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OPTIMAL RATES OF CONVERGENCE IN THE CLT FOR
QUADRATIC FORMS!

By V. BENTKUS AND F. GOTZE
University of Bielefeld

We prove optimal convergence rates in the central limit theorem for
sums in R*. Assuming a fourth moment, we obtain a Berry-Esseen type
bound of O(N~1) for the probability of hitting a ball provided that % > 5.
The proof still requires a technical assumption related to the indepen-
dence of coordinates of sums.

1. Introduction and results. Let R* denote the real k-dimensional
Euclidean space with scalar product (,-) and norm |-|,1 <% < «, For k = «©
regard R* as a real separable Hilbert space. ’

Let X, X,, X,, ... be a sequence of independent and identically distributed
(ii.d.) random variables taking values in R*. Write

Sy =(X; + -~ +XN)/\/N'

Assume that EX = 0 and that E|X|? < . Then X is pre-Gaussian; that is,
there exists a centered Gaussian random variable G such that the covari-
ances of X and G are equal.

Let us consider a quadratic form

Q(x) = (Qx,x) for x € R,

where @: R* — R* denotes a symmetric linear bounded operator.
Assuming that the fourth moment E|X |4 < o, we shall prove the following
estimate of the convergence rate in the central limit theorem:

(1.1) sup |P{Q(Sy) <r} — P{Q(G) <r}| =O(N1).

It is important to emphasize that we do not require any ‘smoothness condi-
tions like Cramér’s (C) condition for the characteristic function of X or its
coordinates. Related lower bounds in the lattice point problem [see, for
instance, Walfisz (1957) and Fricker (1982)] suggest that (1.1) may not be
valid in dimensions smaller than 5. We shall prove that (1.1) holds for % > 5.
For dimension % = 4 we get O(N ! In® N) with some § > 0. The dimensions
k = 2,3 are not studied here since they require different methods. Unfortu-
nately, in order to prove (1.1) we still need certain assumptions on the
independence of coordinates of X. For example, the following conditions are
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sufficient: the first five coordinates of X have positive variances, are mutu-
ally independent and do not depend on other coordinates; the operator Q is
diagonal and its first five eigenvalues are nonzero.

Let us formulate the result more precisely. Without loss of generality we
shall assume that X is not concentrated in a proper subspace of R*. That is,
ker B = {0}, where the covariance operator B? of X is defined by

(B%x,y) = E(X,x)(X,y) = E(G,x)(G,y) forx,y €R"

In the finite-dimensional case ker B = {0} implies that B has rank k. In the
case k = © the operator B? is nuclear and ker B = {0} implies that all
eigenvalues of B? are positive.

Without loss of generality we may assume that ker @ = {0}, which means
that R* = Tm @ (the closure of the image of Q) since @ is symmetric.
Otherwise we may replace X by its projection onto Im @ without changing
the distribution of (@X, X) and without violating other conditions on X.

A consequence of these assumptions is that ker BQB = {0}.

The independence condition. We shall assume that the random variable
X is a sum of two independent random variables,

(1.2) X =U+V, whereU and V are independent.

Furthermore, we require that EU = 0, that U assumes values in an invariant
subspace of @, say Ry, with dimension at least 5, that @ is diagonal in some
orthonormal basis of Ry and that the coordinates of U in this basis are
independent and have positive variances. Without loss of generality, we may
assume that the dimension of Ry is 5.

The independence condition means that there exists a basis of R* such
that U may be written as U = (Uy,...,U;,0,0,...), where the coordinates
U,,...,Us of U are centered independent random variables which have
positive variances and such that

5
(1.3) (QU,U) = Y \,U? with some A; # 0.
j=1
Note that (1.2) may hold in cases where coordinates of X are not indepen-
dent. Note as well that E|X|* < « implies E|U|* < » and E|V|* < . Further-
more, it follows that % is at least 5.
Set a;, = 6, for £ = », and «a;, = 3, otherwise.

THEOREM 1.1. Assume that (1.2) holds and that E|X|* < ». Let a € R
Then ' ' '
x(r)
P(Q(Sy — @) <r} - PlQ(G—a) <1} - =2
1+ |al™
5

" sup
' (1.4) ’
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where the coefficient « in the Edgeworth correction k(r)/(6VN) depends only
on Q, B, r, a and on the third moment of X.

For the precise definition of «(r), see (2.4) in the case # < © and Lemma
2.2 when k = ». Furthermore, note that « = 0 whenever a =0 or X is
symmetric.

REMARK. A rather straightforward inspection of proofs shows that condi-
tion (1.2) with four independent coordinates instead of five implies (1.4) with
O(N~! 1In® N) instead of O(N~1), for some & > 0.

EXAMPLE [Bentkus and Zalesskii (1985)]. Let @ be the identity operator
Q(x) = |x|>. For any %k > 1 there exists a bounded random variable X with
independent coordinates satisfying conditions of Theorem 1.1 such that the
distribution function P{Q(S,) < r} has a jump of O(1/N), for all N.

Thus the bound O(1/N) in (1.1) and (1.4) is best possible since the
distribution function P{Q(G) < r} is continuous.

Construction of the example. Choose any bounded centered random vari-
able X such that P{X € Z*} = 1. The central limit theorem implies that
P{Q(Sy) <ry} = ¢ > 0, for some r, > 1 and c, and for all N > 1. However,
the random variable NQ(Sy) = N|Sy|* assumes only integer values 0, 1,2, . ..
since P{X € 7Z*} = 1. The interval [0, Nr,) contains at most 2Nr, integers.
Thus NQ(Sy) is equal to at least one of these integers with a probability not
less than c¢/(2 Nr,) since P{Q(Sy) < rp} > c.

Bounds for sup, [P{Q(Sy) < r} — P{Q(GQ) < r}| were studied by a number of
authors. For a discussion of the related literature, see Bentkus, Gotze,
Pavlauskas and Rackauskas (1991). Assuming a fourth moment, the best
results obtained were of the type O(N~'*¢), where 0 < ¢, < 1/2, and
&, Ny 0 as k 7 o Theorem 1.1 improves these results, and the improvement is
final in the sense that the distribution function P{Q(Sy) < r} may have
jumps of magnitude O(N 1) (cf. the Example below).

Theorem 1.1 is related to certain results in number theory. Let Z* denote
the standard lattice of integer points in R*. Assume that @ is a positive
definite operator and let £ < . Consider the ellipsoid E, = {x: (Qx, x) < r}
and let V,(r) [resp. Ag(r)] denote the volume of E, (resp. the number of
lattice points within E,). A well-known result in the theory of lattice points
[see Landau (1915), Walfisz (1927), Jarnik (1928), as well as Landau (1924),
Landau (1962), Kendall (1948) and Kratzel (1988)] states that

(15)  r*72|Ay(r) — Vo(r)| = O(r~') wheneverk = 5,r > 1,

“for ellipsoids with principal axes parallel to the coordinate directions. The
estimate (1.4) is similar to (1.5). The independence assumption (1.2) thereby
corresponds to the assumption that principal axes are parallel to the coordi-
nate system of R*,
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Estimates like (1.5) for ellipsoids with general orientation have, to the best
of our knowledge, not been proved yet. There is, however, an estimate
O(r~*/*+D) dque to Landau (1915), which corresponds to a seminal result of
Esseen (1945), who proved that the convergence rate in the central limit
theorem is O(N~*#/**D) for balls with center at the origin and for sum-
mands having identity covariance matrix. Without the independence condi-
tion, Theorem 1.1 would correspond to an estimate (1.5) for ellipsoids in
general position.

To prove (1.4) we apply a variety of techniques. We use a symmetrization
inequality [Gotze (1979)] analogous to the Weyl-van der Corput inequality in
analytic number theory [Weyl (1915 /1916), and Graham and Kolesnik (1991)]
and related techniques. These techniques turned out to be very useful for the
investigation of the convergence rates and Edgeworth expansions in the
central limit theorem in Hilbert and Banach spaces [see papers of the authors
cited in Bentkus, Gotze, Palauskas and Rackauskas (1991) as well as for the
investigation of the asymptotic properties of certain statistics [see, e.g.,
Bentkus, Gotze, and Zitikis (1993)].

Similar methods lead to the extension [Gotze, Prohorov and Ulyanov
(1994)] of Vinogradov (1934) bounds on trigonometric sums for characteristic
functions of polynomials of sums of independent random variables. Related
probabilistic problems connected to number theory are considered by Sinai
(1991), Major (1992) and Blecher and Lebowitz (1993).

We use a new smoothing inequality [going back to Beurling, see Graham
and Kolesnik (1991)] proved by Prawitz (1972) since our proof requires the
inversion of the Fourier transform; that is, at a certain stage of the proof we
pass to distributions again.

The classical techniques to prove convergence rates in finite-dimensional
spaces [see, e.g., Bhattacharya and Rao (1986) and Sazonov (1981)] are useful
to estimate characteristic functions for frequencies of magnitude
O(/N/In N). For higher frequences of magnitude up to O(N) we apply a
reduction to sums of symmetric Bernoulli random variables, that is, to sums
taking values in a lattice. For the estimation of integrals of the characteristic
functions of those sums we use some ideas related to the circle method of
Hardy and Littlewood (1920) in analytic number theory, and as a core result
we prove the estimate (see Lemma 3.5)

t 1
[2 (EexplitB,yByy))"* da_ 0(—) for k > 5,
N7y t

where By = (&, + - +&y)/ VN, the random variable By denotes an inde-
pendent copy of By and &, &,,... is a sequence of i.i.d. symmetric Bernoulli
random variables such that P{|¢,| = 1} = 1.

N

2. Proof of Theorem 1.1. By c (resp. C) with (or without) indices we
shall denote sufficiently small (resp. sufficiently large) generic absolute con-
stants. The dependence of constants on parameters, say «, we shall indicate
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by writing ¢ = ¢(a). By u we shall denote the distribution of the random
variable X. Throughout we shall assume that all random variables are
independent in aggregate, if the contrary is not obvious from the context. For
a random variable X let X denote an independent copy and let X denote a
symmetrization, say X = X — X.

ProOOF OF THEOREM 1.1. The proof of Theorem 1.1 is rather complicated
and splits into a series of lemmas. We shall apply a smoothing lemma, which
reduces the problem to the estimation of the characteristic function of the
quadratic form (i.e., we shall apply a kind of one-dimensional Fourier trans-
form). For the estimation of characteristic functions we shall use symmetriza-
tion inequalities, conditioning arguments and a reduction to the binomial
case, which we call “Bernoullization” for short. The arguments depend on the
dimension, and the case of lower dimensions 5 < £ < 13 is technically more
involved. For lower dimensions we use the inverse Fourier transforms and
additionally apply multidimensional Fourier transforms. We can invert the
Fourier transform because we use the smoothing Lemma 4.1 instead of
conventional smoothing inequalities.

Denote

f(t)' = Eexp{itQ(Sy —a)}, g(t) = Eexp{itQ(G — a)}.
We denote the principal value of an integral by P.V. (see Section 4 for the
definition).
The following lemma provides a reduction of Theorem 1.1 to the investiga-

tion of characteristic functions for lower order Fourier frequencies of magni-
tude up to O(N?%/5),

LEMMA 2.1. Assume the independence condition (1.2). Then there exists a

constant C = C(Q, u) such that
PiQ(S 1 : PV ' a R
{(R(Sy —a) <r} = 5 T3 PV |”SCNZ/ﬁexp{ —zrt}f(t)T +R,

where the remainder term R satisfies sup, ,|R| = O(N™1).

ProOF. Let us apply the smoothing lemma, Lemma 4.1. For any H > 0,
we have

1 i H . dt
P{Q(Sy —a) <r} = 3 + Q;P.V.I_Hexp{ —zrt}f(t)T +R,,

where
1 g
_’ IR,| < ﬁf_Hlf(t)I dt.

We choose H-= ¢; N with a sufficiently small constant ¢; = ¢,(Q, n). Lemmas
3.2-3.5 together imply that sup, ,|R;| = O(N~'). In order to apply Lemma
3.5, we have to change the variable of integration as ¢ = Nr.
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Similarly Lemmas 3.2-3.5 imply that, for a sufficiently large C = C(Q, ),

/ )1 0( . )
su — =0|—|,
r,f CN2%5<|t|<H |t] N
which concludes the proof of the lemma. O

Let us continue the proof of Theorem 1.1. From here on the proof will
depend on the dimension k. The following lemma completes the proof in the
case k = oo,

LEMMA 2.2. Let k> 13 and E|X|* < ». Then the function
g:(t) = 4(it)’E(3(G - a,QX)(QX, X) + 2it(G - a,QX)*)exp(itQ(G — a))

is the characteristic function of a function of bounded variation, say k, and
the Edgeworth correction

k(r) i ) dt
e Ty Jexe(— i e ()

Furthermore,

sup |P{Q(Sy —a) <r} -P{Q(G —a) <r} — g(—\/]r_\/')

1+lal®
N

Proor. We shall apply well-known techniques which have been developed
for the estimation of the convergence rate in the CLT in infinite-dimensional
spaces. We shall restrict ourselves to the case 2 = . The case k > 13
requires only a more careful and tedious analysis. The dimension 13 is
required to ensure the convergence of some integrals. Indeed, the estimates of
the characteristic function show that each dimension contributes a factor
1/ VIt|. The asymptotic expansion for the characteristic function yields a
factor |¢|°, such that 2 = 13 just leads to a converging integral | =19t/ 632,
It seems that the dimension %2 = 12 would suffice for the proof and would
imply uniform estimates, just as dimension %2 = 6 yields the uniform estimate
O(N~1/2) [see Sazonov, Ulyanov and Zalesskii (1989), Nagaev (1988), and
Senatov (1989)].

Thus let us assume that & = . Then B@B has infinitely many nonzero
eigenvalues. Therefore, the functions |g(¢)| and |g,(¢)| are bounded from
above by C/(Q, wlt|™°, for all s >0 and all ¢ € R [see Theorem 4.6 and
Lemma 2.4 in Bentkus (1984a) and (1984b)]. Hence the smoothing lemma,
Lemma 4.1, yields

P(QG —a) =) ~ 5
(2.1)

oy e ~of )
-—PV. —irt — =0|=
ot V) a8 ()5 N
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uniformly in @ and r. It is easy to verify that

i i dt
ZfReXP{ —”‘t}g1(t)7
(2.2) i
i . dt o 1
= %LKCNZ/E'E‘XP{ —zrt}gl(t)—t— + N
uniformly in @ and r. Therefore, Lemma 2.1, (2.1) and (2.2) reduce the proof
to the estimate

g1(?)

dt 1+ lal®
(2.3) sup f(t) —g(t) — N —

r “ltI<CN?/5 1¢l - N
The random variables in the characteristic functions in (2.3) may be trun-
cated as in Bentkus (1985). Then, applying Theorem 4.6 and Lemma 2.7 of
Bentkus (1984a) and (1984b), we obtain the estimate of the lemma. O

The case 5 < k < « is technically more complicated. In the first step in
Lemmas 2.3 and 2.4 we shall replace the sum S, by a sum having m = N3/1°
Gaussian summands.

LEMMA 2.3. Let k> 5 and let m denote the integer nearest to N*/1°.
Assume that E|X|® < © and denote & = vm/N . Then

1 i ) dt
P{Q(Sy —a) <r} = 3t —PV exp{—zrt}h(t)—t- + R,

277 ’ .'/|;|SCN2/5
where
h(t) = Eexp{itQ(86G —a + (X, + - +Xy_,,)/VN))
and

sup|R| < C(Q, n)(1 + lal®)/N.

Proor. We shall derive the result from Lemma 2.1. Let G,, G,, ... denote
a sequence of independent copies of G. Denote

£,(t) = Eexp{itQ(W, — a + X/VN )},
g(t) =f.:(t) = Eexp{itQ(W, — a + G/VN )},

where
W,=(G, ++G_,+X; ,++Xy)/VN, 1l<j<m.
Then f=f; and f,,,; = h. We have \
f=R,+ - +R, +f,,,, whereR,=f —f..,=f —&,.
* Expanding in Taylor series, conditioning and applying the symmetrization
Lemma 3.1 we get

IR,| < CN-3/2¢2(1 + |¢l)(1 + |a|3)\/E exP{it(QZ”,,,ZV)} ,
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where Z, = ¥, _ ;. .,nX;/ VN with some small but positive absolute constant
¢y > 0. The proof of this inequality follows from well-known standard argu-
ments; see, for example, Bentkus [(1984a), Section 4]. Note that by careful
Taylor expansion we may avoid the use of truncation techniques.

Arguing as in Lemmas 3.2—-3.4, we get

dt CN2/5 dt
t1’VEexplit(QZy, Zy)) — < C — < CNV/5,
I | ‘/ exp{z (Q N N)} ltl = j; ‘/Z =

These estimates together with m = N3/1° conclude the proof of the lemma. O

flsltlsCNZ/5

LEMMA 2.4. Let k> 5 and let m denotes the integer nearest to N3/1°.
Denote 6 = ym/N . Then

sup|P{Q(Sy —a) <7} —P{Q(8G —a + (X, + - +Xy_,)/VN) < r}|
<C(Q, u)(1 +lal®)/N.

ProoF. Due to Lemma 2.3 and to the Fourier inversion formula (4.3), it is
sufficient to show that each of the integrals

R (t)l dt
Jl:fczv%smsazv el 7
J =/ |h(t)l dt

2 Jn<peanio |t
h(t)| dt

J =[
5 senriio ¢

is O(N~1) uniformly in @ and r.
The Gaussian component §G ensures the desired estimate of /3. Indeed,
applying the symmetrization Lemma 3.1 we get

|h(t)| < Eexplict(QG,,Gy)} < C(Q, n)(It182) "
= C(Q, w)(N/(ItIm))™*

for dimensions k2 > 5 (here G, and G, denote independent copies of G).
Integrating, we arrive at J, = O(N1).

The characteristic function A(t) is the characteristic function of a quadratic
form in a sum with at least N/2 summands from the sequence X,,..., Xy.
Hence, arguing as in the proof of Lemma 2.1, we obtain J; = O(N -1,

It remains to estimate J,. Let us apply the symmetrization Lemma 3.1.
Writing Zy = (X; + -+ + Xy ,9)/ VN we have

In(t)]* < Eexp(icts(QG, Zy )} = Eexp{—ct262(BQZN, BQz'N)}

<E exp{ —ct?82N~ 1/2('BQZN, BQZN)>,
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since 1 > N~1/2. Integration and the change of variable ¢t = cTN*/° yields

Jy < chZ/sgscW‘/E exp{—cr*(BQZy, BQZy)) %.

However,
E exp{ —cr?(BQZy, BQZN)} = Eexp{—ic7(QG, Zy)}

and we may estimate this integral as in the proof of Lemma 2.1, which
concludes the proof of the lemma. O

Let
p(x) = (27) */*det B~ 'exp{— (B %x,x)/2}, x <R,
denote the density of G in R*. Define
(2.4) k(r)y=—/ ED3 p(x) dx,
(Q(x—a), x—a)<r
and for measurable A c R,

x(A) = - [ ED}p(x) dx,
where
ED}p(x) = —p(z)(E(B %X, x)’ - 3E(B X, x)(B2X, X)).

The proof of Theorem 1.1 is completed by the following lemma combined
with Lemma 2.4.

LEMMA 2.5. Let k <» and E|X|* <. If 62 =~ m/N with m = N3/10,
then

sup |P{8G + (X, + = +Xy_,,)VN € A}

A
R

PrROOF. We shall proceed similarly as in Bhattacharya and Rao (1986),
where Edgeworth expansions in the multidimensional case were systemati-
cally developed. Unfortunately we cannot use the corresponding results of
this monograph directly.

The left-hand side of (2.5) is invariant under nondegenerate linear trans-
formations. Therefore, without loss of generality, we may assume that covari-
ances of X and G are identity. matrices. Thus E(X, x)? = |x|?,

p(x) = (271')4]”2 exp{—|x|2/2}

(2.5)
~P{G e A} —

and
ED}p(x) = —p(x)(E(X, x)° - 8E(X, x)(X, X)).
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Using truncation [see Bhattacharya and Rao (1986), Section 14], we may
replace X; + - +Xy_,, by Y, + -+ +Yy_,,, where Y, = X;I{|X}| < VN}. De-
fine the (signed) measure

Dy(A) =P{6G+ Z EA}—P{GEA}—LA) AcCR?
N N GW ’ ’
where Zy = (Y, + - +Yy_,.)/ VN . Note that E|Zy|” < C(p), for all p > 0.
Thus we have to prove that

(2.6) sup| Dy (4)| = O(N1).

The measure Dy has a density, say dy(x), x € R¥, which is an element of
the Schwartz space S of infinitely differentiable functions decreasing faster
than any polynomial at infinity. Let I,(x) = I{x € A} denote the indicator
function of A. We may write

(2.7) Dy(A) = kaIA(x)dN(x) dx.

The function (1 + |x|%)~*I a(x) is integrable and the integral is bounded from
above by a constant independent of A. In (2.7) we may apply Parseval’s
theorem and get

(28)  IDy(A)l< C(k)fRJ(l + A)k(f(t) ~s(t) - &0 ) dt,
where
d
t=(ty,....t), &= R A=32+ +32

is the Laplace operator and the other functions are defined as
f(t) = Eexp{i(t, 8G + Zy)} = exp{~82|¢|”/2)E exp{i(¢, Zy)},
g(t) = Eexp{i(t,G)) = exp{~It|*/2},
2:(t) = E(it, X )’ exp{i(¢, G)} = exp{—It*/2)E(it, X)®.
Due to (2.8), the estimate (2.6) follows from

81(%) ( 1)
2.9 gt e Opk t) —g(t) — dt =0|—
(2.9) L k(f()g() em)’~ N
provided that s; + -+ +s, < 2k.

The function f(#) is a product of exp{— 52|t|?} and a differentiable function
with bounded derivatives. Therefore,

i 1
o a,g»(f(t) ~g(t) - i\/%) )‘dt = o(ﬁ)

'/IutlzCB’1 In N
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provided the constant C = C(p, k) is sufficiently large. Using C6 ' In N <
N?%/5 for sufficiently large N, we see that (2.9) is a consequence of

2.10
10y

provided that s; + -+ +s, < 2k.
The relation (2.10) in turn follows from the estimate

- 0Zk(f(t) - g(t) - if]iv))

. 1
apt - ﬂ:k(f(t) —8(t) - g(;‘/%))‘dt = 0(3\7)

(2.11) < CN~'exp{—clt|?},

which holds for |¢| < ¢V N with some sufficiently large constant C = C( u, k)
[resp. sufficiently small ¢ = c(u, £)]. The proof of (2.11) is similar to the
proofs in Chapter 2 in the book of Bhattacharya and Rao (1986). This
completes the proof of the lemma. O

3. Estimates of the characteristic functions. Recall that for a ran-
dom variable X, X denotes an independent copy and X denotes a sym-
metrization, say X = X — X.

yean

By &, &5,... we shall denote a sequence of ii.d. symmetric Bernoulli
random variables such that P{|¢,| = 1} = 1. Finally write

By =& + - +ey.
The following symmetrization inequality improves slightly the well-known
inequality due to Goétze (1979). Similar improvements of the inequality were

used by Nagaev (1988) and Sazonov, Ulyanov and Zalesskii (1989).

LEMMA 3.1. LetL € R* and C € R. Let Y,,Y,, Y;, W denote independent
random variables taking values in R*. Denote by

P(x) = (Qx,x) + (L,x) + C for x € R,
a real-valued polynomial of second order. Then
2|E exp(itP(Y, + Y, + Y; + W)}|”
< Eexp{2it(QY‘1,Y2)} + Eexp{2it(QYl,Y3)}.
" PrROOF. Write

A=(QY,Y,) - (QY,,Y,) and B=(L,Y;) - (L,Y,).
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We obtain by conditioning arguments
|Eexp{itP(Y, + Y, + Y; + W))|*
< E|Ey, exp{it(QY,,Y)) + 2it(QY,, Y, + Y, + W) + it(L,Y)))|"
= Eexp{itA + itB + 2it(QY,,Y, + Y, + W) — 2it(QY,,Y, + Y, + W)}
< E|Ey, v, exp{2it(QY,,Y, + Y,)}|
— E|E,, exp(2it(QY,,1,)}||Ey, exp{2it(QY,,Y,)}|
<1E exp{2it(QY’1,Y2)} +1E exp{2it(Q171,Y'3)},

where the product of characterlstlc functlons has been bounded using the
elementary inequality 2ab < a? + b2

The next lemma reduces the estimation of the characteristic function | f(¢)|
to the estimation of characteristic functions with independent coordinates.
Recall that U;, 1 <j < 5, denote the coordinates of the random variable U in
the independence condition (1.2). Furthermore, let Us, s > 1, denote indepen-
dent copies of U,.

LEMMA 3.2. Assume the independence condition (1.2). Let M denote the
largest integer such that M < N/3. Then
5

If()l< Y (E exp{ZLt)\JleYﬂ})5/2,

j=1
where A; are defined in (1.3) and
oo T U and To- T G0

l<s<M M+1<s<2M

ProOF. According to the independence condition (1.2), X = U + V, where
U and V are independent. We may write the sum S, as the sum of four
independent sums Y,,Y,,Y;,Y,,

Sy=Y,+Y,+Y,+7Y,,
such that each of Y,,Y,,Y; is a sum of M independent copies of U. Applying
the symmetrization Lemma 3.1 we get

If(t)l2 < Eexp{2it(QY1,Y2)}

because Y, and Y; are identically distributed. The random variable » has
mdependent coordlnates Therefore, the coordinates Yl, 1<j<5, of Y
(resp. of Y,) are independent as well and

E exp<2it(QY1, Y2)} = jl:[lE exp{ZLt)\JYJlY }
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Now the geometric-arithmetic mean inequality

a; ra, < ;(a{" + -+ +ap) fora,,...,a, >0,

completes the proof of the lemma. O

The following lemma allows us to replace arbitrary random variables by
Bernoulli random variables in the estimation of integrals of characteristic
functions.

LEMMA 3.3. Assume that W is a real mean zero random variable with
positive variance and let W, W,, ... be a sequence of independent copies of W.
Write

Zy = (Wy + - +Wy)/VN
and let Zy denote an independent copy of Zy. Then there exist positive
numbers cy, ¢y, 6 and 6 depending only on the distribution of W such that the
integrals

1= (EexplitZyZy))™” dt /1,

T<l|tl<H
J = (E exp{itZNZN})w2 dt
T<l|tl<H
can be bounded from above as

I<c,NIn(H/T) +c,[" (Eexp{itN~'B,,B,,.))"" dtst,
8T

J<e,N2(H-T) +c [ (Eexp(itN~'B,,,B,,})" " dt,
8T
for all 0 < T < H and for some m > c,N.

PrOOF. In the proof of the lemma we shall assume that N > C(L(W)) is
sufficiently large. Otherwise the result is obvious. We shall restrict ourselves
to proving the upper bound for I since the estimation of ¢/ is similar.

Let @y, ay,... denote a sequence of i.i.d. random variables independent of
all other random variables such that

P{la;, =0} =P{a, =1} =1/2.
Conditioning on ay,..., a,, we have
E(itZyZy) = Eexp{itTy Ty},
where '
Ty = (a.W, + (1 = a))W, + = +ayWy + (1 — ay)Wy)/VN.

Write ¢; = 2a; — 1and 2Y, = WJ - Wj The random variables €,1<j<N,
are symmetric Bernoulli random variables which are independent of all other
random variables and such that P{Isjl = 1} = 1. We may write

TN = QN + R,
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where
Qn = (&,Y, + -~ +&yYy)/VN,
R= (W, + W, + - +Wy+ Wy)/(2VN).

Conditioning we have
3.1 E explitTy Ty} < EIES exp{it(QN + R)TNH = ElE‘9 exp{itQNTN}I,

where E_ denotes the conditional expectation given all random variables but
€155 EN-

Let M denote the largest integer such that M < N/2. We may split the
sum @, into three (conditionally, given all random variables but ¢, ..., &y)
independent parts,

Q,=U+V+R,

where

M oM
U= Y &Y,/YN and V= )} ¢Y;//N.
j=1

j=M+1
Therefore, applying the inequality 2ab < a? + b2, we get
_ _ 2 2
2|E, exp{itQy Ty} | <|E, exp{itUTy}|” +|E, exp({itVTy}]|
<E, exp{itﬁTN} + E, exp{itVTN},

where
- M B 2M
(3.2) U=Y5Y,//N and V= Y §&Y//N.
Jj=1 j=M+1

Substitution of this estimate in (8.1) together with equality of the distribu-
tions of U and V yields

(3.3) E exp{itTy Ty} < Eexp{itUTy }.
Repeating this procedure with Ty instead of Ty, we arrive at
E exp{itTyTy} < Eexp{itUV},

where V denotes an independent copy of U, for example, the one given by
(3.2). ‘

The random variable W, as well as Y;, has positive variance. Therefore,
there exist numbers 6 > 0 and 9 < © depending only on the distribution of W
such that the probability p = P{6 <|Y;| < 6} satisfies 0 < p < 1. Consider
the random variables
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Then E¢; = p and
(3.4) PUE+ " b < Mp/2) < e(Mp) "E(& —p + - +6y — p)’

<c¢/(Mp) <c/(Np).

Let m denote the largest integer such that m < Mp /2. Due to (3.4) the
complement of the event

A = {the number of r.v. |Y}|,...,|Y,| contained in [ §, 6] is at least m}

occurs with probability less than c¢/(Np). There exists a (random) set, say
1, c{1,..., M}, of cardinality m such that

{6<lyl<06,foricl,} cA.

Let I, denote the indicator function of event A.
Similarly, the probability of the event

B = {the number of r.v. Yy, 1|,...,|Y;,| contained in [ 8, 8] is at least m}

is bounded from below by 1 — ¢/(Np). There exists a (random) set, say
I, c{M + 1,...,2M}, of cardinality m such that

{8<Y)|<0,fori eIz} cB.

Let I; denote the indicator function of event B.
Due to the definitions of the events A and B we have

(8.5) Eexp(itUV} = EI, I exp{itUV) + R,

where |R| < ¢, /N and the constant ¢, depends on the distribution of W only.
Write E, for the conditional expectation given all random variables but
&4y..., &y- Then

EI, I, exp{itUV} = EI,I,E_ exp{itUV}.
Applying the geometric-arithmetic mean inequality, we have

E, exp(itUV) < [] E, exp{itN-1/2Y;z,V }

JEI

: v (E, exp{itN”l/ijélV})m

JEI,

IA

L Y E, exp(itN~1/*¥,D,V},

m jer,

" where D,, = & + -+ +&,,. Thus

1 )
EI I, exp{itUV} < —ELI; ¥ E, exp(it¥,N~/D,V}.
m

JEI,
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Repeating this procedure with V instead of U, we arrive at
(3.6) EILI,exp{itUV} < EIAI Y X exp{itN~'Y,¥,D,D,}.
JEI, lelp
The elementary inequality (@ + 5)%/% < 8a5/2 + 8b5/2, the Holder inequal-
ity and (3.3), (3.5), and (3.6) together imply
(E exp{itTNTN})S/2

5/2
<c¢,N 52+ czEIAIB( Yy — Dexp{th 1YY,D,,LE,n} ,

JEI, lEIB

where E denotes the conditional expectation given all random variables but
D,, and D,,. The Hélder inequality implies

5/2
(1 )/ 1
[ a‘ <—
2 Jjl =
m- 11

m
5/2
7L LG
whenever a;, > 0. Thus

™=
M3
Mz

1 m- i_q11=1

(387 (EexplitTyTy))” <e;N 2+ ELL, ¥ ¥

jel, lely

2 Jl’
where
I, = LI(E, exp{itN’leYleﬁm})w ’.

If j €I, and [ € I, then 6 <|Y;| < 6 and 6 <1Y;| < 6. Thus

dt _ H o — \\5/2 dt
'[Ts|t|sf11ﬂm N ZIAIB/T (ED exp{th 1|YJ‘Yl|DmDm}) -
— d
= 21,1, |Yle|H(E exp{itN_leDm})5/2 l
|Y,;Y,|IT t
(3.8) j
5/2 ﬂ

< 2IAIBf (Eexp{LtN 'D, D })

<2 fs "TH(E exp(itN'D,,D,,})”" —‘-itf.

Finally, integration of the inequality (3.7) over t together with (3.8),
summation over m and the fact that D,, has the same distribution as B,,,
imply the desired estimate of I. O

In the following lemma we consider integrals of characteristic functions for
Fourier frequencies of magnitude up to O(;/N/In N ). The proof is based on
the well-known techniques developed earlier for the estimation of the conver-
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gence rate in the CLT in Hilbert spaces, and we include this proof only for the
sake of completeness.

LEMMA 3.4. Let k > 0. There exists an absolute constant ¢ > 0 such that

_ d
1= /TH(E exp{itN "B, Byy )" —tf < e, T™*/% + ¢, N~ *,

forany 1l < T<H <c¢yN/InN.Ifk > 2, then

J = fOH(E exp(itN~'B,y By })"* dt < ¢,
forany 0 <H <c¢yN/InN.

ProoF. We shall restrict ourselves to the estimation of I. We have

P{IBNI > x\/ZV} < 2exp{—x2/8} forx < VN,
by a well-known large deviation estimate [see, e.g., Petrov (1975)]. Hence
P{|B,y|>c/NInN} < 2exp{—-8In N} =2N~® for N >c.
LetI = I{|§2N| < c¢/NIn N). Then

B k2 d
I<c,N* + cka(EI(Ee1 exp{italN_ leN})zN) i
T

ot
We have

I|E, exp{ite,N"'B,y}| < exp{—t?BZy/(2N?)}
for |¢| < ¢y N/In N . Therefore,

— 1%
t*BZ dt
IsokN_4k+cka(Eexp{— 2N})
T

N t
We may write
Eexp{—t2N"'BZy/2} = Eexp{—itéN /2B, ,},

where ¢ denotes a standard normal (0, 1) random variable. Repeating the
procedure with By instead of By we get

t%2\\"* dt
IsokN*4k+cka(Eexp{— : })
T

2 t
Now the lemma follows since

. Eexp{—t%2%/2} = 1/V1 + 2¢2. o

" In the following lemma we estimate integrals of characteristic functions for
Fourier frequencies of magnitude up to O(1/N). It may be regarded as the
main (technical) result of the paper. Its proof is related to the circle method of
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Hardy and Littlewood (1920). However, the version presented here is adapted
to the probabilistic setup. This version is even somewhat simpler than the
original method because we could avoid using the “singular series” and the
classification of subintervals into “minor” and “major” arcs since we have a
smooth normal limit distribution function. Technically more involved approx-
imations using “major arcs” would be necessary for proving limit theorems
with number theoretic (discontinuous) limit densities.

LEMMA 3.5. Let &> 0 denote a constant. Let U and V denote numbers
satisfying
)

VN(1 +InN)
Then, fork >5and N =1,2,...,

A4 dt Ck(S) . —
I= [U(S(t))’”2 — <5 whereS(¢) = E exp(imtByy By}

<U<Vk<

[ NG

Furthermore,

I, = [ (S(£))** dt < cy(3).
U

ProoF. We shall estimate only the integral I. The estimation of I; is
similar. Without loss of generality we may assume that

1 é 1
N> 2, 6§< —, U=——= and V=-—.
8 NInN 4
Thus the interval [U, V] is nonempty.

We shall use a partition of the interval [0,1] by the so-called Farey
sequence [see Hardy and Wright (1960) for all related facts]. Let n be a
natural number. The Farey sequence F, of order n > 2 is the ascending
sequence of irreducible fractions between 0 and 1 with denominators not
exceeding n. Thus p/q belongs to F, if the integer numbers p and g satisfy

l<p<g=<n and (p,q)=1,

where (p, q) denotes as usual the largest common divisor of p and q. The
interval (1/(n + 1), n/(n + 1)] may be represented as the union of noninter-
secting (semiclosed) intervals

p p p p

(5) (5 - mwg tma Gem

such that I(p/ q) contains only-one point of the set F,, namely p/q, and this
point divides I( p/q) into two subintervals which have lengths bounded from
below by 1/(q(2n — 1)) and from above by 1/(g(n — 1)); that is,

1/(q(2n - 1)) < v,,, < 1/(q(n + 1))
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and
1/(q(2n - 1)) <m,,, <1/(q(n + 1)).

Let M be the smallest integer such that

3.9 LU 2 ad PUByls M) <~

] == > < —.

(39) =71 whmy 4 PRz M=

Due to the large deviation estimate for B,y, such M = M(N) exists and
32 <M <c¢/NIn N /8. Let us consider the Farey series F,,, and the collec-
tion Fy,, of p/q € F,,;, such that the corresponding intervals I(p/q) have
nonempty intersection with the interval [U, V']. Due to the choice of M, the
interval (U, V) is covered by intervals I(p/q), p/q € F¥,,,

(U,V) c{UI(p/q): p/q € F3y)}.
We shall prove that for ¢t € I(p/q),

b
where 0 =t — —.

cM c
3.10 S(t) £ — 4+ —/—————,
(210 =7 gVl + 6°N? q

This estimate implies the result of the lemma. Indeed, applying the elemen-
tary inequality (a + b)* < 2*(a* + b*) with a = k/2, we obtain

M\*? (v
(3.11) ISCkJ"‘Ck(F) ln(ﬁ),
where
dt
J= )Y J and J,,, = .
P/q€Fiy P/ pra '/;(p/q) tq*/?(1 + (92N2)k/4
However, for t = 0 + p/q € I(p/q),
p p 1 p
t>— —|l>————>— sinceM > 1.
q q 2qM  2q
Therefore,
2q ® du cLq

=< <
p/q qu/2N —°°(1+u2)k/4 qu/zN

provided & > 2. Thus

c q c :
(3.12) J<— YT s < — fork >4,
Np/qEF%‘M bq N
sinice
q » & q > q(l+1Ingq)
we = Y X %/2 <c) %73
p/qeFiy P9 q=1p=1P4 q=1 q
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Noting that M < ¢VN In N /6 and collecting the estimates (3.11) and (3.12),
we obtain the result of the lemma.
It remains to prove (3.10). Starting with the elementary inequality
cos? u < exp{—u?/2} for |ul < m/2,
we get
> T T

1
cos?u < ) I{—E<u—7rjs§>exp{—§(u—7rj)2} for all u € R.

Jj=—x

It follows that
S(t) = Eexp{ithZNgzN} = Ecos?N(7tByy)
N
< Y Eexp{——(th2N_ wj)z},
=N 2
Jjl<

since [tB,y| < N/2,for 0 <t < 1/4.
Write p, = P{e; + - + &,y = 1}. Using 72 > 2 we have

S(t) < ¥ Y exp{-N(t —j)’}p:.

|jI<N lll<N
Due to (3.9),
C
(3.13a) 5(t) < 7=+ Si(1),
where
(3.13b) Si(t)= ¥ ¥ exp{-N(tl —j)’}p,.
ljl=sN lll<M

Note that p, = p_;. Thus

M
(3.14) S,(t) <28,(t), whereSy(t) = Y. Y exp{—N(t —j)}p,.
ljlsN 1=0

Let us write

t=£ + 0 fortel(g),withlf)ls
q

q 2qM
and let us decompose / modulo gq:
. M
l=mq+r, where0<r<g-land0<m< —.
q

Then
. o1 2
Sy(t)y= ¥ L X exp(-N(6l+{pr/q} +[pr/q] +pm =) }pi,

0<m<M/q r=0 |j|<N
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where we denote by [«a] the integer nearest to a number « and by {a} =
a — [ a] the (signed) distance between o and the nearest integer (the defini-
tion of [ @] when {a}| = 1/2 is inessential for our purposes).

If r =0, then

pr pr
|0l+{—}+[—]+pm-—j
q q

DN | =

1
>|pm—jl—16ll>1—- — >
2q

provided j # pm.If 1 <r < q — 1, then

pr pr pr 1 1 3 1
0l+{—}+[?]+pm—j z[—]+pm—j ————221-—==—
q

q 2 2q 4 4

provided j # [ pr/q] + pm. Therefore,
c

N
(3.15) S,(2) sNzexp{—Ig} +8y(0) < 7= + Sal?),

where
q-1 )
Sy(t)= ¥ X exp{-N(6l+ {pr/q})’}p:
O<m<M/q r=0
Elementary calculations using Stirling’s formula show that

c N?/3

l2
—exp{— } for0 <! <

Pr=TN 2N
Therefore, for L = mq + r and | < M,
3.16 c q2m2
. < = -
(3.16) P < e~ o

Let us split the sum S,;(¢) according to whether r =0 or r > 0. Using
(3.16) we obtain

(3.17) Sy(t) = S4(2) + S5(%),
where
s C q*m?(1 + N%?)
t) = — - )
4( ) ‘/N OsmsM/qexp 2N
C g?m?) 9} pr )2
S:(t) = —= — —-N| 6l + {— .
5( ) ‘/Zv OsmgM/qexp{ 2N }rgl P { q }
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For S,(t) we have

2.2 202
S4(t) = % %lsgsxexp{_q - (;;N 0 )}
C C q*m*(1+ N%?)
(3.18) <t Wf()gﬂgggexp{— N }dm
C C

< + .
VN qV1l + 62N?
The estimation of S,(¢) is somewhat involved. Since numbers p and g are
relative primes and r # 0, we have l{pr/q}l > 1/q and

r r r 1 1 r
o I 5310
q q q 2qg 2|\ q

5, o el

Sy(t) < =
° ‘/_0<m<M/q

The sets

Thus

{{pr/q}:1<r<q—-1} and {{r/q}:1<r<q-1}

are equal since (p, ¢) = 1, and we have
q-1 N ( pr)? * Nr?
exp{ — —({ — <2 exps —

o (" Nr? 4 cq
< - < —=.
2 z < fl exp 847 r< oS

Collecting these estimates we get
Cq s { q2m2 }

S5(t) < ~ Zoexp SN
(3.19) 5—1+——fep{ 2}dm

Cq C CM
S —+ =< =
N VN
since ¢ < 2M and VN < cM.
Now (3.10) follows from (3.13a)—(3.19).
4., A smoothing lemma.
,LEMMA 4.1. Let F be a distribution function with the characteristic func-
tion f. Then, for any H > 0,

F L v 1) F() 2 + R
() = 3 + g7 PV (i (D5 + R,
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where
Rl<~ "1f)d
< — t t,
7/
and where P.V. denotes Cauchy’s principal value,

P.V. t)dt = 1li t) dt.
'[Ru( ) n10 Itlzhu( )

Let G denote a distribution function with the characteristic function g.
Lemma 4.1 obviously implies

d
IF(x) — G(x) < 2—177fj1Hlf(t) —g(t)lﬁ + %f_h;(lf(t)l +lg(t)l) de,

which recalls the classical Esseen inequality for characteristic functions.
Lemma 4.1 is a consequence of the following smoothing inequalities of
Prawitz (1972). Define the function 2K(s) = K(s) + iK,(s)/(ms) by

K (s) =1-—]s|, K,(s) = ws(1 —|sl)cot ws +|s| for[s| <1,

and K,(s) = K,(s) = 0, for |s| > 1. Then (notice that all integrals are real and
that the expressions under the signs of integrals vanish unless |¢| < H)

1 1 [t
(4.1) Flz+) <5+ P.V.fRexp(—zxt)EK(E)f(t) dt,

1 1 t
(4.2) F(x=)z 5 - P.V.fRexp(—zxt)EK(—E)f(t) dt,

where F(x +) =lim,,, F(z) and F(x — ) = lim,, , F(2).
The following lemma is elementary.
LEMMA 4.2. For 0 < s < 1 we have
Ky(0) =1, Ky(1) =0, Ky(3)=73,
Ki(s) <0, K,(s) + Ky(1 —s) =1.
Furthermore,
T8 1
1-2(1- s)sinz—z— <Ky(s) <1 forO<s< 3
and

m(1—s)

0 < K,(s) < 2ssin? 5

for — <s < 1.
01'2 S

It follows from Lemma 4.2 thait
1 - Ky(s)l <2|s| forall s € R.
Therefore, (4.1), (4.2) and the definition of the function K imply Lemma 4.1.
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It is known [see, for instance, Chung (1974)], that if we redefine a distribu-
tion function G at discontinuity points (say x) as 2G(x) = G(x + ) + G(x —),
then

1 ) dt
(4.3) G(x) = _+EJ\141—I}1@PV SZ‘/Iexp(—ztz)g(t)T,

where g denotes the characteristic function of G. One can genefalize (4.3) to
functions of the bounded variation.
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