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ON THE STRONG LAW OF LARGE NUMBERS

BY RYSZARD JAJTE

University of Łódź

A version of the SLLN for a large class of means is proved.

The result presented in this paper is closely related to two classical theo-
rems. Namely, it links in some sense the SLLN of Kolmogorov and that of
Marcinkiewicz. The celebrated results just mentioned say that the averages, for
0 < α < 2,

1

n1/α

n∑
k=1

(Xk − c), n = 1,2, . . . ,

converge a.s. if and only if E|X|α < ∞, c being 0 or EX, according as α < 1
or α ≥ 1. Let us stress here that the Kolmogorov SLLN (α = 1) concerns the
arithmetic (Cesàro) means being a regular method of summability, which is not
the case when 0 < α < 2, α �= 1.

We consider a large class of summability methods, which are defined as follows.
Let g be a positive, increasing function and h a positive function such that

φ(y) ≡ g(y)h(y) satisfies the following conditions:

(i) For some d ≥ 0, φ is strictly increasing on [d,∞) with range [0,∞).
(ii) There exist C and a positive integer k0 such that φ(y + 1)/φ(y) ≤ C,

y ≥ k0.
(iii) There exist constants a and b such that

φ(s)2
∫ ∞
s

1

φ(x)2
dx ≤ as + b, s > d.

For h and g as above, the (h, g)-transform of a sequence x = {ξn} is given by

σn(x) = 1

g(n)

n∑
k=1

1

h(k)
ξk, n = 1,2, . . . .(1)

If σn(x) → ξ , then we say that (ξn) is summable (limitable) to ξ by the meth-
od (h, g) and write (h, g) − lim ξk = ξ . It should be stressed here that the above
class of sequence transformations includes several regular summability methods
such as Cesàro means [h(y) = 1, g(y) = y] or logarithmic means [h(y) = y,
g(y) = logy] but also embraces nonregular transformations. For example, the
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choice h(y) = 1 and g(y) = y1/α , 0 < α < 2, α �= 1, gives the means related to
the Marcinkiewicz theorem.

Let us formulate the strong law of large numbers for the means just defined.

THEOREM. Let h and g be as above and let (X,X1,X2, . . .) be a sequence of
i.i.d. random variables. Let us put

mk = E
[
Xk1{|Xk|≤φ(k)}

]
.(2)

Then the following two conditions are equivalent:

(h, g) − lim(Xk − mk) = 0 a.s.,(3)

E
[
φ−1(|X|)] < ∞,(4)

where φ−1 is the inverse of φ.

PROOF. (3) → (4). Since limk→∞(mk/φ(k)) = 0, condition (3) implies
limk→∞(Xk/φ(k)) = 0 a.s. Consequently,

∞∑
k=1

P
(|Xk| ≥ φ(k)

) =
∞∑

k=1

P
(
φ−1(|X|) ≥ k

)
< ∞,

which implies (4).
(4) → (3). Let E[φ−1(|X|)] < ∞. Then

∞∑
k=1

P
(|Xk| ≥ φ(k)

) =
∞∑

k=1

P
(
φ−1(|X|) ≥ k

) ≤ E
[
φ−1(|X|)] < ∞.

Let us set

Xn = Xn1{|Xn|≤φ(n)},

so ∑
k

P (Xk �= Xk) < ∞.

By the Borel–Cantelli lemma, it is enough to show that

1

g(n)

∞∑
k=1

(Xk − mk)

h(k)
→ 0 a.s.(5)

To this end we estimate the series

∞∑
k=1

EX
2
k

φ(k)2
= E

∞∑
k=1

X2

φ(k)2
1{|X|≤φ(k)}.
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Note that, since |X| = φ(φ−1(|X|)),
∞∑

k=1

X2

φ(k)2 1{|X|≤φ(k)} ≤ k0 + C2
∞∑

k=k0+1

X2

φ(k + 1)2 1{|X|≤φ(k)}

≤ k0 + C2X2
∫ ∞
φ−1(|X|)

1

φ(x)2 dx

≤ k0 + C2aφ−1(|X|) + C2b.

[The above short argument with the use of the identity φ(φ−1(|X|)) = |X| is due
to the referee.]

By (4) we get

∞∑
n=1

EX
2
n

φ(n)2 < ∞,

which, in turn, implies

∞∑
n=1

E

[
Xn − mn

φ(n)

]2

< ∞.

Consequently, the series

∞∑
n=1

Xn − mn

φ(n)

converges almost surely and it is enough to apply the Kronecker lemma. �

REMARKS. (a) It is clear that the theorem essentially gives the classical result
of Marcinkiewicz [for φ(x) = x1/α].

(b) Our theorem seems to be new also for a particular case of logarithmic means

1

log n

n∑
k=1

1

k
(Xk − mk)(1′)

(cf. [1], pages 106 and 314), that is, for φ(x) = x log x.
It is worth noting here that in this case

E(|X|α) ≤ Eφ−1(|X|) ≤ E(|X|) for 0 < α < 1.

Thus, the moment condition (4) is situated between that of Kolmogorov and
Marcinkiewicz.
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POLAND

E-MAIL: rjajte math.uni.lodz.pl


