POTENTIAL KERNEL FOR TWO-DIMENSIONAL RANDOM WALK

By Yasunari Fukai and Kôhei Uchiyama

Tokyo Institute of Technology

It is proved that the potential kernel of a recurrent, aperiodic random walk on the integer lattice \mathbb{Z}^2 admits an asymptotic expansion of the form

 $(2\pi\sqrt{|Q|})^{-1}\ln Q(x_2, -x_1) + \text{const} + |x|^{-1}U_1(\omega^x) + |x|^{-2}U_2(\omega^x) + \cdots,$

where |Q| and $Q(\theta)$ are, respectively, the determinant and the quadratic form of the covariance matrix of the increment X of the random walk, $\omega^x = x/|x|$ and the $U_k(\omega)$ are smooth functions of ω , $|\omega| = 1$, provided that all the moments of X are finite. Explicit forms of U_1 and U_2 are given in terms of the moments of X.

1. Introduction and statements of results. Let $X^{(1)}, X^{(2)}, \ldots$ be a sequence of \mathbb{Z}^2 -valued i.i.d. mean-zero random variables with finite variance and $\{S_n\}_{n=0}^{\infty}$ the associated random walk on the integer lattice \mathbb{Z}^2 starting at the origin; that is, $S_0 = 0$, $S_n = \sum_{i=1}^n X^{(i)}$. We write X for $X^{(1)}$ for brevity. We assume that the random walk $\{S_n\}_{n=0}^{\infty}$ is aperiodic (i.e., the smallest additive subgroup containing $\{x \in \mathbb{Z}^2: P\{X = x\} > 0\}$ agrees with \mathbb{Z}^2). As in [3], we define the potential function (Green function) a(x) by

$$a(x) = \sum_{n=0}^{\infty} (P\{S_n = 0\} - P\{S_n = -x\}), \quad x \in \mathbb{Z}^2$$

Let $Q(\theta)$ be the moment quadratic form of X. That is, $Q(\theta) = E\{(\theta \cdot X)^2\}$, $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$. We sometimes write $Q(\theta_1, \theta_2)$ for $Q(\theta)$. Let Q also denote the covariance matrix of X, and Q^{-1} its inverse matrix, and define

$$||x|| := \sqrt{x \cdot Q^{-1}x} = \sqrt{Q(x_2, -x_1)/\det Q}$$

[here $x = (x_1, x_2)$ is thought to be a column vector when the matrix is operated from the left]. The square root of Q that is symmetric and positive definite is denoted by \sqrt{Q} . We need the moment conditions

$$(\mathrm{MC}: \, k \,+\, \delta) \qquad \quad E\{|X|^{k\,+\,\delta}\} < \infty \quad \text{for some } \delta > 0,$$

where k will take the values $2, 3, \ldots$. The following result is due to Spitzer [3].

Received July 1995; revised January 1996.

Key words and phrases. Two-dimensional random walk, potential kernel, Laplace discrete operator, oscillatory integral.

AMS 1991 subject classifications. 60J15, 60J45, 31C20.

THEOREM 1. Suppose the moment condition (MC: $2 + \delta$) holds. Then

(1.1)
$$\lim_{|x|\to\infty} \left[a(x) - (\pi\sigma_1\sigma_2)^{-1} \ln \|x\| - C_0 \right] = 0,$$

where C_0 is a certain constant that depends on the distribution of X, and σ_1 and σ_2 are the eigenvalues of the matrix \sqrt{Q} .

To state the main result of this paper, we put

$$\psi_{i,1}(\theta) \coloneqq -2E\{(\theta \cdot X)^3\}/3Q^2(\theta)$$

and

$$\psi_{r,1}(\theta) \coloneqq \left[\frac{1}{2}Q(\theta)E\{(\theta\cdot X)^4\} - \frac{2}{3}(E\{(\theta\cdot X)^3\})^2\right] / 3Q^3(\theta).$$

These functions are the principal parts of the real and imaginary parts of the function $\psi(\theta) := (1 - E\{e^{iX\cdot\theta}\})^{-1} - 2/Q(\theta)$ [cf. (3.4) and (3.5)]. We also define

(1.2)
$$g^{\sharp}(\theta) \coloneqq \mathrm{p.v.} \int_{-\infty}^{\infty} g(\theta_1 - t\theta_2, \theta_2 + t\theta_1) dt$$

for $\theta \in \mathbb{R} \setminus \{0\}$ and a function g for which the principal value on the right-hand side exists. [The principal value here is, of course, the limit of the integral on the symmetrical interval (-L, L).]

THEOREM 2. If the moment condition (MC: $2 + m + \delta$) holds ($m \ge 1$), then

(1.3)
$$a(x) - \frac{1}{\pi \sigma_1 \sigma_2} \ln \|x\| - C_0 = \frac{U_1(\omega^x)}{|x|} + \dots + \frac{U_m(\omega^x)}{|x|^m} + o\left(\frac{1}{|x|^m}\right)$$

as $|x| \to \infty$ in \mathbb{Z}^2 , where $\omega^x = x/|x|$, σ_1 , σ_2 and C_0 are the same constants as in (1.1) and U_k , k = 1, 2, ..., are smooth functions of $\omega = (\omega_1, \omega_2)$, $|\omega| = 1$; moreover, the first and the second of them are given by

$$U_1(\omega) = \frac{1}{2\pi^2} \psi_{i,1}^{\sharp}(\omega) \quad and \quad U_2(\omega) = \frac{1}{2\pi^2} (\omega \cdot \nabla \psi_{r,1})^{\sharp}(\omega).$$

REMARK 1. The function $U_1(\omega)$ is identically 0 if and only if all the third moments $E\{(X_1)^k(X_2)^{3-k}\}, k = 0, 1, 2, 3, \text{vanish. If } X \text{ is symmetric, that is, } X$ has the same distribution as -X, then U_k vanishes for every odd number k.

REMARK 2. For the simple random walk in particular, Theorem 2 gives the asymptotic expansion

$$a(x) = rac{2}{\pi} \ln |x| + rac{\ln 8 + 2\gamma}{\pi} + rac{1}{6\pi} rac{8(\omega_1^x \omega_2^x)^2 - 1}{|x|^2} + rac{U_4(\omega^x)}{|x|^4} + \cdots$$

(γ is Euler's constant), which is an improvement of a result of Stöhr [4], where a(x) is computed up to $O(|x|^{-2})$.

1980

REMARK 3. We shall see in Section 5 that $U_k(\theta/|\theta|)/|\theta|^k$ is a rational fraction of the form $\{\theta^{2\nu-k}\}/||\theta||^{2\nu}$, where $\{\theta^k\}$ represents a homogeneous polynomial of degree k. Accordingly, (1.3) may be rewritten as

(1.4)
$$a(x) - \frac{1}{\pi\sigma_1\sigma_2}\ln\|x\| - C_0 = \frac{\tilde{U}_1(\tilde{\omega}^x)}{\|x\|} + \dots + \frac{\tilde{U}_m(\tilde{\omega}^x)}{\|x\|^m} + o\left(\frac{1}{|x|^m}\right).$$

Here $\tilde{\omega}^x \coloneqq \sqrt{Q^{-1}} x/||x||$; $\tilde{U}_k(\omega)$ is a polynomial of $\omega = (\omega_1, \omega_2)$ of degree (at most) 3k for $k = 1, 2, \ldots$; in particular, $\tilde{U}_1(\omega) = (\psi_{i,1} \circ \sqrt{Q^{-1}})^{\sharp}(\omega)/(2\pi^2 \sigma_1 \sigma_2)$. [See (1.8) below.]

In the case of a simple random walk, a(x) can be neatly expressed by a contour integral on the complex plane (as given and applied, e.g., in [4] and [5]) and the complex function theory accordingly provides us machinery for computation, though the proof given in [4] is still quite involved.

In our approach, we employ only real analytic arguments as in Spitzer [3] and it is a key step to establish an asymptotic expansion of an integral of the form

(1.5)
$$\int_{[-\pi,\pi]\times[-\pi,\pi]} \frac{p(\theta)}{q(\theta)} \sin(x\cdot\theta) \, d\theta$$

as $x \to \infty$, where $p(\theta)$ and $q(\theta)$ are homogeneous polynomials of degree $2\nu - 1$ and 2ν , $\nu \ge 1$, respectively, and $q(\theta)$ is supposed to be positive for $\theta \ne 0$, so that

$$q(\theta) \ge c|\theta|^{2\nu}, \qquad \theta \in \mathbb{R}^2.$$

for a constant c > 0. We formulate the result on the integral (1.5) in the following theorem.

THEOREM 3. Let p and q be as above. Let D be a two-dimensional bounded domain containing the origin and having piecewise smooth boundary. Let m be a positive integer and $\xi(\theta)$ a function on the closure \overline{D} such that ξ has partial derivatives up to order m that are continuous on $\overline{D} \setminus \{0\}$ and integrable on D. Then for the function

$$g(\theta) = rac{p(\theta)}{q(\theta)} + \xi(\theta)$$

it holds that

(1.6)
$$\int_{D} g(\theta) e^{ir\omega\cdot\theta} d\theta = -\frac{2}{ir} \left(\frac{p}{q}\right)^{\sharp}(\omega) + \sum_{l=1}^{m} \frac{1}{(ir)^{l}} B_{l}(r,\omega) + o\left(\frac{1}{r^{m}}\right)$$

as $r \uparrow \infty$ uniformly for ω , $|\omega| = 1$, where \ddagger is defined by (1.2) and

(1.7)
$$B_l(r,\omega) \coloneqq \int_{\partial D} (-\omega \cdot \nabla)^{l-1} g(\theta) e^{ir\omega \cdot \theta} \omega \cdot n \, ds.$$

[Here, $n = n(\theta)$ is the outward unit normal vector to ∂D and $ds = ds_{\theta}$ is a line element of ∂D .]

REMARK 4. As a consequence of Theorem 3, we obtain a useful property of the transform $p/q \rightarrow (p/q)^{\sharp}$. Let A be a regular 2×2 matrix. Then

(1.8)
$$\left(\frac{p}{q}\right)^{\sharp}(\theta) = |\det A|\left(\left(\frac{p}{q}\right) \circ A\right)^{\sharp}(A^{t}\theta).$$

 $(A^t$ denotes the transpose of the matrix A.) The verification of (1.8) is immediate from (1.6) [take ξ so that both g and $\nabla \cdot g$ vanish on ∂D , change the variable according to $\theta = A\theta'$ on the left-hand side of (1.6) and let $r \to \infty$], while it is not so simple a matter to establish (1.8) if one only looks at the defining expression (1.2). (See Section 5 for further properties of the transform \sharp .)

The following version of Theorem 3 is convenient for application.

REMARK 5. Theorem 3 may be extended to a more complete form. Let D and ξ be as in Theorem 3. Let $\psi(\omega)$ be a smooth function on the unit circle. Then for a function g of the form

$$g(\theta) = h(\theta) + \xi(\theta)$$
 with $h(\theta) = \frac{\psi(\theta/|\theta|)(\theta)}{|\theta|}$

it holds that

$$\int_{D} g(\theta) e^{ir\omega\cdot\theta} d\theta = 2\pi h^{\flat}(\theta) + i2h^{\sharp}(\theta) + \sum_{k=1}^{m} \frac{1}{(ir)^{k}} B_{k}(r,\omega) + o\left(\frac{1}{r^{m}}\right),$$

as $r \uparrow \infty$, uniformly in ω , $|\omega| = 1$. Here B_k is the same as in (1.7) and

$$h^{\flat}(\theta) = \frac{1}{2} \left[h(\theta_2, -\theta_1) + h(-\theta_2, \theta_1) \right].$$

The method developed in this paper can be adapted for deriving the asymptotic expansion of the potential kernel for the higher-dimensional random walk, which will be studied in a separate paper. Theorem 3, in particular, has a *d*-dimensional version ($d \ge 3$) in which g^{\sharp} takes an analogous or different form according as *d* is even or odd.

The result of Stöhr [4] mentioned above is used for estimating a certain hitting distribution by Kesten [1] (cf. also [2]). As another example of application of our expansion (1.3), we shall compute in Section 6 the distributions of hitting places of lines $x_2 = N$ up to $O(|x|^{-3})$.

The proof of Theorem 1, which is essentially the same as in [3], prepares that of Theorem 2, and our task for the latter is to get the estimate of the remainder term, which will be reduced to Theorem 3 with not much difficulty.

We shall proceed in logical order, namely, we first prove Theorem 1 in Section 2, secondly Theorem 3 in Section 3 and then Theorem 2 in Section 4.

2. Proof of Theorem 1. Here we outline the proof of Theorem 1. It is identical to that given in Proposition 12.3 of Spitzer [3] [where $Q(\theta)$ is assumed to be a constant multiple of $|\theta|^2$] except for a simple modification by

1982

a change of variable, but we need the content of it, since our proof of Theorem 2 being a continuation of it.

Let $\phi(\theta)$ be the characteristic function of *X*, that is, $\phi(\theta) = E\{e^{iX\cdot\theta}\}$. The function a(x) is expressed as follows:

(2.1)
$$a(x) = \frac{1}{\left(2\pi\right)^2} \int_T \frac{1 - e^{ix\cdot\theta}}{1 - \phi(\theta)} \, d\theta, \qquad x \in \mathbb{Z}^2,$$

where $T = [-\pi, \pi] \times [-\pi, \pi]$. Introducing

$$\psi(\theta)\coloneqq rac{1}{1-\phi(\theta)}-rac{2}{Q(heta)},$$

which is integrable on T since the condition (MC: $2 + \delta$) implies $1 - \phi(\theta) = \frac{1}{2}Q(\theta) + O(|\theta|^{2+\delta})$ as $|\theta| \to 0$ (cf. [3], Proposition 12.3). We make the decomposition

(2.2)
$$4\pi^2 a(x) = \int_T \frac{2}{Q(\theta)} (1 - \cos x \cdot \theta) \, d\theta + \operatorname{Re} \int_T \psi(\theta) (1 - e^{ix \cdot \theta}) \, d\theta$$

(Re z indicates the real part of a complex number z). In view of the Riemann–Lebesgue lemma, the second term converges, as $|x| \to \infty$, to Re $\int_T \psi(\theta) d\theta$, contributing to the constant C_0 and leaving the o(1) term

(2.3)
$$\Psi(x) \coloneqq -\operatorname{Re} \int_{T} \psi(\theta) e^{ix \cdot \theta} d\theta$$

For the evaluation of the first term, we consider the mapping

(2.4)
$$\theta \mapsto \theta' = \sqrt{Q} \, \theta,$$

which, entailing the identity $Q(\theta) = |\theta'|^2$, transforms the ellipse $Q(\theta) = r^2$ into the circle $|\theta'| = r$. Let (r, α) be the polar coordinates of θ' , namely,

(2.5)
$$\theta' = (r \cos(\alpha - \alpha_0), r \sin(\alpha - \alpha_0)),$$

where α_0 is a constant chosen arbitrarily. Since $x \cdot \theta = \sqrt{Q^{-1}} x \cdot \theta'$ and $||x|| = |\sqrt{Q^{-1}} x|$, we can choose the constant $\alpha_0 = \alpha_0(x)$ so as to get $x \cdot \theta = ||x|| r \sin \alpha$.

Now, putting

$$B = \left\{ \theta \colon \sqrt{Q(\theta)} \le \left(\sigma_1 \land \sigma_2 \right) \pi \right\}$$

(*B* is an elliptic region inscribed in *T*), we decompose the first integral on the right-hand side of (2.2) into two parts, one the integral over *B* and the other that over $T \setminus B$. The latter converges to $\int_{T \setminus B} [2/Q(\theta)] d\theta$, leaving the second o(1) term

(2.6)
$$-\int_{T\setminus B}\frac{2}{Q(\theta)}\cos(x\cdot\theta)\,d\theta$$

The former equals

$$\int_{0}^{2\pi} d\alpha \int_{0}^{(\sigma_{1} \wedge \sigma_{2})\pi} \frac{2}{\sigma_{1}\sigma_{2}r} \left[1 - \cos(\|x\|r\sin\alpha) \right] dr$$

$$= 4 \int_{0}^{\pi/2} d\alpha \int_{0}^{c(x)\sin\alpha} \frac{2}{\sigma_{1}\sigma_{2}u} (1 - \cos u) du$$
(2.7)
$$= \frac{8}{\sigma_{1}\sigma_{2}} \left[\int_{0}^{\pi/2} d\alpha \int_{0}^{1} \frac{1 - \cos u}{u} du - \int_{0}^{\pi/2} d\alpha \int_{1}^{\infty} \frac{\cos u}{u} du + \int_{0}^{\pi/2} d\alpha \int_{1}^{c(x)\sin\alpha} \frac{1}{u} du + \int_{0}^{\pi/2} d\alpha \int_{c(x)\sin\alpha}^{\infty} \frac{\cos u}{u} du \right]$$

where $c(x) = (\sigma_1 \wedge \sigma_2)\pi ||x||$. Within the brackets of the last expression in (2.7), the first and the second terms are constants; the third is equal to

$$\frac{1}{2}\pi \log \|x\| + \frac{1}{2}\pi \log \left[(\sigma_1 \wedge \sigma_2)\pi \right] + \int_0^{\pi/2} \log(\sin \alpha) \, d\alpha$$

and the fourth vanishes as $|x| \to \infty$ [this gives the last o(1) term]. The proof of Theorem 1 is complete. \Box

3. Proof of Theorem 3. Put

$$\omega = rac{x}{|x|}$$
 and $R_{\omega} = \begin{pmatrix} \omega_1 & -\omega_2 \\ \omega_2 & \omega_1 \end{pmatrix}$

and introduce the new variables

$$(u,v) = R_{\omega}^{-1}\theta$$

so that $\omega \cdot \theta = u$. Let

$$D^{\omega} = R_{\omega}^{-1}D$$
 and $g^{\omega}(u,v) = g(R_{\omega}(u,v))$.

Then

(3.1)
$$\int_D g(\theta) e^{ir\omega\cdot\theta} d\theta = \int_{D^\omega} g^\omega(u,v) e^{iru} du dv.$$

We are to carry out the integration by parts for the integral with respect to u on the right-hand side above. This amounts to applying the divergence theorem to the integral on the left-hand side, into which we substitute

(3.2)
$$e^{ir\omega\cdot\theta} = \nabla\cdot\mathbf{A}(\theta), \text{ where } \mathbf{A}(\theta) = (ir)^{-1}e^{ir\omega\cdot\theta}\omega$$

We can apply the divergence theorem repeatedly m times to the integral of $\xi(\theta)e^{ir\omega\cdot\theta} = \nabla \cdot (\xi \mathbf{A}) - \nabla \xi \cdot \mathbf{A}$, which results in the boundary integrals given in (1.7) with ξ in place of g plus the remainder term of the order $o(r^{-m})$. It therefore suffices to prove (1.6) in the case when $\xi = 0$. [Although ξ may be singular at the origin, it can be approximated in Sobolev norm by a smooth function (under the assumption on ξ in Theorem 3) so that the divergence theorem is applicable at least m times.] Let g = p/q with polynomials p and q as described in Theorem 3.

We suppose for simplicity that D^{ω} contains the square

$$K = \{(u, v) \colon |u| \le 1, |v| \le 1\},\$$

and we decompose the integral on the right-hand side of (3.1) into that over K and the rest. We formulate the result of the computation as follows.

LEMMA 1. Let g = p/q, where p and q are homogeneous polynomials as given in Theorem 3. Then

$$\frac{d}{du}\int_{-1}^{1}g^{\omega}(u,v)\,dv=\int_{-1}^{1}\frac{\partial g^{\omega}}{\partial u}(u,v)\,dv=\frac{f(u,\omega)}{q^{\omega}(u,1)q^{\omega}(u,-1)},\qquad u\neq 0,$$

where $q^{\omega} = q \circ R_{\omega}$ and $f(u, \omega)$ is a polynomial of (u, ω_1, ω_2) , and

$$\int_{D} g(\theta) e^{ir\omega \cdot \theta} d\theta = -\frac{2}{ir} g^{\sharp}(\omega) + \frac{1}{ir} \int_{\partial D} g(\theta) e^{ir\omega \cdot \theta} \omega \cdot n \, ds$$
$$-\frac{1}{ir} \int_{D^{\omega} \setminus K} \frac{\partial g^{\omega}}{\partial u}(u, v) e^{iru} \, du \, dv$$
$$-\frac{1}{ir} \int_{-1}^{1} e^{iru} \, du \int_{-1}^{1} \frac{\partial g^{\omega}}{\partial u}(u, v) \, dv.$$

Theorem 3 readily follows from Lemma 1. In fact, if we apply the integration-by-parts formula to the integral relative to u in the last two integrals on the right-hand side above, the contributions of the boundary terms that thereby come up are reduced to

(3.3)
$$\frac{1}{(ir)^2} \int_{\partial D} (-\omega \cdot \nabla) g(\theta) e^{ir\omega \cdot \theta} \omega \cdot n \, ds,$$

because of cancellation between those from ∂K [recall the remark made when **A** is introduced in (3.2)]. We can repeat the integration by parts in the same way in view of the first half of Lemma 1 to arrive at (1.6). Now it remains to prove Lemma 1.

PROOF OF LEMMA 1. By the divergence theorem

(3.4)
$$\int_{D^{\omega}\setminus K} g^{\omega}(u,v) e^{iru} \, du \, dv = \frac{1}{ir} \int_{\partial (D^{\omega}\setminus K)} g^{\omega}(u,v) e^{iru} n \, ds$$
$$-\frac{1}{ir} \int_{D^{\omega}\setminus K} \frac{\partial g^{\omega}}{\partial u}(u,v) e^{iru} \, du \, dv$$

We cannot apply the divergence theorem to the integral over K directly. We consider the function

$$F(u) := \int_{-1}^{1} g^{\omega}(u, v) \, dv = \int_{-1/u}^{1/u} g^{\omega}(1, t) \, dt.$$

Here, to obtain the second expression, we have applied the assumption that g is in the special form p/q [which the function $g^{\omega} = g \circ R_{\omega}$ clearly inherits, so that $vg^{\omega}(u,v)$ is the ratio of two homogeneous polynomials of degree 2ν]. Clearly, F(-u) = -F(u). Although $g^{\omega}(1,t)$ is not integrable on **R**, there exists the principal value

$$F(0+) = \operatorname{p.v.} \int_{-\infty}^{\infty} g^{\omega}(1,t) dt \coloneqq \lim_{L \to \infty} \int_{-L}^{L} g^{\omega}(1,t) dt.$$

Furthermore, for $u \neq 0$,

$$\begin{aligned} F'(u) &= -u^{-2} \left[g^{\omega} \left(1, \frac{1}{u} \right) + g^{\omega} \left(1, \frac{-1}{u} \right) \right] \\ &= -u^{-1} \left[g^{\omega}(u, 1) + g^{\omega}(u, -1) \right] \\ &= -\frac{1}{u} \frac{p^{\omega}(u, 1)q^{\omega}(u, -1) + p^{\omega}(u, -1)q^{\omega}(u, 1)}{q^{\omega}(u, 1)q^{\omega}(u, -1)}. \end{aligned}$$

Because of cancellation of the constant terms in the numerator of the quotient above, we conclude that, for $u \neq 0$,

$$F'(u) = f(u, \omega)/q^{\omega}(u, 1)q^{\omega}(u, -1) \text{ with } q^{\omega}(u, \pm 1) \ge c(1 + u^2)^{\nu},$$

where $f(u, \omega)$ is a polynomial. This proves the first half of Lemma 1. Now

$$\begin{split} \int_{K} g^{\omega}(u,v) e^{iru} \, du \, dv &= \int_{-1}^{1} F(u) e^{iru} \, du \\ &= \frac{1}{ir} F(u) e^{iru} \Big|_{-1}^{1} - \frac{1}{ir} \int_{-1}^{1} e^{iru} \, dF(u) \\ &= \frac{1}{ir} F(u) e^{iru} \Big|_{-1}^{1} - \frac{2}{ir} F(0+) - \frac{1}{ir} \int_{-1}^{1} e^{iru} F'(u) \, du. \end{split}$$

The boundary term appearing above cancels out the contribution from ∂K to the boundary integral in (3.4). The contribution from ∂D^{ω} to the latter integral equals $(ir)^{-1} \int_{\partial D} g(\theta) e^{r\omega \cdot \theta} \omega \cdot n \, ds$. Finally, $F(0+) = g^{\sharp}(\omega)$. Thus we obtain the second relation of Lemma 1. \Box

4. Proof of Theorem 2. We collect all the error terms that we neglected as o(1) terms in the proof of Theorem 1 and write $\Psi(x) + \Lambda(x)$ for their sum, where

$$\Psi(x) = -\operatorname{Re} \int_T \psi(\theta) e^{ix\cdot\theta} d\theta$$

[as already introduced in (2.3)] and

$$\Lambda(x) \coloneqq \frac{8}{\sigma_1 \sigma_2} \int_0^{\pi/2} d\alpha \int_{c(x) \sin \alpha}^{\infty} \frac{\cos u}{u} \, du - \int_{T \setminus B} \frac{2}{Q(\theta)} \cos(x \cdot \theta) \, d\theta$$

[The first term of $\Lambda(x)$ comes from the last double integral in (2.7) and the second term is (2.6).] As in the previous section, we put $\omega = x/|x|$ and make the change of variables $(u, v) = R_{\omega}^{-1}\theta$ so that $\omega \cdot \theta = u$. Let

$$T^{\omega} = R_{\omega}^{-1}T$$
 and $Q^{\omega}(u,v) = Q(R_{\omega}(u,v)).$

Lemma 2.

$$\Lambda(x) = \int_{-\infty}^{\infty} dv \int_{\{u: (u,v) \in \mathbb{R}^2 \setminus T^{\omega}\}} \frac{2}{Q^{\omega}(u,v)} \cos(|x|u) du.$$

PROOF. Recall that we obtained the first term in (2.7), an expression for the integral $\int_B [2/Q(\theta)](1 - \cos x \cdot \theta) d\theta$, via a change of variables according to (2.4) and (2.5). By formally reversing the procedure, we see that the first term of the expression defining $\Lambda(x)$ is equal to

$$\int_{\mathbb{R}^2\setminus B}rac{2}{Q(heta)}\cos(x\cdot heta)\,d heta$$

or, by changing the variables of integration, to the iterated integral

(4.1)
$$\int_{-\infty}^{\infty} dv \int_{\{u: (u,v) \in \mathbb{R}^2 \setminus B^\omega\}} \frac{2}{Q^\omega(u,v)} \cos(|x|u) du,$$

where $B^{\omega} = R_{\omega}^{-1}B$. Hence we obtain an expression for $\Lambda(x)$ in Lemma 2. This argument, however, must be justified because the function $[1/Q(\theta)]\cos(x \cdot \theta)$, not being Lebesgue integrable on $\mathbb{R}^2 \setminus B$, does not admit the application of Fubini's theorem.

For justification we consider the integral

(4.2)
$$I(L) \coloneqq \frac{8}{\sigma_1 \sigma_2} \int_0^{\pi/2} d\alpha \int_{c(x)\sin\alpha}^{Lc(x)\sin\alpha} \frac{\cos u}{u} du.$$

Since the inner integral is bounded by $1 + \log^+(1/(c(x)\sin \alpha))$, I(L) converges to the first term of the expression defining Λ as $L \to \infty$. Since the function $u^{-1}\cos u$ is integrable on $\{(\alpha, u): c(x)\sin \alpha < u < Lc(x)\sin \alpha, 0 < \alpha \le \pi/2\}$, we may follow the recipe discussed at the beginning of this proof to get $I(L) = \int_{-\infty}^{\infty} f_L(v) dv$, where

$$f_L(v) \coloneqq \int_{\{u: \ \lambda < Q^{\omega}(u,v) < L\lambda\}} \frac{2}{Q^{\omega}(u,v)} \cos(|x|u) \, du, \qquad \lambda \coloneqq \left((\sigma_1 \land \sigma_2)\pi\right)^2.$$

We have only to show that $f_L(v)$ is dominated by an integrable function that is independent of L since we can then apply Lebesgue's convergence theorem to see that I(L) converges to (4.1) as $L \to \infty$. Clearly, f_L is bounded uniformly for $L \ge 1$. It therefore suffices to show that, for a < b,

(4.3)
$$\left|\int_a^b \frac{1}{Q^{\omega}(u,v)} \cos(|x|u) \, du\right| \le \frac{M}{|x|v^2},$$

where M is a constant depending on $(\sigma_1 \wedge \sigma_2)$ only. However, since the function $1/Q^{\omega}(u, v)$ with v fixed does not fluctuate at all, that is, it has only one peak for $u \in \mathbb{R}$, and is bounded above by $[(\sigma_1 \wedge \sigma_2)v^2]^{-1}$, the integral of $\cos(|x|u)/Q^{\omega}(u, v)$ over $u \in (a, b)$ is dominated by $2[(\sigma_1 \wedge \sigma_2)|x|v^2]^{-1}$ in absolute value; hence (4.3). The proof of Lemma 2 is complete. \Box

We decompose

$$\begin{split} \Psi(x) &= -\int_T \psi_r(\theta) \mathrm{cos}(x \cdot \theta) \, d\theta + \int_T \psi_i(\theta) \mathrm{sin}(x \cdot \theta) \, d\theta, \\ &\coloneqq \Psi_c(x) + \Psi_s(x) \quad (\mathrm{say}), \end{split}$$

where $\psi_r(\theta)$ is the real part of $\psi(\theta)$ and $\psi_i(\theta)$ the imaginary part. Put

$$c(\theta) = E\{1 - \cos(\theta \cdot X)\}$$
 and $s(\theta) = E\{\sin(\theta \cdot X)\}$.

Then

$$\psi_r(\theta) = rac{c(\theta)}{c^2(\theta) + s^2(\theta)} - rac{2}{Q(\theta)} \quad ext{and} \quad \psi_i(\theta) = rac{s(heta)}{c^2(heta) + s^2(heta)}.$$

Since the random walk is aperiodic, $c^2(\theta) + s^2(\theta) > 0$ for $\theta \in T \setminus \{0\}$. If the moment condition (MC: $4 + \delta$) holds, then, putting

(4.4)
$$c_o(\theta) = \frac{1}{2}Q(\theta) - \frac{1}{24}E\{(\theta \cdot X)^4\}$$
 and $s_o(\theta) = -\frac{1}{6}E\{(\theta \cdot X)^3\},$

we obtain

(4.5)
$$\frac{\partial^l}{\partial \theta_1^k \ \partial \theta_2^j} (c(\theta) - c_o(\theta)) = O(|\theta|^{4-l+\delta}) \quad \text{for } l \coloneqq k+j = 0, 1, 2$$

(as $\theta \to 0$) and the same estimate with $s(\theta) - s_o(\theta)$ in place of $c(\theta) - c_o(\theta)$. Applying these estimates together with the identity $(1 + z)^{-1} = (1 - z)/(1 - z^2)$, we readily deduce

$$\psi_r(\theta) = \frac{1}{3Q^3(\theta)} \left[\frac{1}{2} Q(\theta) E\{(\theta \cdot X)^4\} - \frac{2}{3} \left[E\{(\theta \cdot X)^3\} \right]^2 \right] + \xi_r(\theta),$$

where

(4.6)
$$\frac{\partial^l}{\partial \theta_1^k \ \partial \theta_2^j} \xi_r(\theta) = O(|\theta|^{-l+\delta}) \quad \text{for } l = k+j = 0, 1, 2;$$

similarly,

(4.7)
$$\psi_i(\theta) = -\frac{2E\{(\theta \cdot X)^3\}}{3Q^2(\theta)} + \xi_i(\theta),$$

where $\xi_i(\theta)$ and its derivatives satisfy (4.6) with ξ_i in place of ξ_r .

Recalling what we noticed just before (3.2) [here $\cos(x \cdot \theta) = \nabla \cdot \mathbf{b}(\theta)$ with $\mathbf{b}(\theta) \coloneqq |x|^{-1} \sin(x \cdot \theta) \omega$], we apply the divergence theorem to see that, in view of Lemma 2,

(4.8)
$$\Psi_{c}(x) + \Lambda(x) = -\frac{1}{|x|} \int_{\mathbb{R}^{2} \setminus T} \omega \cdot \nabla[2/Q](\theta) \sin(x \cdot \theta) \, d\theta + \frac{1}{|x|} \int_{T} \omega \cdot \nabla \psi_{r}(\theta) \sin(x \cdot \theta) \, d\theta,$$

which is valid if (MC: $3 + \delta$) holds. Here the boundary terms cancel out each other since $\psi_r(\theta) + 2/Q(\theta)$, as well as $\sin(x \cdot \theta)$, is a doubly periodic function of period $(2\pi, 2\pi)$. Noticing $(\partial/\partial \theta_1)^n (1/Q(\theta)) = O(1/|\theta|^{2+n})$, we see that the first term on the right-hand side of (4.8) is $O(1/|x|^2)$. On the other hand, $|\nabla \psi_r(\theta)|$ is integrable on *T*, so that the second term is o(1/|x|). Consequently, $\Psi_c(x) + \Lambda(x) = o(1/|x|)$ under (MC: $3 + \delta$).

If (MC: $4 + \delta$) holds, we can apply Theorem 3 with m = 2 to the second integral on the right-hand side of (4.8) in view of (4.6). We can always apply the divergence theorem for the first integral. Again the boundary terms cancel out, resulting in

$$\Psi_c(x) + \Lambda(x) = 2|x|^{-2} (\omega \cdot \nabla \psi_{r,1})^{\sharp}(\omega) + o(|x|^{-2}).$$

As for $\Psi_s(x)$, we have only to apply Theorem 3 with the help of (4.7) to have

$$\Psi_{s}(x)=\int_{T}\psi_{i}(heta)\mathrm{sin}\;x\cdot heta\,d heta=4\pi^{2}rac{U_{1}(\omega)}{|x|}+oigg(rac{1}{|x|^{m}}igg),$$

where m = 1 or 2 according to which moment condition we are assuming. These prove (1.3) for m = 1 and 2.

In the case when (MC: $2 + m + \delta$) is assumed to hold for $m \ge 3$, we can perform the Taylor expansion of $1 - \cos(\theta \cdot X)$ and $\sin(\theta \cdot X)$ up to the *m*th-order terms for defining c_o and s_o in (4.4). We accordingly obtain the estimates $O(|\theta|^{m+2-l+\delta})$ for $l = 0, 1, \ldots, m$ in (4.5), which in turn yields the following expansion for the real and imaginary parts of ψ :

(4.9)
$$\psi_r(\theta) = \frac{\{\theta^6\}}{Q^3(\theta)} + \frac{\{\theta^{12}\}}{Q^5(\theta)} + \dots + \frac{\{\theta^{3m'+6}\}}{Q^{m'+3}(\theta)} + \xi_r(\theta),$$

where m' = m or m - 1 according to whether m is even or odd and

$$rac{\partial^l}{\partial heta_1^k\,\partial heta_2^j} \xi_r(\, heta\,) = Oig(| heta|^{m-2-l+\,\delta}ig) \quad ext{for} \; l=k+j=0,1,\dots,m;$$

and

(4.10)
$$\psi_i(\theta) = \frac{\{\theta^3\}}{Q^2(\theta)} + \frac{\{\theta^9\}}{Q^4(\theta)} + \dots + \frac{\{\theta^{3m''+6}\}}{Q^{m''+3}(\theta)} + \xi_i(\theta),$$

where m'' = m - 1 or m according to whether m is even or odd and

$$\frac{\partial^{l}}{\partial \theta_{1}^{k} \partial \theta_{2}^{j}} \xi_{i}(\theta) = O(|\theta|^{m-2-l+\delta}) \quad \text{for } l = k+j = 0, 1, \dots, m.$$

Here $\{\theta^k\}$ denotes a certain homogeneous polynomial of degree k. For evaluating the integral of $\psi_i(\theta) \sin \omega \cdot \theta$, we apply Theorem 3 to the right-hand side of (4.10). All the boundary integrals vanish due to the periodicity of ψ_i . The resultant is

$$\frac{1}{4\pi^2}\int_T\psi_i(\theta)\mathrm{sin}\;x\cdot\theta\,d\theta=\frac{U_1(\omega)}{|x|}+\frac{U_3(\omega)}{|x|^3}+\cdots+\frac{U_{m''}(\omega)}{|x|^{m''}}+o\bigg(\frac{1}{|x|^m}\bigg).$$

Similarly, we obtain the analogous expansion for $\Lambda(x) + \Psi_c(x)$.

5. Self-reciprocity of \ddagger . Let g be a quotient p/q of two homogeneous polynomials p, q of degrees $2\nu - 1$ and 2ν , respectively ($\nu = 1, 2, ...$). Suppose q > 0, $\theta \neq 0$, and p is relatively prime to q. We prove that

$$g^{\sharp}(\theta) \coloneqq \mathrm{p.v.} \int_{-\infty}^{\infty} g(\theta_1 - t\theta_2, \theta_2 + t\theta_1) dt$$

is then a function of the same type as g with the same ν and the transform $g \to g^{\sharp}$ is self-reciprocal, that is, $\pi^2 g = (g^{\sharp})^{\sharp}$. The proof is given in (i)–(v) below.

Let R^{α} denote rotation by an angle α (counterclockwise). Then:

(i)
$$g^{\sharp}(\theta) = \text{p.v.} \int_{-\pi/2}^{\pi/2} g(R^{\alpha}\theta) \frac{d\alpha}{\cos \alpha}$$

This equality is obtained by changing the variable according to $t = \tan \alpha (-\frac{1}{2}\pi < \alpha < \frac{1}{2}\pi)$ so that

$$g(\omega_1 - t\omega_2, \omega_2 + t\omega_1) = g(\sqrt{1 + t^2} R^{\alpha} \omega) = g(R^{\alpha} \omega) / \sqrt{1 + t^2}$$

From (i) it follows that $(g \circ R^{\alpha})^{*} = g^{*} \circ R^{\alpha}$.

(ii)
$$g^{\sharp} = |\det A|(g \circ A)^{\sharp} \circ A^{t}$$
 if A is a regular 2×2 matrix.

We have noticed in Remark 4 that (ii) is an easy consequence of Theorem 3. Here we give a direct proof. Once (ii) is proved for diagonal matrices, the general case follows from $(g \circ R^{\alpha})^{\sharp} = g^{\sharp} \circ R^{\alpha}$ together with the polar decomposition: A = SO (S, symmetric and O, orthogonal). Let A be a diagonal matrix with diagonal elements λ and μ . Then if $\theta_1 \neq 0$ the right-hand side of (ii) equals

$$p.v.\int_{-\infty}^{\infty} g(\lambda^2 \theta_1 - t\lambda\mu\theta_2, \mu^2 \theta_2 + t\lambda\mu\theta_1) dt |\lambda\mu|$$

= $p.v.\int_{-\infty}^{\infty} g(\lambda^2 \theta_1^2 + \mu^2 \theta_2^2 - t\theta_2, t\theta_1) dt$
= $p.v.\int_{-\infty}^{\infty} g(1 - t\theta_2, t\theta_1) dt.$

Thus (ii) follows. Since q is factored into quadratic forms, we can decompose p/q into proper fractions, each of which has for the denominator some power of one of the quadratic forms. Applying (ii) to each fraction of the decomposition, we see that:

(iii) g^{\sharp} is a quotient of two homogeneous polynomials of degrees $2\nu - 1$ and 2ν ; the denominator is the product of quadratic forms reciprocal to those making q. [We say here that $(x \cdot A^{-1}x)$ is reciprocal to $(x \cdot Ax)$.]

(iv) $g^{\sharp}(\cos \alpha, \sin \alpha)$ equals the limit value of the allied series for the function $g(-\sin \alpha, \cos \alpha)$; in particular, \sharp is self-reciprocal: $g = (g^{\sharp})^{\sharp}$.

If we put, for a function $\phi(\alpha)$,

(5.1)
$$\phi^{\flat}(\beta) = \frac{1}{\pi} \text{p.v.} \int_{-\pi/2}^{\pi/2} \phi(\beta - \alpha) \frac{d\alpha}{\sin \alpha}$$

Then, making the change of variable $\alpha \to \pi/2 - \alpha$ for the integral in (i) and using the skew symmetry $g(-\theta) = -g(\theta)$, we have $g^{\sharp}(\omega) = \pi(g \circ R^{\pi/2})^{\flat}(\omega)$ (where \flat acts on a restriction of $g \circ R^{\pi/2}$ to the unit circle). Assertion (iv) follows from the next one:

(v) If ϕ is smooth and $\phi(\alpha \pm \pi) = -\phi(\alpha)$, then ϕ^{\flat} agrees with the limit value of the series allied with the Fourier series of the function ϕ . [Namely, $\phi^{\flat}(\alpha) = \sum_{n=1}^{\infty} a_n \sin n\alpha - b_n \cos n\alpha$ if $\phi(\alpha) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos n\alpha + b_n \sin n\alpha$.] In particular, $(\phi^{\flat})^{\flat} = -\phi$.

To prove (v), substitute the identity $1/\sin \alpha = \frac{1}{2}(\cot \frac{1}{2}\alpha + \tan \frac{1}{2}\alpha)$ into the right-hand side of (5.1) and make the change of variable $\alpha \to \pi - \alpha$ in the integral involving $\tan \frac{1}{2}\alpha$. W then deduce from the assumption $\phi(\alpha \pm \pi) = -\phi(\alpha)$ that

$$\begin{split} \phi^{\flat}(\beta) &= \frac{1}{\pi} \mathrm{p.v.} \int_{0}^{\pi} \phi(\beta - \alpha) \frac{d\alpha}{\sin \alpha} \\ &= \frac{1}{2\pi} \int_{0}^{\pi} [\phi(\beta - \alpha) - \phi(\beta + \alpha)] \cot \frac{1}{2} \alpha \, d\alpha. \end{split}$$

This shows the result of (v) since the right-hand side above gives the limit value of the allied series for ϕ .

6. Hitting distribution of lines. We compute the asymptotic form of the hitting distributions of lines $x_2 = N$ for large N. Suppose that the distribution of X is symmetric with respect to the first coordinate axis $x_2 = 0$ and the random walk S_n takes jumps of size at most 1 in the vertical direction, that is, $P\{X_2 = 0, 1 \text{ or } -1\} = 1$. Then the probability that S_n enters the line $x_2 = N$ at a point $x, x_2 = N$, can be expressed by means of the potential function a as follows:

$$H_N(x) = \sum_{j=-\infty}^{\infty} \left[a(-(x_1+j,N+1)) - a(-(x_1+j,N-1)) \right] P(X=(j,1))$$

Y. FUKAI AND K. UCHIYAMA

(see [1], page 155). We have $Q(\theta) = \sigma_1^2 \theta_1^2 + \sigma_2^2 \theta_2^2$ and, writing $\tilde{X}_k = X_k / \sigma_k$ and $\tilde{x}_k = x_k / \sigma_k$, k = 1, 2, $\psi_{i,1} \circ \sqrt{Q^{-1}}$ $(-\sin \alpha, \cos \alpha) = b_1 \sin \alpha + b_3 \cos \alpha$, where $b_1 = \frac{1}{2} (E\{\tilde{X}_1^3\} + E\{\tilde{X}_1, \tilde{X}_2^2\})$ and $b_3 = \frac{1}{6} (-E\{\tilde{X}_1^3\} + 3E\{\tilde{X}_1\tilde{X}_2^2\})$. With the help of (ii) and (iv) of Section 5, it is obvious that

$$U_{1}(\omega^{x})/|x| = -\left[(b_{1} - 3b_{3})\tilde{x}_{1}||x||^{-2} + 4b_{3}\tilde{x}_{1}^{3}||x||^{-4}\right]/(2\pi\sigma_{1}\sigma_{2})$$

 $(\|x\|^2 = \tilde{x}_1^2 + \tilde{x}_2^2).$ Now, applying (1.3) and making elementary computation, we get

(6.1)
$$H_N(x) = \frac{N}{\pi \sigma_1 \sigma_2 \|x\|^2} \left(1 - 2b_1 \frac{\tilde{x}_1}{\|x\|^2} + 8b_3 \frac{\tilde{x}_1^3}{\|x\|^4} \right) + O(|x|^{-3}),$$

provided that $E\{|X|^{5+\delta}\} < \infty$. (Here we have applied the smoothness of U_2 .) Relation (6.1) yields, for example, that $\sum_{-m(N) \leq x_1 \leq m(N)} x_1 H_N(x)$ converges to $\sigma_1(3b_3 - b_1) = \sigma_1 E\{\tilde{X}_1(\tilde{X}_1^2 - \tilde{X}_2^2)\}$ as $N \to \infty$ whenever $m(N) \to \infty$.

REFERENCES

- [1] KESTEN, H. (1987). Hitting probabilities of random walks on Z^d . Stochastic Process. Appl. 25 165–184.
- [2] LAWLER, G. F. (1991). Intersections of Random Walks. Birkhäuser, Boston.
- [3] SPITZER, F. (1976). Principles of Random Walk, 2nd ed. Springer, New York.
- [4] STÖHR, A. (1950). Über einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten. III. Math. Nachr. 3 330-357.
- [5] VAN DER POL, B. (1959). The finite-difference analogy of the periodic wave equation and the potential equation. Appendix IV. In *Probability and Related Topics in Physical Sciences.* Interscience, New York.

DEPARTMENT OF APPLIED PHYSICS TOKYO INSTITUTE OF TECHNOLOGY TOKYO 152 JAPAN E-MAIL: uchiyama@neptune.ap.titech.ac.jp