the following Erdős–Feller–Kolmogorov–Petrovski (EFKP)-
type test for self-normalized sums [cf. Petrovski (1935), Erdős (1942) and
Feller (1943, 1946)].

THEOREM 2. Suppose that EX = 0 and l(x) is a slowly varying function
at ∞, satisfying l(x2) ≤ Cl(x) for some C > 0. Then

P (Sn ≥ Vnφn, i.o.) = 0 or = 1(5)

accordingly as

J (φ) ≡
∞∑

n=1

φn

n
e−φ2

n/2 < ∞ or = ∞,(6)

where φn is a nondecreasing sequence of positive numbers.
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REMARK 1. Giné, Götze and Mason (1997) showed that Sn/Vn →D N(0,1)

if and only if EX = 0 and X belongs to the domain of attraction of the normal law.
The latter condition is well known to be equivalent to l(x) being a slowly varying
function at ∞. Based on these facts and the corresponding Darling–Erdős theorem
in the classical case, that is, that one has (1) in the i.i.d. case if and only if (2) is
obtained [cf. Einmahl (1989)], it is not likely that the condition alone that l(x) is
a slowly varying function at ∞ is sufficient for establishing (4). We note also that
l(x2) ≤ Cl(x) is a weak enough assumption, which is satisfied by a large class of
slowly varying functions such as (log logx)α and (log x)α , for example, for some
0 < α < ∞. However, it remains an open problem to find a necessary condition
for establishing (4).

REMARK 2. The EFKP-type test for self-normalized sums was first derived
by Griffin and Kuelbs (1991) in case X is symmetric with EX2 < ∞. The
symmetricity condition was later eliminated by Wang (1999). Theorem 2 shows
that the EFKP-type test for self-normalized sums continues to hold true without
assuming the existence of the second moment. This amounts to an essential
improvement of the previous results.

REMARK 3. In the past decades, self-normalized sums Sn/Vn have been stud-
ied by many researchers. Among them, Giné, Götze and Mason (1997) proved that
the tails of Sn/Vn are uniformly sub-Gaussian when the sequence is stochastically
bounded. Bentkus and Götze (1996) obtained Berry–Esseen inequalities for self-
normalized sums. Wang and Jing (1999) derived exponential nonuniform Berry–
Esseen bounds. Shao (1997) showed that no moment conditions are needed for a
self-normalized large-deviation result for P (Sn/Vn ≥ x

√
n). For a survey of recent

developments in this area, we refer to Shao (1998).

In the next section, we prove the main results. Throughout the paper, we shall
use A to denote an absolute positive constant whose value may differ at each
occurrence.

2. Proofs of the main results. We start with some notation and first prove
six lemmas, preliminaries to the proofs of the main results. Put b = inf

{
x ≥ 1 :

l(x) > 0
}

and

ηn = inf
{
s : s ≥ b + 1,

l(s)

s2
≤ (log log n)4

n

}
.

Furthermore, we let

Zj = XjI(|Xj |>ηj ), Yj = XjI(|Xj |≤ηj ), Y ∗
j = Yj − EYj ,

S∗
n =

n∑
j=1

Y ∗
j , B2

n =
n∑

j=1

EY ∗2
j .
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Since l(x) is a nondecreasing function, slowly varying at ∞, it follows that

P (|X| ≥ x) = o
(
l(x)/x2)

and E|X|I(|X|≥x) = o
(
l(x)/x

)
,(7)

ηn → ∞ and nl(ηn) = η2
n(log logn)4 for every large enough n(8)

and, under the condition that l(x2) ≤ Cl(x) for some C > 0, we also have

l(ηk) ≤ l(n2) ≤ Cl(n) ≤ Al(ηn) for n ≤ k ≤ n3/2 and n large enough,(9)

as well as

B2
n ∼

n∑
j=1

EY 2
j ∼ nl(ηn) ∼ η2

n(log log n)4.

Consequently, under their respective conditions, we may assume without loss of
generality that (8) and (9) hold for n ≥ 1, as well as that

B2
n = nl(ηn) = η2

n(log logn)4 for n ≥ 1.(10)

It will be seen that these assumptions will not affect the proofs of the main results,
which are based on the following six lemmas.

LEMMA 1. We have
∞∑

k=1

P
(|X| ≥ ηk(log logk)3)

< ∞,(11)

∞∑
k=1

1

(log logk)6
P (|X| ≥ ηk) < ∞.(12)

PROOF. Write τj = ηj (log log j)3. It follows in terms of (8) and (9) that,
for k ≥ 1,

∞∑
j=k

1

τ 2
j log j

=
∞∑

j=k

1

j l(ηj )(log j)(log log j)2

≥ A

l(ηk)(log k)(log log k)2

k3/2∑
j=k

j−1(13)

≥ A

l(ηk)(log logk)2
= Ak

τ 2
k

.

By using (13) and noting that τj+1 ≤ j2 for j large enough, we get

∞∑
j=1

P (|X| ≥ τj ) =
∞∑

k=1

kP (τk ≤ |X| < τk+1)
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=
∞∑

k=1

τ 2
k P (τk ≤ |X| < τk+1)

k

τ 2
k

≤ A

∞∑
k=1

τ 2
k P (τk ≤ |X| < τk+1)

∞∑
j=k

1

τ 2
j log j

≤ A

∞∑
j=1

1

τ 2
j log j

EX2I(|X|≤τj+1)

≤ A

∞∑
j=1

1

j log j (log log j)2
< ∞.

This proves (11). Similarly, we obtain that
∞∑

j=1

1

(log log j)6
P (|X| ≥ ηj )

≤
∞∑

k=1

P (ηk ≤ |X| < ηk+1)

k∑
j=1

(log log j)−6

≤ A

∞∑
k=1

η2
kP (ηk ≤ |X| < ηk+1)

k

τ 2
k

≤ A

∞∑
j=1

1

τ 2
j log j

EX2I(|X|≤ηj+1)

≤ A

∞∑
j=1

1

j log j (log log j)2 < ∞.

The proof of Lemma 1 is now complete. �

LEMMA 2. We have
n∑

j=1

(|Zj | + E|Zj |) ≤ 5Bn(log logn)2 a.s.(14)

PROOF. Let τj = Bj log log j and Z∗
j = XjI(ηj<|Xj |<τj ). By using (11)

and (10), we get
∞∑

j=1

P (Zj 
= Z∗
j ) =

∞∑
j=1

P (|X| ≥ τj )

=
∞∑

j=1

P
(|X| ≥ ηj (log log j)3)

< ∞.
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Recalling (7) and (10), on the other hand, it can be easily shown that, for
n sufficiently large,

n∑
j=1

E|Z∗
j | ≤

n∑
j=1

E|Zj |

≤ nE|X|I(|X|≥ηn) +
n∑

j=1

n∑
k=j

E|X|I(ηk−1≤|X|<ηk)

≤ nE|X|I(|X|≥ηn) +
n∑

k=1

kE|X|I(ηk−1≤|X|<ηk)

≤ nE|X|I(|X|≥ηn) + l(ηn) max
1≤k≤n

k

ηk−1

≤ 2Bn(log logn)2.

So, we only need to prove that

Tn ≡
n∑

j=1

(|Z∗
j | − E|Z∗

j |) ≤ Bn(log logn)2 a.s.(15)

Write Z̄j = |Z∗
j | − E|Z∗

j |. Then, for 1 ≤ j ≤ 2k+1,

|Z̄j | ≤ 2τ2k+1 ≤ Aτ2k ,

2k+1∑
j=1

E(Z̄j )
2 ≤ 2k+2l(τ2k+1) ≤ τ 2

2k/64 for k sufficiently large,

Ee8Z̄j/τ2k ≤ 1 + AE(Z̄j )
2

τ 2
2k

≤ 1 + A2−k.

Therefore, by Kolmogorov’s inequality, for k sufficiently large,

P

(
max

2k≤n≤2k+1
Tn/Bn(log logn)2 ≥ 1

)

≤ P

(
max

2k≤n≤2k+1
Tn ≥ τ2k log k

)

≤ 2P

(
T2k+1 ≥ 1

2τ2k log k

)

≤ 2 exp(−2 logk)

2k+1∏
j=1

Ee8Z̄j /τ2k ≤ Ak−2.

(16)

Thus, (15) follows from the Borel–Cantelli lemma. This also completes the proof
of Lemma 2. �
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LEMMA 3. For any 0 < η < 1/2 and θ > 1, there exist 0 < δ < 1, x0 > 1 and
n0 such that, for any n ≥ n0 and x0 < x < δ

√
n,

P

(
max

n≤k≤θn
Sk/Vk ≥ x

)
≤ e−ηx2

.(17)

PROOF. See Remark 4.2 of Shao (1997) with an obvious modification. �

LEMMA 4. We have that

P

(
Sk ≥ Vk

√
log log k,

k∑
j=1

|Zj | ≥ Bk/ log logk, i.o.

)
= 0,(18)

P

(
Sk ≥ Vk

√
log logk,

k∑
j=1

E|Zj | ≥ Bk/ log logk, i.o.

)
= 0,(19)

P

(
S∗

k ≥ Bk

√
log log k,

k∑
j=1

|Zj | ≥ Bk/ log logk, i.o.

)
= 0,(20)

P

(
S∗

k ≥ Bk

√
log logk,

k∑
j=1

E|Zj | ≥ Bk/ log logk, i.o.

)
= 0.(21)

PROOF. We first prove (18). Put

mk = min
{
n :B2

n ≥ 2k−1/(logk)8}
, nk = min

{
n :B2

n ≥ 2k}.
Also, we write

Fk =
nk−1⋃

n=nk−1

{
Sn ≥ Vn

√
log logn,

n∑
j=1

|Zj | ≥ Bn/ log logn

}
,

Gk =
nk−1⋃
j=mk

{|Zj | 
= 0}, Hk =
nk−1⋃

n=nk−1

{
Sn ≥ Vn

√
log logn

}
,

Rk =
nk−1⋃

n=nk−1

{
n∑

j=1

|Zj | ≥ Bn/ log logn, Zj = 0, j = mk, . . . , nk − 1

}
.

Using B2
mk

∼ 2k−1/(log k)8, B2
nk

∼ 2k and Lemma 2, if nk−1 ≤ n ≤ nk − 1, then

mk∑
j=1

|Zj | ≤ Bmk
(log logmk)

2 ≤ 1
2Bn/ log logn a.s.
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Hence, P (Rk, i.o.) = 0. Since Fk ⊂ (Gk ∩ Hk) ∪ Rk , to prove (18), on account of
the Borel–Cantelli lemma, one only needs to show that

∞∑
k=1

P (Gk ∩ Hk) < ∞.(22)

Define S
(j)
n = Sn − Xj and V

(j)
n = (V 2

n − X2
j )

1/2. Noting that, for any s, t ∈ R,
c ≥ 0 and x ≥ 1,

x

√
c + t2 =

√
(x2 − 1)c + t2 + c + (x2 − 1)t2

≥
√

(x2 − 1)c + t2 + 2t

√
(x2 − 1)c

= t +
√

(x2 − 1)c,

we have {
s + t ≥ x

√
c + t2 } ⊂ {

s ≥ (x2 − 1)1/2√c
}
.

Hence, for any 1 ≤ j ≤ n,{
Sn ≥ Vn

√
log logn,Zj 
= 0

} ⊆ {
S(j)

n ≥ (log logn − 1)1/2V (j)
n ,Zj 
= 0

}
.(23)

Recalling that B2
n = nl(ηn), it is easy to see that nk ≥ θnk−1 for some θ > 1

and k sufficiently large. Thus, it follows from (23), the independence of Xj and
Lemma 3 that

P (Gk ∩ Hk) ≤
nk−1∑
j=mk

P

(
nk−1⋃

n=nk−1

{
Sn ≥ Vn

√
log logn, Zj 
= 0

})

≤
nk−1∑
j=mk

P (Zj 
= 0)P

(
nk−1⋃

n=nk−1

{
S(j)

n ≥ V (j)
n

√
log log n − 1

})

≤
nk−1∑
j=mk

P (Zj 
= 0)P

(
max

nk−1≤n≤nk−1
S(j)

n /V (j)
n ≥ 1

2

√
logk

)

≤ k−1/10
nk−1∑
j=mk

P (|X| ≥ ηj ) for k sufficiently large.

(24)

Write k1(j) = max{k :nk ≤ j} and k2(j) = max{k :mk ≤ j}. Using B2
n = nl(ηn)

again, it can be easily shown that k2(j) ≤ k1(j) + A log log j for some constant
A > 0, and, hence, for j large enough,

k2(j )∑
k=k1(j )

k−1/10 ≤ (log j)−1/20.
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This, together with (12) and (24), implies that

∞∑
k=1

P (Gk ∩ Hk) ≤
∞∑

k=1

k−1/10
nk−1∑
j=mk

P (|X| ≥ ηj )

≤
∞∑

j=1

P (|X| ≥ ηj )

k2(j )∑
k=k1(j )

k−1/10

≤ A

∞∑
j=1

1

(log log j)6
P (|X| ≥ ηj ) < ∞.

This completes the proof of (18).
We next prove (19). Let N1 = {k :

∑n
j=1 E|Zj | ≤ 1

2Bn/ log logn for all nk−1 ≤
n ≤ nk} and N2 = N − N1. Using (12), we have

∑
k∈N2

k−1/10 ≤ A
∑
k∈N2

nk−1∑
n=nk−1

1

n(log logn)3

≤ A

∞∑
n=1

1

nBn(log log n)2

n∑
j=1

E|Zj |

≤ A

∞∑
j=1

E|Zj |
∞∑

n=j

1

n3/2l1/2(ηn)(log logn)2

≤ A

∞∑
j=1

1

j1/2l1/2(ηj )(log log j)2

∞∑
k=j

E|X|I(ηk≤|X|<ηk+1)

≤ A

∞∑
k=1

k1/2ηk+1

l1/2(ηk)(log log k)2
P (ηk ≤ |X| < ηk+1)

≤ A

∞∑
k=1

k

(log log k)6 P (ηk ≤ |X| < ηk+1)

≤ A

∞∑
k=1

1

(log log k)6
P (|X| ≥ ηk) < ∞.

Therefore, similarly to the proof of (24),

∞∑
k=1

P

(
nk−1⋃

n=nk−1

{
Sn ≥ Vn

√
log log n,

n∑
j=1

E|Zj | ≥ Bn/ log logn

})

≤ ∑
k∈N2

P

(
nk−1⋃

n=nk−1

{
Sn ≥ Vn

√
log logn

})
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≤ ∑
k∈N2

P

(
max

nk−1≤n≤nk−1
Sn/Vn ≥ 1

2

√
logk

)

≤ ∑
k∈N2

k−1/10 < ∞,

and hence (19) follows from the Borel–Cantelli lemma.
We next prove (20) and (21). Since, for any 1 ≤ j ≤ n,{

S∗
n ≥ Bn

√
log logn,Zj 
= 0

} ⊆ {
S∗

n − Y ∗
j ≥ (log logn − 1)1/2Bn,Zj 
= 0

}
,

by tracking the proof of (18) and (19), it is clear that (20) and (21) will follow if
we can prove that

P

(
max

nk−1≤n≤nk−1
S∗

n/Bn ≥ 1
2

√
logk

)
≤ Ak−δ for some 0 < δ < 1

2 .(25)

Recalling |Y ∗
j | ≤ 2ηj ≤ 4Bnk

/(logk)2 for 1 ≤ j ≤ nk, if |t| ≤ 1
8

√
logk, we get

∣∣∣∣∣Ee
tY ∗

j /Bnk − 1 − t2

2B2
nk

EY ∗2
j

∣∣∣∣∣ ≤ |t|3
6B3

nk

E|Y ∗
j |3e|tY ∗

j |/Bnk ≤ t2

6B2
nk

E|Y ∗
j |2.

This implies that, for all |t| ≤ 1
8

√
k,

Ee
tY ∗

j /Bnk ≤ 1 + 1 + t2

2B2
nk

EY ∗2
j ≤ exp

(
1 + t2

2B2
nk

EY ∗2
j

)
.

Therefore, by using B2
nk

∼ 2k and Kolmogorov’s inequality, we obtain

P

(
max

nk−1≤n≤nk−1

S∗
n

Bn

≥ 1

2

√
logk

)

≤ P

(
max

nk−1≤n≤nk−1
S∗

n ≥ 1

4
Bnk

√
logk

)

≤ 2P

(
S∗

nk
≥ 1

8
Bnk

√
log k

)

≤ 2 exp
(
− t

8

√
logk

) nk∏
j=1

E exp

(
tY ∗

j

Bnk

)

≤ 2 exp
(
− t

8

√
logk + 1 + t2

2

)

for all |t| ≤ 1
8

√
log k. Now (25) follows by choosing t = 1

8

√
log k. This also

completes the proof of Lemma 4. �
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LEMMA 5. We have that, for all t ∈ R,

lim
n→∞P

{
a(n) max

1≤k≤n
S∗

k /Bk ≤ t + b(n)

}
= exp(−e−t ).(26)

PROOF. It follows from (10) that

|Y ∗
j | ≤ 2ηj ≤ εjBj/(log logB2

j )3/2,(27)

where εj → 0 as j → ∞. By using Theorem 1 of Einmahl and Mason (1989) and
the method of its proof, we get, for all t ∈ R,

P

(
a(B2

n) max
1≤k≤n

S∗
k /Bk ≤ t + b(B2

n)

)
= exp(−e−t ).

On the other hand, log logB2
n = log log n + o(1) by (10) again. Therefore,

a(n) max
1≤k≤n

S∗
k Bk − b(n)

= a(n)

a(B2
n)

(
a(Bn) max

1≤k≤n
S∗

k /Bk − b(Bn)

)
+ a(n)

a(B2
n)

b(B2
n) − b(n)

= (
1 + o(1)

)(
a(Bn) max

1≤k≤n
S∗

k /Bk − b(Bn)

)
+ o(1).

The assertion (26) immediately follows by an application of the continuous
mapping theorem. �

LEMMA 6. Let Xj , j ≥ 1, be independent normal random variables with
EXj = 0 and EX2

j < ∞. Let Sn = ∑n
j=1 Xj and s2

n = ∑n
j=1 EX2

j . Assume that
there exist positive constants α, β1 and β2 such that

β1n
αh(n) ≤ s2

n ≤ β2n
αh(n) for n sufficiently large,

where h(x) is a slowly varying function at ∞. Then

P (Sn ≥ snφn, i.o.) = 0 or = 1(28)

according as

J (φ) ≡
∞∑

n=1

φn

n
e−φ2

n/2 < ∞ or = ∞,(29)

where φn is a nondecreasing sequence of positive numbers.

PROOF. We may assume that 2 log2 n ≤ φ2
n ≤ 3 log2 n [cf., e.g., Bai (1989),

Lemma 1]. Let θ be an integer satisfying β1θ
α ≥ 4β2. Since h(x) is a slowly

varying function at ∞, it can be easily shown that

s2
θk+1 ≤ As2

θk , s2
θk ≤ 1

2s2
θk+1 for k sufficiently large(30)
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and (29) is correspondingly equivalent to

∞∑
k=1

log1/2 k exp
(− 1

2φ2
θk

)
< ∞ or = ∞.(31)

Put

an = snφn and bn = sn/φn.

It is well known that, for x > 0,

1√
2π

(
1

x
− 1

x3

)
exp

(
−x2

2

)
≤ 1 − �(x) ≤ 1√

2πx
exp

(
−x2

2

)
.(32)

Noting that Sn/sn is a standard normal random variable, from (30)–(32) we easily
obtain: if J (φ) < ∞, then

∞∑
n=1

min[1, (an+1 − an)/bn]P (Sn ≥ snφn)

≤ A

∞∑
k=1

1

sθk

θk+1∑
n=θk

(an+1 − an) exp
(
−1

2
φ2

n

)

≤ A

∞∑
k=1

sθk+1

sθk

log1/2 k exp
(
−1

2
φ2

θk

)
< ∞;

(33)

if J (φ) = ∞, then

∞∑
n=1

min[1, (an+1 − an)/bn]P (Sn ≥ snφn)

≥ A

∞∑
k=1

1

sθk+1

θk+1∑
n=θk

(an+1 − an) exp
(
−1

2
φ2

n

)

≥ A

∞∑
k=1

sθk+1 − sθk

sθk+1
log1/2 k exp

(
−1

2
φ2

θk+1

)
= ∞.

(34)

On the other hand, by using (32) and again that Sn/sn is a standard normal random
variable, it is easily seen that, for fixed u < v,

1 < lim
n→∞

P (Sn > an + bnu)

P (Sn > an + bnv)
= ev−u < ∞.(35)

Therefore, via (33)–(35), Lemma 6 follows immediately from Theorem 2 of Feller
(1970). �

We are now ready to prove the main results.
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PROOF OF THEOREM 1. Write Kn = exp(log1/3 n),

�1 =
{
k :

k∑
j=1

|Zj | ≤ Bk/ log log k

}
,

�2 =
{
k :

k∑
j=1

E|Zj | ≤ Bk/ log logk

}

and � = {k :Kn ≤ k ≤ n} ∩ �1 ∩ �2. Recalling (27), we obtain from Theorem 3.1
in Shao (1995) that lim supn→∞ S∗

n/(2B2
n log log n)1/2 = 1 a.s. Thus,

max
1≤k≤Kn

S∗
k /Bk ≤

√
2 log log Kn ≤

√
2/3 log logn a.s.(36)

for n sufficiently large. Since b(n) > a(n)
√

2 log log n, using (20), (21) and (36),
it is easy to see that

a(n)max
k /∈�

S∗
k /Bk − b(n) → −∞ a.s.

Similarly, using (18), (19) and

lim sup
n→∞

Sn/(2V 2
n log logn)1/2 = 1 a.s.(37)

[cf. Griffin and Kuelbs (1989)], we get

a(n)max
k /∈�

Sk/Vk − b(n) → −∞ a.s.

These facts combined with Lemma 7 of Einmahl (1989) and Lemma 5, together
imply that Theorem 1 will follow if we can prove

Ln ≡ a(n)max
k∈�

∣∣∣∣Sk

Vk

− S∗
k

Bk

∣∣∣∣ = o(1) a.s.(38)

Recalling (12), we get

∞∑
j=1

(log log j)2

B4
j

EX4I(|X|≤ηj )

≤ A

∞∑
k=1

EX4I(ηk<|X|≤ηk+1)

∞∑
j=k

(log log j)2

j2l2(ηj )

≤ A

∞∑
k=1

k

(log log k)6 P (ηk < |X| ≤ ηk+1)

≤ A

∞∑
k=1

1

(log log k)6
P (|X| ≥ ηk) < ∞.

(39)
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Thus, via the Borel–Cantelli lemma and the Kronecker lemma, we easily obtain

log log k

B2
k

k∑
j=1

(Y 2
j − EY 2

j ) → 0 a.s.,

and hence,

max
k∈�

log log k

B2
k

∣∣∣∣∣
k∑

j=1

(Y 2
j − EY 2

j )

∣∣∣∣∣
≤ max

Kn≤k≤n

log log k

B2
k

∣∣∣∣∣
k∑

j=1

(Y 2
j − EY 2

j )

∣∣∣∣∣ → 0 a.s.

(40)

On the other hand, if k ∈ �, then log log k ≥ 1
3 log log n and

k∑
j=1

(
Z2

j + (E|Zj |)2) ≤
(

k∑
j=1

|Zj | + E|Zj |
)2

≤ 36(Bk/ log logn)2.(41)

Combining (37), (40), (41) and EX = 0, it can be easily shown that

Ln ≤ a(n)max
k∈�

∣∣∣∣Sk

Vk

− Sk

Bk

∣∣∣∣ + a(n)max
k∈�

1

Bk

k∑
j=1

(|Zj | + E|Zj |)

≤ a(n)max
k∈�

|Sk| |V 2
k − B2

k |
VkBk(Vk + Bk)

+ 6(log logn)−1/2

≤ 2(log log n)max
k∈�

1

B2
k

∣∣∣∣∣V 2
k −

k∑
j=1

EY ∗2
j

∣∣∣∣∣ + 6(log logn)−1/2

≤ 6 max
k∈�

log logk

B2
k

∣∣∣∣∣
k∑

j=1

(Y 2
j − EY 2

j )

∣∣∣∣∣
+ 2(log log n)max

k∈�

1

B2
k

k∑
j=1

(|Zj |2 + (E|Zj |)2) + 6(log logn)−1/2

→ 0 a.s. as n → ∞.

This proves (38) and, hence, the proof of Theorem 1 is complete. �

PROOF OF THEOREM 2. In terms of (39), by using Theorem 4.1 of Shao
(1995) with bn = ηn and Hn = Bn/

√
log logn, we get that there exists a sequence

of independent normal random variables {Wj, j ≥ 1}, Wj
D= N(0,EY ∗2

j ), such that

n∑
j=1

Y ∗
j −

n∑
j=1

Wj = o
(
Bn/

√
log logn

)
a.s.(42)
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As before, we assume without loss of generality that

2 log2 n ≤ φ2
n ≤ 3 log2 n

[cf., e.g., Bai (1989), Lemma 1]. Put Un = ∑n
j=1 Wj . Recalling (38) and (42), it is

clear that if
∑n

j=1 |Zj | ≤ Bn/ log logn and
∑n

j=1 E|Zj | ≤ Bn/ log logn, then

∣∣∣∣Sn

Vn

− Un

Bn

∣∣∣∣ ≤
∣∣∣∣Sn

Vn

− S∗
n

Bn

∣∣∣∣ +
∣∣∣∣ |S∗

n − Un|
Bn

∣∣∣∣
≤ 1

4
(log logn)−1/2 a.s.

Thus, by using Lemma 4, one concludes easily that

P (Sn ≥ Vnφn, i.o.)

≤ P
(
Un ≥ Bn(φn + 1/φn), i.o.

)

+ P

(
Sn ≥ Vn

√
log logn,

n∑
j=1

|Zj | ≥ Bn/ log logn, i.o.

)

+ P

(
Sn ≥ Vn

√
log logn,

n∑
j=1

E|Zj | ≥ Bn/ log log n, i.o.

)

= P
(
Un ≥ Bn(φn + 1/φn), i.o.

)

(43)

and

P (Un ≥ Bnφn, i.o.)

≤ P
(
Sn ≥ Vn(φn + 1/φn), i.o.

)

+ P

(
Un ≥ Bnφn,

n∑
j=1

|Zj | ≥ Bn/ log logn, i.o.

)

+ P

(
Un ≥ Bnφn,

n∑
j=1

E|Zj | ≥ Bn/ log log n, i.o.

)

≤ P
(
Sn ≥ Vn(φn + 1/φn), i.o.

)

+ P

(
S∗

n ≥ Bn

√
log logn,

n∑
j=1

|Zj | ≥ Bn/ log logn, i.o.

)

+ P

(
S∗

n ≥ Bn

√
log logn,

n∑
j=1

E|Zj | ≥ Bn/ log log n, i.o.

)

= P
(
Sn ≥ Vn(φn + 1/φn), i.o.

)
.

(44)
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Since, for any fixed real constant D, replacing φn by φn + D/φn does not change
the convergence of the series (6), Theorem 2 follows immediately from (43), (44)
and Lemma 6. �
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BERTOIN, J. (1998). Darling–Erdős theorems for normalized sums of i.i.d. variables close to a stable

law. Ann. Probab. 26 832–852.
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