
The Annals of Probability
1996, Vol. 24, No. 2, 987]1000

ENUMERATION AND RANDOM RANDOM WALKS
ON FINITE GROUPS

BY CARL DOU AND MARTIN HILDEBRAND

J. P. Morgan & Co. and University of Texas at Austin

This paper examines random walks on a finite group G and finds

upper bounds on how long it takes typical random walks supported on
Ž < < .alog G elements to get close to uniformly distributed on G. For certain

groups, a cutoff phenomenon is shown to exist for these typical random

walks. A variation of the upper bound lemma of Diaconis and Shahsha-

hani and some counting arguments related to a group equation are used to

get the upper bound. A further example which uses this variation is

discussed.

1. Introduction. Random walks on finite groups have received consider-
w xable study recently. For an overview of such walks, see Diaconis 5 . One

question which arises is how long does it take for such walks to become close

to uniformly distributed on the finite group. One technique used for studying

such walks involves studying a family of such walks; such a family can be

formed by looking at all walks where the number of elements obtainable in

one step from the identity is a given function of the order of the group.

Sometimes bounds on the average distance of how far the random walk is at

a given time can be found. Such techniques have been used by Greenhalgh
w x w x w x9 , Hildebrand 12 and Wilson 18 to obtain results on specific groups.

In this paper, we shall use these techniques to obtain results which are

valid on arbitrary groups. The only information which we use and which

varies between groups is the order of the group.

Let G be an arbitrary finite group of order g with identity element labeled

1. Define a probability measure Q on G. Let Z , . . . , Z be i.i.d. random1 m

variables on G with distribution Q and let X s 1, X s Z X , if n G 1.0 n n ny1
m Ž mLet Q* be the distribution of X . Note that Q* has the same meaning asm

w x .in Diaconis 5 .

Let P be a probability distribution on G and let U be the uniform

distribution on G. We shall define the variation distance between P and U by

15 5 < <P y U [ P s y 1rgŽ . Ž .Ý2

sgG

< <s max P A y U A .Ž . Ž .
A:G

We shall show the following theorem.
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?Ž .a@THEOREM 1. Let k s log g , where a ) 1 is constant. Let « ) 0 be
Žgiven. Suppose S is a random k-subset of G chosen uniformly from all subsets

.of G with k elements and let

1rk , if s g S,
Q s [Ž . ½ 0, otherwise.

Suppose
a log g

m ) 1 q « .Ž .
a y 1 log k

w 5 m 5xThen E Q* y U ª 0 as g ª `.

In other words, for a typical random walk which is supported on k points,

after m steps the walk’s position will be close to uniformly distributed on G.

Theorem 1 is a modification of the following informal conjecture of Aldous
w xand Diaconis 2 .

CONJECTURE. Let G be an arbitrary finite group of order g and let Q be a

probability measure on G. Suppose Q is a random k-subset. If both k and
Ž .Ž .log grlog k are large, then if m ) log grlog k 1 q « , with high probability

5 m 5Q* y U f 0.

Ž .Ž .Note that if m - log grlog k 1 y « , then on the mth step of the random
1y« 5 m 5walk, there are no more than g elements reached. Thus Q* y U G

Ž 1y« .1 y g rg ª 1 as g ª `.

This conjecture needs to be modified for two reasons. First, k must grow

rather substantially, namely, k G log grlog 2. Otherwise if G s Zd, then2

k - d and a random walk supported on k elements will be confined to at most
?Ž .a@half of G. Furthermore, even in the case when k s log g , where a ) 1 is

constant, more steps are needed on all Abelian and certain non-Abelian
w xgroups. Hildebrand 12 showed this fact on Abelian groups; this fact will be

proved here for certain non-Abelian groups.

The proof of Theorem 1 uses a modification of the upper bound lemma of

Diaconis and Shahshahani, uses counting arguments to get bounds on the

number of solutions of a group equation and then uses some bounds on

Stirling numbers of the second kind. Similar techniques can be used in

proving results when k is larger. We shall describe what happens when

G s Z , k s n1r2q« and m s 2.n

Questions related to Theorem 1 involve random walks of Cayley graphs of

such groups and the question whether such graphs are good expanders. See,
w x w x w x w x w xfor example, 3 , 4 , 8 , 15 and 16 . Random walks on Cayley graphs are

essentially random walks on finite groups, where the set S on which the

random walk is based contains the inverses of the elements of S. By a
w xmodification of the argument in 4 , one can show a result analogous to

Ž .Theorem 1. See the article following the current article for details. In

Theorem 1, we do not assume that the set S contains the inverses of the

elements of S.
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2. Upper bound lemma. The upper bound lemma of Diaconis and

Shahshahani uses irreducible representations of finite groups. For a descrip-
w xtion of the representation theory of finite groups, see Serre 17 or Chapter 2

w xof Diaconis 5 . This lemma is the following.

LEMMA 1. Let Q be a probability on a finite group G and let U be the

uniform distribution. Then

*
2 1 ˆ ˆ5 5Q y U F d Tr Q r Q r * ,Ž . Ž .Ž .Ý r4

r

where ) of a matrix denotes its conjugate transpose and ÝU denotes the sumr

Ž .over all nonequivalent nontrivial irreducible representations r of G.

w xThis lemma is proved in Diaconis 5 .

This lemma is very useful in cases where the probability is constant on
w xconjugacy classes of a non-Abelian group; see, for example, Hildebrand 10 or

w xChapter 3D of Diaconis 5 . This lemma is also useful in certain random
w xprocesses with a recurrence relation; see Hildebrand 11 , for example. While

we have neither property here, we still can adapt this upper bound lemma to

a useful form:

LEMMA 2. Let Q be a probabiltiy on G. Then for any positive integer m,

5 m 5 2
4 Q* y U F gQ x ??? Q x y Q x ??? Q x ,Ž . Ž . Ž . Ž .Ý Ý1 2 m 1 2 m

2mV G

2 m Ž .where G is the set of all 2m-tuples x , . . . , x with x g G and V is a1 2 m i

subset of G2 m consisting of all 2m-tuples such that x x ??? x s x x1 2 m mq1 mq2

??? x .2 m

PROOF. Let r , . . . , r be all the nonequivalent irreducible representa-1 h

tions of G with characters x , . . . , x and degrees d , . . . , d correspondingly.1 h 1 h

We may assume that the representations are all unitary. We also may
Ž .assume that r is the trivial representation. Hence d s 1 and x s s 1 forh h h

ˆŽ . Ž . Ž .all s g G. Note that Q r s Ý Q x r x . Since r is a unitary represen-i x g G i i

Ž . Ž Ž ..y1 Ž y1 .tation, we have r x * s r x s r x for all x g G. Hencei i i

m
Q̂ r s Q x ??? Q x r x ??? x ,Ž . Ž . Ž . Ž .Ýi 1 m i 1 m

x , . . . , x1 m

m y1
Q̂ r * s Q x ??? Q x r x ??? x .Ž . Ž . Ž . Ž .Ž . Ž .Ýi mq1 2 m i mq1 2 m

x , . . . , xmq1 2 m

Thus

m mˆ ˆd Tr Q r Q r * s Q x ??? Q x d x s ,Ž . Ž . Ž . Ž . Ž .Ž . Ýž /i i i 1 2 m i i
2mG
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Ž .y1where s s x ??? x x ??? x . Thus four times the right side of Lemma1 m mq1 2 m

1 is

hy1 hy1
m mˆ ˆd Tr Q r Q r * s Q x ??? Q x d x s .Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý Ýž /i i i 1 2 m i i

2mis1 is1G

Ž .Note that d x s s 1, for all s g G, whereash h

h
g , if s s 1,

d x s sŽ .Ý i i ½ 0, otherwise.is1

Thus we get

hy1
m mˆ ˆd Tr Q r Q r * s Q x ??? Q x gŽ . Ž . Ž . Ž .Ž .Ý Ýž /i i i 1 2 m

is1 V

y Q x ??? Q xŽ . Ž .Ý 1 2 m
2mG

and our proof is complete. I

w xAn alternate proof of Lemma 2 has been found by Diaconis 6 .

In addition to the proofs presented in this paper, Lemma 2 is useful in

proving some upper bounds involving random walks supported on a random

subset of certain Abelian groups, where the size of the support does not
w xdepend on the size of these groups. This use appears in Dou 7 .

3. Counting related to the group equation. In this section, we inves-

tigate solutions to the group equation

3.1 x ??? x s x ??? x ,Ž . 1 m mq1 2 m

< < 2 my1which was used in defining V. Obviously, V s g . We shall make use of

the size of different subsets of V. These subsets will consist of the number of
Ž . � 4solutions to 3.1 such that x , . . . , x consists of i distinct elements for1 2 m

i s 1, . . . , 2m.

We shall use the following definitions.

Ž . 2 mDEFINITION. A 2m-tuple n s x , . . . , x g G is said to be of size i if1 2 m

� 4the cardinality of X s x , . . . , x is i.1 2 m

� 4DEFINITION. An i-partition of the set 1, 2, . . . , 2m is a set of i disjoint
� 4subsets t s D , . . . , D such that their union is the whole set.1 i

DEFINITION. An i-partition of the number 2m is an i-tuple of integers
Ž .p s p , . . . , p such that1 i

i

p G p G ??? G p G 1 and p s 2m.Ý1 2 i j

js1
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Notice, first of all, that an i-partition of the set corresponds to an i-parti-

tion of the number 2m, namely, the i-tuple of the decreasingly ordered

cardinalities of the subsets in the partition of the set. Second, each 2m-tuple

in G2 m of size i gives rise to an i-partition of 2m in a natural way: For
� 41 F j F i, let D ; 1, 2, . . . , 2m be a maximal subset of indices for whichj

the corresponding coordinates are the same. Then the set of those D ’s isj

� 4an i-partition of 1, 2, . . . , 2m , and this i-partition is called the type of
< < < <the 2m-tuple. Suppose D G ??? G D . Then the corresponding p s1 i

Ž < < < <.D , . . . , D is an i-partition of 2m.1 i

Ž . 8EXAMPLE. Let n s 0, 1, 5, 2, 2, 7, 5, 5 g Z , where Z is all integers10 10

�� 4 � 4 � 4 � 4 � 44modulo 10. Its type is t s 3, 7, 8 , 4, 5 , 1 , 2 , 6 and the corresponding
Ž .5-partition of the number 8 is p s 3, 2, 1, 1, 1 .

Now V can be classified and therefore counted according to the types of the
� 42m-tuples. Let t s D , . . . , D be a type of an i-partition p of 2m. Write1 i

Ž . ŽN t as the number of 2m-tuples in V of type t . The notation may seemp

redundant since p is uniquely determined by t . However, this notation will
.be helpful in a triple sum to appear later. A moment’s thought gives the

following observation:

Ž . Ž .LEMMA 3. N t is the number of i-tuples y , . . . , y of distinct coordi-p 1 i

Ž .nates that are solutions to the induced equation obtained from 3.1 by

substituting y for x if l g D .j l j

The following example should clarify Lemma 3.

�� 4 � 4 � 4 � 4 � 4 � 44 Ž .EXAMPLE. Take t s 1, 2, 7 , 3, 4 , 5, 8 , 6 , 9 , 10 , p s 3, 2, 2, 1, 1, 1
Ž . Ž 4and m s 5. Then N t is the number of 6-tuples y , y , y , y , y , y withp 1 2 3 4 5 6

distinct coordinates satisfying the equation

y2 y2 y s y y y y y .1 2 3 4 1 3 5 6

The following theorem provides motivation for the above notation.

THEOREM 2. Let G s Z . Let S be a random k-subset, where k is ann

Ž .integer which may depend on n. Let Q s s 1rk if s g G. Then

1r2'3 n
25 5E Q* y U F .

2ž /2 k

Note that if k s n1r2q« with « ) 0, Theorem 2 implies typical random

walks on Z supported on k points take two steps to get close to uniformlyn

distributed.

PROOF. By taking expectations of both sides of Lemma 2, we have
225 54E Q* y U F nEQ x y EQ x ,Ž . Ž .Ý Ý

4x qx sx qx xgZ1 2 3 4 n

Ž . Ž . Ž . Ž . Ž . Ž .where x s x , x , x , x and Q x s Q x Q x Q x Q x .1 2 3 4 1 2 3 4
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� 4 < < Ž .Let X s x , x , x , x and i s X . It can be shown that EQ x depends1 2 3 4

only on i and that

y1 y11 1n n y i n
EQ x s s .Ž . Ý 4 4ž / ž / ž /k k y i kk kX;T

< <T sk

Thus

y1 41 n n y i22 i i5 54E Q* y U F nN y M ,Ž .Ý 4 44 ž / ž /k k y ik is1

i < <where M is the number of solutions of x q x s x q x with X s i and4 1 2 3 4
i < <M is the number of 4-tuples with X s i.4

4 Ž .Ž .Ž . 3 ŽIt can easily be shown that M s n n y 1 n y 2 n y 3 , M s 6n n y4 4

.Ž . 2 Ž . 11 n y 2 , M s 7n n y 1 and M s n.4 4

To find N i, we need to examine the individual types.4

�� 44If i s 1, there is one i-partition of 4 and one type t s 1, 2, 3, 4 . The

induced equation is y q y s y q y . This holds regardless of the value for1 1 1 1

Ž .y . So here N t s n.1 p

Ž .If i s 2, there are two partitions of the number 4. If p s 3, 1 , there are
�� 4 � 44four types. For instance, t may be 1, 2, 3 , 4 . The induced equation is

y q y s y q y , and hence y s y . We assume y / y , and so there are1 1 1 2 1 2 1 2

Ž . Ž .no solutions to 3.1 here. Hence N t s 0. The other types for this partitionp

Ž .of 4 are similar. The other partition of 4 is p s 2, 2 . This partition has three
�� 4 � 44types. If t s 1, 2 , 3, 4 , then the induced equation is y q y s y q y1 1 2 2

with y / y . If n is odd, there are no solutions, but if n is even, there are n1 2

Ž . Ž .solutions. For each value y , let y s y q nr2 mod n . Let b s N t for1 2 1 p

�� 4 � 44this type t . If t s 1, 3 , 2, 4 , the induced equation is y q y s y q y and1 2 1 2

Ž . Ž .there are n n y 1 solutions here. There are also n n y 1 solutions to the

equation induced by the other type.
3 Ž Ž . . 4Via similar reasoning, one can show that N s 2 n n y 1 y b and N s4 4

Ž .Ž . Ž .n n y 1 n y 4 q n y 1 n q b.

The theorem follows by elementary algebra, which we omit, and the

Schwarz inequality. I

Ž .Although getting precise expressions for the N t ’s can be very difficult, inp

general, we can find some useful information about their asymptotic behav-

ior. This information is in the following lemma.

Ž .LEMMA 4. Let p be an i-partition of 2m and t a type of p . Let N t be asp

before. Then the following inequalities hold:

w x¡g g , if 1 F i F m ,i

~ i y 1 !Ž .< <w xgN t y g FŽ . ip w xg g , if m F i F 2m ,m¢ m y 1 !Ž .

w x Ž . Ž .where g [ g g y 1 ??? g y i q 1 .i
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PROOF. The first case follows trivially from Lemma 3 and the fact that the
Ž . w xnumber of i-tuples y , . . . , y with distinct coordinates is g .1 i i

We use induction to prove the second case. If i s m, the result is true by
� 4the first case. Now consider i G m q 1. Let t s D , . . . , D . For at least one1 i

< < < < i < <value i F i, D s 1 since i ) m, D G 1, for j s 1, . . . , i, and Ý D s0 i j js1 j0

< <2m. Without loss of generality, assume D s 1. By Lemma 3.1, consider thei

Ž . w xequation in y , . . . , y induced by t . For each of the g choices of the1 i iy1

Ž . Ž .i y 1 -tuples y , . . . , y with distinct coordinates, there exists a unique1 iy1

solution for y which satisfies the induced equation because y appears onlyi i

Žonce in the equation and all values y are invertible. In the example wherei
2 2 y1 y1 y1 y1 2 2 .y y y s y y y y y , we would get y s y y y y y y y . Of these1 2 3 4 1 3 5 6 6 5 3 1 4 1 2 3

w xg possible candidates for solutions with distinct coordinates, some mayiy1

have y being one of the values y , . . . , y . So we need to count the numberi 1 iy1

Ž .of these bad candidates and subtract this number to get N t . Let A be thep l

Ž .set of solutions with y s y and with y , . . . , y distinct for l s 1, . . . , i y 1.l i 1 iy1

< < Ž .It is not hard to see that A s N t , wherel p ll

� 4t [ D , . . . , D , D j D , D , . . . , Dl 1 ly1 l i lq1 iy1

Ž . Ž .is an i y 1 -partition of the set and p is the corresponding i y 1 -partitionl

of 2m. Since the sets A are pairwise disjoint, we may concludel

iy1

w xN t s g y N t .Ž . Ž .Ýiy1p p ll

ls1

w xFurthermore, the function g satisfies the following recurrence:i

w x w x w x w xg s g g y i q 1 s g g y i y 1 g .Ž . Ž .i iy1 iy1 iy1

Combining the above recurrences, we get

iy1

< <w x w xgN t y g s g y gN tŽ . Ž .Ýi iy1p p ll

ls1

iy1

< <w xF gN t y gŽ .Ý iy1p ll

ls1

iy1 i y 2 !Ž .
w xF g g by the induction hypothesisŽ .Ý m

m y 1 !Ž .ls1

i y 1 !Ž .
w xs g g .m

m y 1 !Ž .

This completes the proof. I

Ž . 2 mLet M t be the number of 2m-tuples of type t in G , where p is thep

Ž .corresponding i-partition of the number 2m. It is easy to show that M t sp

w xg .i
The following lemma shows where Lemma 4 is useful in finding expecta-

tions of variation distances.
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LEMMA 5.

2m w x1 k i2m5 5 w x4E Q* y U F gN t y g ,Ž .Ž .Ž . Ý Ý Ý ip2 m w xgk iis1 Ž . Ž .pgP i tgT p

Ž . Ž .where P i is the set of all i-partitions of 2m and T p is the set of all types

of p .

PROOF. Observe from Lemma 2 that

5 m 5 2
4E Q* y U F gE Q x ??? Q x y E Q x ??? Q x .Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ý Ý1 2 m 1 2 m

2mV G

We shall evaluate the right side of the above equation very carefully. If p

is an i-partition of 2m, then a 2m-tuple of p is a 2m-tuple whose type
Ž .corresponds to p . Let D p be the set of all 2m-tuples of p in V and let1

Ž . 2 m Ž .D p be the set of all 2m-tuples of p in G . Let T p be all types of p .2

Then

< < < <D p s N t , D p s M tŽ . Ž . Ž . Ž .Ý Ý1 p 2 p

Ž . Ž .tgT p tgT p

and

2m
2m5 53.2 4E Q* y U F gEQ x y EQ x ,Ž . Ž . Ž .Ž . Ý Ý Ý Ýž /

is1 Ž . Ž . Ž .pgP i xgD p xgD p1 2

Ž . Ž . Ž . Ž .where x [ x , . . . , x and Q x [ Q x ??? Q x .1 2 m 1 2 m

Ž .We shall next evaluate EQ x . Its value only depends on the partition p

associated with the 2m-tuple.

Ž .The probability that a given i-tuple y , . . . , y with distinct elements is1 i

w x w xcontained in a random k-subset of G is k r g . Thus if x corresponds to ani i

i-partition of 2m,

w x1 k i
EQ x s .Ž . 2 m w xgk i

Thus we may conclude

w x1 k i
gEQ x s gN tŽ . Ž .Ý Ý p2 m w xgk iŽ . Ž .xgD p tgT p1

and

w x1 k i
EQ x s M tŽ . Ž .Ý Ý p2 m w xgk iŽ . Ž .xgD p tgT p2

w x1 k i w xs g .Ý i2 m w xgk i Ž .tgT p
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Ž .Thus the right side of 3.2 can be rewritten

2m w x1 k i w xgN t y gŽ .Ž .Ý Ý Ý ip2 m w xgk iis1 Ž . Ž .pgP i tgT p

and the lemma is proven. I

The following lemma gives an upper bound which uses Stirling numbers of

the second kind. Such numbers are described in combinatorics texts such as
w xAigner 1 . We shall denote such numbers S , where S is the number2 m , i 2 m , i

of ways to place 2m labeled balls in i unlabeled boxes such that there are no

empty boxes.

'LEMMA 6. If k - 2 g and m - kr4, then

m 2 mw x1 k i2m5 5 w x4E Q* y U F k g S q S .Ý Ým 2 m , i 2 m , i2 m ž /w xkk mis1 ismq1

PROOF. Use Lemma 5. Note that by Lemma 4, if 1 F i F m, then

w x w x w xk k ki i i
< <w x w x w xgN t y g F g g s k g .Ž . i i mpw x w x w xg g ki i m

If m q 1 F i F 2m, then

w x w xk i y 1 ! kŽ .i i
< <w x w xgN t y g F g gŽ . i mpw x w xg m y 1 ! gŽ .i i

w xF g k ,m

'since if k F 2 g and m - kr4,

w x w xi y 1 ! k kŽ . i m
F .

w x w xm y 1 ! g gŽ . i m

Observe that

1 s S .Ý Ý 2 m , i

Ž . Ž .pgP i tgT p

Putting these results together completes the proof of this lemma. I

aŽ . '4. Proof of Theorem 1. First off, note that log g - 2 g for suffi-

ciently large values of g and m - kr4. Thus Lemma 6 may be used.

Observe that S F i2 mri! since there are no more than i2 m ways to2 m , i

place 2m labeled balls in i labeled boxes with no empty boxes.
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Thus

m m 2 mw xk f m, i iŽ .i
S FÝ Ý2 m , i myiw xk i!kmis1 is1

m m ii k f m, iŽ .
mF iÝ m yi i'k g iŽ .2p i e iis1

my im i f m , iŽ .
m iF i e ,Ý ž / 'k 2p i g iŽ .is1

my i 'Ž . Ž . Ž .where g i ª 1 as i ª `, f m, i - 2 since m < k and 2p i g i G 1, for

all i G 1. Thus for large enough m,

my im mw xk 2 ii mm iS F i e F em 2Ž .Ý Ý2 m , i ž /w xk kmis1 is1

m m i m m Ž .my i ` Ž . jsince i F m , e F e and Ý 2 irk F Ý 1r2 s 2.is1 js0

Observe that if i ) m,

2 m2 m
i q 1 r i q 1 ! i q 1 riŽ . Ž . Ž .Ž .

s
2 m i q 1i ri!

2 m
1 q 1riŽ .

s
i q 1

e2 m r i e2

- - - 0.5,
i q 1 i q 1

if m ) 2 e2.

Thus for sufficiently large m,

2m 2 m 2 m m 2 mi m mi
S F F 0.5 F emŽ . Ž .Ý Ý Ý2 m , i

i! m!ismq1 ismq1 is1

and

m 2 mw xk i m
S q S F 3 em .Ž .Ý Ý2 m , i 2 m , iž /w xk mis1 ismq1

Thus

1 m2m m5 54E Q* y U F k g3 emŽ .Ž . 2 mk
mem

s 3g .ž /k
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Ž Ž ..Ž .Ž . ŽSuppose m s ar a y 1 log grlog k 1 q « . In this argument, we shall

omit explicit reference to the floor notation for k and m since such omission
. m oŽ1. m ŽarŽay1..Ž1q« .will not affect the conclusion. Then e s g and k s g .

Observe that

mmmm s log g ar a y 1 1rlog k 1 q « .Ž . Ž . Ž . Ž .Ž .Ž .

Ž .aSince k s log g ,

m oŽ1.ar a y 1 1rlog k 1 q « s g ,Ž . Ž . Ž .Ž .Ž .

whereas

a log gm Ž1rŽay1..Ž1q« .log g s exp log log g 1 q « s g .Ž . Ž .ž /a y 1 a log log g

Thus

3 gg Ž1rŽay1..Ž1q« .g oŽ1.

2m5 5E Q* y U FŽ . ŽarŽay1..Ž1q« .4 g

3 1
s ª 0

«yoŽ1.4 g

Ž5 m 5.as g ª `. By the Schwarz inequality, we conclude E Q* y U ª 0 as
5 m 5g ª `. Since Q* y U is nonincreasing as m increases, we may conclude

Theorem 1. I

5. Another theorem. The techniques used in proving Theorem 1 are

useful even if k is an appropriate multiple of log g instead of an appropriate
Žpower of log g. The following theorem is the result of such techniques. We

omit the use of the floor notation since such omissions do not alter the
.conclusion.

THEOREM 3. Suppose k s a log g and m s b log g, where a ) e2, b - ar4
Ž . w 5 m 5xand b log ebra - y1. Then E Q* y U ª 0 if Q is as in Theorem 1.

PROOF. The proof is similar to that of Theorem 1.

Ž . my iAlthough we cannot say m < k, we still may conclude f m, i - 2
Ž .since m - 1r2 k. Since 2 irk - 2mrk - 1r2, we may again conclude

m w xk i m
S F 2 em .Ž .Ý 2 m , iw xk mis1

We may also conclude that

2m
m

S F emŽ .Ý 2 m , i

ismq1
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by the same arguments as in the proof of Theorem 1. Thus we may conclude
m3 em

2m5 5E Q* y U F g ž /4 k

b log g3 eb
s g ž /4 a

3
b log Žebr a.s gg

4

ª 0
Ž .since b log ebra - y1.

The theorem follows by the Schwarz inequality. I

2 Ž .Observe that if a s e , then b log ebra has minimum value y1, and if
2 Ž .a - e , b log ebra has minimum value larger than y1. Thus our techniques

are not useful if a F e2.

w x6. Lower bound for certain groups. Hildebrand 12 used straightfor-

ward arguments to show that if G is an Abelian group with n elements,
?Ž .a@k s log n with a ) 1, « ) 0 is given and

a log n
m - 1 y « ,Ž .

a y 1 log k

5 m 5then Q* y U ª 1 as n ª ` regardless of the choice of k points. We shall

generalize this lower bound to some families of finite groups with irreducible

representations of bounded degree.

Such groups have received previous study in, for example, Isaacs and
w x w x w xPassman 13 and Kaplansky 14 . In particular, Isaacs and Passman 13

showed that if the maximum degree of an irreducible representation of a
Ž .finite group G is bounded by m, then there exists a function g m such that

w x Ž .there is a normal Abelian subgroup N of G with G:N F g m .

For our lower bounds, we shall make the following assumption:

ASSUMPTION 1. The degree of all irreducible representations of G is less

than d . Furthermore, all entries of G can be expressed by b n , wheremax i i

Žn g N, the Abelian normal subgroup of G of bounded index by Isaacs andi

w x.Passman 13 and where the order of the subgroup generated by the b ’s isi

Ž .bounded by a constant h d .max

Note that Assumption 1 is satisfied by the dihedral groups. In the notation
w x kof Section 5.3 of Serre 17 , all elements of dihedral groups are of the form r

or sr k. The subgroup generated by r is N, and s2 s 1, so the order of the

subgroup generated by the b ’s is 2 in this example.i

Ž .It is not a priori clear whether there exists a function h d such thatmax

Assumption 1 holds for all groups G with the degree of all irreducible

representations of G less than d .max
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< <THEOREM 4. Suppose G satisfies Assumption 1. Let n s G . Let « ) 0 be
?Ž .a@given. Let k s log n , a ) 1. Let Q be as in Theorem 1. Then

5 m 5Q* y U ª 1

uniformly over all choices of the set S defined in Theorem 1 if

a log n
m F 1 y « .Ž .

a y 1 log k

PROOF. The proof is a modification of the proof of the lower bound in
w xTheorem 3 of Hildebrand 12 .

Suppose the elements of G chosen in the random walk’s first m steps are

b n , . . . , b n . After m steps, the walk is at b n ??? b n b n . Since N is1 1 m m m m 2 2 1 1
X X Ž .normal, n b s b n , n b b s b b n and so forth. There are kh d2 1 1 2 3 2 1 2 1 3 max

possible values for n , n
X

, . . . . Via arguments similar to those in the proof of1 2

w xTheorem 3 of Hildebrand 12 , it can be shown that with probability ap-

proaching 1, the proportion of the values n , n
X

, . . . , n
X

which are duplicates1 2 m

is under some function which approaches 0. Since N is Abelian, we may use
w xthe arguments in the proof of Theorem 3 of Hildebrand 12 to show that,

except with probability approaching 0, there are at most n1y«qoŽ1. values for
X X Ž .n ??? n n . Since h d is a constant and there are finitely many possiblem 2 1 max

elements for b ??? b b , we may conclude, except with probability approach-m 2 1

ing 0, there are at most n1y«qoŽ1. possible elements reached in the group, and

so the theorem follows. I

Note that Theorems 1 and 4 imply for these groups that typical random
Ž Ž ..Ž .walks will have a ‘‘cutoff phenomenon’’ around ar a y 1 log nrlog k when

Ž .ak s log n and a ) 1. Further examples of this phenomenon appear in
w x w xDiaconis 5 and Hildebrand 10 .

7. Problems for further study. The bounds in Theorem 3 may not

have the best possible constants. Perhaps techniques can be developed to
Ž .dimprove these constants. For random random walks on Zr2Z , Greenhalgh

w x w x9 and Wilson 18 obtain better constants; whether such constants can be

extended to arbitrary finite groups is another question.

Ž .Another question worth studying is the factor ar a y 1 in Theorem 1.

This factor is required for certain groups, for example, Abelian groups. Can

this factor be eliminated by appropriate choice of the finite group G? Such

questions are worth exploring, but require more knowledge of the group be

utilized than was in the proof of Theorem 1. A related question is to explore

the extent to which Assumption 1 holds; for groups where this assumption
Ž .holds, the factor ar a y 1 cannot be eliminated.

One may wish to explore questions similar to those explored here, albeit on

other Markov chains. For example, one may wish to explore random walks on

random regular graphs where there are n vertices and each vertex has
Ž .a w xdegree log n . Dou 7 has explored random walks on random regular

graphs but with larger degrees.
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