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Ž . Ž Ž ..Let FF be the filtration of a Brownian motion B t ont t G 0 t G 0

Ž . ŽV, FF, P . An example is given of a measure Q ; P in the sense of
. Ž .absolute continuity for which FF is not the filtration of any Brown-t t G 0

Ž .ian motion on V, FF, Q . This settles a 15-year-old question.

1. Introduction. Let V be the Borel space of real continuous functions
w .on 0, ` which are 0 at 0, and P the Wiener measure, that is, the probability

Ž Ž ..measure which makes the coordinate process B t a standard Browniant G 0

motion. Let Q be another probability measure equivalent to P.

PROBLEM 0. Given such a Q, is it always possible to define on V a process
Ž XŽ .. X XŽ .B t such that under Q, B is a standard Brownian motion and B tt G 0

� Ž .is FF -measurable for each t, where FF is the s-field generated by B s : 0 -t t

4s F t ?

If we denote by FF
X

the corresponding s-field of B
X
, then this amounts tot

X Žthe requirement that FF ; FF for all t ) 0. All s-fields are supposed com-t t

.plete, that is, containing all sets of zero measure.

Ž Ž . .The system V, FF, P, FF is frequently called a Brownian filtration. Oft t G 0

course, one may speak more generally about the filtration of a stochastic

process, or a filtered probability space.

PROBLEM 1. Given such a Q, is it always possible to define B
X

as required
X Ž Ž . .in Problem 0 and such that FF s FF for all t ) 0? That is, is V, FF, Q, FFt t t t G 0

a Brownian filtration?
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wProblem 0 has an elegant solution given by Girsanov’s formula see Revuz
Ž . Ž . xand Yor 1991 , 8.1, or Protter 1990 , 3.6 :

tX
B t s B t y F s ds,Ž . Ž . Ž .H

0

Ž Ž ..where F t is the process, adapted to the Brownian filtration, whicht G 0

arises in the Cameron]Martin representation of the Radon]Nikodym deriva-

tive:

` `dQ 1
2s exp F t dB t y F t dt .Ž . Ž . Ž .H Hž /dP 20 0

ŽThe Girsanov process is a martingale even with respect to the filtration
.of B.

Ž .However, Tsirelson 1975 constructed an example of a measure Q such

that the process defined by the Girsanov formula does not solve Problem 1.

If such B
X

as required in Problem 1 existed, then the Girsanov process

would have a representation

dB y F ds s C dB
X
,

Ž .with a process C adapted to FF and assuming only the values "1. Sot t G 0

Problem 1 may be viewed as the problem of finding, for given F, a process C
Ž .adapted to FF , taking on only the values "1, and such that the processt t G 0

t tX
B t s C s dB s y C s F s dsŽ . Ž . Ž . Ž . Ž .H H

0 0

has the property FF
X
s FF .t t

Ž . Ž .Problem 1 was pointed out in Stroock and Yor 1980 , Question G , page
Ž .161, and repeated in Revuz and Yor 1991 , Question 1, page 336. We are

grateful to Marc Yor for bringing it to our attention.

In the present paper we show that Problem 1 has a negative solution.

Ž .It should be mentioned that in Theorem 7 of Skorokhod 1986 a general

assertion is made about the structure of filtrations which, taking what we

regard as a reasonable interpretation of that assertion, would imply a posi-

tive solution to Problem 1. Thus the present paper contradicts this interpreta-

tion of the assertion. Although it was not our original intention to elaborate

on this, the editors and referees have strongly urged that we do so; therefore,

such a discussion is appended as Section 6.

2. Tools. Our main tool is borrowed from the theory of decreasing se-
Ž .quences of measurable partitions in other words, s-fields developed by

w Ž .xVershik in a sequence of works Vershik 1968, 1970, 1971, 1973, 1994 .

Here, for brevity, we will call them ‘‘reverse filtrations.’’ Throughout, either

by assumption or by construction, all measure spaces will be Lebesgue

spaces. The reader may recall that all ‘‘reasonable’’ constructions with

Lebesgue spaces, such as quotients and products, produce Lebesgue spaces;
Ž .see Rokhlin 1949 .
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Ž .DEFINITION 2.1. A reverse filtration XX , F, m is a probability space
Ž . Ž .`XX , FF, m equipped with a decreasing sequence F s FF of s-fields: FF sn ns0

Ž .FF > FF > FF > ??? all s-fields are taken to be complete for m such that0 1 2

F FF is the trivial s-field consisting of the sets of measure 0 and 1.n n

The natural notion of isomorphism in the class of reverse filtrations is as

follows.

Ž . Ž X X X.DEFINITION 2.2. A reverse filtration XX , F, m is isomorphic to XX , F , m ,

if there exists an almost one-to-one map w: XX ª XX
X

sending m to m
X
, and

such that wy1FF
X
s FF .n n

Ž .Any sequence of random variables X , X , . . . on XX , FF, m determines a1 2

decreasing sequence of s-fields: FF is the s-field generated by the variablesn

X , X , . . . . If FF s FF and the intersection of the FF is trivial, then wenq1 nq2 0 n

Ž Ž .` . Ž .`call XX , FF , m the reverse filtration generated by X .n ns0 n ns1

The following definition is analogous to one for filtrations which will be

given in Section 6.

Ž .DEFINITION 2.3. An extension of a reverse filtration XX , F, m consists of a
˜ ˜ ˜Ž .reverse filtration XX , F, m and a measure-preserving map p from XX to XX˜

y1 ˜Ž .with p FF ; FF , n s 0, 1, . . . , such that the equalityn n

˜ ˜< <E X (p FF s E X FF (pŽ .Ž .Ž .n n

holds almost everywhere for any bounded measurable function X: XX ª R.

Ž .LEMMA 2.4. Let a reverse filtration XX , F, l be given, and an extension
˜ ˜ ˜ ˜Ž .XX , F, l , p : XX ª XX . Let m be a measure on XX equivalent to l. Define a

˜ ˜measure m on XX , equivalent to l, by the equality˜

dm dm˜
s (p .ž /˜ dldl

˜ ˜Ž . Ž .Then XX , F, m , p form an extension of XX , F, m .˜

The proof is left to the reader.

Vershik called one of his decreasing sequences of s-fields standard if it was

generated by a sequence of independent random variables, each variable

being either nonatomic or purely atomic with all its atoms having the same

probability. But we prefer to focus on the nonatomic case.

DEFINITION 2.5. A reverse filtration will be called standard if it is gener-

ated by a sequence of independent nonatomic random variables.

Clearly, any reverse filtration isomorphic to a standard one is also stan-

dard, and all standard reverse filtrations are isomorphic. Nonstandard re-
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verse filtrations exist trivially, since, in general, conditional measures may

contain atoms. A reverse filtration will be called nonatomic if for each n g N

the restriction of the measure m to FF , when conditioned by FF , is a.e.ny1 n

nonatomic; in this case the measures obtained by conditioning m on FF aren

likewise a.e. nonatomic.

Ž . Ž X X X.For any two reverse filtrations XX , F, m and XX , F , m , their product
Ž X X X. X Ž X.`XX = XX , F m F , m m m is a reverse filtration; here F m F s FF m FF .n n ns0

If at least one of the given reverse filtrations is nonatomic, then the product

is also nonatomic.

Ž X X X.The product XX = XX , F m F , m m m together with the map
X Ž X.p : XX = XX ª XX , p v, v s v may be treated as a special case of an extension

as in Definition 2.3. Thus every reverse filtration admits a nonatomic exten-

sion.

Does every reverse filtration have a standard extension? The answer is no,

but this is far from evident. Vershik was first to construct examples of reverse

filtrations admitting no standard extensions. Here is a description of one.

w Ž .xEXAMPLE Vershik 1973 . It is possible to construct a Markov chain

X , X , . . . which generates a reverse filtration with no standard extension.1 2

w xEach X is distributed uniformly on 0, 1 . When X , X , . . . are given, then n nq1

conditional distribution of X depends on X only, and in the followingn nq1

manner: if X takes the value x, which we write in binary as . x x x . . . ,nq1 1 2 3

then X is equal to either . x x x . . . or . x x x . . . , each with probabilityn 1 3 5 2 4 6

1r2. A proof that this indeed generates a reverse filtration with no standard
Ž .extension may be found in Smorodinsky 1995 .

A standard reverse filtration obviously has a standard extension, namely

itself. We note that conversely any nonatomic reverse filtration with a

standard extension is itself standard; but we will not make use of this fact,

and therefore will not prove it.

� 4NDenote by l the Bernoulli measure on the space XX s 0, 1 , which makes

the coordinate functions X , X , . . . independent random variables taking1 2

only the values 0 and 1, each with probability 1r2, that is, a Bernoulli
Ž . Ž .`sequence. The ‘‘Bernoulli reverse filtration’’ XX , F, l generated by X isn ns1

of course atomic. Its nonatomic extension, constructed by taking its direct

product, in the obvious sense, with a standard reverse filtration, is easily

seen to be standard.

THEOREM 2.6. There is a measure m equivalent to l for which the reverse
Ž .filtration XX , F, m admits no standard extension.

This theorem will provide a negative solution to Problem 1 as follows.

Fix a sequence t ) t ) ??? ª 0, consider the independent increments1 2

Ž . Ž .B t y B t of Brownian motion and letn nq1

1, when B t y B t ) 0,Ž . Ž .n nq1X sn ½ 0, otherwise.
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Ž Ž . Ž . .The X form a Bernoulli sequence, so the map p : v ¬ X v , X v , . . . isn 1 2

Ž . Ž .a measure-preserving map from V, P to the XX , l of Theorem 2.6. More-
Ž Ž .` .over, the reverse filtration V, FF , P and the map p form an extensiont ns0

Ž . Ž Ž .` .of XX , F, l . According to Lemma 2.4, V, FF , Q and p form an extensiont ns0n

Ž .of XX , F, m , where Q is the measure equivalent to P defined by the equality

dQ dm
s (p .ž /dP dl

Ž .Since XX , F, m admits no standard extension, we conclude that the reverse
Ž Ž .` .filtration V, FF , Q is nonstandard. But if the filtered probability spacet ns0n

Ž Ž . . X
V, FF, Q, FF were generated by a Brownian motion B , then one couldt t G 0

Ž .choose independent random variables Y , Y , . . . on V, FF, Q with each Y1 2 n

� XŽ . XŽ . 4generating the s-field generated by B t y B s : t ) t ) s ) t , whichn nq1

Ž Ž .` . X
would imply standardness of V, FF , Q . Thus there can be no such B .t ns1n

Our main tool for proving Theorem 2.6 is Vershik’s criterion for standard-
w Ž .xness Vershik 1970 . Here we will state it in terms of multistep

Kantorovich]Rubinstein metrics, to be defined below.

Ž .Let XX , FF, m be a probability space and f a measurable function from XX to

a compact metric space with metric r. This determines a pseudometric on XX :
Ž . Ž Ž . Ž ..r x, y s r f x , f y . The class of all such r is exactly the class of allf f

measurable precompact pseudometrics on XX . From here on, the term ‘‘pseudo-

metric’’ will always mean pseudometric of this kind. The pseudometric itself
Ž .is then measurable on XX = XX , FF m FF . We identify two such pseudometrics if

there is a subset of XX of full measure such that they agree on all pairs of

points which both lie in this subset. A pseudometric r determines the set
Ž .Lip r of all real-valued functions l on XX satisfying the Lipschitz condition

l x y l y F r x , yŽ . Ž . Ž .

for all x, y g XX . Such functions are necessarily measurable. It is more

convenient to deal with equivalence classes rather than individual functions,

so we weaken the Lipschitz condition to hold only on a set of measure 1; this

makes it insensitive to a change of l within its equivalence class, as well as a
Ž .change of r within its equivalence class defined above . Then

Lip r ; L m .Ž . Ž .`

Ž . ŽFurthermore, Lip r determines r uniquely up to the stipulated equiva-
.lence .

X X X Ž .If r is FF m FF -measurable, FF being a sub-s-field of FF, then Lip r ;
Ž X . X

L XX , FF , m . Moreover, r may be transferred to the quotient space XXrFF , and`

Ž .Lip r may be calculated on the quotient space, giving essentially the same

result.

Let r be a pseudometric on XX . Given two probability measures m, n on XX ,
w Ž .the Kantorovich]Rubinstein distance Kantorovich and Rubinstein 1958 ;

Ž .xsee also Dudley 1989 is defined as

r m , n s sup l dm y l dn : l g Lip r .Ž . Ž .H HKR ½ 5
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Ž .Another equivalent definition will be mentioned and used later; but in the

present section only the above definition will be used.
X X X Ž .If r is FF m FF -measurable, FF ; FF, then r m, n depends only on theKR

< X < X Ž .restrictions m FF , n FF . Moreover, r m, n may equally well be calculatedKR

on the quotient space XXrFF
X
.

The following multistep counterpart of the KR construction is crucial. For
Ž .any reverse filtration XX , F, m and any given pseudometric r on XX , we define

Ž .recursively a sequence of pseudometrics r , r being FF m FF -measurable:n n n n

Ž . Ž .r s r, and recursively r x, y is the r distance between the condi-0 n ny1 KR

tional measures, given FF , corresponding to x and y; these conditionaln

Ž .measures exist, since we have assumed that XX , FF, m is a Lebesgue space.

Due to the FF m FF -measurability of r , the result will be the same ifny1 ny1 ny1

the conditioning is done for the pair FF and FF rather than FF and FF .ny1 n n

Restating the definition symbolically, r s r and0

< <r x , y s sup E l FF x y E l FF y : l g Lip r .Ž . Ž . Ž . Ž .� 4Ž . Ž .n n n ny1

The conditional measures may be changed on a set of measure 0; but because

of the identification we have made between pseudometrics, such a change has

no significance. The usual caution is required when taking a supremum of

uncountably many equivalence classes: either a dense countable subset should

be selected, or the supremum should not be treated pointwise. It is easily

seen that precompactness and measurability continue to hold.

Ž .Next we define a sequence of numbers a associated with r and XX , F, m :n

a r s r x , y dm x dm y ;Ž . Ž . Ž . Ž .HHn n

Ž .then a G a G a G ??? G 0. Their limit a r is used in Vershik’s criterion0 1 2 `

w Ž .xof standardness Vershik 1970 . His sufficiency statement, specialized to the
Ž .nonatomic case, is reproduced below as Theorem 2.7 a . However, what we

actually need is a necessity statement, given for arbitrary reverse filtrations
Ž .as part b of the same theorem.

Ž . Ž .THEOREM 2.7. a If a nonatomic reverse filtration XX , F, m satisfies the
Ž .condition a r s 0 for every pseudometric r on XX , then the reverse filtration`

is standard.

Ž . Ž .b If a reverse filtration XX , F, m admits a standard extension, then
Ž .a r s 0 for every pseudometric r on XX .`

Ž .In order to make our presentation self-contained, a proof of b follows.

Ž .LEMMA 2.8. For every standard reverse filtration XX , F, m and every
Ž .pseudometric r on XX , the corresponding a r s 0.`

PROOF. A standard reverse filtration is generated by independent random

variables. Without loss of generality, we suppose that they are distributed
w xuniformly on 0, 1 , and XX is the space of sequences. Consider metrics
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r , r , . . . constructed from a given r s r. The first n coordinates actually do0 1 0

not affect the value of r , due to its FF -measurability.n n

REMARKS ON NOTATION. Here and henceforth we use the notation x ny1 s1

Ž . ` Ž .x , . . . , x ; y s y , y , . . . . Also, here and in other places we will1 ny1 n n nq1

Ž .deliberately abuse notation by sometimes writing r x, y and sometimesn

Ž ` ` .r x , y . It seemed preferable to do this rather than introduce moren nq1 nq1

new notation.

Returning to the argument, it will be shown by induction on n that, for all

n g N,

r y` , z` F r x ny1 , y` , x ny1 , z` dx ny1Ž . Ž . Ž .Ž .Hny1 n n 1 n 1 n 1

` ` w xfor any y , z , all scalar variables running over 0, 1 .n n

For n s 1 there is nothing to check. Suppose, for some n G 1, that the

inequality holds. It suffices to prove that

r y` , z` F r x , y` , x , z` dx .Ž . Ž . Ž .Ž .Hn nq1 nq1 ny1 n nq1 n nq1 n

Let a function l be r -Lipschitz. Thenny1

` `< <E l FF y y E l FF zŽ . Ž .Ž . Ž .n nq1 n nq1

` `s l x , y dx y l x , z dxŽ . Ž .H Hn nq1 n n nq1 n

` `F l x , y y l x , z dxŽ . Ž .H n nq1 n nq1 n

F r x , y` , x , z` dx .Ž . Ž .Ž .H ny1 n nq1 n nq1 n

It follows that

a r s r y` , z` dy` dz`Ž . Ž .Hn n nq1 nq1 nq1 nq1

F r x n , y` , x n , z` dx n dy` dz` .Ž . Ž .Ž .H 1 nq1 1 nq1 1 nq1 nq1

Ž .Denote the right-hand side by b r .n

For any two measurable functions f , g from XX to a compact metric space

with metric r, we have

n ` n ` n ` n `r f x , y , f x , z y r g x , y , g x , zŽ . Ž . Ž . Ž .Ž . Ž .1 nq1 1 nq1 1 nq1 1 nq1

F r f x n , y` , g x n , y` q r f x n , z` , g x n , z` ;Ž . Ž . Ž . Ž .Ž . Ž .1 nq1 1 nq1 1 nq1 1 nq1

hence

` ` `b r y b r F 2 r f x , g x dxŽ . Ž . Ž . Ž .Ž .Hn f n g 1 1 1
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and

b r y b r F 2 r f x , g x dx .Ž . Ž . Ž . Ž .Ž .H` f ` g
XX

Ž .So it will suffice to show that b r s 0 for a dense set of functions f. If f` f

depends on only finitely many coordinates, then there is some n such that
Ž `. Ž n. Ž .f x s f x and b r s 0. Any measurable function from XX to a compact1 1 n f

metric space may be approximated uniformly by a measurable function

taking only finitely many values, and such a function may be approximated

in probability by a function depending on only finitely many coordinates. This

completes the proof. I

˜ ˜Ž . Ž .LEMMA 2.9. Let XX , F, m be a reverse filtration and XX , F, m , p an˜
Ž . Ž .extension. For any pseudometric r on XX , define r by r x, y s r p x, p y .˜ ˜ ˜ ˜ ˜ ˜

Ž . Ž .Then a r s a r .˜` `

Ž . Ž .PROOF. It will be shown, by induction on n, that r x, y s r p x, p y for˜ ˜ ˜ ˜ ˜n n

˜ ˜Ž .any x, y g XX ; here r is the sequence of metrics on XX obtained from r s r˜ ˜ ˜ ˜ ˜n 0

˜ ˜Ž .by the multistep Kantorovich]Rubinstein construction on XX , F, m . For n s˜
0, it is true by definition. Suppose that it is true for some n G 1. Then any

˜ ˜r -Lipschitz function l on XX is of the form l(p with a r -Lipschitz function lñ n

Ž .on XX . Hence see Definition 2.3

˜ ˜ ˜< <E l FF s E l FF (p .Ž .ž /nq1 nq1

It follows that

˜ ˜ ˜ ˜ ˜ ˜< < < <E l FF x y E l FF y s E l FF x y E l FF y ,Ž . Ž . Ž . Ž .Ž . Ž .˜ ˜ž / ž /nq1 nq1 nq1 nq1

where x s p x, y s p y; the supremum in l gives˜ ˜

r x , y s r x , y .Ž .Ž .˜ ˜ ˜nq1 nq1

Integration in x, y gives˜ ˜

a r s a r ;Ž . Ž .˜n n

Ž . Ž .hence a r s a r , completing the argument. I˜` `

Ž .Statement b of Theorem 2.7 follows directly from Lemmas 2.8 and 2.9.

3. Constructing the measure on sequences. Here and henceforth
� 4NX , X , . . . denote the coordinate functions on XX s 0, 1 , treated as random1 2

Ž .variables on XX , m .

� 4NThe measure m on XX s 0, 1 , mentioned in Theorem 2.6, will be de-
Ž < ` .scribed by its conditional probabilities m X s 1 X for each i s 1, 2, . . . .i iq1

We restrict ourselves to the case

1 " di`<m X s 1 X s ,Ž .i iq1
2
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Ž .where d , d , . . . are numbers in 0, 1 . Alternately,1 2

1` `<m X s 1 X s 1 q d t X ,Ž .Ž . Ž .i iq1 i i iq12

where each t is a Borel function, taking only two values "1, defined on thei

space of 0, 1-sequences.

In the next lemma, although we prove existence and uniqueness, it is

actually only the existence part which will be needed.

Ž . 2LEMMA 3.1. If d , d , . . . are in 0, 1 , and Ýd - `, then for any functions1 2 i

t , t , . . . as above there exists one and only one measure m equivalent to the1 2

Bernoulli-1r2 measure l and such that

1` `<m X s 1 X s 1 q d t XŽ .Ž . Ž .i iq1 i i iq12

almost surely for each i.

PROOF. It is more convenient to deal with the values y1, 1 instead of 0, 1.

Ž < .Let m be a measure equivalent to l. Take D s dmrdl, D s E D FF . Theni l i

Ž .D is a reverse martingale, and D ª 1 l-almost everywhere. Sincei i

D 1, X` 1 D 1, X`Ž . Ž .i iq1 i iq1`<m X s 1 X s s ,Ž .i iq1 ` ` `D y1, X q D 1, X 2 D XŽ . Ž . Ž .i iq1 i iq1 iq1 iq1

the needed equality takes the form

D x , x`Ž .i i iq1 `s 1 q d x t x ,Ž .i i i iq1`D xŽ .iq1 iq1

which is equivalent to

`
` `D x s 1 q d x t xŽ . Ž .Ž .Ł1 i i i iq1

is1

Ž .l-almost everywhere . The uniqueness of m is thus proved; a proof of its

existence follows.

Ž . Ž .Each sequence x of "1’s determines a new sequence y :i i

y s x t x` ;Ž .i i i iq1

� 4N Ž .thus a map w: XX ª XX is defined, XX s y1, 1 , w x s y. The map w is

perhaps not one-to-one, but nevertheless w sends l to l. Indeed, for any

i - ??? - i ,1 n

y ??? y d w l s x t x` ??? x t x` dlŽ .Ž . Ž . Ž .H Hi i i i i q1 i i i q11 n 1 1 1 n n n

s x = some function of x` dl s 0.Ž .H i i q11 1

The infinite product
`

1 q d yŽ .Ł i i
is1
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converges l-almost everywhere to the density dmrdl of a product measure m
Ž .equivalent to l; see Kakutani 1948 , Sections 8 and 10. Hence the infinite

product

`
`1 q d x t xŽ .Ž .Ł i i i iq1

is1

converges l-almost everywhere to the density of a measure m equivalent to

l, completing the argument. I

From now on, both in this section and the two to follow, we will always

have everywhere defined conditional probabilities: there will be no ambiguity

on sets of measure 0. Then, similarly, all pseudometrics and their correspond-

ing Kantorovich]Rubinstein sequences will be unambiguously defined every-

where. To this end, we impose the two following conditions on the measure m
� 4Non XX s 0, 1 with which we work:

1. Nondegeneracy: each cylinder set has positive measure; that is,

m X n s x n ) 0Ž .1 1

n � 4nfor all n and x g 0, 1 .1

2. Finite range dependence: for any n g N there is N g N such that X n and1

X` are conditionally independent, given X Ny 1.N nq1

These two conditions will be satisfied in the examples which will be

constructed. They could actually be eliminated from any general statement

we make, provided everything were stated with enough reservations. How-

ever, this will not be needed, so the matter will not be pursued.

We now specialize to the ‘‘block-Markov’’ case with exponentially large

blocks. That is,

` Žk . Žkq1.<dm p x xŽ .k
x s ;Ž . Ł k2dl ks0 1r2Ž .

Ž . � 4N Žk .here x s x , x , . . . g XX s 0, 1 ; for k s 0, 1, . . . we denote by x the1 2

following piece of the sequence x:

2 k
Žk . Žk .

k k kq1 � 4x s x , x , . . . , x g XX s 0, 1Ž .2 2 q1 2 y1

and each p is a Markovian transition probability from XX Žkq1. to XX Žk .:k

Žkq1. <; z g XX , p y z s 1.Ž .Ý k
Žk .ygXX

To avoid writing nested exponents we will often write n instead of 2 k. The

reader is asked to keep in mind this implicit dependence of n on k. Each pk
2 n � 4nmay be considered as a family of 2 probability measures on 0, 1 indexed

� 42 nby points of 0, 1 .
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Ž . kChoose a sequence of numbers « , « , . . . in 0, 1 . Set d s « for 2 F i -0 1 i k
kq1 Ž < .2 . For all measures m arising as one of the p ? z , we will so arrange

Ž < n .matters that the only values taken by m X s 1 X are of the formi iq1

1 " «kn<m X s 1 X sŽ .i iq1
2

everywhere for i s 1, . . . , n. Due to the block-Markov nature of m, we then

also have

1 " «k`<m X s 1 X sŽ .i iq1
2

for 2 k F i - 2 kq1. Now Lemma 3.1 may be applied, with d s « for i si k

2 k, . . . , 2 kq1 y 1: if the condition

iU 2 k« 2 - `Ž . Ý k

k

is satisfied, then the infinite product for dmrdl converges l-almost every-

where to the density of a measure m equivalent to l.

In the next two sections we will show that if the additional condition

1
Uii - `Ž . Ý k2 «kk

is satisfied, then the transition probabilities p can be so chosen thatk

Ž .furthermore XX , F, m has no standard extension.

4. The pseudometric KRn and the fundamental lemma. Reverse
Ž . � 4Nfiltrations of the form XX , F, m are again considered, where XX s 0, 1 ,

Ž .`F s FF is the sequence of s-fields corresponding to the coordinates andn ns0

m satisfies the conditions of nondegeneracy and finite range dependence

stipulated in Section 3.

Ž < ` . Ž < ` ` .We write m ? x for the conditional measure m ? X s x . If Z is anq1 nq1 nq1

measurable function from XX to some measurable space ZZ, then we write
Ž < ` . Ž < ` . Ž < ` .m Z x for the image of m ? x under Z, so m Z x is a measurenq1 nq1 nq1

� 4�nq1, nq2, . . . 4on ZZ. The quotient space XXrFF may be identified with 0, 1 ,n

the projection being x`
¬ x` . Thus, for a pseudometric r on XX , the1 nq1

Kantorovich]Rubinstein sequence is defined by r s r and, for n G 1,0

` ` ` < ` ` < `r x , y s r m X x , m X y .Ž .Ž . Ž . Ž .Ž .n nq1 nq1 ny1 n nq1 n nq1KR

n � 4n � 4nLet XX be 0, 1 , PP be the set of all probability measures on 0, 1 forn

which each point has positive measure and RR the set of functions onn
n n Ž n n. ŽŽ n . Ž n ..XX = XX of the form x , y ¬ s x , 0 , y , 1 , where s is a pseudometric1 1 1 1

on XX nq1. One easily sees that a pseudometric on XX n is in RR ; however, an

member of RR need not be a pseudometric; for example, it may not ben

symmetric in its two arguments.

Ž n < ` .Note that each m X x is in PP . If r is a pseudometric on XX and we1 nq1 n

Ž 5 ` ` . Ž n n 5 ` ` . Ž ` `.define r ?, ? x , y by r x , y x , y s r x , y , then also ev-nq1 nq1 1 1 nq1 nq1 1 1
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Ž 5 ` ` . nq1 Ž n .ery r ?, ? x , y is in RR . In fact, if we map XX into XX with x , 0 ¬nq1 nq1 n 1
` Ž n . `x and y , 1 ¬ y , then the pullback of r with respect to this map is a1 1 1

nq1 Ž 5 ` ` . ŽŽ . Ž ..pseudometric s on XX , and r ?, ? x , y is precisely s ?, 0 , ?, 1 .nq1 nq1

Furthermore, letting m and r vary, everything in PP and RR may ben n

obtained in this way.

It will also be convenient to consider XX n, PP and RR when n s 0: XX 0 isn n

� 4the set of all functions from the empty set to 0, 1 , that is, the one-point set

whose only member is the empty set; PP contains only one member, a point0
0 w .mass at the one point of XX ; and RR may be identified with 0, ` .0

We will need an alternate definition of the Kantorovich]Rubinstein metric
w Ž . Ž . xsee Kantorovich and Rubinstein 1958 or Dudley 1989 , Section 11.8 ;

Ž .namely for any measurable pseudometric s on a measurable space YY , GG

and probability measures m, n on GG,

s m , n s inf s x , y dl x , y : l g TT m , n ,Ž . Ž . Ž . Ž .HKR ½ 5
Ž .where TT m, n is the set of joinings of m with n . We remind the reader that a

joining of an ordered pair of probability measures is a measure on the

product s-field which has the original measures as marginals.

LEMMA 4.1. Given n G 0, there is a function F on PP = PP = RR so that,n n n n

Ž .for all reverse filtrations XX , F, m as above and all pseudometrics r on XX , we

have

` ` n < ` n < ` 5 ` `r x , y s F m X x , m X y , r ?, ? x , y .Ž . Ž . Ž . Ž .ž /n nq1 nq1 n 1 nq1 1 nq1 nq1 nq1

ŽThe F are, in fact, unique and continuous in the obvious sense, but thisn

.will not be needed, so the matter will not be pursued.

PROOF OF LEMMA 4.1. The argument goes by induction on n. For n s 0, it
w .is obvious: F is essentially the identity function on 0, ` .0

Suppose for some n G 1 that F exists and works for all m and r. For mny1

and n in PP and w in RR , setn n

F m , n , wŽ .n

ny1 < ny1 < 5s inf F m X x , n X y , w ?, ? x , y dl x , y ,Ž .Ž .Ž . Ž .Ž .H ny1 1 n 1 n n n n n½ 5
Ž Ž .y1 Ž .y1 .where l varies over TT m( X , n ( X . It is easy to check thatn n

Ž 5 .w ?, ? x , y is in RR by a similar argument to the one which showed thatn n ny1

Ž 5 ` ` .r ?, ? x , y is in RR . Then, using the induction hypothesis, we havenq1 nq1 n

n < ` n < ` 5 ` `F m X x , m X y , r ?, ? x , yŽ . Ž . Ž .Ž .n 1 nq1 1 nq1 nq1 nq1

s inf r x` , y` dl x , y ,Ž .Ž .H ny1 n n n n½ 5
Ž Ž < ` . Ž < ` ..where l varies over TT m X x , m X y .n nq1 n nq1
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Ž ` . ` Ž < ` . Ž ` < ` .The map x ¬ x , x s x sends m X x to m X x . Thus then n nq1 n n nq1 n nq1

Ž . Ž ` `. Ž Ž n < ` . y1 Ž n < ` . y1 .map x , y ¬ x , y sends TT m X x ( X , m X y ( X ton n n n 1 nq1 n 1 nq1 n

Ž Ž ` < ` . Ž ` < ` ..TT m X x , m X y . Then the measures l in the integral may ben nq1 n nq1

Ž Ž ` < ` . Ž ` < ` ..interpreted as measures varying over TT m X x , m X y . Undern nq1 n nq1

Ž . Ž ` ` .this interpretation the infimum is seen to be exactly r x , y ,ny1 KR nq1 nq1

Ž ` ` .which equals r x , y . In nq1 nq1

The whole construction is shift invariant in the following sense: for n G r,

` ` n < ` n < ` 5 ` `r x , y s F m X x , m X y , r ?, ? x , y ,Ž . Ž . Ž . Ž .Ž .n nq1 nq1 nyr rq1 nq1 rq1 nq1 r nq1 nq1

Ž n n 5 ` ` . Ž ` ` .where r x , y x , y s r x , y .r rq1 rq1 nq1 nq1 r rq1 rq1
n nŽ . Ž .If r depends only on a finite number of coordinates, r x, y s r x , y ,1 1

` `Ž 5 .then r ?, ? x , y s r; hencenq1 nq1

` ` n ` n `< <r x , y s F m X x , m X y , r .Ž . Ž . Ž .Ž .n nq1 nq1 n 1 nq1 1 nq1

nŽ . n nIn particular, set d x, y s 0 when x s y and 1 otherwise, and define1 1

n nKR m , n s F m , n , d .Ž . Ž .n

Then

n ` ` n n < ` n < `d x , y s KR m X x , m X y .Ž . Ž . Ž . Ž .Ž .n nq1 nq1 1 nq1 1 nq1

Ž .Now, for « in 0, 1 , we define PP ; PP to be those probability measures mn, « n

� 4n Ž < . Ž .on 0, 1 for which m X s 1 X , . . . , X s 1 " « r2 for i s 1, . . . , n.i iq1 n

FUNDAMENTAL LEMMA. There exists an absolute constant C such that, for
Ž .any « g 0, 1r2 and n s 3, 4, 5, . . . , there exists a subset MM of PP ofn, «

2 n nŽ . Ž .cardinality 2 such that KR m, n G 1 y Cr n« for any m / n in MM.

The remainder of this section will be devoted to proving Theorem 2.6 on

the basis of the fundamental lemma.

First, suppose that, for a certain n g N and some g ) 0, the pseudometric
� 4N Ž . n n Ž .r on XX s 0, 1 satisfies r x, y G g whenever x / y . Then r x, y G1 1

nŽ . Ž ` ` . Ž n. Ž ` ` .g d x, y , which implies r x , y G g d x , y ; that is,n nq1 nq1 n nq1 nq1

` ` n n < ` n < `r x , y G g KR m X x , m X y .Ž . Ž . Ž .Ž .n nq1 nq1 1 nq1 1 nq1

Ž ` ` . n nSimilarly, if r F n and r x , y G g whenever x / y , thenr rq1 rq1 rq1 rq1

` ` nyr n < ` n < `r x , y G g KR m X x , m X y .Ž . Ž . Ž .Ž .n nq1 nq1 rq1 nq1 rq1 nq1

Now we return to the block-Markov case of Section 3. When n is of the
k Ž 2 ny1 < ` . 4 ny1form 2 , k s 0, 1, . . . , we see that m X x depends only on x s1 2 n 2 n

x Žkq1.. Restricting this measure to the coordinates n, . . . , 2n y 1, we get
Ž 2 ny1 Žk . < ` . Ž Žk . < Žkq1..m X s x x s p x x .n 2 n k

If r is a pseudometric on XX depending only on finitely many coordinates,
` ` ny1 ` ny1 `Ž . Ž Ž < . Ž < . .then we have r x , y s F m X x , m X y , r for all suffi-ny1 n n ny1 1 n 1 n

k Ž Žk . Žk ..ciently large n. For n of the form 2 , this depends only on x , y , as seen
Ž ` `. 2 ny1 2 ny1in the previous paragraph. If r x , y G g whenever x / y , thenny1 n n n n

Ž ` ` . nŽ Ž 2 ny1 < ` . Ž 2 ny1 < ` .. kr x , y G g KR m X x , m X y . For n s 2 with k2 ny1 2 n 2 n n 2 n n 2 n
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Ž Žk . Žk ..large enough, this means the following. If r x , y G g wheneverny1

x Žk . / yŽk ., then

Žkq1. Žkq1. n < Žkq1. < Žkq1.r x , y G g KR p ? x , p ? y .Ž .Ž . Ž .Ž .2 ny1 k k

Ž .For k s 0, 1, . . . , choose « g 0, 1 satisfying the two conditions given atk
k 'Ž .the end of Section 3; for example, « s u with u g 1r2, 1r 2 . Then choosek

for each k s 0, 1, . . . a subset MM of PP containing 22 n members so that:k n, « k

Ž .ii for any m / n g MM ,k

C
nKR m , n G 1 y .Ž .

n«k

wThis may be done by the fundamental lemma. Note: the condition is called
Ž . Ž U .ii because of its relation to ii ; the reader should not be disturbed by the

Ž . xabsence of any condition i . Finally, make transition probabilities p byk

Ž < . Žkq1.choosing z ¬ p ? z to be any bijection from XX onto MM . Then Section 3k k

tells us how to construct a probability measure m on XX equivalent to the
Ž .Bernoulli product measure, giving a reverse filtration XX , F, m .

For any r depending on only finitely many coordinates, we have, from the

above remarks,

min r x Žkq1. , yŽkq1. : x Žkq1. / yŽkq1.� 4Ž .2 ny1

C
Žk . Žk . Žk . Žk .G 1 y ? min r x , y : x / y� 4Ž .ny1ž /n«k

for all k large enough. Take k so that0

C
1 y ) 0 for k G k .0k2 «k

Then

` C
1 y ) 0.Ł kž /2 «ksk k0

Choose r to be d2 n0y1 , n s 2 k 0. Then0

ky1 C
Žk . Žk . Žk . Žk .

kinf r x , y : x / y G 1 y� 4Ž . Ł2 lž /2 «lsk l0

Ž�Ž . Žk . Žk .4.for k G k . Now, m m m x, y : x / y ª 1 as k ª `. It follows that the0

Ž . Ž . Ž . Ž . k 0 k 0q1numbers a r s HHr x, y dm x dm y , with n s 2 y 1, 2 y 1, . . . ,n n

Ž . Ž .are bounded away from 0. So a r ) 0, and by Theorem 2.7 b the reverse`

Ž .filtration XX , F, m admits no standard extension. I
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5. Proof of the fundamental lemma. The proof will be given after

some auxiliary lemmas. Return to the ‘‘discrete’’ metric dn giving

n nKR m , n s F m , n , d .Ž . Ž .n

In the next three lemmas we describe how KRn may be estimated from below

in terms of KRny1 by working with a certain KR metric in a four-point space.

Ž n. Ž ` ` .LEMMA 5.1. If 0 F i F n, d x , y is equal toi iq1 iq1

i i < ` i < `KR m X x , m X yŽ . Ž .ž /1 iq1 1 iq1

when x n s y n , and is identically 1 otherwise.iq1 iq1

PROOF. If x n s y n then, by Lemma 4.1,iq1 iq1

n ` ` i < ` i < ` n 5 ` `d x , y s F m X x , m X y , d ?, ? x , y .Ž . Ž . Ž .Ž . Ž .Ž .i iq1 iq1 i 1 iq1 1 iq1 iq1 iq1

n ` ` i n nŽ 5 .Since d ?, ? x , y s d when x s y , this equalsiq1 iq1 iq1 iq1

i ` i ` i i i ` i `< < < <F m X x , m X y , d s KR m X x , m X y .Ž . Ž . Ž . Ž .Ž .Ž .i 1 iq1 1 iq1 1 iq1 1 iq1

The case x n / y n is proved by a finite induction on i. For i s 0 theiq1 iq1

claim is true by definition. So assume that n G i G 1 and that the assertion is

true for i y 1.
n ` Ž n. Ž ` ` .Because we are in the case x / y , we have d x , y s1q1 iq1 i iq1 iq1

ŽŽ n. . Ž Ž ` < ` . Ž ` < ` ..d m X x , m X y . Any joining l of the two measures iniy1 KR i iq1 i iq1

Ž . Ž ` ` .the argument is supported on points x, y with tail x , y . Sinceiq1 iq1
n n n n Ž n.x / y , also x / y , by the induction hypothesis the values of d iniq1 iq1 i i iy1

the support of l are all 1, and the integral obtained using any such l is

therefore also 1. I

Ž ` ` .The values r x , y may be calculated within the four-point struc-n nq1 nq1

� 4 � ` 4 � 4 � ` 4ture formed by the two-point sets 0, 1 = x and 0, 1 = y equippednq1 nq1

with measures m, n and a pseudometric r, the first measure m s
Ž ` < ` . Ž < ` . Ž ` .m X x s m X x = d x supported on the first two-point set, then nq1 n nq1 nq1

` ` ` `Ž < . Ž < . Ž .second one n s m X y s m X y = d y on the second set. r isn nq1 n nq1 nq1

defined on the product of these two-point sets to be the appropriate restric-
` ` ` `ŽŽ . Ž .. Ž .tion of r ; that is, r x , x , y , y s r x , y . Actually, onlyny1 n nq1 n nq1 ny1 n n

the restriction of r to certain pairs of points is needed, but this need not
` `Ž .concern us. Notice that r x , y is the infimum of Hr dl over alln nq1 nq1

Ž .joinings l of m with n , which is exactly r m, n .KR

Let us simplify the notation:

a s 0, x` , c s 0, y` ,Ž . Ž .nq1 nq1

b s 1, x` , d s 1, y` ;Ž . Ž .nq1 nq1

` `< <� 4 � 4m a s m X s 0 x , n c s m X s 0 y ,Ž . Ž .n nq1 n nq1

` `< <� 4 � 4m b s m X s 1 x , n d s m X s 1 y ,Ž . Ž .n nq1 n nq1

` `r a, c s r a, c s r 0, x , 0, y ,Ž . Ž . Ž . Ž .Ž .ny1 ny1 nq1 nq1

Ž . Ž . Ž .and similarly for r a, d , r b, c and r b, d .
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Suppose, in addition, that r s d N for some N G n. Then Lemma 5.1 gives

` ` n n < ` n < `r x , y s KR m X x , m X y ,Ž . Ž . Ž .Ž .n nq1 nq1 1 nq1 1 nq1

ny1 ny1 ` ny1 `< <r a, c s KR m X 0, x , m X 0, y ,Ž . Ž . Ž .Ž .1 nq1 1 nq1

ny1 ny1 ` ny1 `< <r b , d s KR m X 1, x , m X 1, y ,Ž . Ž . Ž .Ž .1 nq1 1 nq1

r a, d s 1, r b , c s 1.Ž . Ž .

A recurrence relation for KRn, implicit in the above considerations, will

become explicit in the following lemma, after carrying out a ‘‘four-point’’

computation.

LEMMA 5.2. Let each of two probability measures m, n be concentrated on
� 4 � 4a two-point set, m on a, b and n on c, d , in a space with metric r. Suppose

that

r a, c F 1, r b , d F 1,Ž . Ž .

r a, d s 1, r b , c s 1.Ž . Ž .
Then

� 4 � 41 y r m , n F 1 y r a, c min m a , n cŽ .Ž . Ž . Ž .KR

� 4 � 4q 1 y r b , d min m b , n d .Ž .Ž . Ž .

Ž .In fact, equality holds, but we do not need it here.

PROOF OF LEMMA 5.2. Without loss of generality, we may suppose that
� 4 � 4 � 4 � 4 � 4m a G n c ; then m b F n d . Take a function l: a, b, c, d ª R such that

l c y l a s r a, c ,Ž . Ž . Ž .

l d y l b s r b , d ,Ž . Ž . Ž .

l d y l a s r a, d s 1.Ž . Ž . Ž .

< Ž . Ž . < < Ž . Ž . <This l is a Lipschitz function. Indeed, l a y l b s r a, d y r b, d F
Ž . < Ž . Ž . < < Ž . Ž . Ž . <r a, b ; the same for c, d; and l b y l c s r a, c q r b, d y r a, d F
Ž .r b, c . Hence

1 y r m , nŽ .KR

F 1 y l dn y l dmH Hž /
� 4 � 4 � 4 � 4s 1 q l a 1 y m b q l b m b y l c n c y l d 1 y n cŽ . Ž . Ž . Ž .Ž . Ž .

� 4 � 4s 1 q l a y l d q l b y l a m b q l d y l c n c .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

Ž . Ž .Taking into account that l d y l a s 1, we obtain

� 4 � 41 y r m , n F 1 q l b y l d m b q 1 q l a y l c n cŽ . Ž . Ž . Ž .Ž . Ž . Ž .KR

� 4 � 4s 1 y r b , d m b q 1 y r a, c n c ,Ž . Ž .Ž . Ž .

which completes the proof. I
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Ž ny1 < .For m g PP write m for the conditional measure m X X s x , andn, « x 1 n

Ž . Ž . Ž Ž . . Ž .define t m by the equation m X s 1 s 1 q t m « r2. Note that t mn

plays a similar role to that of the t in the beginning of Section 3.i

PROPOSITION 5.3. For every m and n in PPn, «

1 y KRn m , n F 1 y KRny1 m , n = 1 y « max t m , t n r2� 4Ž . Ž . Ž . Ž .Ž .Ž .0 0

q 1 y KRny1 m , n = 1 q « min t m , t n r2.� 4Ž . Ž . Ž .Ž .Ž .1 1

LEMMA 5.4. Define

1
nF l, « s exp l 1 y KR m , nŽ . Ž .Ž .Ž .Ýn 2< <PP m , ngPPn , « n , «

for l G 0. Then

1 y « 1 1 y « 1 q «
F l, « F F l, « = F l, « q F l, « .Ž .n ny1 ny1 ny1ž / ž / ž /ž /2 2 2 2

Ž .In fact, equality holds, but we do not need it here.

PROOF OF LEMMA 5.4. If M and N are independent random variables,

each taking on all values in PP with equal probability, then the expressionn, «

Ž Ž Ž nŽ .... Ž .to be estimated is precisely E exp l 1 y KR M, N . Recalling t m of
Ž . Ž .Corollary 5.3, we then get independent random variables t M and t N .

Because of the uniformity of the distributions of M and N, the random
Ž . Ž .variables t M and t N take on "1 with equal probability. Also, recalling

m and m of Corollary 5.3, we get independent random variables0 1

M , M , N , N taking on all values in PP with equal probability; these0 1 0 1 ny1, «

� 4nvalues are just the values of M and N conditioned by the event in 0, 1

described by X s 0 or X s 1, as indicated by the subscript. Then Corollaryn n

5.3 gives

1yKRn M , N F 1yKRny1 M , N = 1y« max t M , t N r2� 4Ž . Ž . Ž . Ž .Ž .Ž .0 0

q 1 y KRny1 M , N = 1q« min t M , t N r2.� 4Ž . Ž . Ž .Ž .Ž .1 1

Ž . Ž .Average, using independence. First condition on t M s t N s 1, getting:

n
E exp l 1 y KR M , N t M s t N s q1Ž . Ž . Ž .Ž .Ž .Ž .

l 1 y «Ž .
ny1F E exp 1 y KR M , NŽ .Ž .0 0ž 2

l 1 q «Ž .
ny1q 1 y KR M , NŽ .Ž .1 1 /2

1 y « 1 q «
s F l, « = F l, « .ny1 ny1ž / ž /2 2
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Ž . Ž .Similar reasoning holds for t M s t N s y1. The two other cases give
2 ŽwŽ . x .F 1 y « r2 l, « , completing the argument. Iny1

LEMMA 5.5. The function F introduced in Lemma 5.4 satisfies the in-n

equality

n«
F l, « F exp 1 y lŽ .n ž /ž /3

y1Ž .ynq1for 0 F l F « 1 y «r3 and 0 - « F 1r2.

Ž . lPROOF. It is natural to put F l, « s e ; then Lemma 5.4 holds also for0

n s 1, and we may prove our inequality by induction, the case n s 0 being

trivial. Due to Lemma 5.4, it suffices to check that

ny1« 1 y «
exp 1 y lž /ž /3 2

ny1 ny11 « 1 y « « 1 q «
= exp 1 y l q exp 1 y lž / ž /ž / ž /ž /2 3 2 3 2

n«
F exp 1 y lž /ž /3

y1Ž .ynq1for n s 1, 2, . . . , 0 F l F « 1 y «r3 and 0 - « F 1r2; the require-

ment

Ž .y ny1 q11 " « «
y1l F « 1 yž /2 3

Ž .is fulfilled, since 1 q « r2 F 1 y «r3. Simplify the inequality:

ny1 ny11 « 2« 1 « «
exp y 1 y = l q exp 1 y = l F 1.ž / ž /ž / ž /2 3 3 2 3 3

The left-hand side is convex in l; hence it suffices to check the inequality for
y1Ž .ynq1l s 0 and l s « 1 y «r3 . The former case is trivial. The latter re-

1 2 1 1Ž . Ž .duces to checking whether exp y q exp F 1. This is indeed the case,2 3 2 3

which completes the proof. I

PROOF OF FUNDAMENTAL LEMMA. Let L s 22 n and M Ž1., . . . , M ŽL. be inde-

pendent uniformly distributed random variables taking on all values in PPn, «

with equal probability. Denote by q the probability of violating the inequality
nŽ Ž i. Ž j.. Ž .KR M , M G 1 y Cr n« at least for one pair i / j. Lemma 5.5 gives

nL L y 1 F l, « « CŽ . Ž .n 4 nq F = F 2 exp 1 y l y l ? .ž /ž /2 exp l = Crn« 3 n«Ž .
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y1Ž .ynq1Take the maximal l, that is, l s « 1 y «r3 . Then

ynq11 « C «
log qF4n log 2 q 1 y y 1 y

2ž / ž /« 3 3n«

ynq1C 1 « 1 « 4 log 2
sy 1 y y 1 y y n«ž / ž /ž /« n« 3 C 3 C

C 1 « n« 1 « 4 log 2
Fy 1 y exp y 1 y y n«ž / ž / ž /ž /« n« 3 3 C 3 C

C 1 n« « 1 n« «
sy ? exp ? 1 y y n« exp y 1 y q4 log 2 ? n« .ž / ž / ž /ž /« n« 3 3 C 3 3

If we choose the absolute constant C large enough, then the last term is

always greater than or equal to 1r2 ) « , so:

1 n«
log q F yC ? exp .ž /n« 3

Ž Ž1. ŽL..When C is large enough we have q - 1, so that some value m , . . . , m of
Ž Ž1. ŽL..M , . . . , M will provide the needed set MM for the nontrivial case when

Ž . w nŽ . Ž .Cr n« - 1 the inequality KR m , m G 1 y Cr n« also ensures that alli j

x Ž .m are pairwise different . For the trivial case when Cr n« G 1, it suffices toi

< < 2 nnote that PP G 2 s L for n G 3. So the fundamental lemma is proved. In, «

REMARK. For each k s 0, 1, . . . let n s 2 k and let a subset MM of cardinal-k

ity 22 n be chosen randomly from PP and independently for different k. Asn, « k

seen in the proof of the fundamental lemma, for each k the number q s q ,k

the probability that MM violates the KRn condition of that lemma, satisfiesk

the inequality

1 2 k«k
log q F yC ? exp .k k ž /32 «k

Ž k .y1Since we have assumed Ý 2 « - `, it follows that Ý q - `. Thus, withk k k k

probability 1, MM satisfies the KRn condition of the fundamental lemma fork

all sufficiently large k. Then, if the transition probabilities p are chosen tok

Ž < . � 4nbe arbitrary one-to-one maps z ¬ p ? z , 0, 1 ª MM and m is the corre-k k

Ž .sponding measure on XX , the reverse filtration XX , F, m has no standard

extension.

6. Discussion of a statement of Skorokhod. The purpose of this

section is to give a plausible precise interpretation of Theorem 7 of Skorokhod
Ž .1986 , alluded to in the introduction, and to show that this interpretation is

contradicted by our results.
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Skorokhod’s statement proposes an exhaustive constructive description of
w Ž . xfiltrations i.e., increasing families FF of s-fields FF ; FF on probabilityt t G 0 t

Ž .spaces V, FF, P , provided the following condition holds:

Ž . Ž . Ž .S For any FF -adapted square integrable martingale X on V, FF, P ,1 t t G 0

Ž² : . wthe process X the dual previsible projection of the quadratic varia-t t G 0

Žw x . Ž . Ž .tion X ; see Rogers and Williams 1987 , page 377, or Protter 1990 ,t t G 0

xpage 98 is almost surely absolutely continuous in t.

The constructive description is given in terms of Wiener and Poisson

processes. Since we are not interested in the Poisson component, we restrict

ourselves to filtrations satisfying one more condition:

Ž . Ž . Ž .S Every FF -adapted square integrable martingale X on V, FF, P2 t t G 0

Ž ² : w x .has a modification which is almost surely continuous in t. So X s X .t t

As usual, the constructive description in terms of auxiliary Brownian

motions requires an extension of the probability space; as seen in Section 2,

this has an analog for reverse filtrations, which was used there. The notion of
Ž .filtrations may be found in Getoor and Sharpe 1972 under the name

wŽ . x‘‘lifting,’’ or in Ikeda and Watanabe 1989 , Chapter 2, Definition 7.1 .

Skorokhod does not explicitly mention extensions, but we believe that their

use must have been intended, for otherwise his Theorem 7 would be false for

trivial reasons. Extensions for filtrations are defined as follows.

Ž .DEFINITION 6.1. Let V, FF, P be a probability space equipped with a
Ž . Ž Ž . .filtration FF . An extension of V, FF, P, FF consists of another proba-t G 0t t t G 0

˜ ˜ ˜ ˜Ž . Ž .bility space V, FF, P equipped with a filtration FF and a measure-pre-t t G 0

˜ y1 ˜serving map p : V ª V so that p FF ; FF for each t, and the equalityt t

˜ ˜< <E X (p FF s E X FF (pŽ .Ž .t t

holds almost everywhere for any bounded measurable function X: V ª R.

Ž . Ž . Ž . Ž .Given V, FF, P and FF satisfying S and S , we define a Sko-t t G 0 1 2

Ž . Ž . Ž .rokhod representation for FF as the following objects a ] c satisfyingt t G 0

Ž .condition d :

˜ ˜ ˜ ˜Ž . Ž Ž . . Ž Ž . .a an extension V, FF, P, FF , p of V, FF, P, FF ;t t G 0 t t G 0

˜Ž . Ž . Ž .b a sequence w of independent FF -Brownian motion processesi is1, 2, . . . t

˜ ˜ ˜Ž . won V, FF, P , The independence of w was not explicitly assumed in Sko-i

Ž . xrokhod 1986 , but here again we believe that it must have been intended.
˜Ž . Ž .where as usual, w t y w s is supposed to be independent of FF wheni i s

s - t;
˜ ˜ ˜Ž . Ž . Ž .c a random process r on V, FF, P , predictable with respect tot t G 0

˜Ž . � 4 wFF with values in 0, 1, 2, . . . , q` . An even stronger predictability condi-t t G 0

Ž . Ž y1 .tion, with respect to w or even with respect to p FF , seems toi is1, 2, . . . t t G 0

Ž . xbe imposed in Skorokhod 1986 .
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Ž . y1d For any t G 0, the s-field p FF coincides mod 0 with the s-fieldt

� Ž . 4generated by u s : 0 F s F t, i s 1, 2, . . . , wherei

t
u t s I s dw s ,Ž . Ž . Ž .Hi i i

0

1, when i F r s ,Ž .
I s sŽ .i ½ 0, otherwise.

The relevant consequence of our interpretation of Theorem 7 of Skorokhod
Ž .1986 may now be formulated as follows:

A Skorokhod representation exists for any filtration which satisfies
Ž . Ž .conditions S and S .1 2

But this is simply not the case. In the remaining discussion we will show that

it is contradicted by our negative solution to Problem 1 of the Introduction.

Specifically, let Q be the measure equivalent to P constructed in the discus-
Ž Ž . . Ž .sion after Theorem 2.6. We will show that V, FF, Q, FF satisfies S andt t G 0 1

Ž .S but admits no Skorokhod representation.2

wAny local P-martingale i.e., local martingale on the filtered probability
Ž Ž . .x Ž .space V, FF, P, FF is continuous, by Revuz and Yor 1991 , Theorem 3.4,t t G 0

Ž . Ž .page 187. There exists a continuous positive P-martingale D such thatt t G 0

D exists and is equal to the Radon-Nikodym derivative dQrdP. In fact`

1t t
2D s exp F s dB s y F s ds ,Ž . Ž . Ž .H Ht ž /20 0

wbut this will play no role here. The two measures P and Q or rather filtered
Ž Ž . . Ž Ž . .xprobability spaces V, FF, P, FF and V, FF, Q, FF form a Girsanovt t G 0 t t G 0

Ž .pair, as defined in Revuz and Yor 1991 , Definition 1.8, page 305. Hence the
wclass of continuous semimartingales is the same for P and Q Revuz and Yor

Ž . x ² :1991 , page 305 , and the notions of quadratic variation X and quadratict

² :covariation X, Y for such semimartingales are the same for P and Qt

w Ž . xRevuz and Yor 1991 , page 302 , where a continuous semimartingale is

defined as a sum of a continuous local martingale and a continuous adapted
Ž . w Ž .process of locally finite variation Revuz and Yor 1991 , Definition 1.17,

xpage 121 .

Ž .An adapted process X is a local Q-martingale if and only if thet t G 0

Ž . w Ž .process X D is a local P-martingale Protter 1990 , the lemma on paget t t G 0

x Ž .109 . Hence any local Q-martingale is continuous, too. Thus condition S2

Ž .holds for Q. Condition S holds for Q, since it holds for P by the representa-1

w Ž . xtion theorem Revuz and Yor 1991 , Theorem 3.4, page 187 .

The same representation theorem ensures that the following statement
Ž .holds for P and hence for Q : for any two continuous semimartingales
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X , X the determinant1 2

d d
² : ² :X X , Xt t1 1 2

dt dt
det

d d
² : ² :X , X Xt t2 1 2

dt dt

Ž .vanishes almost everywhere in t, almost surely . Indeed, for i s 1, 2 we have
Ž . Ž .² :X s HC dB q a finite variation process , which implies drdt X , X sti i i j

Ž . Ž .C t C t .i j

Ž Ž . .Suppose V, FF, Q, FF admitted a Skorokhod representation. Extensiont t G 0

of the probability space as in Definition 6.1 preserves the notions of martin-
Ž . wgale, continuous semimartingale and quadratic co- variation Ikeda and

Ž . x Ž .Watanabe 1989 , page 89 . That is, if X is a continuous semimartingalet t G 0

Ž Ž . . Ž .on V, FF, Q, FF , then X (p is a continuous semimartingale ont t G 0 t t G 0

˜ ˜ ˜ ˜Ž Ž . . ² : ² :V, FF, Q, FF , and X (p s X (p . On the other hand, a processt tt t G 0

˜ ˜ ˜ ˜ ˜Ž . Ž Ž . .X on V, FF, Q, FF is of the form X (p if and only if it is adapted tot t G 0 t t G 0

Ž y1 .p FF . Hence the above statement about the determinant holds for allt t G 0
y1 ˜ ˜ ˜ ˜Ž . Ž Ž . .p FF -adapted continuous semimartingales on V, FF, Q, FF . There-t t G 0 t t G 0

Ž .fore the Skorokhod rank r F 1 almost everywhere in t, almost surely . Butt

Ž y1 .r could not vanish, since there exists a continuous p FF -adapted semi-t t t G 0

˜ ˜ ˜ ˜Ž Ž . . Ž .² :martingale X on V, FF, Q, FF such that drdt X does not vanishtt t G 0

Žthis follows from the corresponding fact for Q, which follows in turn from the
.same for P, the latter being evident .

Ž y1 .So r s 1. This means that p FF is generated by a single Browniant t t G 0

˜ ˜ ˜ ˜ y1Ž Ž . . Ž .motion w on V, FF, Q, FF . Being adapted to p FF , this w is of the˜ ˜t t G 0 t t G 0

Ž Ž . .form w s w(p for some adapted process w on V, FF, Q, FF . Then w˜ t t G 0

Ž . y1 Ž . y1generates s-fields GG w such that p GG w coincides mod 0 with p FF ;t t t

Ž .hence GG w coincides mod 0 with FF . Finally, the finite-dimensional distribu-t t

tions of w coincide with those of w; hence w is a Brownian motion on˜
Ž Ž . . Ž .V, FF, Q, FF generating FF , contradicting the choice of Q.t t G 0 t t G 0
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