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ON CONCENTRATION OF DISTRIBUTIONS
OF RANDOM WEIGHTED SUMS1

BY S. G. BOBKOV

University of Minnesota

For noncorrelated random variables, we study the rate of approximation
of distributions of weighted sums by “typical” distributions.

1. Introduction. Let X = (X1, . . . ,Xn), n ≥ 2, be a vector of n random
variables with finite second moments such that

EXkXj = δkj ,(1.1)

where δkj is Kronecker’s symbol. Consider the sums

Sθ =
n∑

k=1

θkXk

with coefficients θ = (θ1, . . . , θn) taken from the unit sphere Sn−1, that is, such
that θ2

1 + · · · + θ2
n = 1.

When Xk’s are independent, identically distributed and have mean zero, the
standard theory indicates (cf., e.g., [15]), that the distribution function of Sθ ,

Fθ(t) = P{Sθ ≤ t}, t ∈ R,

is close to the standard normal law �, as soon as maxk |θk| is small. Various
extensions of this fundamental fact are known under different assumptions on
dependence of the coordinates Xk’s and for prescribed (fixed) coefficients. Note
that the condition maxk |θk| = o(1) defines a set � on the sphere whose spherical
(normalized Lebesgue) measure σn−1(�) is almost 1. One may wonder therefore
whether or not, in a reasonably general situation, one can choose a similar big
set � ⊂ Sn−1 depending on X such that, for all θ ∈ �, the uniform distance
‖Fθ − �‖∞ = supt∈R |Fθ(t) − �(t)| is small enough. Other metrics would also
be of interest.

In essence, this question contains two different concentration problems. First,
one may ask whether most of Fθ ’s are close to a certain distribution, say, to the
average distribution

F(t) =
∫
Sn−1

Fθ(t) dσn−1(θ).

Received June 2001; revised July 2002.
1Supported in part by NSF Grant.
AMS 2000 subject classifications. Primary 60F, 60G; secondary 46G.
Key words and phrases. Concentration, typical distributions, central limit theorem.

195



196 S. G. BOBKOV

The second problem would be then how to measure the difference between
F and �. With this formulation, the first problem, interesting in itself, was first
studied by Sudakov [18]. He applied the isoperimetric theorem on the sphere
to obtain in particular the following qualitative result: for each δ > 0, there is
an integer nδ such that, if n ≥ nδ one can choose a set �δ ⊂ Sn−1 of measure
σn−1(�δ) ≥ 1 − δ with

κ(Fθ ,F ) =
∫ +∞
−∞

|Fθ(t) − F(t)|dt ≤ δ for all θ ∈ �δ.(1.2)

Thus, the concentration property of the family {Fθ }θ∈Sn−1 has a very universal
character since no additional requirement on the distribution of X beyond (1.1)
is needed. The latter can further be relaxed to E 〈θ,X〉2 ≤ 1 (θ ∈ Sn−1), and this
is what was actually assumed in [18]. Moreover, with a similar conclusion, the
spherical measure σn−1 may be replaced with a suitably normalized Gaussian
measure on Rn. A different proof of this result was recently suggested by von
Weizsäcker [19]. He also obtained a quantitative version for Gaussian coefficients
and for a specially constructed metric κ∗. As turns out, the “Gaussian coefficients”
approach allows one to reach a rather general formulation for infinite-dimensional
Gaussian cylindrical measure.

The study of the problem was continued by Antilla, Ball and Perissinaki [1] who
considered an important special situation where the random vector X is uniformly
distributed over an arbitrary centrally symmetric convex body in Rn. Under (1.1),
they prove that, for any δ > 0, except for a set of directions of measure at most
4
√

n logn e−nδ2/50, one has ‖Fθ − F‖∞ ≤ δ; that is,

σn−1{‖Fθ − F‖∞ ≥ δ} ≤ 4
√

n logn e−nδ2/50.(1.3)

In addition to the concentation phenomenon on the sphere, the proof of [1]
essentially relies on some deep facts from convex geometry (such as Busemann’s
theorem, convexity of the floating body). It is therefore to be understood what
feature the convexity assumption brings in the concentration property of the
weighted sums, and how to quantify for canonical metrics Sudakov’s observation
in nonconvex case.

To treat the general case, it is unlikely to be possible to work with the
uniform distance since the average distribution F may degenerate at zero (at least
asymptotically). Together with the Kantorovich–Rubinshtein distance κ(Fθ ,F ),
we consider the Lévy distance L(Fθ ,F ) defined as the minimum over all δ ≥ 0
such that F(t − δ) − δ ≤ Fθ(t) ≤ F(t + δ) + δ for all t ∈ R. As well as κ , the
metric L is responsible for the weak convergence, and since F and all Fθ ’s have
unit second moments, there is a simple relation κ(Fθ ,F ) ≤ CL(Fθ ,F )1/2 (with C

universal). In Section 2, we prove the following:

THEOREM 1.1. If (1.1) holds true, for all δ > 0,

σn−1{L(Fθ,F ) ≥ δ} ≤ 4n3/8 e−nδ4/8.(1.4)



RANDOM WEIGHTED SUMS 197

Thus, in (1.2) one can take nδ at least of order cδδ
−8 up to a logarithmically

growing factor cδ (as δ ↓ 0).
The difference between inequalities (1.3) and (1.4) appears in particular in the

strength of concentration, and we believe this is due to the additional assumption
on the shape of the distribution of X. We do not know how sharp the estimate (1.4)
is; nevertheless, the inequality (1.3) can further be sharpened and extended to the
family of all (isotropic) log-concave probability distributions on Rn. For short, we
say that the random vector X is log-concave, if it has a density p on Rn such that
p(tx + (1 − t)y) ≥ p(x)tp(y)1−t , whenever x, y ∈ Rn and t ∈ (0,1). In Section 3
we prove the theorem.

THEOREM 1.2. Assume a log-concave random vector X has mean zero and
satisfies the correlation condition (1.1). Then, for all δ > 0,

σn−1

{
sup
t∈R

ec|t| |Fθ(t) − F(t)| ≥ δ

}
≤ C

√
n log ne−cnδ2

,(1.5)

where c and C are positive universal constants.

According to (1.4), in order to approximate Fθ ’s by the standard normal
distribution function �, one needs to estimate the uniform distance ‖F − �‖∞.
The average distribution F can be characterized as the distribution of the product
θ1|X|, where θ1, the first coordinate of a point on the sphere, is regarded as a
random variable independent of the Euclidean norm |X| = (X2

1 + · · · + X2
n)

1/2.
As is well known, the distribution function �n of θ1

√
n under the measure σn−1

satisfies ‖�n − �‖∞ = O( 1√
n
), as n → ∞. Therefore, the distance ‖F − �‖∞

depends on how strong the distribution of |X|√
n

is concentrated around the point
t = 1. In particular, it depends on the smallest value εn = εn(X) such that

P
{∣∣∣∣ |X|√

n
− 1

∣∣∣∣ ≥ εn

}
≤ εn.(1.6)

Combining Theorem 1.1 with (1.6), we may conclude that, for any δ > 0, except
for a set of directions of measure at most 4n3/8 e−nδ4/8,

sup
t∈R

|Fθ(t) − �(t)| ≤ C(δ + εn),(1.7)

where C is a universal constant. In particular, this leads to the following version
of the central limit theorem. A similar observation was made by Diaconis and
Freedman ([6], Theorem 1.1) and by von Weizsäcker ([19], Theorem 3).

COROLLARY 1.3. Let (Xk)k≥1 be a sequence of random variables satisfy-
ing (1.1) and such that the following weak law of large numbers is fulfilled:

X2
1 + · · · + X2

n

n
→ 1 as n → ∞.
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Then for some collection {θnk}nk=1 such that θ2
n1 + · · · + θ2

nn = 1,

n∑
k=1

θnkXk → N(0,1) as n → ∞.

The smallest value of εn in (1.6) is indeed very small in many interesting
situations, and so the inequality (1.6) itself can be viewed as a certain general
concentration hypothesis needing to be verified for wide classes of distributions
on Rn. From this point of view, an inequality similar to (1.7) was derived on
the basis of (1.3) in [1], where the hypothesis (1.6) was verified for several
subclasses of convex bodies. As for the general log-concave case, the property
that, under (1.1), a sequence εn → 0 in (1.6) can be chosen independent of X

represents a weak form of Kannan–Lovász–Simonovits’ conjecture on Cheeger-
type isoperimetric constants (cf. [10]).

2. Concentration in Lévy and uniform metric. As usual, 〈·, ·〉 denotes the
scalar product in Rn. As noticed and used in [18], for each function g on R with
Lipschitz seminorm ‖g‖Lip ≤ C, provided that E|〈θ,X〉| ≤ |θ |, for all θ ∈ Rn, the
function

f (θ) = Eg(〈θ,X〉)(2.1)

has on Rn the Lipschitz seminorm at most C. Any such function, being considered
on the sphere, is strongly concentrated around its mean f̄ = ∫

Sn−1 f (θ) dσn−1(θ),
in the sense that

σn−1
{|f − f̄ | ≥ δ

} ≤ 2e−(n−1)δ2/(2C2), δ > 0.(2.2)

This concentration inequality is known as a consequence of Lévy’s isoperimetric
theorem on the sphere (cf. [13, 12]) and can also be refererred to the property that
the logarithmic Sobolev constant of Sn−1 is equal to n − 1 [14].

PROOF OF THEOREM 1.1. We apply (2.2) to functions fa(θ), a ∈ R, defined
via (2.1) with

ga(t) =



1, if t ≤ a,
1 − 2(t − a)/δ, if t ∈ [a, a + δ/2],
0, if t ≥ a + δ/2.

Since C = ‖ga‖Lip = 2
δ
, we thus have

σn−1
{|fa − f̄a| ≥ δ

} ≤ 2e−(n−1)δ4/8, δ > 0,(2.3)

where f̄a is the mean of fa over (Sn−1, σn−1).
Now, due to 1(−∞,a] ≤ ga ≤ 1(−∞,a+δ/2],

Fθ(a) ≤ fa(θ) ≤ Fθ(a + δ/2)(2.4)
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for all θ . Taking the average over θ ’s, we also have

F(a) ≤ f̄a ≤ F(a + δ/2).(2.5)

For a fixed δ ∈ (0,1), put �(a) = {θ ∈ Sn−1 : |fa(θ) − f̄a| < δ}. We may
take a sequence of numbers a0 < a1 < · · · < aN such that ak − ak−1 ≤ δ/2,
k = 1, . . . ,N , and a0 = −(aN + δ) = −1/

√
δ. Assume θ ∈ ⋂N

k=1 �(ak) and take
any real t ∈ [ak−1, ak). Then, by (2.4) and (2.5),

Fθ(t) ≤ Fθ(ak) ≤ fak
(θ) ≤ f̄ak

+ δ ≤ F(ak + δ/2) + δ ≤ F(t + δ) + δ.

Similarly, F(t) ≤ Fθ(t + δ) + δ.
Analogous estimates will also hold for all t > aN and t < a0, if the numbers

−a0 and aN are so large that

1 − F(aN + δ) ≤ δ, F (a0) ≤ δ,

1 − Fθ(aN + δ) ≤ δ, Fθ(a0) ≤ δ.

Here, we involve the assumption (1.1) from which it follows that
∫ +∞
−∞ t2 dFθ(t) =∫ +∞

−∞ t2 dF (t) = 1. By Chebyshev’s inequality, since a0 = −(aN + δ) = −1/
√

δ,
we get

(
1 − F(aN + δ)

) + F(a0) = (
1 − F(−a0)

) + F(a0) ≤ 1

a2
0

= δ.

The same argument may be repeated for Fθ . Thus, for all t ∈ R, F(t) ≤ Fθ(t +
δ) + δ and Fθ(t) ≤ F(t + δ) + δ, which is equivalent to saying that L(Fθ ,F ) ≤ δ.

Thus, we arrived at the inclusion
⋂N

k=1 �(ak) ⊂ {θ ∈ Sn−1 :L(Fθ ,F ) ≤ δ}. As
a result, by (2.3), applied to a = a1, . . . , ak , we obtain

σn−1{L(Fθ,F ) > δ} ≤
N∑

k=1

(
1 − σn−1(�(ak))

) ≤ 2Ne−(n−1)δ4/8.

It remains to estimate from above the minimal possible N . The total length of
the intervals [ak−1, ak], 1 ≤ k ≤ N , is at most Nδ/2. On the other hand, it must
be equal to aN − a0 = −2a0 − δ = 2√

δ
− δ. Therefore, 1

2 Nδ ≥ 2√
δ

− δ, that is,

N ≥ 4
δ
√

δ
−2. It should also be clear that the minimal possible N is at most 4

δ
√

δ
−1.

Hence,

σn−1{L(Fθ,F ) > δ} ≤
(

8

δ3/2 − 2
)
e−(n−1)δ4/8,

and the desired inequality (1.4) will follow from 8
δ3/2 − 2 ≤ 4n3/8e−δ4/8. In view

of the assumption δ ≤ 1, the latter is implied by 8
δ3/2 − 2 ≤ 4n3/8e−1/8. Here, for

nδ4 ≥ 8, we are reduced to 8
δ3/2 − 2 ≤ 4·83/8

δ3/2 e−1/8 which in the worst case δ = 1
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is easily verified to hold true. In the case nδ4 ≤ 8, there is nothing to prove since
then

σn−1{L(Fθ,F ) > δ} ≤ 1 ≤ 4n3/8 e−nδ4/8. �

Theorem 1.1 is proved and, as its immediate consequence, we obtain the
corollary.

COROLLARY 2.1. Under (1.1), infθ∈Sn−1 L(Fθ ,F ) ≤ C (
log n

n
)1/4, where C is

a universal constant.

REMARK 2.2. As already mentioned, given two distribution functions
G and H with

∫ +∞
−∞ t2 dG(t) = ∫ +∞

−∞ t2 dH(t) = 1, the Kantorovich–Rubinshtein
distance κ(G,H) and the Lévy metric L(G,H) are related by

κ(G,H) ≤ CL(G,H)1/2.(2.6)

Indeed, put δ = L(G,H), 0 ≤ δ ≤ 1, so that H(t − δ) − δ ≤ G(t) ≤ H(t + δ) + δ

for all t ∈ R. Hence, for all t ∈ R,

|G(t) − H(t)| ≤ (
G(t) − G(t − δ)

) + (
H(t) − H(t − δ)

) + δ.

Integrating this inequality in −b < t < b, we get
∫ b
−b |G(t) − H(t)|dt ≤ 2(b +

1)δ. From Chebyshev’s inequalities G(−t) + (1 − G(t)) ≤ 1/t2, H(−t) + (1 −
H(t)) ≤ 1/t2, t > b, one also derives

∫ −b
−∞ |G(t) − H(t)|dt + ∫ +∞

b |G(t) −
H(t)|dt ≤ 2/b. As a result, κ(G,H) ≤ 2(b + 1)δ + 2/b. Optimizing over b ≥ 1
yields κ(G,H) ≤ 2(2

√
δ + δ) ≤ 6

√
δ.

Thus, the inequality (2.6) holds true with C = 6, and we have in particular

κ(Fθ ,F ) ≤ 6L(Fθ,F )1/2 for all θ ∈ Sn−1.

Therefore, by Theorem 1.1,

σn−1{θ :κ(Fθ ,F ) ≥ δ} ≤ 4n3/8 e−cnδ8
, δ > 0,

for some universal constant c > 0.

REMARK 2.3. The Lévy metric can also be related to the uniform distance by

‖G − H‖∞ ≤ (1 + C)L(G,H),(2.7)

provided, however, that H has a density H ′ bounded by a constant C. This estimate
may be applied in particular to our case G = Fθ , H = F . Recall that F represents
the distribution function of θ1|X|, where θ1 is the first coordinate of a random
vector independent of |X| and uniformly distributed over Sn−1. Hence, denoting
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by �n and ϕn = �′
n the distribution function and the density of

√
nθ1, respectively,

we see that, for all t ∈ R,

F(t) = E�n

(√
n

|X| t

)
, F ′(t) = E

√
n

|X| ϕn

(√
n

|X| t

)
.(2.8)

The density ϕn is symmetric, is log-concave, and attains its maximum at zero.

Hence, F ′(t) is maximized at t = 0 so that C ≡ ‖F ′‖∞ = ϕn(0)E
√

n
|X| . Moreover,

as is well known, for all t ∈ R, ϕn(t) converges pointwise, as n → ∞, to
ϕ(t) = 1√

2π
e−t2/2. Hence, ϕn(0) ≤ 1 at least for large enough n. More precisely,

denoting by sn−1 the (n − 1)-dimensional volume of Sn−1, we have ϕn(0) =
sn−1/(sn−2

√
n) = 1/(2

√
n

∫ π/2
0 cosn−2 udu) from which it follows that ϕn(0) ≤ 1

2
for all n ≥ 1 (cf. [13], page 5). Note also that, by Jensen’s inequality, since

E|X|2 = n, necessarily E
√

n
|X| ≥ 1. As a result, we obtain the following corollary

from Theorem 1.1.

COROLLARY 2.4. Under (1.1), for all δ > 0, there is a set �δ ⊂ Sn−1 of
measure σn−1(�δ) ≥ 1 − 4n3/8e−nδ4/8 such that, for all θ ∈ �δ ,

sup
t∈R

|Fθ(t) − F(t)| ≤ 2δ E
√

n

|X| .

Now, in order to connect the above estimates with the central limit theorem,
assume inequality (1.6),

P
{∣∣∣∣ |X|√

n
− 1

∣∣∣∣ ≥ εn

}
≤ εn(2.9)

holds true for a certain (small) number εn ≥ 0. Then we have the following
statement which immediately implies Corollary 1.3.

COROLLARY 2.5. Under (1.1) and (2.9), for all δ > 0,

σn−1

{
sup
t∈R

|Fθ(t) − �(t)| ≥ 4εn + δ

}
≤ 4n3/8 e−cnδ4

,(2.10)

where c is a universal constant.

For example, one may treat the sequence

X(ω) = (
1,

√
2 cos(ω),

√
2 sin(ω), . . . ,

√
2 cos(nω),

√
2 sin(nω)

)
,

−π < ω < π,

as a random vector in R2n+1 with respect to the uniform distribution P on the
interval (−π,π). In this case εn = 0, so the most of the trigonometric polynomials
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Tθ = θ0 + √
2

∑n
k=1(θ2k−1 cos(kω) + θ2k sin(kω)) with norm ‖Tθ‖L2(P) = 1 have

distribution functions which are very close to �.
For the proof of Corollary 2.5, we need two simple claims.

LEMMA 2.6. Let � be a symmetric around zero, unimodal distribution
function. Then |�(αt) − �(t)| ≤ |α − 1| for all α > 0 and t ∈ R.

PROOF. By symmetry, let t > 0. In addition, � can be assumed to have a
continuous nonincreasing density ψ(t) in t > 0. For α ≥ 1, the desired inequality
becomes �(αt) − �(t) ≤ α − 1 which turns into equality at α = 1. Since the left-
hand side is concave in α, it suffices to compare the derivatives at α = 1: we arrive
at tψ(t) ≤ 1. The latter follows from the stronger bound 1

2 ≥ ∫ t
0 ψ(s) ds ≥ tψ(t).

When 0 ≤ α ≤ 1, the desired inequality becomes �(t) − �(αt) ≤ 1 − α. It is true
at the end points α = 0 and α = 1, so it holds for all α since the left-hand side is
convex in α. �

LEMMA 2.7. ‖�n − �‖∞ ≤ 4√
n

, for all n ≥ 1.

PROOF. Assume n ≥ 16 and introduce an i.i.d. N(0,1)-sequence Z =
(Z1, . . . ,Zn) so that �n(t) = P{Z1 ≤ |Z|√

n
t}, �(t) = P{Z1 ≤ t}, where |Z| =

(Z2
1 + · · · + Z2

n)
1/2. Then, for any t > 0,

|�n(t) − �(t)| = P
{
t ≤ Z1 ≤ |Z|√

n
t

}
+ P

{ |Z|√
n

t ≤ Z1 ≤ t

}
.(2.11)

If t2 ≥ n, the second probability vanishes, while the first is bounded by 1 −
�(

√
n) < 1√

n
. So, assume t2 < n, in which case (2.11) becomes

|�n(t) − �(t)| = E
∣∣∣∣�

(
ξ√

n − t2
t

)
− �(t)

∣∣∣∣,(2.12)

where ξ = (Z2
2 + · · · + Z2

n)
1/2. Since |�(

ξ√
n−t2

t) − �(t)| ≤ 1
2e−t2/2 +

1
2e−t2ξ 2/2(n−t2), we get

|�n(t) − �(t)| ≤ 1

2
e−t2/2 + 1

2

(
Ee−t2Z2

2/2(n−t2)
)n−1

= 1

2
e−t2/2 + 1

2

(
1 − t2

n

)(n−1)/2

.

If t2 ≥
√

n
2 , the right-hand side is at most 1

2e−√
n/4 + 1

2 (1 − 1
2
√

n
)(n−1)/2 < 2√

n
.
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At last, assume t2 <
√

n
2 . To estimate the right-hand side of (2.12) in this case,

by Lemma 2.6, we get∣∣∣∣�
(

ξ√
n − t2

t

)
− �(t)

∣∣∣∣ ≤ |ξ − √
n − t2|√

n − t2
≤ |ξ2 − (n − t2)|

n − t2

≤ |ξ2 − (n − 1)|
n − t2

+ |t2 − 1|
n − t2

≤ 2|ξ2 − (n − 1)|
n

+ 1√
n
,

where we used the assumption t2 <
√

n
2 ≤ n

2 on the last step. It remains to note that

E|ξ2 − (n − 1)| ≤
√

Var(ξ2) = √
2n. �

PROOF OF COROLLARY 2.5. Assume εn ∈ (0, 1
3 ] [otherwise the inequal-

ity (2.10) is immediate]. In case | |X|√
n

− 1| ≤ εn, by Lemma 2.6, for all t ∈ R,

∣∣∣∣�n

(
t

|X|/√n

)
− �n(t)

∣∣∣∣ ≤
∣∣∣∣ 1

|X|/√n
− 1

∣∣∣∣ ≤ εn

1 − εn

≤ 1.5εn,

so |�n(
t

|X|/√n
) − �(t)| ≤ ‖�n − �‖∞ + 1.5εn. Using |�n(

t
|X|/√n

) − �(t)| ≤ 1

for the remaining case | |X|√
n

− 1| > εn, and recalling the definition (2.8) and the
assumption (2.9), we get

‖F − �‖∞ ≤ E sup
t

∣∣∣∣�n

(
t

|X|/√n

)
− �(t)

∣∣∣∣ ≤ ‖�n − �‖∞ + 2.5εn.

Thus, by Lemma 2.7, L(F,�) ≤ ‖F − �‖∞ ≤ 4√
n

+ 2.5εn. Combaining this
estimate with Theorem 1.1, we therefore obtain that, for any δ > 0, except for
a set of directions of σn−1-measure at most 4n3/8e−nδ4/8, one has L(Fθ ,�) ≤
δ + 4√

n
+ 2.5εn. Hence, by (2.7) applied to G = Fθ and H = �,

‖Fθ − �‖∞ ≤
(

1 + 1√
2π

)(
δ + 4√

n
+ 2.5εn

)
< 2δ + 6√

n
+ 4εn.

Here, since only the values δ ≥ const · n−1/4 are of interest, the term 6√
n

can be

absorbed by δ at the expense of a suitable constant c in the exponential e−cnδ4

in (2.10). This proves Corollary 2.5. �

One of the natural ways to bound the optimal value of the parameter εn in (2.9)

is to use Chebyshev’s inequality P{| |X|√
n

− 1| ≥ ε} ≤ P{| |X|2
n

− 1| ≥ ε} ≤ Var(|X|2)
n2ε2 .

Consequently, one can take in Corollary 2.5,

εn = Var(|X|2)1/3

n2/3 .
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For example, when Var(|X|2) = O(n), εn would be of order at most 1
n1/3 and then

it will again be absorbed by δ in (2.10). In general,

Var(|X|2) =
n∑

k=1

Var(X2
k) + 2

∑
1≤k<j≤n

cov(X2
k ,X

2
j )

and one may get a previous estimate for εn if all the covariances cov(X2
k ,X

2
j ) are

not positive [in addition to Var(X2
k) = O(1)]. As shown by Ball and Perissinaki

in [3] and then applied in [1], this is the case for all X uniformly distributed over
�p-balls in Rn.

There is another general condition leading to the property Var(|X|2) = O(n).
Under mild integrability assumptions, the requirement that the most of linear
functionals 〈θ,X〉 have distribution functions close to � implies that, for most
of them, E〈θ,X〉4 ≤ 3 + o(1). In turn, the latter can be shown to yield closeness to
normality. In this connection, it is worthwile to mention the following interesting
comparison principle: if

E〈θ,X〉4 ≤ E〈θ,Z〉4 = 3 for all θ ∈ Sn−1,

where Z is a standard normal vector in Rn, then Var(|X|2) ≤ Var(|Z|2) = 2n.

Indeed, in general
∫ 〈θ,X〉4 dσn−1(θ) = |X|4

n(n+2)
, and in order to conclude, in

addition to the above hypothesis, we need only the assumption E|X|2 = n.

3. Sharpening in the log-concave case. Here we involve the additional
assumption that the distribution µ of the random vector X has a log-concave
density, say, p(x). Together with the basic isotropy condition (1.1),

E〈θ,X〉2 =
∫

Rn
〈θ, x〉2p(x) dx = |θ |2,(3.1)

we also assume that the vector X and thus all linear functionals 〈θ,X〉 (θ ∈ Rn)
have mean zero,

E〈θ,X〉 =
∫

Rn
〈θ, x〉p(x) dx = 0.(3.2)

The measure µ is supported by a convex set K in Rn, bounded or not, on
which the function p is positive and the function log p(x) is concave. In particular,
when K is symmetric and bounded, the measure µ can represent the normalized
Lebesgue measure on K . A striking observation made in [1] in this special
situation is that, under (3.1) and (3.2), the functions

f (θ) = Eg(〈θ,X〉),
being considered for non-Lipschitz g(x) = 1{〈θ,x〉≤t}, still have on Sn−1 finite
Lipschitz seminorms bounded by a universal constant. For any such g,

ft(θ) = Fθ(t) = P{〈θ,X〉 ≤ t}, θ ∈ Sn−1,
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represents the values of the distribution function of 〈θ,X〉 = ∑n
k=1 θkXk at a

given fixed point t ∈ R. Here we refine and extend this property to the class of
log-concave distributions.

PROPOSITION 3.1. Under (3.1) and (3.2), for every t ∈ R, the function ft has
on the unit sphere a finite Lipschitz seminorm satisfying

‖ft‖Lip ≤ Ce−c|t|,
where C and c are positive universal constants.

The proof requires some preparations. We need some estimates for one-
dimensional log-concave probability densities ρ = ρ(t) which are not necessarily
symmetric around the origin. The behavior of ρ is mainly determined by two
parameters—by the median m = m(ζ) and by the value ρ(m) at this point, or,
equivalently, by the expectation Eζ and by the variance Var(ζ ) = Eζ 2 − (Eζ )2

where ζ is a random variable having the density ρ. Often, the last two quantities
are more convenient. In particular, we have:

LEMMA 3.2. If the random variable ζ has a log-concave density ρ with
expectation a = Eζ and standard deviation σ = √

Var(ζ ), then for all t ∈ R,

ρ(t) ≤ C

σ
e−c|t−a|/σ ,(3.3)

where C and c are universal positive constants.

PROOF. First we show that, for all t ∈ R,

ρ(t) ≤ 6ρ(m)e−ρ(m) |t−m|.(3.4)

We may assume that t > 0 and m = 0 so that P{ζ ≥ 0} = ∫ +∞
0 ρ(x) dx = 1

2 .
Consider the value M(t) = supu e−u(t) where the supremum is taken over all

convex functions u on [0,+∞) such that e−u(0) = ρ(0) and∫ +∞
0

e−u(x) dx ≤ 1
2 .(3.5)

By convexity, for any such u, all these constrains will be fulfilled for the
function u0 which is linear in [0, t], is equal to +∞ on (t,+∞), and which
has values u0(0) = u(0), u0(t) = u(t). Hence, while computing M(t), we may
restrict ourselves to functions of the form uα(x) = − logρ(0) + αx, 0 ≤ x ≤ t

[and u(x) = +∞ for x > t]. The range of α is determined by (3.5), that is, by
ρ(0) 1−e−αt

α
≤ 1

2 . Since the function 1−e−y

y
is positive and decreases on the whole

real line, we may conclude that

M(t) = ρ(0)e−y where y is the solution of
1 − e−y

y
= 1

2ρ(0)t
.



206 S. G. BOBKOV

First consider the case ρ(0)t ≥ 1. Then y > 1 since otherwise 1−e−y

y
≥ 1−e−1 > 1

2

while 1
2ρ(0)t

≤ 1
2 . Thus, 1

2ρ(0)t
= 1−e−y

y
≥ 1

2y
from which it follows that y ≥ ρ(0)t .

Therefore,

ρ(t) ≤ M(t) ≤ ρ(0)e−ρ(0)t .

To treat the case ρ(0)t ≤ 1, just note that, by log-concavity, if G(x) = ∫ x
−∞ ρ(z) dz

is the distribution function of ζ , and if G−1 denotes its inverse, then I (s) =
ρ(G−1(s)) is concave on (0,1). Therefore, supx ρ(x) = sups I (s) ≤ 2I (1/2) =
2ρ(0). In particular, ρ(t) ≤ 2ρ(0) ≤ 6ρ(0) e−ρ(0)t . In both cases, we obtain the
desired estimate (3.4).

Now, starting from (3.4), we immediately obtain that |Eζ − m| ≤ 12/ρ(m).
Hence, applying (3.4) once more, we get

ρ(t) ≤ 6e12ρ(m)e−ρ(m)|t−a|.(3.6)

As for the value ρ(m), it can be related to the variance by

1

12 Var(ζ )
≤ ρ(m)2 ≤ 1

2 Var(ζ )
.(3.7)

These inequalities, for symmetric log-concave densities on the real line, were
proved by Ball [2]. The general nonsymmetric case was considered in [4].
Combining (3.6) with (3.7), we arrive at (3.3) with c = 1/

√
12 and C = 6 e12/

√
2

(the constants are far from being optimal). Lemma 3.2 has been proved. �

LEMMA 3.3. If a random variable ξ defined on some probability space (�,P)

has a log-concave density, then

1

e
≤ P{ξ ≤ Eξ} ≤ 1 − 1

e
.(3.8)

Both inequalities are sharp since on the right there is equality for ξ having
the standard exponential distribution [� = (0,+∞), dP(x) = e−x dx, ξ(x) = x].
Note that the left inequality in (3.8) is obtained from the right by applying it to −ξ .

The left inequality in (3.8) can be viewed as a “log-concave” version of the
known fact saying that for any convex body K in Rn and any half-space H

with ∂H passing through the centroid of K , one has voln(K ∩ H) ≥ 1
e
voln(K).

Moreover, in the space of the fixed dimension, the factor 1/e can be replaced
with ( n

n+1)n. This property was first observed Grünbaum [7] and Hammer [9] with
similar proofs based on the Schwarz symmetrization. For completeness, we give
below a simple straigthforward argument leading to (3.8).

PROOF OF LEMMA 3.3. The distribution of ξ is concentrated on an interval
(a, b), finite or not, where it has a positive log-concave density, say, g. Introduce
the distribution function G(x) = P{ξ ≤ x} = ∫ x

a g(z) dz, a < x < b, and its inverse
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G−1 : (0,1) → (a, b). Fix a point α ∈ (0,1). As in the proof of Lemma 3.2, we use
the property that the function I = g(G−1) is concave on (0,1) which implies in
particular that

I (u)

1 − u
≤ I (α)

1 − α
for u ∈ (0, α] and

I (u)

1 − u
≥ I (α)

1 − α
for u ∈ [α,1).

Since G−1(s) − G−1(α) = ∫ s
α

du
I (u)

, 0 < s < 1, we may write

Eξ =
∫ 1

0
G−1(s) ds =

∫ 1

0

[
G−1(α) +

∫ s

α

du

I (u)

]
ds

= G−1(α) +
∫ 1

α

1 − u

I (u)
du −

∫ α

0

u

I (u)
du

≤ G−1(α) + 1 − α

I (α)

∫ 1

α
du − 1 − α

I (α)

∫ α

0

u

1 − u
du

= G−1(α) + (1 − α)(1 + log(1 − α))

I (α)
.

Thus, Eξ ≤ G−1(α) + (1−α)(1+log(1−α))
I (α)

for all α ∈ (0,1). Taking α = 1 − 1
e
, we

arrive at Eξ ≤ G−1(1 − 1
e
) which is equivalent to G(Eξ) ≤ 1 − 1

e
. This is exactly

the right inequality in (3.8). �

LEMMA 3.4. If a random variable ξ defined on some Lebesgue probability
space (�,P) has a log-concave density, then for every measurable A ⊂ �,∫

A
|ξ |dP ≥ P(A)2

4
√

2

√
Var(ξ),

∫
A

|ξ |2 dP ≥ P(A)3

24
Var(ξ).(3.9)

PROOF. We use the same notation (a, b), g, G, G−1, I as in the proof of
Lemma 3.3. We may assume that p = P(A) > 0 and that 0 < G(0) < 1 [since
otherwise inequality (3.9) can be made stronger by adding a constant to ξ ].

The assumption on the probability space means that (�,P) can be transformed
to the interval (0,1) with a Borel probability measure which in turn, since the
distribution of ξ has no atom, can be assumed to be the normalized Lebesgue
measure on (0,1) (cf. [17]). Thus, we can start with � = (0,1) and ξ(s) = G−1(s).

By 0 < G(0) < 1, and since the function G−1 is increasing, we have
G−1(α) = 0, for some α ∈ (0,1). Hence, |G−1(s)| = | ∫ s

α
du

I (u)
| ≥ 1

sups I (s)
|s − α|.

Therefore, for each measurable set A ⊂ (0,1),∫
A

|ξ |dP =
∫
A

|G−1(s)|ds ≥ 1

sups I (s)

∫
A

|s − α|ds.(3.10)

It should also be clear that within the class of all measurable sets A ⊂ (0,1) of
Lebesgue measure mes(A) = p, the integral

∫
A |s − α|ds attains its minimum
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at some interval (c, d) of length p containing the point α. Moreover, in the
worst situation, one can take α = 1/2 and c = α − p

2 , d = α + p
2 , which yields∫

A |s − α|ds = p2

4 .
As already noted in the proof of Lemma 3.2, sups I (s) ≤ 2I (1/2) = 2g(m)

where m is the median of ξ . Therefore, by (3.7), sups I (s) ≤
√

2
Var(ξ )

. Together
with (3.10) this gives the first inequality of Lemma 3.4. A similar argument gives
the second inequality (although it can also be derived, with a worse constant, from
the first one by applying Cauchy’s inequality). �

Now, we turn to the original isotropic density p(x) of the measure µ on Rn

appearing in Proposition 3.1. We write the points in the form x = (y, t) where
y ∈ Rn−1 and t ∈ R.

LEMMA 3.5. Under (3.1) and (3.2), for every t ∈ R and every unit vector l

in Rn−1, ∫
Rn−1

|〈l, y〉|p(y, t) dy ≤ Ce−c|t|,

where C and c are positive universal constants.

PROOF. Set l+(y) = max{〈l, y〉,0}. This function is log-concave on Rn−1, so,
by Prékopa’s theorem [16], the function

u(t) =
∫

Rn−1
l+(y)p(y, t) dy

is log-concave on R (although it might be nonsymmetric even if the function p is
symmetric around the origin). We consider the linear functions ξ(y, t) = 〈l, y〉
and η(y, t) = t as log-concave random variables with respect to µ such that
Eξ = Eη = 0 and Eξ2 = Eη2 = 1 according to (3.1) and (3.2). Thus,∫ +∞

−∞
u(t) dt = Eξ+,

∫ +∞
−∞

tu(t) dt = Eξ+η,

∫ +∞
−∞

t2u(t) dt = Eξ+η2,

(3.11)

where ξ+ = max{ξ,0}. Now, introduce the log-concave probability density on the
line

ρ(t) = u(t)

Eξ+ , t ∈ R.(3.12)

Since we need to estimate the function u(t) from above, we apply Lemma 3.2 to ρ.
Let ζ be a random variable with this density. Then, by (3.11) and (3.12),

Eζ = Eξ+η

Eξ+ , Var(ζ ) = Eξ+η2Eξ+ − (Eξ+η)2

(Eξ+)2 .
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Introduce the half-space A = {ξ > 0} and the normalized restriction ν of
measure µ to A, that is, ν(B) = µ(B ∩ A)/µ(A). Then, the above variance can
also be written as

Var(ζ ) = µ(A)

Eξ+
∫

(η − a)2ξ dν = µ(A)

Eξ+ ‖(η − a)2ξ‖1,(3.13)

where a = Eζ and where we used notation ‖ψ‖α = (
∫ |ψ|α dν)1/α with respect

to measure ν and for α = 1. To bound ‖(η − a)2ξ‖1 from below, we consider the
quantity ‖ψ‖α also for α = 0 in which case ‖ψ‖0 = exp

∫
log |ψ|dν and thus

‖(η − a)2ξ‖1 ≥ ‖(η − a)2ξ‖0 = ‖|η − a| ‖2
0 ‖ξ‖0.(3.14)

Now, we apply a theorem (due to Latala [12]; cf. also [8, 4] for different proofs)
asserting that, for every norm ψ on a linear space equipped with a log-concave
measure, ‖ψ‖α-norms are equivalent to ‖ψ‖0 in the sense that ‖ψ‖0 ≥ cα‖ψ‖α

with some positive constants cα depending on α ≥ 0, only. Since the measure ν is
log-concave, we may continue (3.14) to get

‖(η − a)2ξ‖1 ≥ c3
2‖η − a‖2

2‖ξ‖2.(3.15)

Recall that ‖η − a‖2
2 = 1

µ(A)

∫
A(η − a)2 dµ and ‖ξ‖2

2 = 1
µ(A)

∫
A ξ2 dµ. Applying

Lemma 3.4 to random variables η − a and ξ on the space (�,P) = (Rn,µ) and
recalling that Var(η) = Var(ξ) = 1, we obtain that

‖η − a‖2
2 ≥ (µ(A))2

24
, ‖ξ‖2

2 ≥ (µ(A))2

24
.

Together with (3.13) and (3.15), this gives Var(ζ ) ≥ c3
2µ(A)4

24
√

24Eξ+ . To continue, we

have Eξ+ ≤
√

Eξ2 = 1, and by Lemma 3.3, µ(A) ≥ 1
e
. Hence,

σ 2 ≡ Var(ζ ) ≥ c3
2

24
√

24e4
.

Now, in order to bound the expectation a = Eζ = Eξ+η
Eξ+ , just note that |Eξ+η|2 ≤

Eξ2Eη2 = 1, and once more by Lemmas 3.4 and 3.3, we have

Eξ+ =
∫
A

ξ ≥ µ(A)2

4
√

2
≥ 1

4
√

2e2
.

Thus, |a| ≤ 4
√

2e2. Therefore, by Lemma 3.2,

ρ(t) ≤ C

σ
e−c|t−a|/σ ≤ Cec|a|/σ

σ
e−c|t|/σ ≤ C′e−c′|t|

since we have universal bounds for σ and a. It remains to note that u(t) =
ρ(t)Eξ+ ≤ ρ(t).



210 S. G. BOBKOV

At last, replacing l with −l, we get the same estimate for
∫

Rn−1 l−(y)p(y, t) dy,
l−(y) = max{−l(y),0}, so Lemma 3.5 follows. �

PROOF OF PROPOSITION 3.1. The statement is equivalent to saying that, for
every θ0 ∈ Sn−1, the modulus of the (inner) gradient of ft at the point θ0,

|∇Sn−1ft (θ0)| = lim sup
θ→θ0, θ∈Sn−1

|ft (θ) − ft (θ0)|
|θ − θ0| ,

satisfies |∇Sn−1ft(θ0)| ≤ Ce−c|t|. Due to condition (3.1), one may assume that θ0
is the last vector en = (0, . . . ,0,1) in the canonical orthonormal basis (e1, . . . , en)

of Rn. Then

|∇Sn−1ft(θ0)| =
(

n−1∑
k=1

∣∣∣∣∂ft(θ0)

∂θk

∣∣∣∣
2)1/2

= sup
|l|=1

|〈∇ft(θ0), l〉|,

where ∂ft (θ0)
∂θk

are usual partial derivatives of ft , and the supremum is taken over
all unit vectors l = (l1, . . . , ln) in Rn with ln = 0 (it is readily verified that ft is
differentiable on the whole space Rn except the origin point).

Fix k = 1, . . . , n − 1. The two-dimensional random vector (Xk,Xn) has a
log-concave density on R2, say, pk = pk(xk, xn). Therefore, for every ε > 0,

ft (θ0 + εek) − ft (θ0)

= P{εXk + Xn ≤ t} − P{Xn ≤ t}
=

∫ 0

−∞

[∫ t−εxk

t
pk(xk, xn) dxn

]
dxk −

∫ +∞
0

[∫ t

t−εxk

pk(xk, xn) dxn

]
dxk

= ε

∫ 0

−∞

[∫ −xk

0
pk(xk, t + εu) du

]
dxk

− ε

∫ +∞
0

[∫ 0

−xk

pk(xk, t + εu) du

]
dxk

= (
ε + o(ε)

) ∫ 0

−∞
−xkpk(xk, t) dxk − (

ε + o(ε)
) ∫ +∞

0
xkpk(xk, t) dxk.

Note that all the integrals are well defined since log-concave densities decrease
exponentially at infinity (and more precisely, they admit exponential bounds such
as Ce−c|x|). Thus,

∂ft(θ0)

∂θk

= lim
ε→0

ft (θ0 + εek) − ft (θ0)

ε
= −

∫ +∞
−∞

xkpk(xk, t) dxk.

Since pk(xk, xn) = ∫
Rn−2 p(x1, . . . , xk−1, xk+1, . . . , xn−1, xn)

dx
xk dxn

, we arrive at

∂ft(θ0)

∂θk

= −
∫

Rn−1
xkp(x1, . . . , xn−1, t) dx1 · · ·dxn−1.
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Hence, given a unit vector l in Rn−1, we have

〈∇ft (θ0), l〉 = −
∫

Rn−1
〈l, y〉p(y, t) dy,

where we write y = (x1, . . . , xn−1). It remains to apply Lemma 3.5. �

PROOF OF THEOREM 1.2. As in the proof of Theorem 1.1, fix an arbitrary
δ ∈ (0,1) and put

�(t) = {
θ ∈ Sn−1 : ec|t| |Fθ(t) − F(t)| ≤ Cδ

}
, t ∈ R,

where c and C are constants from Proposition 2.1. By the latter, and the
concentration inequality (2.2) on the sphere, for all t ∈ R,

σn−1(�(t)) ≥ 1 − 2e−(n−1)δ2/2.

Now, apply this inequality to a sequence t = a1, . . . , aN increasing with the step δ

and such that a1 = −aN [the number of points N = Nδ will grow as c′ log(1/δ)
δ

when δ ↓ 0 where the constant c′ has to be later specified]. For � = ⋂N
k=1 �(ak),

we have

σn−1(�) ≥ 1 − 2Ne−(n−1)δ2/2.(3.16)

Take θ ∈ � so that, for all ak , 1 ≤ k ≤ N ,

ec|ak||Fθ(ak) − F(ak)| ≤ Cδ.(3.17)

By Lemma 3.2 with a = 0 and σ = 1, the probability density ρθ (t) = F ′
θ (t) of Sθ

satisfies, for all t ∈ R,

ρθ (t) ≤ C1e
−c1|t|,(3.18)

where c1 and C1 are some positive numerical constants. Integrating this inequality
over θ we have a similar inequality

ρ(t) ≤ C1e
−c1|t|(3.19)

for the probability density ρ(t) = F ′(t) (although ρ does not need to be
log-concave). Since inequalities (3.17)–(3.19) hold true also with constants
max{C,C1}, min{c, c1}, we may assume in the sequel that C1 = C and c1 = c.
In particular,

max{Fθ(−t),1 − Fθ(t)} ≤ C

c
e−ct , t ≥ 0,

and a similar inequality holds for F . Equivalently, ect/2 max{Fθ(−t),1 −Fθ(t)} ≤
C
c
e−ct/2 (and the same for F ), so

ec|t|/2|Fθ(t) − F(t)| ≤ C

c
δ for all |t| ≥ 2

c
log

1

δ
.(3.20)
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To get an analogous estimate for “small” |t|, we use (3.17). Let ak < t < ak+1 for
some k = 1, . . . ,N − 1. Since ak+1 − ak = δ, by (3.17)–(3.19),

ec|t||Fθ(t) − F(t)| ≤ ec(|ak|+δ)

(
|Fθ(ak) − F(ak)| + δ sup

ak<s<ak+1

max{ρθ(s), ρ(s)}
)

≤ Cδecδ + Cδe2cδ ≤ C(ec + e2c)δ,

where we used the assumption δ ≤ 1 on the last step. Together with (3.20), we may
thus conclude that, in case aN ≥ 2

c
log 1

δ
, the inequality

ec|t|/2|Fθ(t) − F(t)| ≤ C

(
ec + e2c + 1

c

)
δ(3.21)

holds true for all t ∈ R. By the construction, (N − 1)δ = aN − a1 = 2aN , so,
the condition N − 1 ≥ 2

cδ
log 1

δ
has to be fulfilled. The least such number satisfies

N ≤ 2 + 2
cδ

log 1
δ
, so by (3.16) and (3.21),

σn−1

{
sup
t∈R

ec|t|/2|Fθ(t) − F(t)| ≥ C

(
ec + e2c + 1

c

)
δ

}

≤
(

4 + 4

cδ
log

1

δ

)
e−(n−1)δ2/2.

Appropriately introducing new positive constants, say, c and C, we obtain that

σn−1

{
sup
t∈R

ec|t||Fθ(t) − F(t)| ≥ δ

}
≤ C

δ
log

1

δ
e−nδ2/C, 0 < δ <

1

2
.

If nδ2 ≥ C, the right-hand side does not exceed C′√n log ne−nδ2/C for a certain
big value of C′. The latter quantity is larger than 1 when nδ2 ≤ C, so that in
both cases, σn−1{supt∈R ec|t||Fθ(t) − F(t)| ≥ δ} ≤ C′√n log ne−nδ2/C . This gives
inequality (1.5) for the range 0 < δ < 1

2 . It remains to note that large values of δ

in (1.5) are not interesting since supt∈R ec|t||Fθ(t) − F(t)| ≤ C′′, as already used
before. Theorem 1.2 has been proved. �

Now one can compare the log-concave case with Corollaries 2.1 and 2.4.

COROLLARY 3.6. For every log-concave random vector X satisfying (3.1)
and (3.2),

inf
θ∈Sn−1

‖Fθ − F‖∞ ≤ C

(
logn

n

)1/2

where C is a universal constant.
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As in the general case, in order to reach an analogous statement with F replaced
by the normal distribution function �, one needs an additional information about
concentration of |X| around the point t = 1. For example, in terms of the smallest
value εn ≥ 0 in

P
{∣∣∣∣ |X|√

n
− 1

∣∣∣∣ ≥ εn

}
≤ εn,

we have ‖F − �‖∞ ≤ 4√
n

+ 2.5εn. As already mentioned and used in [1], the

property Var(|X|2) = O(n) leads to εn = O(n−1/3). For log-concave X, this
estimate is, however, not optimal and can be sharpened with the help of the
following.

LEMMA 3.7. Given a log-concave vector X in Rn, for all h > 0,

P
{∣∣|X| −

√
E|X|2∣∣ ≥ h

} ≤ 2 exp
{
− cE1/4|X|2

Var1/4(|X|2)h
1/2

}
,

where c > 0 is some numerical constant. Under (1.1), for all ε > 0, we thus have

P
{∣∣∣∣ |X|√

n
− 1

∣∣∣∣ ≥ ε

}
≤ 2 exp

{
− cn1/2ε1/2

Var1/4(|X|2)
}
.

As an immediate consequence, we get the following corollary.

COROLLARY 3.8. If the log-concave random vector X satisfies (3.1)

and (3.2), and Var(|X|2) = O(n), then infθ∈Sn−1 ‖Fθ − �‖∞ = O(
log2 n√

n
).

PROOF OF LEMMA 3.7. For any polynomial f on Rn of degree d and for all
p ≥ 1,

E1/p|f (X)|p ≤ (Cp)dE|f (X)|,
where C > 0 is universal. We apply this fact proved in [5] to f (x) = |x|2 − a2,

a =
√

E|X|2, to get

E1/p
∣∣|X|2 − a2∣∣p ≤ (Cp)2E

∣∣|X|2 − a2∣∣.
Hence,

E1/p
∣∣|X| − a

∣∣p = E1/p ||X|2 − a2|p
||X| + a|p ≤ 1

a
E1/p

∣∣|X|2 − a2∣∣p

≤ (Cp)2

a
E

∣∣|X|2 − a2∣∣ ≤ (Cp)2

a
Var1/2(|X|2).
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Consider the random variable ξ = ||X| − a|1/2. Applying the above estimate to
p = k/2 with integer k ≥ 2, we obtain that

Eξk ≤
(

Ck

2

)k(Var1/2(|X|2)
a

)k/2

= Ck
Xkk,

where CX = C Var1/4(|X|2)
2E1/4|X|2 . In order to involve the value k = 1, we may write

Eξk ≤ (2CX)kkk , and using kk ≤ ekk!, we conclude that

Eetξ = 1 +
∞∑

k=1

tk

k!Eξk ≤ 1 +
∞∑

k=1

(2eCXt)k = 2

for t = 1/(4eCX). At last, by Chebyshev’s inequality,

P
{∣∣|X| − a

∣∣ ≥ h
} = P{ξ ≥ h1/2} ≤ 2e−th1/2

.

Lemma 3.7 follows. �
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