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POTENTIAL KERNEL FOR TWO-DIMENSIONAL
RANDOM WALK

BY YASUNARI FUKAI AND KOHEI UCHIYAMAˆ
Tokyo Institute of Technology

It is proved that the potential kernel of a recurrent, aperiodic random
walk on the integer lattice Z2 admits an asymptotic expansion of the form

y1 y1 y2x x< < < < < <'2p Q ln Q x , yx q const q x U v q x U v q ??? ,Ž . Ž . Ž .Ž . 2 1 1 2

< < Ž .where Q and Q u are, respectively, the determinant and the quadratic
form of the covariance matrix of the increment X of the random walk,

x < < Ž . < <v s xr x and the U v are smooth functions of v, v s 1, providedk
that all the moments of X are finite. Explicit forms of U and U are given1 2
in terms of the moments of X.

1. Introduction and statements of results. Let X Ž1., X Ž2., . . . be a
sequence of Z2-valued i.i.d. mean-zero random variables with finite variance

� 4̀ 2and S the associated random walk on the integer lattice Z starting atn ns0
the origin; that is, S s 0, S s Ýn X Ž i.. We write X for X Ž1. for brevity. We0 n is1

� 4̀ Žassume that the random walk S is aperiodic i.e., the smallest additiven ns0
� 2 � 4 4 2 . w xsubgroup containing x g Z : P X s x ) 0 agrees with Z . As in 3 , we

Ž . Ž .define the potential function Green function a x by

`
2� 4 � 4a x s P S s 0 y P S s yx , x g Z .Ž . Ž .Ý n n

ns0

Ž . Ž . �Ž .24Let Q u be the moment quadratic form of X. That is, Q u s E u ? X ,
Ž . 2 Ž . Ž .u s u , u g R . We sometimes write Q u , u for Q u . Let Q also denote1 2 1 2

the covariance matrix of X, and Qy1 its inverse matrix, and define

y15 5 'x [ x ? Q x s Q x , yx rdet Q' Ž .2 1

w Ž .here x s x , x is thought to be a column vector when the matrix is1 2
xoperated from the left . The square root of Q that is symmetric and positive
'definite is denoted by Q . We need the moment conditions

< < kqdMC: k q d E X - ` for some d ) 0,� 4Ž .

where k will take the values 2, 3, . . . . The following result is due to Spitzer
w x3 .
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Ž .THEOREM 1. Suppose the moment condition MC: 2 q d holds. Then
y1 5 51.1 lim a x y ps s ln x y C s 0,Ž . Ž . Ž .1 2 0

< <x ª`

where C is a certain constant that depends on the distribution of X, and s0 1'and s are the eigenvalues of the matrix Q .2

To state the main result of this paper, we put
3 2c u [ y2 E u ? X r3Q uŽ . Ž . Ž .� 4i , 1

and
24 31 2 3c u [ Q u E u ? X y E u ? X 3Q u .Ž . Ž . Ž . Ž . Ž .� 4 � 4ž /r , 1 2 3

These functions are the principal parts of the real and imaginary parts of the
Ž . Ž � i X?u 4.y1 Ž . w Ž . Ž .xfunction c u [ 1 y E e y 2rQ u cf. 3.4 and 3.5 . We also define

`>1.2 g u [ p.v. g u y tu , u q tu dtŽ . Ž . Ž .H 1 2 2 1
y`

� 4for u g R _ 0 and a function g for which the principal value on the right-hand
wside exists. The principal value here is, of course, the limit of the integral on

Ž . xthe symmetrical interval yL, L .

Ž . Ž .THEOREM 2. If the moment condition MC: 2 q m q d holds m G 1 ,
then

1 U v x U v x 1Ž . Ž .1 m
5 51.3 a x y ln x y C s q ??? q q oŽ . Ž . m m0 ž /< < < < < <ps s x x x1 2

< < 2 x < <as x ª ` in Z , where v s xr x , s , s and C are the same constants as1 2 0
Ž . Ž . < <in 1.1 and U , k s 1, 2, . . . , are smooth functions of v s v , v , v s 1;k 1 2

moreover, the first and the second of them are given by

1 1 >>U v s c v and U v s v ? =c v .Ž . Ž . Ž . Ž . Ž .1 i , 1 2 r , 12 22p 2p

Ž .REMARK 1. The function U v is identically 0 if and only if all the third1
�Ž .kŽ .3yk4moments E X X , k s 0, 1, 2, 3, vanish. If X is symmetric, that is, X1 2

has the same distribution as yX, then U vanishes for every odd number k.k

REMARK 2. For the simple random walk in particular, Theorem 2 gives
the asymptotic expansion

2x x x2 ln 8 q 2g 1 8 v v y 1 U vŽ .Ž .1 2 4
< <a x s ln x q q q q ???Ž . 2 4p p 6p < < < <x x

Ž . w xg is Euler’s constant , which is an improvement of a result of Stohr 4 ,¨
Ž . Ž < <y2 .where a x is computed up to O x .
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Ž < <. < < kREMARK 3. We shall see in Section 5 that U ur u r u is a rationalk
� 2nyk4 5 5 2n � k4fraction of the form u r u , where u represents a homogeneous

Ž .polynomial of degree k. Accordingly, 1.3 may be rewritten as

˜ x ˜ x1 U v U v 1Ž . Ž .˜ ˜1 mŽ . Ž . 5 51.4 a x y ln x y C s q ??? q q o .m m0 ž /5 5 5 5 < <ps s x x x1 2

x y1 ˜5 5 Ž . Ž . Ž'Here v [ Q xr x ; U v is a polynomial of v s v , v of degree at˜ k 1 2>y1 2˜. Ž . Ž . Ž . Ž .'most 3k for k s 1, 2, . . . ; in particular, U v s c ( Q v r 2p s s .1 i, 1 1 2
w Ž . xSee 1.8 below.

Ž .In the case of a simple random walk, a x can be neatly expressed by a
Ž w xcontour integral on the complex plane as given and applied, e.g., in 4 and

w x.5 and the complex function theory accordingly provides us machinery for
w xcomputation, though the proof given in 4 is still quite involved.

w xIn our approach, we employ only real analytic arguments as in Spitzer 3
and it is a key step to establish an asymptotic expansion of an integral of the
form

p uŽ .
1.5 sin x ? u duŽ . Ž .H q uŽ .w x w xyp , p = yp , p

Ž . Ž .as x ª `, where p u and q u are homogeneous polynomials of degree
Ž .2n y 1 and 2n , n G 1, respectively, and q u is supposed to be positive for

u / 0, so that
< < 2n 2q u G c u , u g R ,Ž .

Ž .for a constant c ) 0. We formulate the result on the integral 1.5 in the
following theorem.

THEOREM 3. Let p and q be as above. Let D be a two-dimensional bounded
domain containing the origin and having piecewise smooth boundary. Let m

Ž .be a positive integer and j u a function on the closure D such that j has
� 4partial derivatives up to order m that are continuous on D _ 0 and inte-

grable on D. Then for the function

p uŽ .
g u s q j uŽ . Ž .

q uŽ .
it holds that

m2 p 1 1>i rv?u1.6 g u e du s y v q B r , v q oŽ . Ž . Ž . Ž .ÝH l mlž / ž /ir q rD irŽ .ls1

< < Ž .as r ` uniformly for v, v s 1, where > is defined by 1.2 and

ly1 i rv?u1.7 B r , v [ yv ? = g u e v ? n ds.Ž . Ž . Ž . Ž .Hl
D

w Ž .Here, n s n u is the outward unit normal vector to  D and ds s ds is au

xline element of  D.
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REMARK 4. As a consequence of Theorem 3, we obtain a useful property of
Ž . >the transform prq ª prq . Let A be a regular 2 = 2 matrix. Then

p p> >
t< <1.8 u s det A ( A Au .Ž . Ž . Ž .ž / ž /ž /q q

Ž t . Ž .A denotes the transpose of the matrix A. The verification of 1.8 is
Ž . wimmediate from 1.6 take j so that both g and = ? g vanish on  D, change

Ž . xthe variable according to u s Au 9 on the left-hand side of 1.6 and let r ª ` ,
Ž .while it is not so simple a matter to establish 1.8 if one only looks at the

Ž . Ždefining expression 1.2 . See Section 5 for further properties of the trans-
.form >.

The following version of Theorem 3 is convenient for application.

REMARK 5. Theorem 3 may be extended to a more complete form. Let D
Ž .and j be as in Theorem 3. Let c v be a smooth function on the unit circle.

Then for a function g of the form

< <c ur u uŽ .Ž .
g u s h u q j u with h u sŽ . Ž . Ž . Ž .

< <u

it holds that
m 1 1

i rv?u = >g u e du s 2p h u q i2h u q B r , v q o ,Ž . Ž . Ž . Ž .ÝH k mk ž /rD irŽ .ks1

< < Ž .as r `, uniformly in v, v s 1. Here B is the same as in 1.7 andk

1=h u s h u , yu q h yu , u .Ž . Ž . Ž .2 1 2 12

The method developed in this paper can be adapted for deriving the
asymptotic expansion of the potential kernel for the higher-dimensional
random walk, which will be studied in a separate paper. Theorem 3, in

Ž . >particular, has a d-dimensional version d G 3 in which g takes an analo-
gous or different form according as d is even or odd.

w xThe result of Stohr 4 mentioned above is used for estimating a certain¨
w x Ž w x.hitting distribution by Kesten 1 cf. also 2 . As another example of applica-

Ž .tion of our expansion 1.3 , we shall compute in Section 6 the distributions of
Ž < <y3 .hitting places of lines x s N up to O x .2

w xThe proof of Theorem 1, which is essentially the same as in 3 , prepares
that of Theorem 2, and our task for the latter is to get the estimate of the
remainder term, which will be reduced to Theorem 3 with not much difficulty.

We shall proceed in logical order, namely, we first prove Theorem 1 in
Section 2, secondly Theorem 3 in Section 3 and then Theorem 2 in Section 4.

2. Proof of Theorem 1. Here we outline the proof of Theorem 1. It is
w x w Ž .identical to that given in Proposition 12.3 of Spitzer 3 where Q u is

< < 2 xassumed to be a constant multiple of u except for a simple modification by
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a change of variable, but we need the content of it, since our proof of Theorem
2 being a continuation of it.

Ž . Ž . � i X?u 4Let f u be the characteristic function of X, that is, f u s E e . The
Ž .function a x is expressed as follows:

1 1 y e i x?u

22.1 a x s du , x g Z ,Ž . Ž . H2 1 y f uŽ .T2pŽ .
w x w xwhere T s yp , p = yp , p . Introducing

1 2
c u [ y ,Ž .

1 y f u Q uŽ . Ž .
Ž .which is integrable on T since the condition MC: 2 q d implies 1 y

1 2qdŽ . Ž . Ž < < . < < Ž w x .f u s Q u q O u as u ª 0 cf. 3 , Proposition 12.3 . We make the2

decomposition

2
2 i x?uŽ . Ž . Ž . Ž .Ž .2.2 4p a x s 1 y cos x ? u du q Re c u 1 y e duH HQ uŽ .T T

Ž .Re z indicates the real part of a complex number z . In view of the Rie-
< <mann]Lebesgue lemma, the second term converges, as x ª `, to

Ž . Ž .Re H c u du , contributing to the constant C and leaving the o 1 termT 0

2.3 C x [ yRe c u e i x?u du .Ž . Ž . Ž .H
T

For the evaluation of the first term, we consider the mapping

'2.4 u ¬ u 9 s Q u ,Ž .

Ž . < < 2 Ž . 2which, entailing the identity Q u s u 9 , transforms the ellipse Q u s r
< < Ž .into the circle u 9 s r. Let r, a be the polar coordinates of u 9, namely,

2.5 u 9 s r cos a y a , r sin a y a ,Ž . Ž . Ž .Ž .0 0

y1'where a is a constant chosen arbitrarily. Since x ? u s Q x ? u 9 and0
y15 5 < < Ž .'x s Q x , we can choose the constant a s a x so as to get x ? u s0 0

5 5x r sin a .
Now, putting

'B s u : Q u F s n s pŽ . Ž .½ 51 2

Ž .B is an elliptic region inscribed in T , we decompose the first integral on the
Ž .right-hand side of 2.2 into two parts, one the integral over B and the other

w Ž .xthat over T _ B. The latter converges to H 2rQ u du , leaving the secondT _ B
Ž .o 1 term

2
2.6 y cos x ? u du .Ž . Ž .H Q uŽ .T _B
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The former equals

22p Ž .s ns p1 2 5 5da 1 y cos x r sin a drŽ .H H
s s r0 0 1 2

2pr2 Ž .c x sin as 4 da 1 y cos u duŽ .H H
s s u0 0 1 2

`8 1 y cos u cos upr2 1 pr2
s da du y da duH H H H

s s u u0 0 0 11 2

2.7Ž .

`1 cos upr2 Ž . pr2c x sin aq da du q da du ,H H H Hu uŽ .0 1 0 c x sin a

Ž . Ž . 5 5where c x s s n s p x . Within the brackets of the last expression in1 2
Ž .2.7 , the first and the second terms are constants; the third is equal to

pr21 15 5p log x q p log s n s p q log sin a da ,Ž . Ž .H1 22 2
0

< < w Ž . xand the fourth vanishes as x ª ` this gives the last o 1 term . The proof of
Theorem 1 is complete. I

3. Proof of Theorem 3. Put

x v yv1 2v s and R sv v vž /< <x 2 1

and introduce the new variables

u , v s Ry1uŽ . v

so that v ? u s u. Let

Dv s Ry1D and g v u , v s g R u , v .Ž . Ž .Ž .v v

Then

3.1 g u e i rv?u du s g v u , v e i r u du dv.Ž . Ž . Ž .H H
vD D

We are to carry out the integration by parts for the integral with respect to u
on the right-hand side above. This amounts to applying the divergence
theorem to the integral on the left-hand side, into which we substitute

y1i rv?u i rv?u3.2 e s = ? A u , where A u s ir e v .Ž . Ž . Ž . Ž .
We can apply the divergence theorem repeatedly m times to the integral of
Ž . i rv?u Ž .j u e s = ? jA y =j ? A, which results in the boundary integrals given
Ž . Ž ym .in 1.7 with j in place of g plus the remainder term of the order o r . It

Ž . wtherefore suffices to prove 1.6 in the case when j s 0. Although j may be
singular at the origin, it can be approximated in Sobolev norm by a smooth

Ž .function under the assumption on j in Theorem 3 so that the divergence
xtheorem is applicable at least m times. Let g s prq with polynomials p and

q as described in Theorem 3.
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We suppose for simplicity that Dv contains the square

< < < <K s u , v : u F 1, v F 1 ,� 4Ž .
Ž .and we decompose the integral on the right-hand side of 3.1 into that over K

and the rest. We formulate the result of the computation as follows.

LEMMA 1. Let g s prq, where p and q are homogeneous polynomials as
given in Theorem 3. Then

d  g v f u , vŽ .1 1
vg u , v dv s u , v dv s , u / 0,Ž . Ž .H H v vdu  u q u , 1 q u , y1Ž . Ž .y1 y1

v Ž . Ž .where q s q( R and f u, v is a polynomial of u, v , v , andv 1 2

2 1>i rv?u i rv?ug u e du s y g v q g u e v ? n dsŽ . Ž . Ž .H Hir irD  D

1  g v

i r uy u , v e du dvŽ .H
vir  uD _K

1  g v
1 1i r uy e du u , v dv.Ž .H Hir  uy1 y1

Theorem 3 readily follows from Lemma 1. In fact, if we apply the integra-
tion-by-parts formula to the integral relative to u in the last two integrals on
the right-hand side above, the contributions of the boundary terms that
thereby come up are reduced to

1
i rv?u3.3 yv ? = g u e v ? n ds,Ž . Ž . Ž .H2

DirŽ .
wbecause of cancellation between those from K recall the remark made when

Ž .xA is introduced in 3.2 . We can repeat the integration by parts in the same
Ž .way in view of the first half of Lemma 1 to arrive at 1.6 . Now it remains to

prove Lemma 1.

PROOF OF LEMMA 1. By the divergence theorem

1
v i r u v i r ug u , v e du dv s g u , v e n dsŽ . Ž .H H

v vir Ž .D _K  D _K

1  g v

i r uy u , v e du dv.Ž .H
vir  uD _K

3.4Ž .

We cannot apply the divergence theorem to the integral over K directly.
We consider the function

1 1ru
v vF u [ g u , v dv s g 1, t dt .Ž . Ž . Ž .H H

y1 y1ru
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Here, to obtain the second expression, we have applied the assumption that g
w vis in the special form prq which the function g s g ( R clearly inherits, sov

vŽ . xthat vg u, v is the ratio of two homogeneous polynomials of degree 2n .
Ž . Ž . vŽ .Clearly, F yu s yF u . Although g 1, t is not integrable on R, there

exists the principal value

` L
v vF 0q s p.v. g 1, t dt [ lim g 1, t dt .Ž . Ž . Ž .H H

Lª`y` yL

Furthermore, for u / 0,

1 y1
y2 v vF9 u s yu g 1, q g 1,Ž . ž / ž /u u
y1 v vs yu g u , 1 q g u , y1Ž . Ž .

1 pv u , 1 q v u , y1 q pv u , y1 q v u , 1Ž . Ž . Ž . Ž .
s y .

v vu q u , 1 q u , y1Ž . Ž .

Because of cancellation of the constant terms in the numerator of the
quotient above, we conclude that, for u / 0,

n
v v v 2F9 u s f u , v rq u , 1 q u , y1 with q u , "1 G c 1 q u ,Ž . Ž . Ž . Ž . Ž . Ž .

Ž .where f u, v is a polynomial. This proves the first half of Lemma 1. Now

1
v i r u ir ug u , v e du dv s F u e duŽ . Ž .H H

K y1

11 1 1i r u i r us F u e y e dF uŽ . Ž .Hir iry1 y1

11 2 1 1i r u i r us F u e y F 0q y e F9 u du.Ž . Ž . Ž .Hir ir iry1 y1

The boundary term appearing above cancels out the contribution from  K to
Ž . vthe boundary integral in 3.4 . The contribution from D to the latter

Ž .y1 Ž . rv?u Ž . >Ž .integral equals ir H g u e v ? n ds. Finally, F 0q s g v . Thus weD
obtain the second relation of Lemma 1. I

4. Proof of Theorem 2. We collect all the error terms that we neglected
Ž . Ž . Ž .as o 1 terms in the proof of Theorem 1 and write C x q L x for their sum,

where

C x s yRe c u e i x?u duŽ . Ž .H
T

w Ž .xas already introduced in 2.3 and

`8 cos u 2pr2
L x [ da du y cos x ? u du .Ž . Ž .H H H

s s u Q uŽ .Ž .0 c x sin a T_B1 2
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w Ž . Ž .The first term of L x comes from the last double integral in 2.7 and the
Ž . x < <second term is 2.6 . As in the previous section, we put v s xr x and make

Ž . y1the change of variables u, v s R u so that v ? u s u. Letv

T v s Ry1T and Qv u , v s Q R u , v .Ž . Ž .Ž .v v

LEMMA 2.

` 2
< <L x s dv cos x u du.Ž . Ž .H H v2 v Q u , vŽ .� Ž . 4y` u : u , v gR _T

Ž .PROOF. Recall that we obtained the first term in 2.7 , an expression for
w Ž .xŽ .the integral H 2rQ u 1 y cos x ? u du , via a change of variables accordingB

Ž . Ž .to 2.4 and 2.5 . By formally reversing the procedure, we see that the first
Ž .term of the expression defining L x is equal to

2
cos x ? u duŽ .H

2 Q uŽ .R _B

or, by changing the variables of integration, to the iterated integral

` 2
< <4.1 dv cos x u du,Ž . Ž .H H v2 v Q u , vŽ .� Ž . 4y` u : u , v gR _B

v y1 Ž .where B s R B. Hence we obtain an expression for L x in Lemma 2. Thisv

w Ž .x Ž .argument, however, must be justified because the function 1rQ u cos x ? u ,
not being Lebesgue integrable on R2 _ B, does not admit the application of
Fubini’s theorem.

For justification we consider the integral

8 cos upr2 Ž .Lc x sin a
4.2 I L [ da du.Ž . Ž . H H

s s uŽ .0 c x sin a1 2

qŽ Ž Ž . .. Ž .Since the inner integral is bounded by 1 q log 1r c x sin a , I L con-
verges to the first term of the expression defining L as L ª `. Since the

y1 �Ž . Ž . Ž .function u cos u is integrable on a , u : c x sin a - u - Lc x sin a , 0 -
4a F pr2 , we may follow the recipe discussed at the beginning of this proof to

Ž . ` Ž .get I L s H f v dv, wherey` L

2 2< <f v [ cos x u du, l [ s n s p .Ž . Ž . Ž .Ž .HL 1 2vv Q u , vŽ .� Ž . 4u : l-Q u , v -Ll

Ž .We have only to show that f v is dominated by an integrable function thatL
is independent of L since we can then apply Lebesgue’s convergence theorem

Ž . Ž .to see that I L converges to 4.1 as L ª `. Clearly, f is bounded uniformlyL
for L G 1. It therefore suffices to show that, for a - b,

1 Mb
< <4.3 cos x u du F ,Ž . Ž .H v 2< <Q u , v x vŽ .a
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Ž .where M is a constant depending on s n s only. However, since the1 2
vŽ .function 1rQ u, v with v fixed does not fluctuate at all, that is, it has only

wŽ . 2 xy1one peak for u g R, and is bounded above by s n s v , the integral of1 2
Ž < < . vŽ . Ž . wŽ . < < 2 xy1cos x u rQ u, v over u g a, b is dominated by 2 s n s x v in1 2

Ž .absolute value; hence 4.3 . The proof of Lemma 2 is complete. I

We decompose

C x s y c u cos x ? u du q c u sin x ? u du ,Ž . Ž . Ž . Ž . Ž .H Hr i
T T

[ C x q C x say ,Ž . Ž . Ž .c s

Ž . Ž . Ž .where c u is the real part of c u and c u the imaginary part. Putr i

c u s E 1 y cos u ? X and s u s E sin u ? X .� 4 � 4Ž . Ž . Ž . Ž .
Then

c u 2 s uŽ . Ž .
c u s y and c u s .Ž . Ž .r i2 2 2 2Q uc u q s u c u q s uŽ .Ž . Ž . Ž . Ž .

2Ž . 2Ž . � 4Since the random walk is aperiodic, c u q s u ) 0 for u g T _ 0 . If the
Ž .moment condition MC: 4 q d holds, then, putting

4 31 1 1Ž . Ž . Ž . Ž .4.4 c u s Q u y E u ? X and s u s y E u ? X ,Ž . Ž .� 4 � 4o o2 24 6

we obtain

 l
4ylqd< <4.5 c u y c u s O u for l [ k q j s 0, 1, 2Ž . Ž . Ž .Ž . Ž .ok ju u1 2

Ž . Ž . Ž . Ž . Ž .as u ª 0 and the same estimate with s u y s u in place of c u y c u .o o
Ž .y1 Ž . ŽApplying these estimates together with the identity 1 q z s 1 y z r 1 y

2 .z , we readily deduce

1 1 2 24 3
c u s Q u E u ? X y E u ? X q j u ,Ž . Ž . Ž . Ž . Ž .� 4 � 4r r3 2 33Q uŽ .

where

 l
ylqd< <4.6 j u s O u for l s k q j s 0, 1, 2;Ž . Ž . Ž .rk ju u1 2

similarly,

32 E u ? XŽ .� 4
4.7 c u s y q j u ,Ž . Ž . Ž .i i23Q uŽ .

Ž . Ž .where j u and its derivatives satisfy 4.6 with j in place of j .i i r
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Ž . w Ž . Ž .Recalling what we noticed just before 3.2 here cos x ? u s = ? b u with
Ž . < <y1 Ž . xb u [ x sin x ? u v , we apply the divergence theorem to see that, in

view of Lemma 2,

1
w xC x q L x s y v ? = 2rQ u sin x ? u duŽ . Ž . Ž . Ž .Hc

2< <x R _T
4.8Ž .

1
q v ? =c u sin x ? u du ,Ž . Ž .H r< <x T

Ž .which is valid if MC: 3 q d holds. Here the boundary terms cancel out each
Ž . Ž . Ž .other since c u q 2rQ u , as well as sin x ? u , is a doubly periodic functionr

Ž . Ž .nŽ Ž .. Ž < < 2qn.of period 2p , 2p . Noticing ru 1rQ u s O 1r u , we see that the1
Ž . Ž < < 2 .first term on the right-hand side of 4.8 is O 1r x . On the other hand,

< Ž . < Ž < <.=c u is integrable on T, so that the second term is o 1r x . Consequently,r
Ž . Ž . Ž < <. Ž .C x q L x s o 1r x under MC: 3 q d .c

Ž .If MC: 4 q d holds, we can apply Theorem 3 with m s 2 to the second
Ž . Ž .integral on the right-hand side of 4.8 in view of 4.6 . We can always apply

the divergence theorem for the first integral. Again the boundary terms
cancel out, resulting in

< <y2 > < <y2
C x q L x s 2 x v ? =c v q o x .Ž . Ž . Ž . Ž . Ž .c r , 1

Ž . Ž .As for C x , we have only to apply Theorem 3 with the help of 4.7 tos
have

U v 1Ž .12C x s c u sin x ? u du s 4p q o ,Ž . Ž .H ms i ž /< < < <x xT

where m s 1 or 2 according to which moment condition we are assuming.
Ž .These prove 1.3 for m s 1 and 2.

Ž .In the case when MC: 2 q m q d is assumed to hold for m G 3, we can
Ž . Ž .perform the Taylor expansion of 1 y cos u ? X and sin u ? X up to the
Ž .mth-order terms for defining c and s in 4.4 . We accordingly obtain theo o

Ž < < mq 2ylqd . Ž .estimates O u for l s 0, 1, . . . , m in 4.5 , which in turn yields
the following expansion for the real and imaginary parts of c :

� 6 4 � 12 4 � 3m9q6 4u u u
4.9 c u s q q ??? q q j u ,Ž . Ž . Ž .r r3 5 m9q3Q u Q u Q uŽ . Ž . Ž .

where m9 s m or m y 1 according to whether m is even or odd and

 l
my2ylqd< <j u s O u for l s k q j s 0, 1, . . . , m;Ž . Ž .rk ju u1 2

and

� 34 � 94 � 3m0 q6 4u u u
4.10 c u s q q ??? q q j u ,Ž . Ž . Ž .i i2 4 m0 q3Q u Q u Q uŽ . Ž . Ž .
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where m0 s m y 1 or m according to whether m is even or odd and

 l
my2ylqd< <j u s O u for l s k q j s 0, 1, . . . , m.Ž . Ž .ik ju u1 2

� k4Here u denotes a certain homogeneous polynomial of degree k. For evalu-
Ž .ating the integral of c u sin v ? u , we apply Theorem 3 to the right-hand sidei

Ž .of 4.10 . All the boundary integrals vanish due to the periodicity of c . Thei
resultant is

1 U v U v U v 1Ž . Ž . Ž .1 3 m0
c u sin x ? u du s q q ??? q q o .Ž .H mi2 3 m0 ž /< < < <x x4p < < < <x xT

Ž . Ž .Similarly, we obtain the analogous expansion for L x q C x .c

5. Self-reciprocity of >. Let g be a quotient prq of two homogeneous
Ž .polynomials p, q of degrees 2n y 1 and 2n , respectively n s 1, 2, . . . . Sup-

pose q ) 0, u / 0, and p is relatively prime to q. We prove that
`>g u [ p.v. g u y tu , u q tu dtŽ . Ž .H 1 2 2 1

y`

is then a function of the same type as g with the same n and the transform> 2 Ž >. > Ž . Ž .g ª g is self-reciprocal, that is, p g s g . The proof is given in i ] v
below.

a Ž .Let R denote rotation by an angle a counterclockwise . Then:
dapr2> ai g u s p.v. g R u .Ž . Ž . Ž .H cos aypr2

This equality is obtained by changing the variable according to t s
1 1Ž .tan a y p - a - p so that2 2

2 a a 2' 'g v y tv , v q tv s g 1 q t R v s g R v r 1 q t .Ž . Ž .Ž .1 2 2 1

Ž . Ž a . > > aFrom i it follows that g ( R s g ( R .

> < < > tii g s det A g ( A ( A if A is a regular 2 = 2 matrix.Ž . Ž .
Ž .We have noticed in Remark 4 that ii is an easy consequence of Theorem
Ž .3. Here we give a direct proof. Once ii is proved for diagonal matrices, the

Ž a . > > ageneral case follows from g ( R s g ( R together with the polar decom-
Ž .position: A s SO S, symmetric and O, orthogonal . Let A be a diagonal

matrix with diagonal elements l and m. Then if u / 0 the right-hand side of1
Ž .ii equals

`
2 2 < <p.v. g l u y tlmu , m u q tlmu dt lmŽ .H 1 2 2 1

y`

`
2 2 2 2s p.v. g l u q m u y tu , tu dtŽ .H 1 2 2 1

y`

`

s p.v. g 1 y tu , tu dt .Ž .H 2 1
y`
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Ž .Thus ii follows. Since q is factored into quadratic forms, we can decompose
prq into proper fractions, each of which has for the denominator some power

Ž .of one of the quadratic forms. Applying ii to each fraction of the decomposi-
tion, we see that:

Ž . >iii g is a quotient of two homogeneous polynomials of degrees 2n y 1
and 2n ; the denominator is the product of quadratic forms reciprocal to those

w Ž y1 . Ž . xmaking q. We say here that x ? A x is reciprocal to x ? Ax .
Ž . >Ž .iv g cos a , sin a equals the limit value of the allied series for the

Ž . Ž >. >function g ysin a , cos a ; in particular, > is self-reciprocal: g s g .

Ž .If we put, for a function f a ,

1 dapr2=5.1 f b s p.v. f b y a .Ž . Ž . Ž .H
p sin aypr2

Ž .Then, making the change of variable a ª pr2 y a for the integral in i and
Ž . Ž . >Ž . Ž p r2 . =Ž .using the skew symmetry g yu s yg u , we have g v s p g ( R v

Ž p r2 . Ž .where = acts on a restriction of g ( R to the unit circle . Assertion iv
follows from the next one:

Ž . Ž . Ž . =v If f is smooth and f a " p s yf a , then f agrees with the limit
wvalue of the series allied with the Fourier series of the function f. Namely,

1= ` `Ž . Ž .f a s Ý a sin na y b cos na if f a s a q Ý a cos na qns1 n n 0 ns1 n2

x Ž =. =b sin na . In particular, f s yf.n

1 1 1Ž . Ž .To prove v , substitute the identity 1rsin a s cot a q tan a into the2 2 2
Ž .right-hand side of 5.1 and make the change of variable a ª p y a in the

1 Ž .integral involving tan a . W then deduce from the assumption f a " p s2
Ž .yf a that

p1 da=f b s p.v. f b y aŽ . Ž .H
p sin a0

p1 1
s f b y a y f b q a cot a da .Ž . Ž .H2p 20

Ž .This shows the result of v since the right-hand side above gives the limit
value of the allied series for f.

6. Hitting distribution of lines. We compute the asymptotic form of
the hitting distributions of lines x s N for large N. Suppose that the2
distribution of X is symmetric with respect to the first coordinate axis x s 02
and the random walk S takes jumps of size at most 1 in the verticaln

� 4direction, that is, P X s 0, 1 or y1 s 1. Then the probability that S en-2 n
ters the line x s N at a point x, x s N, can be expressed by means of the2 2
potential function a as follows:

`

H x s a y x q j, N q 1 y a y x q j, N y 1 P X s j, 1Ž . Ž . Ž . Ž .Ž .Ž . Ž .ÝN 1 1
jsy`
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2 2 2 2 ˜Ž w x . Ž .see 1 , page 155 . We have Q u s s u q s u and, writing X s X rs1 1 2 2 k k k
y1 Ž .'and x s x rs , k s 1, 2, c ( Q ysin a , cos a s b sin a q b cos a ,˜k k k i, 1 1 3

1 13 2 3 2˜ ˜ ˜ ˜ ˜ ˜Ž � 4 � 4. Ž � 4 � 4.where b s E X q E X , X and b s yE X q 3E X X . With1 1 1 2 3 1 1 22 6
Ž . Ž .the help of ii and iv of Section 5, it is obvious that

y2 y4x 3< < 5 5 5 5U v r x s y b y 3b x x q 4b x x 2ps sŽ . Ž . Ž .˜ ˜1 1 3 1 3 1 1 2

Ž5 5 2 2 2 . Ž .x s x q x . Now, applying 1.3 and making elementary computation,˜ ˜1 2
we get

N x x 3˜ ˜1 1 y3< <6.1 H x s 1 y 2b q 8b q O x ,Ž . Ž . Ž .N 1 32 2 4ž /5 5 5 5 5 5ps s x x x1 2

� < < 5qd 4 Ž .provided that E X - `. Here we have applied the smoothness of U .2
Ž . Ž .Relation 6.1 yields, for example, that Ý x H x converges toym ŽN .F x F mŽN . 1 N1˜ ˜2 ˜2Ž . � Ž .4 Ž .s 3b y b s s E X X y X as N ª ` whenever m N ª `.1 3 1 1 1 1 2
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