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ON RANDOM RANDOM WALKS1

BY YUVAL ROICHMAN

Harvard University

We estimate the expected mixing time of a random walk on a finite

group supported by a random polylogarithmic set of elements. Following

the spectral approach of Broder and Shamir, we present an alternative

proof of the Dou]Hildebrand estimate and show that it holds almost

surely. Good bounds on diameters follow from these results.

1. Introduction. Let P and Q be probabilities on a finite group G. The
Ž . Ž y1 . Ž .convolution product P*Q is defined as P*Q g s Ý P gh Q h . Thehg G

distribution at time t of a random walk on G determined by P is given by

PU t
. Let U be the uniform distribution on G. A basic problem is the following:

5 U t 5given « ) 0, how large should t be so that P y U - «? For a survey on1

w xthis problem and related topics, see 10 .

Dou and Hildebrand proved the following theorem.

Ž w x.THEOREM 1 Dou and Hildebrand 14 . Let a ) 1 and « ) 0. Let G be a
? a @group of order g and S a random set of k s log g elements in the group. Let

1¡
, x g S,~Q x sŽ . < <SS ¢

0, x f S.

Then

U t5 5E Q y U ª 0 as g ª `1S

for

a
t ) 1 q « log g .Ž . k

a y 1

w xThis result modifies an informal conjecture of Aldous and Diaconis 1 and
Ž .puts boundary conditions on the problem of whether and when the rate of

mixing of random walks on finite groups depends on the algebraic structure
w xof the group and not on the choice of the supporting set 20 .

We suggest an alternative proof to Theorem 1 and to its following symmet-

ric analog.
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THEOREM 2. Let a ) 1 and « ) 0. Let G be a group of order g and S a
? a @random set of k s log g elements in the group. Let

1¡
y1, x g S j S ,y1~ < <P x sŽ . S j SS ¢ y10, x f S j S .

Then
U t5 5E P y U ª 0 as g ª `1S

for
a

t ) 1 q « log g .Ž . k
a y 1

By the concentration of the spectra of the Markov matrix, the above

theorems imply the following result.

THEOREM 3. With the notation of the above theorems, if

a
t ) 1 q « log g ,Ž . k

a y 1

then

1
U t5 5Pr lim P y U / 0 s o ,1 mž / ž /ggª`

where P s P or Q and m ) 1 is constant.S S

Ž . Ž .The undirected directed Cayley graph X G, S of a group G with respect

to the set S of elements in the group is a graph whose set of vertices is G and
Ž . �Ž . <whose set of edges is the set of all unordered ordered pairs h, s h h g G,

4 Ž .s g S . Consider the random walk of X G, S in which every step consists of

moving with probability 1rk along one of the k edges coming out of the

vertex.

Theorem 3 is equivalent to the following result.

THEOREM 3
X
. Let a ) 1 and « ) 0. Given a group G of order g and a

? a @random set S of log g elements in G, the mixing time of a random walk on
Ž . Ž .the undirected or directed Cayley graph X G, S is not more than

a
1 q « log g ,Ž . d

a y 1

Ž m. Ž .with probability 1 y o 1rg , where d is the degree or the outdegree of the

graph.

In the last section we show that this result implies good bounds on the

diameters of these graphs.

It should be pointed out that, considering all finite groups, the above
w x w xtheorems are best possible. See 17 and 23 . Furthermore, diameter argu-
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ment show that Abelian groups and some related groups have a cutoff

phenomenon around

a
1 q « log gŽ . k

a y 1

? a @ w xfor k s log g and a ) 1 14 . It is worth mentioning that similar argu-
w xments show that these groups have extremal spectral properties 5 .

w xOur proofs modify and generalize the spectral analysis done in 5 . We
w x w xfollow the approach of Broder and Shamir 8 and Friedman 15 , and use

w x w xbasic lemmas from 11 and 12 .

Ž w x.2. Proof of Theorem 2. It is well known see, e.g., 11 that, for any

finite group G and a symmetric probability P on G,

5 U t 5 2 5 U t 5 2 U 2 tP y U F g ? P y U s g ? P e y 1,Ž .1 2

where g is the order of the group G and e is the identity element. Hence,

2 2U t U t U 2 t5 5 5 51 E P y U F E P y U F g ? E P e y 1.Ž . Ž .1 1Ž .
It suffices to show that, under the conditions of Theorem 2,

U 2 tlim gE P e y 1 s 0.Ž .S
gª`

w xHere we simplify the estimate of 5 . This allows us to handle the nonsym-

metric case in the next section.

Consider a dynamic process for choosing the random set S and the random

walk on G.

Ž . Ža Choose in the free monoid M generated by k distinct letters and2 k

.their inverses a random word W of length 2 t.
Ž .b Assign to each letter an element of the group G at random.

This process is equivalent to one in which a random set of order k is

chosen first and a random walk of length 2 t on G determined by P is chosenS

afterward.

Ž w xNote that we do not restrict the word W in the free group as done in 5 ,
w x w x.8 and 15 .

w U 2 tŽ .xIn order to obtain an upper bound for E P e , we estimate the proba-S

bilities of the following events:

A: There is no letter which appears exactly once in the random word W
Ž y1 .we consider a and a as two appearances of the same letter .

B: There is a letter which appears exactly once in W, and, after the

assignment of the chosen elements in the group G to the corresponding

letters, the word is reduced to unity.

Clearly,

U 2 t2 E P e F Pr A q Pr B .Ž . Ž . Ž . Ž .
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If the word W satisfies the conditions of A, then the number of distinct

letters that appear in W is at most t. Expose the letters of W in the following

order. First, expose a maximal subset of distinct letters in the word. Second,

expose the others. The probability that each letter of the latter set is one

which has appeared in the first subset is at most 2 trk. The number of

possibilities to place the first subset is at most 22 t. Hence,

t t2 t 8t
2 t3 Pr A F 2 s .Ž . Ž . ž / ž /k k

If W satisfies the conditions of B, then there exists a letter t which

appears exactly once in W. We expose the assignments of all the letters
Ž .except that of t . Denote by x t the assignment of t . The event whose

Ž .probability we wish to estimate is now the event gx t h s 1, where g, h are
Ž .known elements in G. The probability that x t solves this equation is at

most

1 1 t
s q O .

2ž /g y 2 t g g

Hence,

1 t
4 Pr B F q O .Ž . Ž . 2ž /g g

Ž . Ž . Ž . Ž . Ž .Substituting 3 and 4 in 2 , and 2 in 1 , we obtain

2U t5 5E P y U 1Ž .
U 2 tF g ? E P e y 1 F g Pr A q Pr B y 1Ž . Ž . Ž .Ž .

5Ž .
t t8t 1 t 8t t

F g q q O y 1 s g q O .
2ž / ž / ž /ž /ž /k g k gg

? a @Set k s log g . For

a
t s 1 q « log gŽ . k

a y 1

Ž .this upper bound tends to 0 when g ª `. Equation 10 below shows that the
Ž .upper bound of 1 decreases monotonically with t. This completes the proof.

I

3. Proof of Theorem 1. Let M be the Markov matrixQS

Q yy1 x ,� 4Ž . x , ygGS

U � 4 gy1let M be its adjoint matrix and let l be the eigenvalues of M ,Q i is0 QS S

where l s 1.0
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Ž w x .Classical inequalities see, e.g., 18 , page 190 give

gy1
t t2 t U Ut< <l F Tr M M y 1 F Tr M M y 1Ž . Ž .Ý ž /i Q Q Q QS S S S

is1

tU
y1s g ? Q *Q e y 1.Ž . Ž .S S

ŽLet w be a word of length 2 t in the free monoid M generated by k2 k

.generators and their inverses satisfying the following condition: the letters

in the even places are chosen randomly from the k generators and the letters

in the odd places are chosen randomly from their inverses. Let A and B be

events defined as in the previous proof. Then

tU
y1E Q *Q e F Pr A q Pr B .Ž . Ž . Ž . Ž .S S

Ž . Ž .The estimates 3 and 4 hold in this case. This shows that the upper
Ž .bound of 5 holds.

< <In particular, l F 1 for every i ) 0 with probability tending to 1 wheni

g ª `. Hence, the stationary distribution is the unique normalized eigenvec-

tor whose corresponding eigenvalue is 1. We conclude that the stationary

distribution is the uniform distribution U almost surely.

Ž . ULet M be a Markov matrix not necessarily symmetric , let M be its

adjoint matrix and let m G m ??? G m be the eigenvalues of MUM. Let v0 1 gy1 g

be the characteristic vector of the state g .

w xDiaconis and Saloff-Coste 12 , Lemma 2.6, attribute to Fill the following

estimate:

gy1
2t 2 t5 56 M v y L F m ,Ž . Ý Ý2g i

g is1

where the sum in the left-hand side runs over all possible states and L is the

stationary distribution.

In our case the stationary distribution is U. The Markov matrix M mayQS

Ž < <. w xbe considered as the element 1r S Ý s in the group algebra C G , v ass g S g

Ž .g and U as 1rg Ý h. The action of the group elements preserves thehg G

norm in the group algebra. Hence, for every g g G,

t
1 1

t5 5M v y U s s ? g y hÝ Ý2Q gS ž /< <S gsgS hgG 2

t
1 1

y1s s ? g y h ? gÝ Ýž /< <ž /S gsgS hgG 27Ž .

t
1 1

s s y hÝ Ýž /< <S gsgS hgG 2

5 t 5 5 U t 5s M v y U s Q y U .2 2Q e SS
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On the other hand,

² U : 5 5 2 5 5 2
8 m s max M Mv, v s max Mv G Mu s 1,Ž . 2 20

5 5 5 5v s1 v s12 2

Ž .Ž .'where u s 1r g 1, . . . , 1 .

Ž . Ž . Ž .Combining 6 , 7 and 8 , we obtain

gy1
t2 2U t U t U2 t5 5 5 59 Q y U F g Q y U F m F Tr M M y 1.Ž . Ž .Ý1 2S S i Q Q

is1

The first inequality follows from Cauchy and Schwarz.

It was already shown that the right-hand side is less than or equal to the
Ž .right-hand side of 5 . We conclude that the rate of convergence is not more

than desired. I

4. Concentration. In this section we prove the symmetric case of Theo-

rem 3.

� Ž y1 .4Let M be the Markov matrix P y x and 1 s l ) l G ??? GP S x, y g G 0 1S

w x w xg G y1 the eigenvalues of M . It is known from 11 and 20 thatgy1 PS

gy1
U 2 t 2 t 2 t10 g ? P e y 1 s Tr M y 1 s l .Ž . Ž . ÝS P iS

1

w xIn the proof of Lemma 2 in 5 it is shown that, for every fixed j,

< < y1r2 211 Pr l y El G 2ck F 2 exp yc r2 .Ž . Ž .Ž .j j

w xSee also 8 .

From now on we omit all floor signs since they are not crucial. Set

k s log a g and c s 2k Ž1r aqd .r2, where d ) 0. Let

b s 2cky1r2 s 4k Žy1q1r aqd .r2 .

Then, for every j and every fixed m ) 1,

2c
1r aqd< < w xPr l y El G b F 2 exp y s 2 exp y2kŽ .j j

2

1
1qads 2 exp y2 log g s o ,Ž . mq 1ž /g

Hence,

1
< <Pr ' j, l y El G b s o .Ž .j j mž /g

Ž m.So, with probability 1 y o 1rg ,

2 t 2 t 2 t2 t < < < < < <l F El q b F El q b q El q b .Ž . Ž . Ž .Ý Ý Ý Ýi i i i

i/0 i/0 < < < <i/0 and El Gb El -bi i
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Set

« a y 1
d s ? .

2 1 q « aŽ .

Recall that a ) 1 and « ) 0. Then, for k s log a g,

a
t G 1 q « log gŽ . k

a y 1

and sufficiently large g,

2 t2 t 2 t Žy1q1r aqd .r2< <El q b F g 2b s g 8kŽ . Ž .Ž .Ý i

< <El -bi

Ž .Ž Ž ..2 1q« ar ay1 log gkŽy1q1r aqd .r2 oŽ1.y« r2F g 8k s g .Ž .

This upper bound tends to 0 when g ª `.

On the other hand,

2 t 2 t 2 tt< < < <El q b F 2 El s 4 ElŽ .Ž . Ž .Ý Ý Ýi i i

< < i/0 i/0i/0 and El Gbi

2 t 2 tt tF 4 E l s 4 E l .Ž . Ž .Ý Ýi i

i/0 i/0

Ž .It follows from 10 and the proof of Theorem 2 that

t8t t
2 t U 2 tt t t4 E l s 4 g ? P e y 1 F 4 g q O .Ž . Ž .Ž .Ý i ž / ž /ž /k gi/0

The expression on the right-hand side tends to 0 for k s log a g, a ) 1,

a
t s 1 q « log gŽ . k

a y 1

< < Žand g ª `. Note that, for i / 0, El - 1 y b a stronger result is proved ini

w x. Ž < < .2 t5 . So, the sum Ý El q b decreases with t. Theorem 3 isi/ 0 and < El < G b ii

done for the symmetric probability P . IS

w xFollowing the proof of Lemma 2 in 5 , it is easy to verify that an analog of
Ž . U11 holds for the eigenvalues of M M . Slight modifications of the aboveQ QS S

Ž .proof together with 8 complete the proof of the nonsymmetric case of

Theorem 3.

5. Applications to diameters. In this section we show that the above

estimates imply good bounds on diameters of random directed Cayley graphs.

w x w x w x w xFor other works on diameters of such graphs, see 3 , 5 , 6 and 16 . For a
w xgeneral survey on Cayley graphs with small diameters, see 7 .

Ž .LEMMA 5.1. Let G be a finite group, S a set of generators and X G, S the

corresponding directed Cayley graph. Let Q be a probability supported on SS
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and let U be the uniform distribution on G. Let T be the minimal positive

integer so that, if T F t, then

5 U t 5Q y U - 1.1S

Then

diameter X G , S F 2T .Ž .Ž .

PROOF. The condition implies that the measure of the support of QUT isS

more than half. Namely,

< <G
UT<a x g G Q x ) 0 ) .Ž .� 4S

2

So, the ball of radius T around the identity contains more than half of the

vertices. By the vertex transitivity of the Cayley graph, this holds for every

vertex. So, the intersection of any two balls of radius T is nonempty. I

The following lemma is a natural generalization to graphs which are not

vertex transitive.

LEMMA 5.2. Let X be a finite k regular graph and let U be the uniform

distribution on this graph. Let x be a vertex in this graph and let P t be thex

distribution at time t of a random walk beginning at x. Let T be the minimal
5 t 5positive integer so that, if T F t, then, for every vertex x, P y U - 1. Then1x

diameter X F 2T .Ž .

In the nonvertex transitive case it is easier to bound the mean of the

mixing times over all vertices than to bound the maximal mixing time. See
w x Ž .13 , 6.3 . The following lemma bounds the diameter in terms of the minimal

time over the vertices.

LEMMA 5.3. With the notation of the previous lemma, let n be the order of

the graph X and let T be the minimal positive integer so that there exists a0

5 T0 5vertex x with P y U - 1rn. Then1x

diameter X F 2T .Ž . 0

PROOF. The condition implies that the supporting set of PT0 contains allx

vertices of X. I

w x w xLemma 5.2 implies the following upper bound of Chung 9 . See also 4 .

w x w x Ž . w x Ž .For a slightly better bound, see 21 , 22 , 3.2.6 , and 19 , 7.3.11 .
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COROLLARY 5.4. Let X be an undirected k regular graph of order n and let

k s l G l G ??? G l be the eigenvalues of its adjacency matrix A . Let0 1 ny1 X

� < < < 4m s max l , l . Then1 1 ny1

log n y 1Ž .
diameter X F .Ž .

log krmŽ .1

2Ž .PROOF. Let v be the characteristic vector of the vertex x in L X . Letx

Ž .M be the Markov matrix of the random walk on X. Clearly, M s 1rk A .X X X

So, m rk bounds the absolute value of all nontrivial eigenvalues of M .1 X

Hence,
2 tm12 2 2t t t5 5 5 5 5 5P y U F n P y U s n M v y U F n y 1 .Ž .1 2 2x x X x ž /k

w xThe last inequality is easy. See, for instance, 13 , Lemma 6.1.

Ž .Ž .2TLet T be the minimal positive integer so that n y 1 m rk - 1. Lemma1

Ž .5.2 implies that diameter X F 2T. This completes the proof. I

Theorem 3
X

together with Lemma 5.1 gives the following result.

COROLLARY 5.5. Let a ) 1 and « ) 0. Given a group G of order g and a
? a @random set S of d s log g elements in the group, the diameter of the
Ž .directed Cayley graph X G, S is not more than

2 a
1 q « log gŽ . d

a y 1
almost surely.

This is better than the estimate obtained by the combinatorial methods of
w x w x3 . Alon 2 suggested the following improvement combining both methods.

THEOREM 5.6. Let a ) 1 and « ) 0. Given a group G of order g and a
? a @random set S of d s log g elements in the group, the diameter of the
Ž .directed Cayley graph X G, S is not more than

a
1 q « log gŽ . d

a y 1
almost surely.

PROOF. Let us choose the random set S in two steps. First, choose

d y 6 log log g random elements; call this set S . Second, choose another set1

of 6 log log g elements and call this set S . Let S be the union of S and S .2 1 2

Let S t be the set of all products of length less than or equal to t of1

elements S . By Theorem 3, if1

a
1 q « log gŽ . d

a y 1

5 U t 5then Q y U - 1re with probability tending to 1 when g ª `. This1S1
t Ž .implies that the size of S is at least 1 y 1r2 e g.1
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Now we already know the elements in S t and we can choose the elements1

of S one by one. It thus suffices to prove the following.2

Ž .Let G be a group of size g, let B be a set of at least 1 y 1r2 e g elements0

of G and let x , . . . , x , r s 6 log log g, be random elements of G. Then1 r

almost surely each element of G is of the form b ? x «1 ??? x « r, where b g B1 r 0

and each « is either 0 or 1.i

Since the 6 log log g addition is negligible with respect to log g, thed

required result follows.

w xThis can be proved in a way similar to the proof in 3 . Let x be a random

element in G. Simple enumeration arguments verify the following: for every
Ž . Ž 2 .subset B of G or order 1 y a g, the expected order of xB j B is 1 y a g.

< <On the other hand, for every x g G, xB j B F g. We obtain, with probabil-
1ity greater than or equal to ,2

< <xB j B
2G 1 y 2a .

g

Let x , . . . , x be a random sequence of elements of G. Define the sets B ,1 r i

0 F i F r, by induction: B s S t and B s x B j B .0 1 iq1 iq1 i i

Call x a success ifi

2
< < < <B G R Biq1 i

G 1 y 2 .ž /g g

1For every 1 F i F r the probability that x is a success is not less than . Byi 2

standard estimates on the binomial distribution, the number of successes in

the sequence is more than rr3 with probability tending to 1 when r ª `.

Therefore,
2 rr3

< <B 1r
G 1 y 2 ?ž /g 2 e

almost surely. Set r s 6 log log g. Then the right-hand side is larger than

1 y 1rg. So B s G and we are done. Ir

Theorem 5.6 is essentially tight for Abelian groups, as the next proposition

shows.

PROPOSITION 5.7. Let G be an Abelian group of order g, let S be a set of
? a @ Ž . Žorder d s log g in G and let X G, S be the corresponding undirected or

. Ž .directed Cayley graph. Then the diameter of the Cayley graph X G, S is not

less than
a

log g .d
a y 1

PROOF. Every element in G is a product of the form sa1 ? sa2 ??? sad, where1 2 d

� 4 d < <S s s , . . . , s , each a is an integer and Ý a F D. It is easy to see that1 d i is1 i

D q ddthe total number of products of this form is not more than 2 . There-ž /d

D q ddfore, g F 2 . This implies the proposition. Iž /d
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