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SUPERPROCESSES IN RANDOM ENVIRONMENTS'

By LEONID MYTNIK

Technion—Israel Institute of Technology

We study the limiting behavior of large branching particle systems
undergoing random motion, whose branching mechanism is affected by a
random environment. The weak convergence result is established for a
sequence of such particle systems and the limiting process is character-
ized as the unique solution of a martingale problem. The proof of unique-
ness of the solution for the martingale problem requires an extension of
standard duality techniques.

0. Introduction. Measure-valued branching Markov processes (or su-
perprocesses) arise as limits of branching particle systems undergoing ran-
dom migration and critical (or asymptotically critical) branching. There exist
a number of constructions of superprocesses. As an example, consider the
following system.

Let Y be a Feller process in a locally compact Polish space E with
generator (A, Z(A)). Assume that, at time ¢t = 0, K, > 1 (K, ~ n) particles
are located in E. Each of these K, particles follows the path of an indepen-
dent copy of Y until time ¢ = 1/n. At time 1/n each particle, independently
of the others, either dies or splits into two, with probability 1/2 for each
event. The individual particles in the new population then follow the path of
an independent copy of Y, starting at their place of birth, in the interval
[1/n,2/n), and the pattern of alternating critical branching and spatial
spreading continues until, with probability 1, there are no particles left alive.
Let X/'(-) be the measure-valued Markov process, defined as

- number of particles in B at time ¢
X/(B) = )
n
where B E'%i(E) are the Borel sets in E. It is well known that, under mild
conditions, { X/} converges, as n — o, on an appropriate Skorohod space, to a
measure-valued process known as the “Y superprocess.”

The characteristic feature of this construction is that the only interaction
between the particles is that the time and place of birth of offspring coincide
with the time and place of death of their parent.

In this article we investigate the limiting behavior of particle systems
whose branching is affected by a random environment. In particular, we shall
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assume that at birth /death times there exists a small correlation between
the number of offspring at different points of the state space E. For example,
let{¢,, B € N} be a sequence of independent identically distributed mean-zero
random fields on E with finite third moment and covariance function g(x, y).
Denote by & the truncated random field: () =Vn A (£,()V — Vn).
Assume in the previous model that, conditionally on &™), each particle,
independently of the others, at time % /n splits into two with probability

1 1 -
3 + mfk (x)

or dies with probability

1 1 o

—_—— —— n x ,
where x is the location of the particle. Define the measure-valued process X,
in the same way as in the previous construction. We shall study the limiting
behavior of {X"} as n — », and we shall show that if X' converges to m,
then {X"} converges to the measure-valued process X, which is the unique
solution of the following martingale problem:

Forall ¢ €e2(A),
Z,(#) =X,(9) ~m($) = [X,(Ad) ds

is an %X with continuous square-integrable martingale
Zy(¢) = 0and
(Z($)) = [X,(#%)ds

0 ¢
+ [ a(x,9)(x)d(y) X,(dx) X,(dy) ds,
0"EXE

(0.1)

where v(¢) denotes (¢ dv for any measure v.

The remainder of this article is organized as follows. Our proofs are based
on the martingale problem approach and the basic ideas of this approach are
discussed in Section 1. The proof of uniqueness of the solution for the
martingale problem in our case requires an extension of standard duality
techniques, which is also considered in this section. In Section 2 we survey
some previously studied models of branching in a random environment, but
without any spatial motion. The material in this section provides motivation
for our own model. Section 3 is devoted to our model. We present the proofs in
the last section.

1. Preliminaries: martingale problems. In this section we give a very
brief introduction to martingale problems and introduce and prove a new
duality result that we believe is of independent interest, beyond the specific
application of the current paper. We start with some notation and definitions.
Let (E, d) be a metric space and let B(E) [resp. C(E), C(E)] be the set of
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bounded (resp. continuous, bounded continuous) Borel-measurable functions
on E. In general, if F is a set of functions on E, write F, (F, ) for
nonnegative [{ f € F: infy f(x) > 0}] functions in F. Denote by #(E) both the
Borel o-algebra and Borel-measurable functions on E and by %(E) the set of
Borel probability measures on E. Let A be a subset (not necessary linear) of

B(E) X B(E).

DeFINITION 1.1. By a solution of the martingale problem for A we mean a
measurable stochastic process X with values in E defined on some probabil-
ity space (Q,.%, P), such that, for each (f, g) € A, the process

t
(L.1) FX(0)) = [[8(X(5)) ds
is a martingale with respect to the filtration
';o_??=‘97tx v U(fth(X(u)) du:s <t,h € B(E)]|,
0

where 7~ = o(X(s): s < ¢t).
When an initial distribution u € %#(E) is specified, we say that a solution

of the martingale problem for A is a solution of the martingale problem for
(A, p) if PX(0) ! = u.

Note that if X is right continuous, then 7% = 7%

DErFINITION 1.2. We say that uniqueness holds for the solutions of the
martingale problem for (A, w) if any two solutions X,Y have the same
finite-dimensional distributions. That is, for every m > 0 and all choices of
t,, 0 <t; <ty < - <t,, the following holds:

P{(X(t,),..., X(t,)) €T}
= P{(Y(t,),...,Y(t,)) €T} VI eB(E) x - xB(E).

The primary value of the martingale problem approach is that it allows
easy characterization of the finite-dimensional distributions for a wide vari-
ety of stochastic processes. That is, if we know that, for some process X and
operator A, (1.1) holds and uniqueness for (A, u) holds, then we have
determined the finite-dimensional distributions of X.

It is well known that the task of establishing uniqueness for the martin-
gale problem reduces to verifying that any two solutions have the same
one-dimensional distributions (see, e.g., Theorem 4.4.2 of [7]). One approach
to doing this involves the notion of duality, and this requires establishing the
existence of another (dual) process (see, e.g., Chapter 4.4 of [7]). Careful
examination of this approach shows that it is in fact unnecessary to prove the
existence of the dual process, and it suffices to find some approximating
sequence of processes that are not necessarily required to converge in a full
function space sense. The following theorem captures this idea.
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THEOREM 1.3. Let E, be a complete, separable metric space and let E, be
some topological space. Let A, € B(E,) X B(E)), f € #(E, X E,), B € B(E,)
and E, C E,. Suppose that {f(-, y): y € E,} is separating on #(E,) and that,
for every v € #(E,) with compact support and every y € E,, there exists a
sequence of processes {Y "}, taking values in E,, such that Y "(0) = y and

(12) E[f(X(t),y)] = lim E f(X(O),Y<">(t>)exp{ fOtB(Y(")(S))dS}]

for every t > 0 and each solution X of the martingale problem for (A, v),
independent of {Y ™). Then for each u € #(E,) for uniqueness holds for the
martingale problem for (A, w).

ProOF. The proof is analogous to that of Theorem 4.4.7 of [7]. Let X and
X be solutions of (A, v), where v € 2(E,) has compact support, and choose
arbitrary y € E,. Then, by our assumptions, there exists a sequence of
processes {Y (W} independent of X, X taking values in E,, such that Y, =y
and

E[A(X(£), )]
(1.3) - tim B[ F(X(0), Y0 Jexp [ B(Y () ds |
E[f(X(t),y)].

It is true for each y € E’z; hence, any two solutions of the martingale problem
for (A;, v) have the same one-dimensional distributions. Now, taking arbi-
trary v € #(E,) and continuing as in the proof of Theorem 4.4.7 of [7], we are
done. O

2. Branching process in random environments. Recently there has
been growing interest in the study of systems in random media (environ-
ments) and systems with interactions. Some examples of the introduction of
interactions and random media into the superprocess include:

1. Making the rate of branching be dependent on random catalysts (see [4]).

2. Introducing interactions in which the rate of branching, the branching law
and the motion process are dependent on the state of the system of
particles (see [15], [17] and [18]).

In our work the random medium will affect the branching mechanism. There
has been substantial interest in such a model for the somewhat simpler case
of particles moving on the discrete lattice Z¢, without going to the infinite
density limit corresponding to the superprocess (e.g., [1], [9] and [8]).

To motivate our result, we recall the limiting behavior of a model closely
related to ours but without the spatial motion. The result that we shall
describe below was originally conjectured by Keiding [13] and proved by
Helland [10]. In the form introduced here, it appeared in [14].
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For each n let {(£(™, X"  X{ ...} _, be a sequence of independent,

I, m> “*2,m>
identically distributed ([R? X 7% )- valued random variables, X{") > 0, and for
fixed m, n suppose X{"), Xé",)n, ... are conditionally 1ndependent and identi-

cally distributed given £ (£ determines the “environment”). We define a

branching process Z,(-), with initial state Z,(0), recursively by
Z,(m—1)
Z,(m) = Z X

m-—1-

Then X{") is the number of offsprlng of the kth member of the mth
generatlon and Z,(m) gives the number of offspring in the mth generation.
Assume that Z (O) /n — x, and define

X, - 2D,

Let
[ (n) |§(n)] - Mr(nn)
and suppose that

lim nE[X("), 1] = 8, limnE[(M - 1)] = v,

lim B[(X("), ~1)°] =02, swpE[(X{7), - 1)"] <=

Let = denote weak convergence. Then we have the following result.

THEOREM 2.1 (Kurtz [14]). Let X, be as above. Then X, = X, where X is a
diffusion whose generator is the closure of

A={(f 4(ax + ya®)f" + paf'): f € C[0,)).

3. Branching processes in random environments with spatial mo-
tion. This section is devoted to the precise construction of branching parti-
cle systems with branching affected by a random environment described
briefly in the Introduction. At the end of the section we present the main
result of this paper, which gives the limiting behavior of these particle
systems.

We start with some notation. Let M;(E) be the space of finite measures on
(E, #(E)) with the weak topology and D[0, ») (resp. C5[0, «)) be the space of
cadlag (resp. continuous) E-valued functions on [0,«) endowed with the
Skorohod topology.

To define the model, let A be the generator of a Feller process in E,
append to the state space E a cemetery state A and adopt the convention
that ¢(A) = 0 for all functions ¢: E — R. Let K, be the number of particles
alive at time 0, spatially distributed in E at time 0 at the points x,,..., xg
and defining the initial measure

n

KTL
= Y5, =x€E i=12,...,K
=1

ne

~.
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In order to label our particles, define the family of multiindices
I={a=(ay,a,...,ay): a0 €N, a; =1,2,i > 1, N > 0}.
Define the “length” of a by |a| = N and set al; = (ag,..., ;) and a —i =
(ag,..., @),_;)- We induce a partial order on I by setting
B<a<e B=al; forsomei <|«al,

and for any ¢ > 0 write a ~, ¢ if and only if

la 1+«

— <t< .
n n

We shall now define the tree {Y*": a, < K,} of processes. Let {Y*":
a, < K,, |a| = 0} be a collection of independent Feller processes with genera-
tor A, stopped at time ¢ = 1/n, such that

Y*®r0) = Xoy-

We can now define the tree of processes recursively. For each &£ > 1 let
{Y*" ay < K,, |la| = k} be a collection of Feller processes with generator A,
stopped at time # = (|a| + 1)/n, which are conditionally independent given
the o-algebra o{Y*", |a| < k} and for which

Yor(e) =Y* b (t), t<lal/n.

Eventually we shall thin out our tree, but in order to do it we need
additional random variables, whose distribution depends on the random
environment. First we introduce the environment. Let C,(E) be the space of
continuous functions on E with limits at . Set

C(EXE)={feC(EXE): f(:,y) € C,(E)
Vy€E;f(x,") € C(E),V x € E}.

Let {&,(-), £ = 0} be independent, identically distributed random fields on E
(¢, determines the environment) such that

E[l&(2)P] <=, VxeE,VE,

P(&,(x) >2z)=P(&(x) < —2), VxeE, zeR,VEk.
Define

(3.1)

‘/;7 E(x) > \/;,
(3.2) EM(x) ={ -Vn, &(x) < —Vn,
& (x), otherwise,
(3.3) g.(x,9) = E[ £ (x) 6 (y)],
(34) g(x,y) EE[fk(x)gk(y)] Vx,yeE,Vk,

and assume that
g(-,)) € C(E XE).
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For each n let {N*", a € I} be a family of random variables, such that the
{N*", |a| = k} are conditionally independent given ¢ for each k, and the
conditional probability law of N*", |«| = k is given by

an _ anflel+ 1Y) 1 (Y ((lal + 1) /n))
P(N ~ ey "2 2/n ’

wn . o] + 1 B 1 é:]gn)(Ya,n((|a| + 1)/n))
P(N =0/¢,,Y _E_ o .

Note that our assumptions on & and N*" are in agreement with those of
Kurtz in his case. In particular:

1. The uniform boundedness of the third moment of Xj") corresponds to the
relevant condition on &,.

2. The second moment condition lim, _, . nE[(M{» — 1)?] = y corresponds to
lim,  .g,(x,y) = g(x, y) for each x, y.

3. The parameter 3 (resp. o %) corresponds to 0 (resp. 1).

At this point we have to introduce the branching, which we do by thinning
the full tree of processes Y*". For each a € I define the stopping time

o0, if ay > K,
i+l .
n min : Neli =0}, ifthisset # Jand ¢, <K,,
7T = 0<islal n
1+ |« .
, otherwise.
n

We can now finally define the particle paths of interest to us by setting, for
each a € 1,
Yeoer(t), ift<ron,
A, ift > 7",

Xon(t) ={

The measure-valued process for the finite system of particles is now defined
as

#{X*"(¢t) €B:a~, t}

X' (B) = n

We shall define the following filtration:

Fr=o(YOr, No"al<j) V[N o(Yor(s):lal=j+1)

s>t

J+1

J
if - <t< ,¥Vj>0.
n

Let 2(A) be the domain of A. Here is the main result of the paper.
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THEOREM 3.1. Let g € C,(E X E). Assume that X} = m in Mp(E). Then
X" = X, where X € CMF(E)[O, ©) s the unique solution of the following mar-
tingale problem:

Forall  €2(A),
Z,(#) = X(9) = m($) — [X,(Ad)ds

is an F~ continuous square-integrable martingale
(3.5) such that Zy($) = 0 and

(Z($)) = fotxs(w)ds

) () d(x)(y)X,(dx) X, (dy) ds.

Modulo the following small subsection, the remainder of this paper is
devoted to the proof of Theorem 3.1.

Some comments on the limit process. It is notable that although in (3.5) Z
is an L2-martingale measure in the sense of Walsh’s definition [21], it is not
orthogonal, in contrast to the case of the usual superprocess. This is one of
the aspects of this model that makes it both interesting and challenging. In
particular, establishing uniqueness for the solution of (3.5), which is both of
intrinsic interest and necessary for proving the weak convergence of the
theorem, becomes a particularly challenging task.

In this paper we do not consider the properties of the limit process, since
many of them seem to be similar to already studied models. For example, it is
not hard to check that the Hausdorff dimension of the support of X in the
case E = R%, A = —(—A)*/? and g = constant is the same as for the corre-
sponding standard superprocess. (We also believe that for any sufficiently
regular g the situation is the same.)

Similarly, under the same assumptions but with X, = A = Lebesgue mea-
sure (our model can be easily generalized to the case of infinite initial
measures), it follows that for small dimensions (d < a), X, = 0 as t — =, as
does the corresponding standard superprocess. For d > « the limiting behav-
ior depends on g much as in the case of linear stochastic partial differential
equations (for a = 2, see, e.g., [2)].

An interesting extension to our setup arises in the case that g is not a
regular function, but, for example, is of the form g(x, y) = §,(x — y), where
8, is the Dirac delta function. In the case A = 3A and d = 1 this can be
treated as a particular case of a model considered by Mueller and Perkins
[16]. They proved the existence of the weak solution of the following stochas-
tic partial differential equation:

(3.6) u, = %u” + a(u)W,
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where a(-) is a function satisfying some growth condition, W = W(¢, x) and is
a two-parameter white noise. Taking a(u) = y/u(1 + u) and defining X,(dx)
= u(t, x) dx, one can check that such X solves the martingale problem (3.5)
with g(x, y) = 8,(x — y) and so we recover a “special case” of our model. In
[16] it is noted that uniqueness in law of the solution of (3.6) is not known for
the general case. However, in our situation, in which a(z) = y/u(1 + u) , the
uniqueness is easily verified by adapting the arguments developed in Section
4.2. The question of uniqueness for (3.6) in the general case seems to be very
interesting, but considerably harder, and probably will be the subject of
another paper.

4. Proofs. The proof of weak convergence involves two steps:

—

. Tightness.
2. Identification of the limit; in our case this is equivalent to the proof of
uniqueness of the solution for the martingale problem (3.5).

4.1. Tightness. In this subsection we shall prove the following result.

LEMMA 4.1. The sequence {X"} is tight in Dy, (g)0,%), and each limit
process is continuous and satisfies the martingale problem (3.5).

We shall not go into the details of the proof, which are similar to those in
[5], Chapter 7, where the more complicated case of historical processes is
treated.

One of the basic tools used in establishing tightness for M (E)-valued
processes involves reducing this problem to the tightness of real-valued
processes. According to the following theorem (which is an easy consequence
of Theorem 3.7.1 and Definition 3.2.1 of [3]), if E is compact, then in order to
show that the sequence { X} of M,(E)-valued processes is tight one merely
needs to verify that, for each “good” function ¢, the sequence of real-valued
processes {X(™(¢)} is tight.

THEOREM 4.2. Assume that E is a compact Polish space. Let S = {¢,:
k > 0} be a dense subset in C(E) with ¢, = 1. Let {X™} be a sequence of
processes with values in My(E). Then {X™)} is tight in Dy g)0,%°) and all
limit points are in Cy,z[0,%) if and only if, for each ¢ € S, {X ")} is tight
and all limit points are in Cgl0, ) [i.e., {X ()} is C-tight].

Before we can continue, we require some further notation:

a,=1/n Vn>0,
s,=[sn]/n Vs>=0,n>0.
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Let @ ~s, s €[i,,i, + a,). Fix ¢ €2(A). Furthermore define
d(Y*"(s)) = d(Y™"(i,))
Mo in( ) = —/:A¢>(Y“’”(r)) dr, if X®n(i,) # A,
0, n if Xn(i,) = A.
Clearly, {(M& (), F"), s €[i,,i, + a,)} is a martingale for each i > 0.
It is easy to check that
(41) X[ () =X3(¢) + N(¢) + MV(¢) + Z{"($) + /Oth”(Acﬁ) ds,
where

M"(¢)=n"t X X MIn(H)N“"+n"t 3 MS"(4),

$,<t, a~, s, a~t,

NP =nt L L [ " AG(X(r)) dr(N©T - 1),

~ s
$,<t, a~, S, °n

ZM(d) =n"t X X (X*(s,)) (N - 1),

§,<t, a~,s,

It can be easily verified that M™, N, Z(") are $"-martingales, such that
M™_ N are closely related to the motion of the particles and Z™ is related
to the branching. Let Y,Y be two independent Feller processes, each with
generator A, and let 7'(¢) be the semigroup corresponding to the two-dimen-
sional process (Y,Y). Then simple calculations show that

(ZW(p))e= Y, X! (¢%)a,

s, <t,

+ X [ $(x)()T(a,)g,(x, y) X} (dx) X! (dy)a,
EXE

s, <t,

—nt X[ $(0)T(a,)8,(x, %) X (dx)a,

= [Xr(#%) ds
[ d(2) ()T (a,)8,(x, y) X1 (dx) X (dy) ds
0 “EXE

=0 [ X0 (9T (@) g, () ds.

From the properties of the generators of Feller semigroups we have that
N®@1) =0, M™(1) =0. Hence, an application of Gronwall’s and Doob’s
inequalities yields the following result.
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LEMMA 4.3. For each T > 0, E[sup, _ » X/(1)?] is bounded uniformly in n.

It is much easier first to prove Theorem 4.1 for E compact. The main steps
(without proof) that lead to a proof of tightness in the case of compact E are

as follows:

(i) Using the number boundedness of E[sup,. ;X (1)?] and the Feller
property for the random motion, we can prove the following result.

LEMMA 4.4. Foreach T > 0, ¢ €2(A),

(4.2) lim E[supMs(")(d))2] — o,
n—® s<T

(4.3) lim E[supN;">(¢)2] —o0.
n—® s<T

(ii) The following step includes establishing tightness for {Z((¢)} and
{{Z™(¢))} and some additional moment properties. Since g(-,-) and ¢(-) are
bounded functions, it follows that the crucial arguments leading to the proof
of tightness for a sequence of branching processes in a random environment
(without spatial motion) do not change. Hence, following a similar procedure
to that in the proof of Theorem 8.1 of [10] (see also Proposition 6.3.26 of [12]),
one can obtain the following result.

LEMMA 4.5. (a) The sequence {Z™(¢p)},{{Z™(¢p))} are C-tight sequences
of processes in D0, ).

(b) The qualities {sup,_ X ($p)?},{sup, . Z"(p)?} are uniformly inte-
grable random variables for each T > 0.

(iii) Define C{"(¢) = [ X"(A¢) ds. Then

s

ICW(p) — CV(P)| < |t — slsup X (|Al)

r<t

< A¢llsup X (1).

r<t

Checking the conditions of Proposition 6.3.26 of [12] yields the following
result.

LEMMA 4.6. The sequence {C"(¢)} is C-tight in Dg[0, ).

(iv) The sequences {C™(¢)} and {Z™(¢)} are C-tight; thus, by Corollary
6.3.33 of [12], {C™(¢) + Z™(¢p)} is C-tight. By (4.1) and Lemma 4.4 we
obtain that {X"(¢)} is C-tight.

LEMMA 4.7.  The sequence {X"} is tight in Dy |[0,) and all limit points
are in Cy 50, %).
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Proor. The family 2(A) is dense in C(E) and the conclusion follows
immediately from Theorem 4.2. O

(v) Assume that X is one of the limit points of {X"}. Using Lemma 4.5(b)
and martingale techniques, we can derive that

X,(6) = m(#) + Z(8) + [ 'X,(Ad) ds,

where Z,(¢) is a square-integrable &*-martingale and

(Z(d)) = fOth(ch)dS + /;[E 8(x,)(x) d(y) X,(dx) X,(dy) ds.

The last step completes the proof of Theorem 4.1 for compact E.

In the case of locally compact E, we write E = E U {o} for the one-point
compactification of E. As above, we get the tightness of X" in Dy 5[0, *).
Let X be a limit point of X” in Dy, 5[0, %). Choosing {f,} € Z(A) such that
f. = 1., Af, — 0 boundedly pointwise, it can be easily verified that

lim E[supXt(fn)2} 0 VT>o.

n—® t<T

Thus, by dominated convergence, E[sup, _ 7 X,()*] = 0 and so
X,({*}) =0 V¢, as,
from which it follows that {X"} is tight in DMF( E)[O, ),

4.2. Uniqueness. In this subsection we shall prove the hard part of Theo-
rem 3.1, that the martingale problem (3.5) has a unique solution. Our proof is
based on Theorem 1.3, so that we need to construct some approximating
sequence of processes. We shall start with some auxiliary results.

Note first that we shall use the convention that S, = 0 for ¢ < 0, where
{S,} is the semigroup generated by A, and abbreviate “bounded pointwise” by
bp.

As a first step, note that via Itd’s formula one can check that every solution
of (3.5) is also a solution of the martingale problem for (A, §,,), where

A= {Cu()). P () (AS)
()| w(67) + [ e(x,)0(x) bl (i)

feéZ(R+),¢e9(A)++}.

Hence, in order to prove uniqueness for (3.5), it is sufficient to prove unique-
ness for (A4, §,,). In fact, the following result shows that the two martingale
problems are equivalent.
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THEOREM 4.8. Let X be an My(E)-valued process with PX;'=ve
P(My(E)). It is a solution of the martingale problem for (A, v) if and only if

forall p ez (A),
Z,(#) = X(9) — Xo(#) — [ X,(Ad) ds

is an F~-continuous locally square-integrable martingale
(4.4) such that Z,($) = 0 and

(Z($)): = fOth(qu) ds

[ (w3 B(0)(3) X,(dx) X, (dy) ds.
0EXE

REMARK 4.9. From the above theorem it immediately follows that any
solution of the martingale problem for (A, v) is continuous.

REMARK 4.10. Note that (4.4) differs from (3.5) in that Z(¢) can be a local
martingale.

Proor. (i) Applying Itd’s formula, we get that if X satisfies (4.4), then it
is a solution of the martingale problem for (A,, v) (we shall also need the fact
that each bounded local martingale is in fact martingale).

(ii) Let X be a solution of the martingale problem for (A, v). Then, for
each ¢ €4, ,,

exp(—eX,(#))X,(9) — [ exp(~eX,(9))
X{(—sXs(d)) + 1) X, (Ap) + %(ssz(q,')) — 28)
<87+ [ e(x 08060 X (a0 X)) | ds

is an F*-martingale. Letting & | 0, we easily get by stopping time arguments
that

Z,(#) = X(9) — Xo(#) = [ X,(49) ds

is a local martingale for all ¢ e(A),,. Since an arbitrary ¢ € D(A) is
bounded by some constant & [sup, . zlé(x)l < k], we get that ¢ + &, k €
9(A),, and, hence,

Zt(¢’) = Zt(¢ + k) - Zt(k)
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is a local martingale. Furthermore,
~ t
M, = exp(~X,(6)) — [lexp(~X,())[ X,(~A0 + 147)

+f (5 2)6(0)8() X (d)X,(d)|
EXE

is an X-martingale for each ¢ €2(A), .. Now, applying Ito’s formula to the
semimartingale V, = exp{—X,($)} and the continuous process

V, = exp{/ot [Xs(Acb - 3¢%)
“3f E B0 K () X, () | s,
we get that

Vt‘7t = VOVO + ft‘]s— dv@ + ft‘7s dVe
0 0
_v,V, + /()texp{fos[Xu(A(;& ~147)
“3f ) 0(x)6(3) X,(de) X,(dy) du) D,
— _ ¢ 142
exp{ X,(¢) + fOXS(A¢> L¢?)

_ %fEng(x, y)¢(x)d)(y)Xs(dx)Xs(dy)] ds}.

is a local martingale. Now the continuity and quadratic variation of Z,(¢)
follow in much the same way as in (ii) — (iii) of Theorem 1.3 of [19]. O

Let S, be the semigroup generated by A and let X be a solution of the
martingale problem for (A, »). It is easy to verify that

M7 () = exp(~X,(Sr_,4))
-f ‘exp(—XS(ST_S¢))(XS(%ST-S<¢)2)

4.5
(4.5) +§fEXEg(x,y)(ST,s¢)(x)(ST,S¢)(y)

XX, (dx)X,(dy)| ds

is an X-martingale on 0 <¢ < 7T for each 7> 0 and ¢ € B(E).,. This
result may be obtained, for example, by applying Lemma 4.3.4 of [7] for
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¢ €2(A), ., and then going to the limit [using the fact that Z(A), . is dense
in C,(E), and C,(E), is bp-dense in B(E),].

We want to state now one auxiliary lemma about the existence of the kth
moment of X.

LEMMA 4.11. Suppose k > 2. Let X be the solution of the martingale
problem for (A,, v), where v has the kth moment, in the sense that E,[ X,(1)*]
< o, Then E[ X,(1)*] < = for each t > 0.

ProoF. The proof is standard and uses Gronwall’s inequality and stop-
ping time arguments. Let 7, = inf{¢ > 0: X,(1) > n}. Then, by It6’s formula,

X (D =X + Rk = 1) [ X, (D' dCZ(8)0ns,
+ local martingale.

Since all the terms are bounded, we get that the local martingale is actually a
martingale and, hence,

X (D' < XD + k(e = 1) [X,, (D"

X(Xsmn(l) + IIgIIXsATn(l)z) ds + martingale,
where || - || denotes the supremum norm. Furthermore,
E[X,,,(1)"] < E[X,(1)"]

¢ _

+ k(k - 1)];[E[X8Mn(1)k | +lglE[X, . (1)*]] ds
< E[X,(1)"] + k(& - 1)];[1 +(1+ gl B[ X, ., (1)"]] ds.
Thus, by Gronwall’s inequality,
E[X,..(1)"] < Celel,

where the constant C, is independent of n. Letting n — o« and applying the
monotone convergence theorem, we are done. O

COROLLARY 4.12. If v has a second moment, then M (¢) in (4.5) is an
FX-martingale on 0 < t < T for each ¢ € B(E),.

In order to apply Theorem 1.3 we shall construct a sequence of approximat-
ing dual processes. The motivation behind our construction is as follows.



1968 L. MYTNIK

Suppose that for each ¢ € C,(E), there exists a C,(E),-valued process Y
which solves the following martingale problem:

forall w € My(E) and T > 0,
T t Lo
MI(w) = w(Sr-.Y,) = w(Srd) = [[p| Sr| 5 Y2 | ds,

is an .%,"-continuous square-integrable martingale on
0 <t < T such that M{( x) = 0 and

MT(p)e= [[ g(x,9)Y(x)Y,(¥)
0"EXE
XSk_ w(dx)Si_, n(dy) ds, t<T.

(4.6)

Then, applying arguments of Chapter 4.4 of [7], we can show that if X is any
solution of the martingale problem (A, »), independent of Y, then

4n  Elexp(~X,(6))] = Elexp(- X)), V=0

and (once again by arguments of Chapter 4.4 of [7]) this gives us uniqueness
for the original martingale problem (A;, v). The only problem is the existence
of the process Y. For a special case g = constant, the existence of Y can be
easily verified. For a more general g, the situation is rather more compli-
cated. Thus, we intend to construct a sequence of processes that satisfies the
conditions of Theorem 1.3. 3

Let g(,-) be an arbitrary nonnegative-definite function in C,(E X E) and
let ¢ be a measurable version of a Gaussian mean-zero random field on E
with covariance function g (the existence of such a modification follows, for
example, from Theorem 9.4.2 of [20]). Define the following sequence of
bounded random functions:

v, §(x) > Vn,
£M(x) = —Vn,  E(x) < —Vn,
E(x), otherwise

for each x € E. Define
g.(x,y) = E[£™M(x) ™ (y)],
ho(x,5,2) = E[£¢™(x)E™ ()€ (2)].

Let {r{™, i = 1,2,...} be independent exponential random variables with
parameter n and let {£™, i = 1,2,...} be independent copies of ¢, such
that {r{"} and {£} are mutually independent. Define also the following
random variables:

k
T™ = Y 7™, kn> 1.
i=1
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Now for each n we construct the process Y, with sample paths in
Dp, E)+[0,OO) [to be more precise, we can endow B(E) with the supremum
norm and hence define the topology on B(E), as the relative topologyl, as
iterative solutions of the following evolution equations (the existence and
uniqueness of solutions of these equations follow, for example, from Theorem
1.1 of [6]):

Y§ = b€ C(E).,

t 1 2
S,(¢) — fost_s(gygn) )ds, 0<t<rim,

&"() t Lo
. (ZL) (:ll) _ (n)
StTp( SO I Y- er‘)St S(ZY )d
St(¢) fSt s( s(n) )ds

&)
+S m Y((ffg, , <t < 7™+ 7

Vn

gi(n)(.) o " -
+ Z Sth(n) —YT(n)7 y Tk <t< Tk+17

Since {r{™} and {£(} are mutually independent, we can define the Poisson
point process ([11], 1.9):

p™: Dyw c (0,°) = B(E),

with countable domain D, defined by

k

D, = {T{”), T+ 7M., Z ..

and
k

Z ):g,@ VEk>1.

(n)

The corresponding Poisson counting measure is defined as
N®™M(,U) =N™((0,t] xU)
=#{seD,m;s<t,p"(s) €U} Vt>0,VU&ecB(B(E))
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and its compensator is
N®(t,U) = E[N™(t,U)] = ntE;[1y],
where E.., denotes expectation with respect to the distribution of ¢ ),

Let 7" = N,.,0{N™(s,U); s<t+e, UcB(B(E))} and define the
spaces

L = { f(t,h,w); [ is & -predictable and

Ve>0E|[ [ If(s,h,)'N™(ds, dh)
0 “B(E)

<.

Defining 7"(s) = max{r € D,w; 7 < s} and N = N"(s, B(E)), we get from
the construction of Y that

k k
1Y, ™I < 1,55l
k
(4.8) =

n (( ))( )
éT (s
Y,r((n))(s) 1 +

Vn
R Eo kN
< 2RY 0 _IF < o < (lopllF 2N

T

for each s > 0. The expectation of the last expression is finite for each £ > 1;
hence, it is easy to check that, for each u € M,(E) and T > 0,

(4.9) f(¢,h,) =n

h
ST—t(ﬁYt(—n))) e L(kn) VEkEx>1,

and Y™ is the unique solution of the following stochastic evolution equation:
t 1 2
V() = S(6)(x) - ['5, [ 5700 s
0

t+ h
+ S, | =Y.™|(x)N™(ds,dh
fo fB(E) (ﬁ 3_)(x> (ds, dh)

for all x € E, or
t 1 2
/"L(STft(ift(n))) = ,U«(ST(Q")) - /O,U« STs(_Ys(n) ) ds
h
ST_S(—YS(f’))N(”)(ds, dh)

2
t+
+fo fB(E)M Vn

for each p € Mp(E) and T > 0. From (4.9) and Definition 2.4.1 of [11], it
follows that the last expression is a semimartingale; hence, It6’s formula
(Theorem 2.5.1 of [11]) immediately yields the following result.
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LEMMA 4.13. For each u € Mz(E), T > 0 and F € C'(R),

Lo e
I’L(ST—S(EYS(,L) ))) ds
Y™ _h Y™

n + n
s— \/; s—

—F( ,LL(STSYS("’))}N(")(ds, dh)

F(u(Sy- Y")) = F(u(Sr(9))) = ['F

t+
NI

12 ST—S

for 0 <t <T.

COROLLARY 4.14. Let
G) FeC'®
or
(ii) F(x) =x*, x € R for some k > 1.

Then, for each u € My(E) and T > 0,

M(ST_S(%H")z))) ds

g(n)
Sy | Y™ 4 =y
T s( s /n s )

F(u(Sr_, Y, ™)) + fOtF’

Flu — F(u(Sp_,Y™))| ds

t
- n/ E§<n)
0
is an %*-martingale on 0 <t < T.

PrOOF. From our construction of Y (" it can be readily shown that in both
cases

Flu

h
o0+ ||| s vy e

Hence, the result follows from Lemma 4.13 and the definition of N®™ (see
[11], page 62). O

Next we shall obtain bounds on the moments of Y ™.

LEMMA 4.15. Foreach T > 0 and p € My(E),

supE[ M(Yt(”))?’]
t<T

is bounded uniformly in n.
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Proor.

E| w(Sy_ Y")’] < const - u(S;)”

t
'/‘Eg(n)
0

3

ds],

= Eg(n)[n*3/2M(STis(g(n)Ys(n)))3 + Snilﬂ(STsts(n)):U«(STfs(f(n)YS(")))2

(n)
¢ Y (™
‘/; s

+ const - nE I

STS(YS(H) +

- /"L(ST— sifs(n))3

3
- M(ST—sYs(n))S

(n)
¢ Y™
\/; s

Eé(n) 1%

ST—S(Ys(n) +

+ 3n’_ 1/2/‘L(ST—sYs(n))2lu’(ST—s( g(n)lfs(n)))]

=072 [ [ [ B[ £7(2) £7(3) 6 7(2) ] X (2) V() Y(2)
x“y’z
XSf_, w(dx) S5, w(dy) S, n(dz)
+3n7Y(Sp Y ®) [ [ Een £7(2) €™ ()] V(%)Y 3)

x"y
X87_ m(dx)Sr_, u(dy)

+3n—1/2M(ST_SYS<”))2fE§m[ £(x)] Y0 (%) S, m(dx)

=pn3/2 h(x,y,2)Y(x)Y ()Y (2
L[y, )Y (0 Y)Y (2)
XS7_ o m(dx)Si_ u(dy) Sy, n(dz)
+3n7Y(Sp_ Y ™) [ [ g.(x, ») YO (2) V()
x”y

XSr_ m(dx) St u(dy)
< n= 2Rl u(Sp- Y{) + 8n7 Mgl n(Sp- Y "),

where S} is the adjoint for S, and || - || is the supremum norm. Consequently,
we get

B{ (50 1] < const- (5747

+ const - (n71/2||7ln|| + 3||gn||)ftE[ ,U«(ST—sYs(n))?’] ds,
0



SUPERPROCESSES IN RANDOM ENVIRONMENTS 1973

and by Gronwall’s inequality, the uniform boundedness of ||%, | and ||g,|l and
the fact that the last inequality is satisfied for each 0 < ¢ < T', we are done.
O

Lemma 4.15 and Hoélder’s inequality immediately yield the following re-
sult.

COROLLARY 4.16. For each T > 0,

sup  E[Y™(x)Y ()]

0<t<T, x,y€E
is uniformly bounded in n.
We need the following lemma, which is similar to Lemma 4.4.10 of [7].
LEMMA 4.17. Let T > 0. Suppose f(s,t) on D ={(s,t): s +t < T, s,t > 0}

is absolutely continuous in s for each fixed 0 <t < T and absolutely continu-
ous in t for each fixed 0 < s < T, and, setting (f1, f,) = Vf, suppose that

|fi(s,t) dsdt < =, 1=1,2.
INLACR)

Then, for almost everyt,0 <t < T,

t
f(¢,0) — f(0,t) = fo(fl(s,t —58) — fy(s,t —s))ds.
ProoF. The proof is precisely that of Lemma 4.4.10 of [7]. O

Lemma 4.17 provides the main tool needed for the proof of the following
result.

LemMmA 4.18. If X is any solution of the martingale problem for (A, v),
independent of Y™, such that v € 2(M(E)) has compact support, then, for
each t > 0,

Elexp(~X,(¢))] — E[exp(~X,(Y"))]

fotexp(L - X,(Y,™))

=FE

(4.10)

1
x| o[ g(x,y) Y)Y y) X, (dx) X, (dy)
EXE

2
—X ¢ y, ™| —1]]|d
exp o\ i Y s |.

- nE (n)
¢ n
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Proor. Fix T > 0 and define three functions:
(4.11) hi,he,f: Mp(E) X R, XB(E), XR,~» R
by
hi( e, s, ¢, ¢)

1 2
= eXP(—M(ST-t-s¢))(gﬂ((ST—t—s‘f’) )

4.12 1
(12 P (S (DS ()
Xg(x,y)u(dx)u(dy)),
h2(,u,,8,¢,t)
1
= exp( — STftfs o STftfs ?
a1y~ PR GlSr(6%)
g
+nEgo exp{—,u ST—t—s(Wd)))} - 1]),
(414 5, 6,0) = (= n(Sr_ . 9)).

First, it needs to be proved that

E[f(X,,1,¥{",0)] - E[(X,,0,%",1)]

(4.15) t
= fE[hl(Xs,s,Y(”) t—s) —hy(X,,s, Y™, ¢t —s)|ds

t—s? t—s>
0

for almost every 0 < ¢ < T'. (Since our conditions are not exactly the same as
in Theorem 4.4.11 of [7], we need to do this tedious work.) The proof is based
on ideas of the proof of Theorem 4.4.11 of [7] and on the previous lemma. By
(4.5) and Corollary 4.14 we obtain that

(4.16) F(X,5,6,0) = [ (X, 7, b,1) dr
0

is an 7 X-martingale on 0 < s < T — ¢ for each ¢ € B(E),,0 <t < T, and

(4.17) F(ro5, Y0, 8) = [y, 5, Y™, ) dr
0
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is an "-martingale on 0 <t <T — s for each u € Mz(E) and 0 <s < T.
Defining

F(s,t) = E[f(X,,s, Y™, )],

we have (since Y™ is independent of X):
F(s,t) = F(0,t) + [ E[hy(X,,r,Y",1)] dr,
0
F(s,t) =F(s, O)+/E (X,,s,Y,™, r)]dr

fors > 0,¢> 0, s + ¢t < T. Therefore, (4.15) follows from the previous lemma.

Furthermore, we show that (4.15) is satisfied for ¢ = T. Let {¢,} be a
sequence of points such that #, - T and (4.15) is satisfied for each ¢,.
Defining

H(t,s) =hy(X,,s,Y"),t —s)—hy(X,,s, Yt —s),

t—s> t—s»

we get from the construction of Y™ that

lim H(t,,s) = H(T,s) a.s.foreach s.
ko x
It is easy to check that

sup |H(t,5)| < Cy(n) + Cy(n) sup ¥ < Cy(n) + Cy(n)ll g2,

s<t<T t<T—s

where C;(n) are constants and the last inequality follows from (4.8). The
expectation of 271" is finite; hence, from the dominated convergence theorem
it follows that

lim E[H(¢,,s)] = E[H(T,s)] foreach s.

k— o

Once again applying the dominated convergence theorem, we obtain

lim (1, E[H(t,5)]ds = [ E[H(T,s)|ds = [ E[H(T,s)] ds
ko /0 0 0

The last limit and the continuity in # on the left-hand side of expression
(4.15) gives us that (4.15) is satisfied for ¢ = T. Recalling the definition of
[, hy, hy, we are done. O

The following lemma is the final step in the proof of uniqueness for A;.

LEMMA 4.19. Let X be as in the previous lemma. Then

lim E[exp(—X,(Y,™))| = E[exp(—X,(4))].

n— o
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Proor. From Taylor’s formula it follows that

(n)
£ Yt(f)
\/; s

nEg(n) - exp{_Xs(Yt(ILg)}

exp{ -X, ( Y™ +

1
= exp(—X,(Y,™) )Eg(m[—nl/sz(g(")Yt(ng) + EXs(»f“”Yt("i)g]

1
i 1/ZEg(m[exp( —ZM) X ( §(n)Yt(f;)3]

1
= Eexp(—Xs(K(fg))éngn(x,Y)Yt(—ng(x)Yt(—n;(y)Xs(dx)Xs(dy)

1
a ﬁn* l/zEgm)[eXP( —ZM) X, ( f(n)Yt@g)g] ’

where Z(™ is some nonnegative random variable. Therefore, by the previous
lemma, we obtain

| Elexp(=X,())] — E[exp(=X,(Y,"))]|

‘ 1
=‘E[ [ {e,q)(_xs(w_n;))E [ (e(x3) ~8.(x,9)

XY "(x)Y, ") (y) X, (dx) X (dy)

1
+ an_ 1/2E§<n)[exp( —ZM) X ( §(")Yt(_”§)3] } ds}

(4.18)

=

< fOtE[exp(—Xs(Yt(_"g))EfExE@(x,y) — &8.(x, )l

XY x)Yt(_”i(y)Xs(dx)Xs(dy)} ds

+ f;%n_ 1/2 E[Egm[exl)( _Z(n))Xs( g(n)Yt(‘ng)?’H ‘ ds.

Using the boundedness of exp(—Z) and interchanging the integration with
respect to X, and E, we obtain

n 12 B| B[ exp(~27) X, (67|
< n71/2”ﬁn”E[Xs(th(—ng)3]

=< Ct—sn_l/QEX[Xs(St—sd))S] < C~t—

n-v2

S



SUPERPROCESSES IN RANDOM ENVIRONMENTS 1977

where C,_,,C,_, are constants uniformly bounded in s. The second inequality
follows from the independence of X and Y and the arguments of Lemma 4.15.
The last inequality follows from Lemma 4.11. Therefore, we get that

(4.19) lim n~1/2

n— o

E| Beo[exp(~2) X,(6m7,0)']|| = 0

uniformly in s and hence the second term in (4.18) converges to O.
Concerning the first term in (4.18), we obtain

: o1
/ E[e-xsm— | le(x,y) —g.(x, )Y xm_".z(y>Xs(dx)Xs(dy)] ds
0 2'ExE

1
—|'E -
<3/ X[fEXElgu,y) g(x, )|
XEyw| Y ( %)Y, " (y)] X,(dx) X (dy) | ds.

By Corollary 4.16, sup, , c z Eyo[Y,")(x)Y,")(y)] is uniformly bounded in 7.
Furthermore, g, bp-converges to g. Hence, by the bounded convergence
theorem,

lim [ 1g(%,7) = 8,(%, 1) Eyo[Y2)(x) Y20(3)] X,(dx) X, (dy) = 0
as.Vs<t.

Since E| Xs(l)z] < o for each s, it follows from the dominated convergence
theorem that

1imE[f lg(x,5) — gu(x, y)|Eyw| Y, x)y;w;(y)]Xs(dx)Xs(dy)} =0
EXE

n— o
Vs <t.

Once again using the bounded convergence theorem, we have

i B[ lg(x.3) - g,(x.9)
(4.20)
XEyw| Y™ x)Yt(";(y)]Xs(dx)Xs(dy)} ds = 0.

By (4.18), (4.19), and (4.20) we are done. O
The previous lemma and Theorem 1.3 now imply the following result.

THEOREM 4.20. For each v € Z(M(E)) the martingale problem for (A, v)
has a unique solution.

REMARK 4.21. The proof of Theorem 3.1 is now complete.
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