ε-CLOSE MEASURES PRODUCING NONISOMORPHIC FILTRATIONS¹

By J. Feldman

University of California at Berkeley

A consequence of the preceding two papers is this. Let $\{\mathscr{A}_t: 0 \le t < \infty\}$ be the filtration of a stochastic process on (Ω, \mathscr{A}, P) . Under a mild assumption on the process, there exist, for any $\varepsilon > 0$, uncountably many probability measures Q_{α} with $(1 - \varepsilon)P \le Q_{\alpha} \le (1 + \varepsilon)P$ so that no two of the filtrations $(\Omega, (\mathscr{A}_t)_{0 \le t}, Q_{\alpha})$ and $(\Omega, (\mathscr{A}_t)_{0 \le t}, Q_{\beta})$, $\alpha \ne \beta$, can be generated by equivalent stochastic processes.

1. Statement of results. This paper makes two easy but striking deductions from the preceding two papers: "Decreasing sequences of σ -fields and a measure change for Brownian motion" by Dubins, Feldman, Smorodinsky and Tsirelson, hereafter referred to as [I]; and "Decreasing sequences of σ -fields and a measure change for Brownian motion. II" by Feldman and Tsirelson, hereafter referred to as [II].

The main result of [I] was the construction, for Brownian motion B on $[0,\infty)$, of a new probability measure Q equivalent to the old one P in the sense of absolute continuity, but for which the filtration of B equipped with the new measure is not Brownian; that is, it is not the filtration of any Brownian motion with respect to Q. This may be rephrased by saying that there is no measure space isomorphism carrying P to Q and carrying the filtration to itself. Then in [II] it was shown that Q may even be chosen so that $(1 - \varepsilon)P \le Q \le (1 + \varepsilon)P$.

In this paper a stronger version of this phenomenon is shown to hold for all "sufficiently rich" stochastic processes. The result is obtained by applying two "bootstrapping" procedures to the example constructed in [I] and improved in [II]. Specifically, it will be shown that there exist *uncountably many* different probability measures equivalent to P for which *no two* of the corresponding filtrations are isomorphic, and which all lie between $(1 - \varepsilon)P$ and $(1 + \varepsilon)P$ (this is what we mean by ε -close). Furthermore (and this is the surprising part), the phenomenon really has nothing to do with Brownian motion: it holds for *any* sufficiently rich stochastic process.

THEOREM 1. Let A_t , $0 \le t < \infty$, be a stochastic process on (Ω, \mathscr{A}, P) . Let \mathscr{A}_t be the complete σ -field generated by $\{A_s: 0 \le s < t\}$, and $\mathbf{A} = (\mathscr{A}_t: 0 \le t < \infty)$.

912

Received April 1994; revised June 1995.

¹Supported in part by NSF Grant DMS-91-13642.

AMS 1991 subject classifications. 60G07.

Key words and phrases. Decreasing sequence of measurable partitions, reverse filtration.

Suppose that there exist $t_1 > t_2 > \cdots \rightarrow 0$ with the following properties:

- (i) ∩_n𝒢_{t_n} is trivial, that is, consists of sets of measure 0 or 1.
 (ii) P|𝒢_{t_n} conditioned by 𝒢_{t_{n+1}} is almost everywhere nonatomic.

Then for any $\varepsilon > 0$ one may construct for each countable ordinal α a probability measure Q_{α} with $Q_1 = P$, $(1 - \varepsilon)P \le Q_{\alpha} \le (1 + \varepsilon)P$ for all α , and such that no two of the filtrations $(\Omega, \mathbf{A}, \mathbf{Q}_{\alpha})$ are isomorphic. Thus no two of them may be generated by equivalent stochastic processes.

The assumption of the existence of a sequence with the stated properties is a very mild one; typically, any sequence $t_1 > t_2 > \cdots \rightarrow 0$ will do.

As in [I], the theorem is proved by first obtaining a parallel result for the analogous but simpler case of "reverse filtrations"; see [I], Section 2, (2.1) to (2.4), for background. However, we repeat the basic definitions.

DEFINITION. Let (X, \mathscr{F}, μ) be a Lebesgue probability space, and $\mathscr{F} = \mathscr{F}_0 \supset$ $\mathscr{F}_1 \supset \mathscr{F}_2 \cdots$ a sequence of (complete) σ -fields with $\bigcap_n \mathscr{F}_n$ trivial. The sequence $\mathbf{F} = (\mathscr{F}_n)_0^{\infty}$ is called a *reverse filtration* on (X, \mathscr{F}, μ) . It is called *nonatomic* if for every nonnegative integer n almost every measure obtained by conditioning $\mu|\mathscr{F}_n$ on \mathscr{F}_{n+1} is nonatomic.

THEOREM 2. Given a nonatomic reverse filtration (X, \mathbf{F}, μ) , one may construct for each countable ordinal α a probability measure ν_{α} with $\nu_{1} = \mu$, $(1-\varepsilon)\mu \leq \nu_{\alpha} \leq (1+\varepsilon)\mu$ for all α , and such that no two of the inverse filtrations $(X, \mathbf{F}, \nu_{\alpha})$ are isomorphic.

It should be noted that uncountable families of mutually nonisomorphic reverse filtrations were already constructed in Stepin (1971) and Vershik (1971). But these had *atomic* conditional measures and, more important, were not obtained from a single reverse filtration via absolutely continuous changes of measure.

Here is how to deduce Theorem 1 from Theorem 2. Given (Ω, \mathbf{A}, P) and $t_1 > t_2 > \cdots$ as in Theorem 1, let $\mathscr{F}_0 = \mathscr{A}$ and $\mathscr{F}_n = \mathscr{A}_{t_n}$ for $n \ge 1$. There is no loss of generality in assuming that P conditioned by \mathscr{A}_{t_1} is almost everywhere nonatomic, since this can be achieved by just shifting the subscripts of the t_n by 1. Then the reverse filtration (Ω, \mathbf{F}, P) satisfies the assumptions of Theorem 2 with $X = \Omega$ and $\mu = P$. Letting Q_{α} be the ν_{α} of Theorem 2, we see that the reverse filtrations $(\Omega, \mathbf{F}, Q_{\alpha})$ are nonisomorphic, and therefore also the filtrations $(\Omega, \mathbf{A}, Q_{\alpha})$, since any isomorphism of $(\Omega, \mathbf{A}, Q_{\alpha})$ with $(\Omega, \mathbf{A}, Q_{\beta})$ induces an isomorphism of $(\Omega, \mathbf{F}, \mathbf{Q}_{\alpha})$ with $(\Omega, \mathbf{F}, \mathbf{Q}_{\beta})$.

2. Reverse filtrations and standardness. Recall from [I] that a stan*dard* reverse filtration is one which is isomorphic to (X, \mathbf{F}, λ) , where X = $[0,1]^{\mathbb{N}}$ (\mathbb{N} being the positive integers), λ is the product of the Lebesgue measures on the coordinate factors and \mathcal{T}_n is the completed σ -field generated by all coordinates greater than n.

J. FELDMAN

Let S be an infinite set of positive integers. Write it in ascending order as s_1, s_2, \ldots , and set $s_0 = 0$. If Φ is the reverse filtration (X, \mathbf{F}, μ) , then $\Phi|S$ will denote the reverse filtration $(X, \mathbf{F}|S, \mu)$, where $\mathbf{F}|S$ is the sequence $(\mathscr{F}_{s_0}, \mathscr{F}_{s_1}, \ldots)$. It is easy to see that if $S \supset T$ and $\Phi|T$ is standard, then so is $\Phi|S$; in fact, in the nonatomic case, if T - S is finite and $\Phi|T$ is standard, then so is then so is $\Phi|S$. (As a matter of notational convenience, we have written T - S rather than $T \cap S^c$.) This may be shown by routine Lebesgue space constructions.

We will need the following consequence of Corollary 2 of [II].

THEOREM 3. Let (X, \mathbf{F}, μ) be a standard nonatomic reverse filtration. Then for any $\varepsilon > 0$ there is a measure ν such that $(1 - \varepsilon)\mu \le \nu \le (1 + \varepsilon)\mu$ and (X, \mathbf{F}, ν) is not standard.

We will also need the following statement, which is the nonatomic version of the main result of Vershik (1968), and may be proved in much the same way; see Ganikhodzhaev and Vinokurov (1978).

THEOREM 4. For each nonatomic reverse filtration Φ , there is an infinite set S of positive integers for which $\Phi|S$ is standard.

The collection of all infinite sets S of positive integers for which $\Phi|S$ is standard is what is called in Vershik (1970) the *fundamental invariant* of Φ . It is clearly an isomorphism invariant.

3. Proof of Theorem 2. We will need two lemmas.

LEMMA 5. Given $\varepsilon > 0$ and an infinite set S of positive integers and a nonatomic reverse filtration (X, \mathbf{F}, μ) , there is a probability measure μ' satisfying $(1 - \varepsilon)\mu \le \mu' \le (1 + \varepsilon)\mu$ and for which $(X, \mathbf{F}, \mu')|S$ is not standard.

PROOF. If $(X, \mathbf{F}, \mu)|S$ is already nonstandard, use μ ; otherwise apply Theorem 3 to the standard reverse filtration $(X, \mathbf{F}, \mu)|S$. \Box

LEMMA 6. Let S_1, S_2, \ldots be a sequence of infinite sets of positive integers with each $S_{n+1} - S_n$ finite. Then there is an infinite set S of positive integers with each $S - S_n$ finite.

PROOF. By removing finitely many elements from each S_n , we may suppose $S_{n+1} \subset S_n$ for all n. Then a diagonal argument gives the result. \Box

Now the proof of Theorem 2 will be completed. Let $\Phi = (X, \mathbf{F}, \mu)$ be a given nonatomic inverse filtration. We will construct for each countable ordinal α

an infinite set S_{α} of positive integers and a probability measure $\nu_{\alpha} \sim \mu$ so that, denoting $(X, \mathbf{F}, \nu_{\alpha})$ by Φ_{α} , we have:

 $\begin{array}{ll} 1. \ (1-\varepsilon)\mu \leq \nu_{\alpha} \leq (1+\varepsilon)\mu. \\ 2. \ \alpha < \alpha' \Rightarrow S_{\alpha'} - S_{\alpha} \ \text{is finite.} \end{array}$

3. $\Phi_{\alpha}|S_{\alpha}$ is nonstandard.

4. $\alpha < \alpha' \Rightarrow \Phi_{\alpha} | S_{\alpha'}$ is standard.

It will then be clear that Φ_{α} is not isomorphic to $\Phi_{\alpha'}$ if $\alpha \neq \alpha'$, since their fundamental invariants will be different. The construction will of course be made by a transfinite induction.

To begin, let $S_1 = N$ and choose $\nu_1 \sim \mu$ so that $(1 - \varepsilon)\mu \leq \nu_1 \leq (1 + \varepsilon)\mu$ and $\Phi_1 = (X, \mathbf{F}, \nu_1)$ is not standard. Inductively, given a countable ordinal $\overline{\alpha}$, suppose S_{α} and ν_{α} have been defined for all $\alpha < \overline{\alpha}$ and satisfy conditions 1-4. We need to extend the definition to $\alpha = \overline{\alpha}$, that is, to replace $\overline{\alpha}$ by $\overline{\alpha} + 1$, with the conditions still satisfied.

(a) If $\overline{\alpha}$ is a successor ordinal, that is, $\overline{\alpha} = \alpha_0 + 1$, then use Theorem 4 to choose an infinite set T of positive integers such that $(\Phi_{\alpha_0}|S_{\alpha_0})|T$ is standard. Enumerate S_{α_0} as $s_1 < s_2 < \cdots$ and let $S_{\overline{\alpha}} = \{s_t : t \in T\} \subset S_{\alpha_0}$. Apply Lemma 5 by choosing $\nu_{\overline{\alpha}}$ with $(1 - \varepsilon)\mu \leq \nu_{\overline{\alpha}} \leq (1 + \varepsilon)\nu$ and $(X, \mathbf{F}, \nu_{\overline{\alpha}})|S_{\overline{\alpha}}$ not standard. This extends the induction one step, as required.

(b) If $\overline{\alpha}$ is a limit ordinal, then there exist $\alpha_1 < \alpha_2 < \cdots \uparrow \overline{\alpha}$. Use Lemma 6 to choose S so $S - S_n$ is finite for each n, and call this set $S_{\overline{\alpha}}$. If $\alpha < \overline{\alpha}$, then $\alpha < \alpha_n$ for some n, so $\Phi_{\alpha}|S_{\alpha_n}$ is standard for all n, so $\Phi_{\alpha}|S_{\overline{\alpha}}$ is also standard. Now apply Lemma 5 to produce a measure ν such that $(1 - \varepsilon)\mu \leq \nu_{\overline{\alpha}} \leq (1 + \varepsilon)\mu$ and $(X, \mathbf{F}, \nu_{\overline{\alpha}})|S_{\overline{\alpha}}$ is nonstandard. Again, the induction has been advanced one step, and we are done. \Box

Acknowledgment. The author is grateful to the referee for saving him from making an unnecessarily complicated argument for Lemma 5.

REFERENCES

- GANIKHODZHAEV, N. N. and VINOKUROV, V. G. (1978). Conditional functions and trajectory theory of dynamical systems. *Math. USSR-Izv.* **13** 221–260.
- STEPIN, A. M. (1971). On the entropy invariant of decreasing sequences of measurable partitions. Functional Anal. Appl. 5 80–84.

VERSHIK, A. M. (1968). A theorem on lacunary isomorphisms. *Functional Anal. Appl.* **2** 200–203.

- VERSHIK, A. M. (1970). Decreasing sequences of measurable partitions, and their applications. Soviet Math. Dokl. 11 1007-1011.
- VERSHIK, A. M. (1971). A continuum of pairwise nonisomorphic dyadic sequences. Functional Anal. Appl. 5 16-18.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94729 E-MAIL: feldman@math.berkeley.edu