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 CORRECTION

 ENTROPY AND THE CONSISTENT ESTIMATION
 OF JOINT DISTRIBUTIONS

 BY KATALIN MARTON1 AND PAUL C. SHIELDS2

 The Annals of Probability (1994) 22 960-977

 Jeff Steif has brought to our attention an error on page 975 of our
 paper. Our argument that inequality (30) implies the immediately following
 inequality has a gap. A closer look shows an even more serious problem,
 namely, Lemma 6 as stated is probably not true, since nothing in the weak
 Bernoulli property precludes the possibility that splitting sets for x1 may
 depend on past coordinates {xi: i < 0}. With a modified definition of the
 splitting concept an alternative version of Lemma 6 is true and this is
 sufficient to prove our principal theorem, Theorem 4.

 The following text replaces the discussion from the paragraph preceding
 Lemma 5 on page 973 to the end of Section 3 on page 976.

 The i/-mixing admissibility result is extended to the weak Bernoulli case
 as follows. The basic idea remains the same: replace the overlapping k-block
 distribution by a shifted nonoverlapping k-block distribution with a gap g
 between the blocks. Then replace the measure by the product measure on
 these k-blocks, a replacement that introduces only a small exponential error.
 Then apply the i.i.d. result. The weak Bernoulli property guarantees that
 only a small exponential error is introduced by replacing the measure by the
 product measure, at least for a large fraction of shifts, provided a small fraction
 of blocks are omitted and conditioning on the past is allowed. This will be
 enough to obtain the weak Bernoulli admissibility result.

 Given positive integers k and g, r E [1, k + g] and j > 1, define

 xj (r) = Xr+(j-1)(k+g)+k-1 - r+(j-1)(k+g)

 For (t + 1)(k + g) < n < (t + 2)(k + g) and J c [1, t], define

 r(a Ixn) a {i e J:Ex(r) =a }l

 that is, the empirical distribution of k-blocks obtained by looking only at those

 k-blocks ij(r) for which j e J.
 We will make use of the fact that if the overlapping k-block distribution

 is not close to the true distribution, then for a fixed fraction of shifts, iAk g is
 not close to the true distribution, as long as J is a large subset of [1, t]. This
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 sharper form of Lemma 4 is easy to prove. We state it as follows in the form
 that will be used.

 LEMMA 5. Given 8 > 0, there is a positive y < 1/2 such that for any g there
 is a K = K(g,y) such that if k > K, if k/n < y and if Ik( lXn) - 14> 8
 then I^r J( IXn) - IlkI > 8/4 for at least 2y(k + g) indices r e [1, k + g] for any
 subset J c [1, t] of cardinality at least (1 - y)t.

 Given y > 0, an index j > 1 will be called a (y, r, k, g)-splitting index for
 the (doubly infinite) sequence x e AZ if

 (ij(r) jXr+(j-1)(k+g)-g-1) < (1 + y) t(ij(r)).

 The set of all x for which j is a (y, r, k, g)-splitting index will be denoted by

 Bj (y, r, k, g) or by Br, j if my, k and g are understood. Note that the set Br, j is
 measurable with respect to the past coordinates i < r + (j - 1)(k + g) + k - 1.

 LEMMA 6A. Fix (-y, r, k, g) and fix a finite set J of positive integers. Then

 for any assignment {Ij(r): j e J} of k-blocks,

 n ([ j(r) ] n Brj)) < (1 + -y)IJi fH ,([ij(r)]).
 jEJ jeJ

 PROOF. Put jm = max Ij: j e J} and condition on

 B*= n ([5j(r)] n Br, j)
 jEJ-{Jm

 to obtain

 A n ([Fj(r)] n Brj))

 (101) jE

 =/( n ([ij(r)]nBri))L(i([im(r)]nBr F j) B )
 jEJ-{ j.1

 The second factor ,u([ j[ (r)] n Br, jm I B*) is an average of the measures

 /lj([Xm (r)] n Br, j Ixr+(jm-1)(k+g)-g-1

 each of which satisfies

 4([im (r)] n Brjm xr+(im-l)(k+g)-g-1) < (1 + y)G/ r)

 by the definition of Br, jm. Thus (101) yields

 at n ([?j(r)] n Br~j)) < (1 + y) ptiXjm(r)) ti n ([Lj(r)] n Brj))>
 jEJ jEJ-1a }.

 and the proof follows by induction. a

 The almost sure existence of a large density of splitting indices for most
 shifts r is established in the following lemma.
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 LEMMA 6B. If tt is weak Bernoulli and 0 < y < 1/2, then there is a gap g =
 g(-y), there are integers k(-y) and t(-y) and there is a sequence of measurable

 sets {Gn(-Y)}, such that the following hold:

 (a) x E Gn(y) eventually a.s.
 (b) If k > k(y), if t > t(-y) and if (t + 1)(k + g) < n < (t + 2)(k + g), then

 for x E Gn(y), there are at least (1 - y)(k + g) values of r E [1, k + g] for
 each of which there are at least (1 - y)t indices j in the interval [1, t] that are
 (-y, r, k, g)-splitting indices for x.

 PROOF. First we use the weak Bernoulli property to choose g = g(,y) so
 large that for any k,

 | ,u(xkIX-9 )|1- /t e)|dut(xIg ) < .

 Fix g and for each k define

 f k ( X) F f Xt Xg k) kix-)

 and let dk denote the o-algebra determined by the random variables

 IXj: i < -g} U {Xj: I < i < k}.

 Direct calculation shows that each f k has expected value 1 and that { f k } is a
 martingale with respect to the increasing sequence { i }. Thus fk converges
 almost surely to some f.

 Fatou's lemma implies that

 y4
 || 1-f(x)|I dtu< 4,

 so there is an M such that if

 CM = |X: |1- fk(X)j < 2V k > M}

 then I.t(CM) > 1 - -y2/2. The ergodic theorem implies that

 lim N L ,CM(Tx 1X) > 2 a.s.,

 where JfCM denotes the indicator function of CM, so that if we define

 then xG )evGn(Y) tl aloEs cm(Tt-1x) > 1- su

 then x E Gn(^y) eventually almost surely.
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 Let us put k(y) = M and let t(y) be any integer larger than 2/y2. Fix
 k > M t > t(y) and (t + 1)(k + g) < n < (t + 2)(k + g), and fix an x e Gn(-y).
 The definition of Gn(y) and the assumption t > 2/-y2 imply that

 1 t(k+g)

 t(k + g) =1 cM(TI-x

 1 k+g 1
 = (k +g) E-E CMt(Tr+(il)(k+g) lX) > 1 -

 r=1 j=1

 so there is a subset R = R(x) c [1, k + g] of cardinality IRI > (1 - -y)(k + g)
 such that for x e Gn(-y) and r e R(x),

 1 E r+(j-)(k+g) 1X) > 1-Y

 In particular, if r e R(x), then Tr+(j-l)(k+g)-lX E CM for at least (1 - -y)t
 indices j e [1, t]. However, if Tr+(j-l)(k+g)-lX e CM, then

 /i(xij(r) IXr+(j-1)(k+g)-9-1) < (1 + y) A(-jr)
 which implies that j is a (-y, r, k, g)-splitting index for x.

 In summary, for x e Gn(y) and r e R(x) there are at least (1-y)t indices j
 in the interval [1, t] that are (y, r, k, g)-splitting indices for x. Since IR(x)I >

 (1 - O)(k + g), this completes the proof of Lemma 6B. D

 THEOREM 4. If ,u is WB and k(n) < (log n)/(H + e), n = 1,2,..., then
 {k(n)} is admissible for ,u.

 PROOF. Fix 8 > 0, choose a positive y < 1/2 and then choose integers
 g = g(-y), k(-y) and t(-y) and measurable sets Gn = Gn(-y), n > 1, so that
 conditions (a) and (b) of Lemma 6B hold. Fix t > t(-y) and (t+1)(k+g) < n <
 (t + 2)(k + g), where k(y) < k < (log n)/(H + e). For each r e [1, k + g] and
 J c [1, t], let Dn(r, J) be the set of those sequences x for which every j e J
 is a (-y, r, k, g)-splitting index.

 We have

 n Br,j = Dn(r, J),
 jeJ

 so that Lemma 6A and the fact that I JI < t yield

 (102) (q n[Xj(r)] n Dn(r, J) < (1 + y)t fn li(xj(r)).
 jeJ jeJ

 If x e Gn(-y), then Lemma 6B implies that there are (1 - -y)(k + g) indices
 r E [1, k + g] for each of which there are at least (1 - -y)t indices j in the
 interval [1, t] that are (-y, r, k, g)-splitting indices for x.

 On the other hand, it can be assumed that y is so small and t so large that

 Lemma 5 assures that if itk(x) - I > 8, then - > 8/4 for
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 at least 2,y(k + g) indices r, for any subset J c [1, t] of cardinality at least
 (1 - -y)t. Thus for -y sufficiently small and k > k(-y) and t > t(y) sufficiently
 large, for any x e G (-y) there exists at least one r e [1, k + g] and at least
 one J c [1, t] of cardinality at least (1 - y)t, for which x e D (r, J) and

 ri J( Xn) -IlkI > 8/4. This means that

 {x: /L5k-/LI > } n Gn(Y)

 - U - I ({x: Iu (.Ixl)- /kI > 8/41 n Dn(r, J)
 r=1 Jc[1,t]

 IJ?>(1-y)t

 The proof of Theorem 4 can now be completed very much like the proof for the

 +i-mixing case. Using the argument of that proof, we can bound t{x: I A~k(n)-
 Ak(n) I >} fn Gn (-y) above by

 (103) 2-2tylogy(1 + y)t[k(n) + g](t + 1)2k(n)(H+o/2)2-t(1jy)C82/400

 for t sufficiently large. This bound is the counterpart of (25), but here we used
 (102) in place of (23), and an extra factor, 2-2tylogY, appeared to bound the
 number of subsets J C [ 1, t] of cardinality at least (1 - y)t. If My is small
 enough, then, as in the +i-mixing case, (103) will be summable in n. Since
 x e Gn(-y), eventually almost surely, this establishes Theorem 4. ED
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