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Let (Sn)n∈N0 be a random walk on the integers having bounded steps.
The self-repellent (resp., self-avoiding) walk is a sequence of transformed
path measures which discourage (resp., forbid) self-intersections. This is
used as a model for polymers. Previously, we proved a law of large numbers;
that is, we showed the convergence of |Sn|/n toward a positive number Θ
under the polymer measure. The present paper proves a classical central
limit theorem for the self-repellent and self-avoiding walks; that is, we
prove the asymptotic normality of (Sn − Θn)/

√
n for large n. The proof

refines and continues results and techniques developed previously.

1. Introduction.

1.1. Polymer measures. Random walks are sometimes used as a stochastic
model for the random spread of polymer chains which consist of a huge num-
ber of relatively small groups of atoms (so-called monomers) joined together
by chemical bonds. Depending on the chemical properties, there are some fa-
vorite angles and spatial orientations which occur with certain probabilities.
Throughout this paper, (Sn)n∈N0 denotes a random walk on the d-dimensional
lattice Zd having i.i.d. steps and starting at 0. Its distribution is denoted by
P, the corresponding expectation by E.

As a model for a polymer, the free random walk has the important disad-
vantage that self-intersections may occur, that is, pairs of time points n < m

satisfying Sn = Sm. Rather than the free walk, one usually considers a trans-
formation of the walk which has few self-intersections or even none at all.
Introducing a parameter α ∈ (0, 1], the strength of self-repellence, one defines
a path measure Pn

α by

dPn
α

dP
= (1− α)Xn

E((1− α)Xn)
, n ∈ N,(1.1)

where

Xn := #{(i,j) ∈ {0, . . . ,n}2: i < j and Si = Sj}(1.2)

denotes the number of self-intersections until time n. The so-called polymer
measure Pn

α weights the path’s probability with the factor 1−α for every self-
intersection until time n. For α ∈ (0, 1), we call the distribution of the walk
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under Pn
α self-repellent, while the one under Pn

1 = P( · | Xn = 0) is called
self-avoiding. In both cases, the polymer measure is highly non-Markovian
since the interaction involves the whole path until time n. Being transformed
measures, the measures Pn

α do not even form a consistent family.
The large-n behavior of Sn under Pn

α is of particular interest. One expects
that the self-repellence has the effect of spreading out the path more than the
free random walk, and one expects that this effect becomes small in high di-
mensions. The standard reference about self-avoiding walks in any dimension
is Madras and Slade (1993), which contains not only a detailed introduction
both from a heuristic and a mathematically rigorous point of view but also
presents many (surveys on) proofs and simulation algorithms. Usually, one
takes a simple d-dimensional random walk as a basis, but even in this case
there are no rigorous results for the most interesting dimensions d = 2 and 3
and very few for d = 4. In dimension d ≥ 5, Brydges and Spencer (1985) prove
that a certain scaling limit of Sn is Gaussian. They use the technique of the
lace expansion, which seems to admit good results only in high dimensions.

From now on, we restrict our attention to the dimension d = 1 for the
remainder of the paper. It is the aim of this paper to prove a central limit
theorem for the self-repellent and the self-avoiding walk for a certain class
of one-dimensional random walks. Let us first mention some earlier works on
this subject.

Aldous (1986) considers a random walk whose steps are uniformly dis-
tributed on {−r, . . . , r} for some positive integer r and proves that the se-
quence of successive self-intersection times of the free walk has a limit law
as r → ∞. Bolthausen (1990) imposes no boundedness condition on the step
distribution, but only the existence of an exponential moment and a symme-
try condition. Using large-deviation analysis, he shows, for small repulsion
parameter α, that Sn/n is bounded and bounded away from 0 under Pn

α as
n → ∞. In the symmetric nearest-neighbor case, Greven and den Hollander
(1993) prove a law of large numbers: they show the convergence of |Sn|/n
under Pn

α toward some number Θ(α) ∈ (0, 1), the so-called effective drift of
the self-repellent walk. The main tool is a Ray–Knight-type description of the
local times of a simple random walk. A quite explicit characterization of the
drift Θ(α) is obtained in that paper, and on this basis van der Hofstad and
den Hollander (1995) derive the existence of limα↓0Θ(α)/(− log(1−α))1/3 and
a characterization in terms of a certain second-order differential operator. In
König (1993, 1994) the law of large numbers is extended to a class of ran-
dom walks whose steps may have larger size than 1, but are assumed to be
bounded. The next subsection explains the two latter papers more closely since
they serve as a starting point for the present paper.

1.2. Statement of the results. For the remainder of this paper we assume
that the random walk (Sn)n∈N0 makes only steps of sizes ±1, . . . ,±r with pos-
itive probability, with r a positive integer. Recall that we assume that S0 = 0
and that the steps are i.i.d. We impose a symmetry condition and introduce
a drift parameter h ∈ [0,∞). More precisely, we assume that the steps are
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given by

Sn+1 −Sn = k ∈ {±1, . . . ,±r} with probability p|k| ehk/Zh(1.3)

for n ∈ N0, where Zh =
∑r
|k|=1p|k| e

hk is a normalization constant and
p1, . . . ,pr are positive numbers. For convenience, we assume that Z0 = 1.
The associated path measure and expectation are denoted by Ph and Eh,
respectively. Under Ph the steps have mean (d/dh)logZh, which is positive
if and only if h is. We are mainly interested in the symmetric case h = 0, but
our strategy a priori works for a walk with positive drift only. In order to be
able to lead the symmetric case back to the positive-drift case, we inserted
the drift parameter in such a way in (1.3) that the probability of a finite path
depends on this parameter through the length and the endpoint only. The
polymer measure defined in (1.1) (with P = Ph and E = Eh) is denoted by
Pn
h,α and the corresponding expectation by En

h,α.
In this paper we prove a central limit theorem for the endpoint of the path

under Pn
h,α. The main result appears in Theorem 1.10 below.

Our starting point is the following law of large numbers.

Theorem 1.4 [König (1993, 1994)]. For every h ≥ 0 and α ∈ (0, 1], there is
a number Θ(h,α) ∈ (0, r] (called the effective drift of the walk) such that

Pn
h,α

(
Sn

n

)−1

⇒w

{
δΘ(h,α), if h > 0,

(δΘ(0,α) + δ−Θ(0,α))/2, if h = 0,
(1.5)

as n→∞.

(We denote the distribution of a random variable Y under a measure µ by
µY−1.) In order to derive Theorem 1.4, we showed that the function

Φh,α(θ) := lim
n→∞

1
n

logPn
h,α(Sn = bθnc), θ ∈ [0, r](1.6)

(bxc denotes the largest integer not exceeding x), is well defined and possesses
a strict maximum in θ = Θ(h,α). In particular, this implies that Pn

h,α(|Sn −
Θ(h,α)n| ≥ «n) decays exponentially fast toward 0 as n → ∞, for every
positive «, and this implies Theorem 1.4. As a pre-step to this result, we used
large-deviation analysis to analyze the function

Φ̃h,α(θ) := lim
n→∞

1
n

logPn
h,α(0 < S1, . . . ,Sn−1 < Sn = bθnc), θ ∈ (0, r).(1.7)

It turned out that Φ̃h,α is real-analytic in (0, r) [resp., in (1, r) in the case
α = 1], strictly concave in that interval and possesses a strict maximum point
in Θ(h,α). The latter property originally defined this number. Furthermore,
we showed that Φ̃h,α possesses a strictly negative curvature in Θ(h,α). Com-
paring this to König (1993) and König (1994), note that Φh,α is identical to
Jh,β − Jh,β(Θ(h, α)), where β = − log(1 − α)/2, in the self-repellent case in
König (1994) and to Jh − Jh(Θ(h)) in König (1993) for α = 1; the number
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Θ(h) in König (1993) is called Θ(h, 1) in the present paper. The analogous
statements are valid for the tilded functions.

What has not been proved in König (1993) nor in König (1994) is the fact
that Φh,α is even identical to Φ̃h,α in a neighborhood of Θ(h,α), and this
can be proved by strengthening the techniques in Sections 4 of those papers.
So, in particular, the rate function Φh,α, which governs the large deviations
for the self-repellent (resp., self-avoiding) walk, possesses a strictly negative
curvature in its maximum point Θ(h,α).

There is a heuristic calculation which supports the conjecture that (Sn −
Θ(h,α)n)/

√
n may be asymptotically centered Gaussian with variance

σ2
h,α := − 1

Φ̃′′h,α(Θ(h,α))
∈ (0,∞).(1.8)

Use the approximation Pn(Sn ≈ θn) = exp(nΦ(θ)+ o(n)) for θ close to Θ (we
suppress h and α from the notation) and expand Φ in a Taylor series around
Θ up to second order. Then we see, for c < C (up to a factor of eo(n)),

Pn

(
c ≤ Sn −Θn√

n
≤ C

)
≈
∫ C

c
Pn

(
Sn ≈ n

(
Θ+ x√

n

))
dx

≈
∫ C

c
exp

(
nΦ

(
Θ+ x√

n

))
dx ≈

∫ C

c
exp

(
x2

2
Φ′′(Θ)

)
dx.

(1.9)

The present paper proves the conjecture. Write N(σ2) for the Gaussian
distribution with mean 0 and variance σ2 ∈ (0,∞). Then our main result is
stated as follows.

Theorem 1.10. For any r ∈ N, α ∈ (0, 1] and h ≥ 0 (with the exception
of the trivial case r = 1 = α), the distribution of (Sn − Θ(h,α)n)/

√
n under

Pn
h,α( · | Sn > 0) converges weakly to N(σ2

h,α) as n → ∞. For positive h, the

measure Pn
h,α( · | Sn > 0) in this statement may be replaced by Pn

h,α.

The continuous analog of this theorem (i.e., a central limit theorem for a
transformed Brownian path measure that suppresses self-intersections, the
so-called Edwards measure) is proved in van der Hofstad, den Hollander and
König (1995).

1.3. Outline of the proof. The Gaussian behavior of (Sn − Θ(h,α)n)/
√
n

under Pn
h,α( · | Sn > 0) exclusively stems from the self-intersections the path

(S0, . . . ,Sn) has in the spatial area {S0, . . . ,Sn}. A much finer knowledge
about the influence of the number of self-intersections which occur outside
of this area is needed than for working on an exponential scale as is done in
König (1993, 1994). Their influence will eventually turn out to be convergent
such that their contribution cancels in the definition of the polymer measure
[recall (1.1)] in the limit as n→∞.

In Section 2 we derive a precise formula for the expectation of (1 − α)Xn

on {Sn = a + 1} for fixed n and a ∈ N0 in terms of a certain Markov chain.
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This chain is introduced in König (1993) and also used in König (1994) and
admits a Ray–Knight-type description of the local times of the walk. By using
some independence properties of this chain, we separate the influence of the
self-intersection numbers in −N0, {1, . . . ,Sn − 1 } and {Sn,Sn + 1, . . .} from
each other. This chain exists in the case of positive drift only, and this is the
reason why we inserted a drift parameter in (1.3).

The further course of the proof relies on a certain characterization of the
function Φ̃h,α which is derived in König (1993) [resp., König (1994)]. These
results (which are listed at the beginning of Section 3) enable us to construct
a certain ergodic Markov chain (a modification of the one above) which is
highly adapted to the path’s best strategy to minimize its number of self-
intersections. Section 3 shows how to let this new chain work for us.

In Section 4 we may apply a standard central limit theorem for stationary
ergodic Markov chains to our problem since the modified chain turns out to be
highly mixing; in fact, its return times possess exponential moments. Section 4
finishes the proof of Theorem 1.10 for the self-repellent walk. In particular,
we show at the end of the section how to lead the symmetric case back to the
positive-drift case.

Sections 2 through 4 treat the self-repellent case and Section 5 the self-
avoiding case. In fact, the latter case is completely analogous and even tech-
nically easier, so in Section 5 we will only point out the differences to the
self-repellent case.

2. Local times. This and the following two sections are devoted to the
proof of the following result.

Proposition 2.1. For every α ∈ (0, 1) and h ≥ 0 there exist b = b(h,α) ∈ R
and S = S(h,α) ∈ (0,∞) such that, for all C ∈ R,

lim
n→∞

ebnEh

(
(1− α)Xn10<Sn<Θ(h,α)n+C√n

)
= SN(σ2

h,α)((−∞,C]).(2.2)

Theorem 1.10 for the self-repellent case α ∈ (0, 1) follows from this propo-
sition [divide the l.h.s. of (2.2) by the same expression with C = ∞ and recall
(1.1)].

The present section develops, for every a ∈ N0, a representation of the
expected value of (1− α)Xn1Sn=a+1 in terms of a certain Markov chain, more
exactly, as a weighted sum of expected values over this chain. This chain is
used to describe the number of self-intersections which the path (S0, . . . ,Sn)
possesses in the spatial area {1, . . . ,a}. A certain independence property of
this chain enables us to separate their influence from that of the remaining
self-intersections, that is, from those which occur in −N0 and {a+1,a+2, . . .}.

Let α ∈ (0, 1) and h > 0 be fixed. We regard Ph as a probability measure
on

Ω :=
{
(ωn)n∈N0 ∈ ZN0 : ω0 = 0, |ωn+1 − ωn| ∈ {1, . . . , r} for every n ∈ N0

and lim
n→∞

ωn = +∞
}
.

(2.3)
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2.1. Ray–Knight-type description. The starting observation is that the ran-
dom variable under interest, (1−α)Xn , can be expressed in terms of the n-step
local times

`n(x) := #{i ∈ {0, 1, . . . ,n}: Si = x}, x ∈ Z, n ∈ N0.(2.4)

Introduce the abbreviation

β := −1
2

log(1− α) ∈ (0,∞).(2.5)

Since #{(i,j) ∈ {0, . . . ,n}2 |Si = Sj} =
∑
x∈Z `n(x)

2, one easily calculates that

(1− α)Xn = exp(β(n+ 1)) exp
(
−β

∑

x∈Z
`n(x)

2
)

.(2.6)

Since the factor exp(β(n+ 1)) cancels in the definition of the transformed
measure Pn

h,α [see (1.1)], we concentrate on the analysis of

Eh

(
exp

[
−β

∑

x

`n(x)
2
]
1Sn=a+1

)
.

We are going to use a certain Markov chain which is introduced in König
(1993) and serves for a Ray–Knight-type description of the local times. For j,
k ∈ {1, . . . , r} and x ∈ N0, let

ηj,k(x) := #{(m,n) ∈ N2
0 | m < n, Sm−1 ≤ x, Sm = x+ j,

Sm+1, . . . ,Sn−1 > x, Sn = x+ 1− k}
(2.7)

be the number of excursions beyond x, starting at x+j and ending at x+1−k.
Furthermore, let

τ(x) := max{n ∈ N | Sn−1 ≤ x < Sn}(2.8)

be the time of the last jump beyond x and let

q(x) := Sτ(x) − x(2.9)

register the walker’s position at this time. Lemma 2.2 in König (1993) states
that

Λ(x) :=
(
(ηj,k(x))j,k∈{1,...,r},q(x)

)
(2.10)

defines a homogeneous Markov chain (Λ(x))x∈N0 on

E := Nr×r0 × {1, . . . , r}(2.11)

under Ph. Its transition probability function is denoted by Qh: E×E→ [0, 1].
Note that Qh is irreducible and aperiodic as can be shown by adapting the
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proof of Lemma 2.6 in König (1993); in fact, every component of Q3r
h is positive.

The infinite-time local times

`(x) := lim
n→∞

`n(x) = #{k ∈ N0 | Sk = x}, x ∈ Z,(2.12)

are a two-block functional of this Markov chain since we have

`(x) = g(Λ(x− 1),Λ(x)), x ∈ N,(2.13)

where

g(Λ1,Λ2) :=
r∑

k=1

(
η(1)

1,k + η(2)
k, 1

)
+ 1q(1)=1(2.14)

for elements Λi = ((η(i)
j,k)j,k,q(i)) ofE, i = 1, 2. In the proof of Lemma 4.1 below

we will need the following necessary condition for the positivity of Qh(·, ·):

Qh(Λ1,Λ2) > 0⇒
r∑

j=1

η(2)
j,k+1 ≤

r∑

j=1

η(1)
j,k for every k = 1, . . . , r− 1.(2.15)

The proof of Lemma 2.2 in König (1993) actually proved more than the
Markov property and its homogeneity.

Lemma 2.16. Under Ph( · | Λ(0)), the Markov chain (Λ(x))x∈N0 is in-
dependent of the σ-field σ(`(x): x ∈ −N0). For every a ∈ N, the σ-fields
σ(Λ(0), . . . ,Λ(a − 1)) and σ(`τ(a)(x): x > a) ∨ σ(Sτ(a)+1, . . . ,Sτ(a+1)) are
independent under Ph( · | Λ(a)).

Proof. Fix x ∈ N0. We say that an excursion beyond x is the path segment
between an upcrossing and the following downcrossing of the line between x

and x + 1. The proof of Lemma 2.2 in König (1993) states and proves the
independence of the σ-field generated by the excursions beyond x [including
the tail (Sτ(x), . . . ,Sτ(x+1))] and the σ-field generated by the path segments
between these excursions (including the first part between time 0 and the
first jump beyond x) under Ph( · | Λ(x)) for x ∈ N. This directly implies our
second assertion. It is easy to see that the proof literally applies for x = 0, too,
and this implies the first assertion. 2

2.2. Application to the polymer measure. We shall now express
Eh(exp[−β∑x `n(x)

2]1Sn=a+1) in terms of the Markov chain (Λ(x))x∈N0

introduced in the preceding subsection. Define two functionals of this chain
for a ∈ N by

Ya :=
a∑

x=1

g(Λ(x− 1),Λ(x)) and Va :=
a∑

x=1

g(Λ(x− 1),Λ(x))2.(2.17)
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Abbreviate Ph,Λ0 = Ph( · |Λ(0) = Λ0) and let Eh,Λ0 denote the corresponding
expectation. The goal of the present subsection is to prove the following lemma.

Lemma 2.18. There is a function K: N2
0×E2 → [0,∞) such that, for every

a,n ∈ N0,

Eh

(
exp

(
−β

∑

x

`n(x)
2
)

1Sn=a+1

)

=
∞∑

n1,n2=0

∑

Λ0,Λ∈E
K(n1,n2,Λ0,Λ)

×Eh,Λ0(exp(−βVa)1Ya=n−n1−n21Λ(a)=Λ).

(2.19)

Remark 2.20. The constantK(n1,n2,Λ0,Λ) summarizes the contributions
to the random variable exp(−β∑x `n(x)

2) that come from the boundary pieces,
that is, from the parts of the path in−N0 and in {a+1,a+2, . . .}, and those that
come from paths that spend n1 time units in −N0, n2 units in {a+1,a+2, . . .}
and have as many excursions beyond 0 (resp. a) as is given by the entries in
Λ0 (resp., Λ).

Proof of Lemma 2.18. We will treat the path classes {Sn−1 < a+1 = Sn}
and {Sn−1 > a+ 1 = Sn} separately in slightly different manners. The idea is
to sum over the amounts of time the path spends below 0 and above a, and
over the numbers of the path’s excursions beyond 0 (resp. a). As a preliminary
step, observe that [writing Λ = ((ηj,k)j,k,q) in the sequel]

{
Sn−1 < a+ 1 = Sn ≤ Sn+m for every m ∈ N

}

= {τ(a) = n,q(a) = 1}

=
∞⋃

n1,n2=0

⋃

Λ0,Λ∈E:q=1

{∑

x≤0

`(x) = 1+ n1, Λ(0) = Λ0,

a∑

x=1

g(Λ(x− 1), Λ(x)) = n− n1 − n2,

Λ(a) = Λ,
∑

x>a

`τ(a)(x) = n2

}
.

(2.21)

Of course, this union is disjoint. Put π1 := Ph(Sm ≥ 0 for every m ∈ N) ∈
(0, 1). Then Lemma 2.16 implies that

Eh

(
exp

(
−β

∑

x

`n(x)
2
)

1Sn−1<a+1=Sn

)

=
∞∑

n1,n2=0

∑

Λ0,Λ∈E:q=1

K−(n1,Λ0)K
↑
+(n2,Λ)

×Eh,Λ0(exp(−βVa)1Ya=n−n1−n21Λ(a)=Λ),

(2.22)
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where the constants are given by

K−(n1,Λ0) := Eh

(
exp

(
−β

∑

x≤0

`(x)2
)

1∑
x≤0 `(x)=1+n11Λ(0)=Λ0

)
,

K
↑
+(n2,Λ) := 1

π1
Eh

(
exp

(
−β

∑

x>a

`τ(a)(x)
2
)

1∑
x>a `τ(a)(x)=n2 | Λ(a) = Λ

)(2.23)

if q = 1 and n2 ∈ N. The latter constant is in fact independent of a since
the underlying random walk is homogeneous and since `τ(a)(x), for x > a,
does not depend on the order of the excursions. For formal reasons, define
K+(n2,Λ) = 0 if q 6= 1 or n2 = 0.

The paths in {Sn−1 > a+ 1 = Sn} are treated in an analogous way, but we
have to introduce the time τ̃(a + 1) := max{n ∈ N: Sn−1 > a + 1 ≥ Sn} of
the last downcrossing of the line between a+ 1 and a+ 2, and this on the set
{
∑r
j,k=1 ηj,k(a+ 1) ≥ 1}. We consider the representation

{Sn−1 > a+ 1 = Sn < Sn+m for every m ∈ N}

= {τ(a) < n = τ̃(a+ 1) = τ(a+ 1)− 1}

=
∞⋃

n1,n2=0

⋃

Λ0,Λ∈E

{∑

x≤0

`(x) = 1+ n1, Λ(0) = Λ0, Ya = n− n1 − n2,

Λ(a) = Λ,
∑

x>a

`τ̃(a+1)(x) = n2, τ(a) < τ(a+ 1)− 1
}

.

(2.24)

With the help of Lemma 2.16, we obtain the formula

Eh

(
exp

(
−β

∑

x

`n(x)
2
)

1Sn−1>a+1=Sn

)

=
∞∑

n1,n2=1

∑

Λ0,Λ∈E
K−(n1,Λ0)K

↓
+(n2,Λ)

×Eh,Λ0(exp(−βVa)1Ya=n−n1−n21Λ(a)=Λ),

(2.25)

where the new constant is given by

K
↓
+(n2,Λ) := 1

π2
Eh

(
exp

(
−β

∑

x>a

`τ̃(a+1)(x)
2
)

1∑
x>a `τ̃(a+1)(x)=n2

× 1τ(a)<τ(a+1)−1 | Λ(a) = Λ

)(2.26)

for n2 ∈ N where π2 := Ph(Sm > 0 for every m ∈ N). For the same reason as
for the constant K↑+, the constant K↓+ does not depend on a. Let K↓+(0,Λ) := 0.
Combining formulas (2.22) and (2.25), we obtain Lemma 2.18 with the con-
stant K identified as

K(n1,n2,Λ0,Λ) =K−(n1,Λ0)
(
K
↑
+ +K↓+

)
(n2,Λ). 2(2.27)
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3. Passing to an ergodic Markov chain. In this section, we shall con-
struct a transformation of the Markov chain introduced in Section 2.1. This
will turn the expectation of e−βVa into a probability with respect to this chain.
The transformed chain will turn out to have strong recurrence properties, and
it will play a key role in the proof of Proposition 2.1. Informally and intu-
itively, this chain describes the path’s best (random) strategy to minimize its
self-intersection number.

Along the way, we shall be able to use some results from König (1994) which
will be presented now. Some general theoretical background of the following
is provided by Seneta (1981), pages 200–207, while the concrete assertions
are proved in Section 3 of König (1994). Keep α ∈ (0, 1) fixed and assume
that h > 0. Unlike König (1994), we will not indicate the dependence of the
following objects on β = − log(1− α)/2 in the notation.

3.1. A transformed Markov chain. Recall (2.11) and (2.14) and introduce
an infinite matrix

Ah, b =
(
Ah, b(Λ,Λ′)

)
Λ,Λ′∈E

:=
(
Qh(Λ,Λ′) exp[−βg(Λ, Λ′)2 + bg(Λ, Λ′)]

)
Λ,Λ′∈E, b ∈ R,

(3.1)

which is nonnegative, irreducible and aperiodic. Define its convergence pa-
rameter by

λh(b) := lim
n→∞

(
An
h, b(Λ,Λ′)

)1/n, b ∈ R,(3.2)

and note that this latter definition does not depend on Λ,Λ′ ∈ E. The function
λh is real-analytic, strictly increasing and strictly log-convex.

The number λh(b) is even an eigenvalue of the matrixAh, b with correspond-
ing positive right and left eigenvectors τrb, τ

l
b ∈ (0,∞)E satisfying 〈τlb,τrb〉 = 1.

Thus, the stochastic matrix

Qh, b :=
(
Ah, b(Λ,Λ′)

λh(b)

τrb(Λ
′)

τrb(Λ)

)

Λ,Λ′∈E
, b ∈ R,(3.3)

is the transition matrix of a positive recurrent Markov chain [which will be
denoted by (Λ(x))x∈N0 , too] on E. We denote the invariant distribution of this
chain by

µb := (τlb(Λ)τrb(Λ))Λ∈E.(3.4)

The distribution of the stationary Markov chain with initial distribution µb

and transition kernel Qh, b is denoted by Pβ, b
h and we write

P
β, b
h,Λ0

:= Pβ, b
h ( · | Λ(0) = Λ0).

We shall write Eβ, b
h,Λ0

for expectation with respect to Pβ, b
h,Λ0

and Eβ, b
h for expec-

tation with respect to Pβ, b
h and so on.
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We intend to multiply (2.19) by enb and to switch from the underlying dis-
tribution Ph to Pβ, b

h . The following lemma formulates the relation between
the free and the transformed Markov chain [recall (2.17)].

Lemma 3.5. For every n,n1,n2,a ∈ N0, b ∈ R and Λ0,Λ ∈ E, we have

enbEh,Λ0

(
e−βVa1Ya=n−n1−n21Λ(a)=Λ

)

= Pβ, b
h,Λ0

(Ya = n− n1 − n2, Λ(a) = Λ)eb(n1+n2)
τrb(Λ0)

τrb(Λ)
λh(b)

a.
(3.6)

Proof. Note that, on the setA = {Ya = n−n1−n2, Λ(0) = Λ0, Λ(a) = Λ},
we have

nb− βVa = b(n1 + n2)− βVa + bYa

= b(n1 + n2)+ log
a∏

x=1

Qh,b(Λ(x− 1),Λ(x))

Qh(Λ(x− 1),Λ(x))

− log
τrb(Λ)

τrb(Λ0)
+ a log(λh(b)).

(3.7)

Now take the exponentials of both sides, multiply them by the indicator on A
and take expectations w.r.t. Ph,Λ0 to arrive at (3.6) [recall (3.3) and (3.1)]. 2

3.2. Properties of the transformed chain. The variance σ2
h,α defined in (1.8)

and some more quantities related to the polymer measure can be completely
characterized in terms of the convergence parameter λh defined in (3.2) and
hence in terms of properties of the transformed Markov chain introduced in the
preceding subsection. We are going to list these connections. Still we assume
that h > 0, suppress β = − log(1 − α)/2 from the notation and write Θh =
Θ(h,α).

Most of the work in König (1994) was spent on analyzing the function

J̃h(θ) := lim
n→∞

1
n

logEh

(
exp

(
−β

∑

x∈Z
`n(x)

2
)

10<S1,...,Sn−1<Sn=bθnc

)
,

θ ∈ (0, r),

(3.8)

where it is to be understood that, in the nearest-neighbor case, the condition
Sn = bθnc should be replaced by Sn ∈ {bθnc, bθnc + 1}. Note that Φ̃h,α =
J̃h − J̃h(Θh) [recall (1.7)].

The function J̃h can be characterized in terms of λh as follows. Recall that
λh is a strictly log-convex function. The inverse function of λh/λ′h,

bh(θ) :=
(
λh
λ′h

)−1

(θ), θ ∈ (0, r),(3.9)

is real-analytic and strictly decreasing. Then we have the following identities
[see Theorem 1.7 in König (1994) and note the typographical error in the first
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line there] for all θ ∈ (0, r):

J̃h(θ) = θ log λh(bh(θ))− bh(θ),(3.10a)

J̃′h(θ) = log λh(bh(θ)),(3.10b)

J̃′′h(θ) = b′h(θ)/θ < 0.(3.10c)

Thus, in particular, J̃h is real-analytic and strictly concave. In König (1994)
it is also proved that J̃′h has a 0 in Θh ∈ (0, r), and this property originally
defined this number. Thus J̃h possesses a strict maximum in Θh.

Formulas (3.10a)–(3.10c), in particular, imply that

b∗h := bh(Θh) = − lim
n→∞

1
n

logEh

(
exp

(
−β

∑

x∈Z
`n(x)

2
))

,(3.11)

and

λh(b
∗
h) = 1 and λ′h(b

∗
h) =

1
Θh

(3.12)

and

σ2
h(θ) := − 1

J̃′′h(θ)
= θ3

(
λ′′h
λh

(bh(θ))−
1
θ2

)
, θ ∈ (0, r).(3.13)

Thus, we have, in particular [recall (1.8)],

σ2
h,α = σ2

h(Θ(h,α)) = Θ3
h

(
λ′′h(b

∗
h)−

1
Θ2
h

)
.(3.14)

We shall write τl = τlb∗
h

and τr = τrb∗
h

in the sequel.
From (3.7) in König (1994) we have

E
β, b
h (g(Λ(0),Λ(1))) = λ′h(b)

λh(b)
, b ∈ R,(3.15)

and, in particular, writing Pβ
h := Pβ, b∗

h

h ,

E
β
h (g(Λ(0),Λ(1))) = 1

Θh

.(3.16)

It should be noted that the objects Qh, Ah, b, λh, bh, τlb, τrb, µb and P
β, b
h

exist for positive-drift parameter h only, while J̃0, Θ0, σ2
0,α and Φ̃0,α are well

defined as well.
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3.3. The boundary pieces. In the next section we shall prove a central limit
theorem for (Ya)a∈N under Pβ, b

h for various b. The following lemma will be
important at the end of that section for proving that exclusively this Gaussian
behavior in fact determines the behavior of the self-repellent walk. We show
that the influence of the self-intersections in −N0 ∪ {Sn,Sn + 1, . . . } is much
smaller than the influence of the self-intersections in {1, . . . ,Sn − 1}. For the
definition of the constant K appearing below, recall Lemma 2.18 and (2.27).

Lemma 3.17. There is a positive number «, not depending on h, such that,
for every h > 0 and θ ∈ (0,Θh],

lim sup
n1,n2→∞

1
n1 + n2

log
∑

Λ0,Λ∈E
K(n1,n2,Λ0,Λ)

τr
bh(θ)

(Λ0)

τr
bh(θ)

(Λ)

< −bh(θ)+ r log λh(bh(θ))− «.

(3.18)

Proof. This proof is a refinement of the proof of Proposition 4.1 in König
(1994). Roughly speaking, the l.h.s. of our asserted inequality is the exponen-
tial rate of the expected self-intersection punishment for paths which stay for
n1 (resp. n2) time units below 0 (resp. above) a, starting and ending approx-
imately at the same site, weighted with the eigenvector term. Our proof will
be in the spirit of estimating the l.h.s. above by J̃h(θ). [Note that, with some
more effort, one could show that J̃h(θ)− « is indeed an upper bound, too.]

We will show only that lim supn→∞(1/n) log
∑

Λ0
K−(n,Λ0)τrbh(θ)(Λ0) is

smaller than the r.h.s. of (3.18) for some appropriate positive « since the proof
for the analogous property of K↓+ and K↑+ is similar. Recall (2.3).

Step 1. There are c,« > 0 and a sequence γn = eo(n) such that, for h > 0,
Λ0 ∈ E and n ∈ N0,

K−(n,Λ0) ≤ γnEh

(
exp

(
−β

∑

x≤0

`n(x)
2
)

1An(Λ0, c,«)

)
,(3.19)

where

An(Λ0, c,«) := Ω ∩
{
Λ(0) = Λ0,

∑

x≤0

`(x) = n, ∃ t∗: S1, . . . ,St∗ ≤ 0,

St∗ = min
t≤τ(0)

St ≤ −cn and Ut∗ ≥
«n

2β

}(3.20)

and

Ut∗ =
∑

x≤0

`t∗(x)(`τ(0)(x)− `t∗(x)).(3.21)

Proof. On the set {
∑
x≤0 `(x) = n, mint≤τ(0)St > −cn}, the random vari-

able exp[−β∑x≤0 `(x)
2] is not larger than e−βn/c whose exponential rate de-

cays to −∞ as c ↓ 0. Thus, for small c > 0, the exponential rate of K−(n,Λ0)
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is not changed if we insert the indicator on {mint≤τ(0)St ≤ −cn} in the expec-
tation on the r.h.s. in the first line of (2.23).

Now cut out a path segment (St1 , . . . ,St2) that satisfies 0 ≤ t1 < t2 ≤ τ(0)
and St1 + r ≥ 0 ≥ St1 , . . . ,St2−1 ≤ 0 < St2 and St∗ = mint≤τ(0)St ≤ −cn for
some t∗ ∈ {t1, . . . , t2}, put it in the beginning of the path and insert contingent
joining steps such that a path in

Bn(Λ0, c) := Ω ∩
{
Λ(0) = Λ0,

∑

x≤0

`(x) = n,

∃ t∗: S1, . . . ,St∗ ≤ 0, St∗ = min
t≤τ(0)

St ≤ −cn
}(3.22)

is obtained. This map changes the variable exp[−β∑x≤0 `(x)
2] by a factor

of maximal size eo(n), and the number of pre-images under the map is also
smaller than eo(n), uniformly in Λ0 ∈ E. So far we have seen that (3.19) is
true with An(Λ0, c,«) replaced by Bn(Λ0, c).

The random variable Ut∗ is equal to the number of intersections the path
segment (S0, . . . ,St∗) has with (St∗ , . . . ,Sτ0). In the proof of Proposition 4.1
in König (1994) between formulas (4.4) and (4.6), it is made precise and it is
proved that Ut∗ behaves linearly in n on Bn(Λ0, c). More precisely, it is shown
there that the exponential rate of

Eh

(
exp

(
−β

∑

x≤0

`(x)2
)

1Bn(Λ0, c)1Ut∗=xn+o(n)

)

is strictly maximal in some positive x. This corresponds to the intuition that,
in order to minimize the self-intersection number of a path which stays alto-
gether n time units in −N0, it is not the best strategy to let the two segments
(S0, . . . ,St∗) and (St∗ , . . . ,Sτ(0)) avoid each other but rather assume they have
some intersections with each other whose number is linear in n.

Thus, the rate ofK−(n,Λ0) is not changed if the indicator on {Ut∗ ≥ «n/2β}
for some small « > 0 [in addition to that onBn(Λ0, c)] is inserted, which proves
Step 1.

Step 2. With An, «, Ut∗ and c as in Step 1 and Va and Ya as in (2.17), we
have

Eh

(
exp

(
−β

∑

x≤0

`(x)2
)

1An(Λ0, c,«)

)

≤ exp(−«n)
pr

rn∑

a=b2cnc
Eh(exp(−βVa)1Ya=n1Λ(0)=Λ∗1Λ(a)=Λ0),

(3.23)

where Λ∗ = ((0), r) and pr is given in (1.3).

Proof. Define a map

Γn: An(Λ0, c,«)→ Ω ∩
rn⋃

a=b2cnc

{
Λ(0) = Λ∗, Λ(a) = Λ0,

a∑

x=1

`(x) = n
}
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by the following procedure: reflect the path segment (S0, . . . ,St∗) [with the
smallest t∗ as in (3.20)] around St∗ , add a single step of size r upwards in the
beginning and lift the whole path by a := −2St∗ + r sites.

The map Γn is injective. Under Γn the path’s probability is multiplied
by the probability for one step upwards, pr [see (1.3)], and is additionally
increased for h > 0 [observe from (1.3) that a horizontal reflection does
not change the probability under P0]. Furthermore, Γn carries the variable
exp[−β∑x≤0 `(x)

2] into exp[−β∑a
x=1 `(x)

2] exp(−2βUt∗) [see (3.21)] which is
not larger than exp(−«n) exp[−β∑a

x=1 `(x)
2]. Now insert the Markov chain

(Λ(x))x∈N0 and use (2.17) to prove Step 2.

Proof of Lemma 3.17. Use Steps 1 and 2 and note that λh(bh(θ)) ≥
λh(bh(Θh)) = 1 and apply (3.6) to b = bh(θ) to obtain

eo(n)+«nebh(θ)n
∑

Λ0∈E
K−(n,Λ0)τ

r
bh(θ)

(Λ0)

≤
∑

Λ0∈E

rn∑

a=b2cnc
ebh(θ)nEh,Λ∗

(
e−βVa1Ya=n1Λ(a)=Λ0

)
τrbh(θ)(Λ0)

≤
∑

a∈N
P

β, bh(θ)
h,Λ∗ (Ya = n)τrbh(θ)(Λ

∗)λh(bh(θ))
rn

≤ rτrbh(θ)(Λ
∗)λh(bh(θ))

rn.

In the last step, we used the fact that Ph(Ya = n = Ya+l) = 0 if l > r which
is a by-product of the proof of Lemma 4.13 below and is due to the simple fact
that the walker must hit at least one of any r subsequent sites. The estimation
above implies our assertion. 2

4. The central limit theorem. Recall that Pβ, b
h is the distribution of a

positive recurrent Markov chain (Λ(x))x on E with transition kernel Qh, b de-
fined by (2.9) and invariant starting distribution µb [recall (3.4)]. This section
completes the proof of Proposition 2.1 for the self-repellent case α ∈ (0, 1). As a
pre-step, we will prove a central limit theorem forYa =

∑a
x=1 g(Λ(x−1),Λ(x))

under Pβ, b
h,Λ0
= P

β, b
h ( · | Λ(0) = Λ0). This is essentially done by applying a

standard central limit theorem for ergodic Markov chains; however, the jus-
tification of this application will require some effort. Roughly speaking, the
main obstacle is to show that the return times possess exponential moments
under Pβ, b

h . Further on, we keep β = − log(1−α)/2 ∈ (0,∞) fixed and assume
the drift parameter h to be positive. Recall (3.2) and (3.9).

Lemma 4.1. Fix θ ∈ (0, r) and Λ0 ∈ E. As a → ∞, the distribution of

(Ya/a− 1/θ)
√
a underPβ, bh(θ)

h,Λ0
tends weakly toward N((λ′′h/λh)(bh(θ))−1/θ2).

Proof. Let T0 := 0 and, recursively, Ti+1 := inf{n > Ti: Λ(n) = Λ0} for
i ∈ N0 denote the subsequent hitting times of Λ0. By a suitable reduction of
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the underlying probability space, we may and will assume that Ti is finite for
every i ∈ N0. Note that (Ti+1−Ti)i∈N0 is an i.i.d. sequence with Eβ, bh(θ)

h,Λ0
(Ti+1−

Ti) = (µbh(θ)(Λ0))−1. The random variables [recall (2.14)]

Ui :=
Ti∑

x=Ti−1+1

g(Λ(x− 1),Λ(x)) = YTi −YTi−1 , i ∈ N,(4.2)

are i.i.d. under Pβ, bh(θ)
h,Λ0

, and they are integrable with

E
β, bh(θ)
h,Λ0

(Ui) =
1

θµbh(θ)(Λ0)
(4.3)

[see Chung (1967), Chapter 1, Theorem 14.5 and (14.16); here we use (3.15),
the stationarity and the fact that the function g(·, ·) is the sum of two functions
of its arguments].

The main difficulty in this proof is to show that the i.i.d. integrable and
centered variables

Zi := Ui −
Ti −Ti−1

θ
, i ∈ N,(4.4)

are square integrable under Pβ, bh(θ)
h,Λ0

and to identify their variance, which we
will do now.

Since Qh, b is, in particular, recurrent for real b in a neighborhood of bh(θ),
we have

1 =
∞∑

n=1

∑

Λ1,...,Λn−1∈E\{Λ0}

n∏

i=1

Ah, b(Λi−1,Λi)

λh(b)
, Λn := Λ0,(4.5)

for those b. We intend to differentiate both sides of this identity two times
with respect to b, to interchange this differentiation with the sum over n and
to evaluate it at b = bh(θ). For this purpose, we will first show that the series
on the r.h.s. of (4.5) converges even uniformly in b in a complex neighborhood
of bh(θ). More exactly, we will show the existence of some η > 0 such that

sup
b∈C: |b−bh(θ)|≤η

lim sup
n→∞

1
n

log
∣∣∣∣

∑

Λ1,...,Λn−1∈E\{Λ0}

n∏

i=1

Ah, b(Λi−1,Λi)

λh(b)

∣∣∣∣ < 0.(4.6)

This assertion implies, in particular, the existence of an exponential moment
of T1 underPβ, b

h,Λ0
, uniformly in b ∈ [bh(θ)− η, bh(θ)+ η]. Recall thatQ3r

h does
not possess any zeros and define ER = {0, . . . ,R}r×r × {1, . . . , r} for R ∈ N.
Choose any η > 0 and observe that

cR := sup
b∈[bh(θ)−η, bh(θ)+η]

max
Λ∈ER

∑

Λ′∈E\{Λ0}

Q3r
h, b(Λ,Λ′)(4.7)

is strictly smaller than 1 for every R ∈ N. Now put

KR := sup
b∈[bh(θ)−η, bh(θ)+η]

sup
x≥R

exp(−βx2 + bx) ↓ 0, R ↑ ∞.(4.8)
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So we have A3r
h, b(Λ,Λ′) ≤ Q3r

h (Λ,Λ′)K3r
0 for every b ∈ [bh(θ)−η, bh(θ)+η] and

Λ,Λ′ ∈ E, and we even have A3r
h, b(Λ,Λ′) ≤ Q3r

h (Λ,Λ′)K3r−1
0 KR if additionally

Λ′ is in E \ ER. The latter statement follows from (2.15) since, for e0 = Λ,
e1, . . . , e3r−1 ∈ E and e3r = Λ′ ∈ E \ER satisfying

∏3r
i=1Qh(ei−1, ei) > 0, there

is an i ∈ {2r, . . . , 3r} such that g(ei−1, ei) ≥ R.
In order to derive (4.6), we first estimate, for complex b with |b−bh(θ)| ≤ η,

writing <b for the real part of b,
∣∣∣∣

∑

Λ1,...,Λn−1∈E\{Λ0}

n∏

i=1

Ah, b(Λi−1,Λi)

λh(b)

∣∣∣∣

≤ |λh(b)|−n
∑

Λ1,...,Λbn/3rc∈E\{Λ0}

(bn/3rc∏

i=1

A3r
h,<b(Λi−1,Λi)

)

×An−bn/3rc3r
h,<b (Λbn/3rc,Λ0)

(4.9)

and split the sum on the r.h.s. into the sum over those Λ1, . . . ,Λbn/3rc ∈ E \
{Λ0} which satisfy #{i: Λi ∈ ER} ≥ n/6r and the sum over the remaining
multi-indices. In the first sum, we replace Ah,<b by λh(<b)Qh,<b on every
occurrence in the product and estimate simply Q

n−bn/3rc3r
h,<b (Λbn/3rc,Λ0) ≤ 1

and, recursively, for i = bn/3rc − 1, bn/3rc − 2, . . . , 1,
∑

Λi+1∈E\{Λ0}

Q3r
h,<b(Λi,Λi+1) ≤ cR(4.10)

if the ith summing index Λi runs over ER \ {Λ0} and simply ≤ 1 if it runs
over E \ {Λ0}. In the second sum, we use the two estimates below (4.8). Sum-
marizing, we obtain the following upper bound for the r.h.s. of (4.9):

|λh(b)|−n
(
λh(<b)ncbn/6rcR +Kn

0K
bn/6rc
R

)
, R ∈ N, |b− bh(θ)| ≤ η.(4.11)

Now choose R large and make η smaller (if necessary) to arrive at (4.6).
According to Vitali’s theorem, the series in (4.5) defines an analytic function

in a complex neighborhood of bh(θ) and may be differentiated termwise in-
finitely many times. Carrying out the first derivative and inserting b = bh(θ),
we get (4.3) back. The second termwise derivation yields at b = bh(θ) the
integrability of Z2

1 and the formula

E
β, bh(θ)
h,Λ0

(Z2
1) =

(λ′′h/λh)(bh(θ))− 1/θ2

µbh(θ)(Λ0)
.(4.12)

Now, since the function g(·, ·) is the sum of two functions of its arguments,
we can apply Theorem 16.1 in Chapter 1 of Chung (1967), which yields the
assertion of this lemma. 2

In Lemma 4.16 below, we will consider the sum of (3.6) over a, and the next
lemma states that, on the r.h.s., we have the sum of Ph-disjoint events.
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Lemma 4.13. For every n ∈ N and any distinct natural numbers a1 and a2

and every Λ ∈ E, we have

Ph(Ya1 = n = Ya2 and Λ(a1) = Λ = Λ(a2)) = 0.(4.14)

Proof. We may assume that m := a2 − a1 is positive, and we write Λ =
((ηj,k)j,k,q). Assume that the assertion is not true. Then we know that the
set

A := {0 = `(a1 + 1) = · · · = `(a2) and Λ(a1) = Λ = Λ(a2)}(4.15)

has positive probability under Ph. If ηj,k > 0 for some j and k, then j must be
larger than m since otherwise an excursion beyond a1 would produce a hit in
{a1+1, . . . ,a2}. So, on the set A, there exists an excursion beyond a1, starting
and ending with a jump over the sites a1 + 1, . . . ,a2 each. This excursion is,
in particular, an excursion beyond a2 with parameters j−m and k+m, so it
follows that ηj−m,k+m > 0 and thus j−m > m. A repetition of these arguments
leads to a contradiction. So we have Λ = ((0),q), and the same arguments as
above lead to a contradiction by considering the possible values of q. 2

Lemma 4.16. For any θ ∈ (0, r), Λ0, Λ ∈ E and c, C ∈ R satisfying c < C

and for every n1, n2 ∈ N0, we have

bθn+C√nc∑

a=bθn+c√nc
P

β, bh(θ)
h,Λ0

(Ya = n− n1 − n2 and Λ(a) = Λ)

→ θµbh(θ)(Λ)N(σ2
h(θ)) ([c,C]) as n→∞,

(4.17)

where σ2
h(θ) is defined in (3.13).

Proof. As will become clear from the course of the proof, it is sufficient to
prove the assertion only for n1 = n2 = 0 and C = +∞, which we shall assume
henceforth.

Define by T0 := 0 and Ti+1 := inf{n > Ti: Λ(n) = Λ} for i ∈ N0 the
subsequent hitting times of Λ. Then the l.h.s. of (4.17) is equal to the Pβ, bh(θ)

h,Λ0
-

probability of the set

{Ybθn+c√nc ≤ n} ∩ {there is a k ∈ N such that YTk = n}.(4.18)

First, we explain why the probability of the first of the two events tends to
N(σ2

h(θ)) ([c,∞)) and the probability of the second to θµbh(θ)(Λ).

1. Substitute kn = bθn + c
√
nc, which means that n = kn(1/θ + o(1)) −√

kn(cθ−3/2 + o(1)) as n → ∞. Now use Lemma 4.1 and recall (3.13) to
see that

lim
n→∞

P
β, bh(θ)
h,Λ0

(Ykn ≤ n) = lim
n→∞

P
β, bh(θ)
h,Λ0

(
Ykn −

kn

θ
≤
√
kncθ

−3/2
)

=N(σ2
h(θ)θ

−3)((−∞,−cθ−3/2]) =N(σ2
h(θ)) ([c,+∞)) .
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2. As we have noted in the beginning of the proof of Lemma 4.1, the vari-
ables YTi+1 − YTi with i ∈ N are i.i.d. under Pβ, bh(θ)

h,Λ0
and have expecta-

tion (θµbh(θ)(Λ))−1. Lemma 4.13 implies that they are positive, Pβ, bh(θ)
h,Λ0

-a.s.,
which, in particular, implies that θµbh(θ)(Λ) ≤ 1. Thus, an application of
the renewal theorem [see Spitzer (1964), Chapter 2, Proposition 3] yields
that the random walk (YTk)k∈N hits the point n with a probability that
tends to θµbh(θ)(Λ) as n→∞.

So our task is to show the asymptotic independence of the two events in
(4.18).

Fix some positive numbers δ and η and abbreviate cn = bθn + c
√
nc and

dn = bθn+ (c− ηθ)
√
nc. Observe first that

lim
n→∞

P
β, bh(θ)
h,Λ0

(
η

2
√
n ≤ Ycn −Ydn ≤ 2η

√
n

)
= 1(4.19)

and choose a natural number R so large that

sup
a∈N

P
β, bh(θ)
h,Λ0

(Λ(a) 6∈ ER) < δ,(4.20)

where ER := {0, . . . ,R}r×r × {1, . . . , r} as in the proof of Lemma 4.1. Then we
have

lim inf
n→∞

P
β, bh(θ)
h,Λ0

(
Ycn ≤ n, ∃ k ∈ N: YTk = n

)

≥ lim inf
n→∞

P
β, bh(θ)
h,Λ0

(
Ydn ≤ n− 2η

√
n, ∃ k ∈ N: YTk = n

)

≥ lim inf
n→∞

∑

Λ̃∈ER

bn−2η
√
nc∑

y=1

P
β, bh(θ)
h,Λ0

(
Ydn = y, Λ(dn) = Λ̃

)

×Pβ, bh(θ)
h, Λ̃

(
∃ k ∈ N: YTk = n− y

)

≥ lim
n→∞

(
P

β, bh(θ)
h,Λ0

(
Ydn < n− 2η

√
n
)
− δ

)
θµbh(θ)(Λ)

=
(
N(σ2

h(θ))
([
c− 3ηθ,∞

))
− δ

)
θµbh(θ)(Λ)

→N(σ2
h(θ))([c,∞))θµbh(θ)(Λ), as η ↓ 0, δ ↓ 0.

The derivation of the analogous upper bound is similar. 2

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1 in the case α ∈ (0, 1) and h > 0. Fix C ∈ R
and abbreviate p = N(σ2

h,α) ((−∞,C]). According to Lemma 3.17 (applied
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to θ = Θh), the series

S̃ :=
∞∑

n1,n2=0

exp[(n1 + n2)b
∗
h]

∑

Λ0,Λ∈E
K(n1,n2,Λ0,Λ)

τr(Λ0)

τr(Λ)
µb∗

h
(Λ)(4.21)

converges. This yields, with the help of formulas (2.19) and (3.6) [recall (3.12)]
and Lemma 4.16 (applied to θ = Θh, too), that

lim
n→∞

exp(nb∗h)Eh

(
exp

(
−β

∑

x∈Z
`n(x)

2
)

10≤Sn≤Θhn+C
√
n

)
= pS̃Θh.

This proves Proposition 2.1 with S = S̃Θhe
β and b = b∗h + β [recall (2.6)]. 2

For this proof of the central limit theorem, the finiteness of the infinite-time
local times and the existence of the random variables Λ(x) defined at the be-
ginning of Section 2 are crucial. It should be mentioned that there is an analog
for this chain in the symmetric nearest-neighbor case which is introduced in
Knight (1963), Corollary 1.1. This chain enables us to carry out the proof in
this case in a completely analogous way as shown above. In the symmetric
case, I did not succeed in finding a promising analog for this chain in the
general case of bounded steps. Our proof in this case works by inserting an
artificial positive drift and using the nice fact that the drift dependence of the
probability of a path of fixed length and fixed endpoint can easily be isolated.

Proof of Proposition 2.1 in the case α ∈ (0, 1) and h = 0. We fix some
positive h (to be determined later). Our special choice of the walker’s step
distribution [see (1.3)] implies the nice relation [recall (3.8)]

J̃h(θ) = J̃0(θ)+ hθ+ log
Z0

Zh

, θ ∈ (0, r).(4.22)

Use (4.22) as well as (1.3) once more to calculate, for every n, a ∈ N0,

exp[−J̃0(Θ0)n]E0

(
exp

(
−β

∑

x∈Z
`n(x)

2
)

1Sn=a+1

)

= exp[−J̃h(Θ0)n]Eh

(
exp

(
−β

∑

x∈Z
`n(x)

2
)

1Sn=a+1

)
(exp(−h))a+1−nΘ0 .

(4.23)

We intend to apply Lemma 4.1 to θ = Θ0 and point out first that one can
deduce from formulas (3.10a) and (3.10b) with the help of (4.22) that

bh(Θ0) = J̃h(Θ0)− hΘ0 and λh(bh(Θ0)) = eh.(4.24)

Thus, an application of (3.6) to θ = Θ0 leads to

e−J̃h(Θ0)nEh,Λ0

(
e−βVa1Ya=n−n1−n21Λ(a)=Λ

)
(e−h)a+1−nΘ0

= ebh(Θ0)(n1+n2)
τr
bh(Θ0)

(Λ0)

τr
bh(Θ0)

(Λ)
P

β, bh(Θ0)
h,Λ0

(
Ya = n− n1 − n2, Λ(a) = Λ

)(4.25)
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for every a,n,n1,n2 ∈ N0 and Λ0, Λ ∈ E. We now choose h smaller than «/r,
where « is the positive number whose existence is asserted in Lemma 3.17.
Since Θ0 ∈ (0,Θh] [see the second equation in (4.24) and recall (3.12) and the
fact that λ ◦ bh is decreasing], the l.h.s. of (3.18) for θ = Θ0 is still strictly
smaller than bh(Θ0). Now an application of that lemma and Lemma 4.16 to
θ = Θ0 yields the central limit theorem for the zero-drift case in the same
manner as in the positive-drift case. 2

5. The self-avoiding case. This section proves Theorem 1.10 in the self-
avoiding case α = 1 with r ≥ 2, which is the nontrivial case. The proof proceeds
in a way which is completely analogous to the preceding three sections and is
even technically easier since the self-avoidance constraint allows us to restrict
our attention to a certain finite subset of the infinite state space E as we will
see soon. Because of the large similarities to the proofs for the self-repellent
(resp., self-avoiding) case, we will give a survey only, explaining the differences
and pointing out the analogies. The reader should keep the fact in mind that

lim
β→∞

exp
(
−β

∑

x

`n(x)
2
)

exp[β(n+ 1)] = 1Xn=0, n ∈ N.(5.1)

Like in the self-repellent case, it is sufficient to prove the following result.

Proposition 5.2. For every h ≥ 0 there are constants b = b(h, 1) ∈ R and
S = S(h, 1) ∈ (0,∞) such that, for all C ∈ R,

lim
n→∞

ebnPh

(
0 =Xn, 0 < Sn < Θ(h, 1)n+C√n

)
= SN(σ2

h, 1)((−∞,C]).(5.3)

Proof. Assume the drift parameter h to be positive and recall Section 2.1.
The starting observation is that, for a self-avoiding path, the Markov chain
(Λ(x))x∈N0 exclusively runs within the finite set

Esa := {Λ0 ∈ E: there are Λ1−r, . . . ,Λ−1,Λ1, . . . ,Λr ∈ E

such that g(Λi−1,Λi) ∈ {0, 1} and Qh(Λi−1,Λi) > 0
for i = 2− r, . . . , r}.

(5.4)

[The superscript “sa” reminds the reader of the self-avoidance in the sequel;
the set Esa is identical to Ẽ in König (1993).] More exactly, we have Λ(x) ∈ Esa

on {Xτ(x+r) = 0} for x ∈ N0 [recall (1.2)]. Due to this fact, the proof which is
given in Sections 2 through 4 applies to the self-avoiding situation when the
infinite state space E is replaced by the finite subset Esa and the random
variable e−β

∑
x `n(x)

2
by 1, roughly speaking. Let us explain some details.

Analogously to Lemma 2.18, one derives the representation

Ph (Xn = 0, Sn = a+ 1)

=
∞∑

n1,n2=0

∑

Λ0,Λ∈Esa

Ksa
− (n1,Λ0)

(
K
↑, sa
+ +K↓, sa

+
)
(n2,Λ)

×Ph,Λ0

(
Ya = n− n1 − n2, Λ(a) = Λ,

g(Λ(x− 1),Λ(x)) ≤ 1 for x = 1, . . . ,a
)
,

(5.5)
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where (as in the preceding sections) Ph,Λ0 is the distribution of a Markov
chain (Λ(x))x∈N0 on E with transition kernel Qh, starting in Λ0, Ya is an
abbreviation for

∑a
x=1 g(Λ(x− 1),Λ(x)) and the constants are given by

Ksa
− (n1,Λ0) := Ph

(∑

x≤0

`(x) = 1+ n1, `(x) ≤ 1 for x ∈ −N0,Λ(0) = Λ0

)
,

K
↑, sa
+ (n2,Λ) := 1

π1
Ph

(∑
x>a

`τ(a)(x) = n2, `τ(a)(x) ≤ 1 for x > a
∣∣∣ Λ(a) = Λ

)(5.6)

if q = 1 ≤ n2 and q = 0 otherwise [we write Λ = ((ηj,k)j,k,q)], and

K
↓, sa
+ (n2,Λ) := 1

π2
Ph

(∑
x>a

`τ̃(a+1)(x) = n2, `τ̃(a+1)(x) ≤ 1 for x > a,

τ(a) < τ(a+ 1)− 1
∣∣∣ Λ(a) = Λ

)(5.7)

for n2 ≥ 1 and n = 0 otherwise. Like K↑+ and K↓+, the latter two constants do
not depend on a.

The main part of König (1993) was devoted to the analysis of the function

J̃h, sa(θ) := lim
n→∞

1
n

logPh (0 =Xn, 0 < S1, . . . ,Sn−1 < Sn = bθnc) ,

θ ∈ (1, r),
(5.8)

and of its maximum point Θsa
h := Θ(h, 1). We obtained a characterization

which is very similar to that of J̃h which is given in Section 3.2. The finite
matrix Asa

h, b = (Asa
h, b(Λ,Λ′))Λ,Λ′∈Esa , for b ∈ R, given by

Asa
h, b(Λ,Λ′) =

{
Qh(Λ,Λ′)ebg(Λ,Λ′), if g(Λ,Λ′) ∈ {0, 1},

0, otherwise,
(5.9)

is nonnegative, aperiodic and irreducible by Lemma 2.6 in König (1993), and
it possesses the Frobenius eigenvalue

λh, sa(b) := lim
n→∞

(
(Asa

h, b)
n(Λ,Λ′)

)1/n.(5.10)

This formula does not depend on Λ,Λ′ ∈ Esa. The function λh, sa is real-analytic
and strictly increasing and strictly log-convex. The inverse function

bh, sa(θ) :=
(
λh, sa

λ′h, sa

)−1

(θ), θ ∈ (1, r),(5.11)

is real-analytic and strictly decreasing.
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Since Asa
h, b has finitely many rows and columns, it clearly possesses right

and left eigenvectors τsa, r
b , τsa, l

b ∈ (0,∞)E
sa

corresponding to the eigenvalue
λh, sa(b) and satisfying 〈τsa, l

b ,τsa, r
b 〉 = 1. The stochastic matrix

Qsa
h, b :=

(
Asa
h, b(Λ,Λ′)

λh, sa(b)

τsa, r
b (Λ′)

τsa, r
b (Λ)

)

Λ,Λ′∈Esa

, b ∈ R,(5.12)

possesses the vector µsa
b := (τsa, l

b (Λ)τsa, r
b (Λ))Λ∈Esa as its invariant distribu-

tion. We denote the distribution of the Markov chain (Λ(x))x∈N0 on Esa with
transition matrix Qsa

h, b and invariant starting measure µsa
b by P∞, b

h and write
P
∞, b
h,Λ0
= P∞, b

h ( · | Λ(0) = Λ0). We now switch in the r.h.s. of (5.5) to the distri-
bution P

∞, b
h and note that a direct calculation which is very similar to (3.7)

yields that exp[nbh, sa(θ)] times the last line of (5.5) is equal to

P
∞, bh, sa(θ)
h,Λ0

(Ya = n− n1 − n2,Λ(a) = Λ)

× exp[bh, sa(θ)(n1 + n2)]
τsa, r
bh, sa(θ)

(Λ0)

τsa, r
bh, sa(θ)

(Λ)
λh, sa(bh, sa(θ))

a
(5.13)

for every a, n, n1, n2 ∈ N0 and Λ0,Λ ∈ Esa, θ ∈ (1, r) and h > 0.
We now terminate our description of the proof ’s course by noting that Sec-

tions 3 and 4 apply almost literally after replacing the objects by the analogous
ones for the self-avoiding case, that is, Pβ, b

h by P∞, b
h , Θh by Θsa

h , K−, K↑+ and
K
↓
+ by K−, sa, K↑+, sa and K

↓
+, sa, bh by bh, sa, Qh, b by Qsa

h, b and so on. Note
also that the condition θ ∈ (0, r) must be replaced by θ ∈ (1, r) on every oc-
currence. For the proof, there are some facts and results from König (1993)
needed which are completely analogous to those cited from König (1994) in
the preceding sections and can be found on analogous places in König (1993).
In fact, many details of the proof are considerably simpler in the self-avoiding
case than in the self-repellent case, which is simply due to the finiteness of the
state space Esa and to the absence of a random variable in the exponential. 2
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