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SPECTRAL CRITERIA, SLLN’S AND A.S. CONVERGENCE

OF SERIES OF STATIONARY VARIABLES1

BY C. HOUDRE AND M. T. LACEY´

Georgia Institute of Technology and Indiana University

It is shown here how to extend the spectral characterization of the

strong law of large numbers for weakly stationary processes to certain
� 34singular averages. For instance, letting X , t g R be a weakly station-t

� 4 Ž .ary field, X satisfies the usual SLLN by averaging over balls if andt

� 4only if the averages of X over spheres of increasing radii converget

pointwise. The same result in two dimensions is false. This spectral

approach also provides a necessary and sufficient condition for the a.s.

convergence of some series of stationary variables.

w x1. Main results. Gaposhkin 4 has provided a striking characterization

of the strong law of large numbers for weakly stationary random variables in

terms of the behavior of the associated random spectral measure. This result,
w xas well as a companion due to Jajte 9 , forms the motivation for the current

paper. In this paper we study extensions of these results to a variety of

averaging methods which are more singular than the classical method of

averaging over balls. For instance, we shall show that for a weakly stationary
� 4 3sequence X , indexed by t g R , the usual strong law of large numbers,t

formed by averaging over balls, holds if and only if the same convergence
� 4holds for averages of X over increasing spheres. The restriction to dimen-t

sion 3 or higher is sharp.

The necessary notation is now introduced. We formulate our theorems in

the continuous context. All theorems have analogous forms valid in the

discrete setting, but they require a bit more effort to formulate and prove.

Ž .Let V, BB, PP be a probability space, let EE denote expectation with respect
� 4 2Ž .dto PP and let X s X ; L PP be a mean square continuous, zero-mean,t t g R

Žweakly stationary sequence more precisely, a zero-mean, homogeneous ran-
d .dom field indexed by R . The role of dimension d will be of interest below.

Then X has a spectral representation

X s e i t?lZ dl ,Ž .Ht
dR
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d Ž d . 2Ž .where t ? l s Ý t l , where Z: BB R ª L PP is a s-additive and orthogo-js1 j j
d Ž d .nally scattered measure on the Borel s-algebra of R ; that is, if A, B g BB R

Ž .are disjoint, then EEZ A Z B s 0. Then weak stationarity is equivalent toŽ .
d � Ž .EE X X s EE X X for t, s g R , and the covariance sequence R t s EE X X :t s tys 0 t 0

d4t g R itself has a spectral representation

R t s e i t?l m dlŽ . Ž .H
dR

Ž d . Ž .for a unique positive finite Borel measure m on BB R , given via m A s
< Ž . <2 Ž d .EE Z A , A g BB R . The measures m and Z are respectively called the

spectrum and the random spectrum of the sequence X.

w xGaposhkin’s 4 characterization concerns the usual averages

B s c tyd X ds, t ) 0,Ht d s
< <s Ft

< <where c is a normalization constant and ? is the Euclidean norm. Ind

particular,

� 4B ª Z 0 a.s. as t ª `Ž .t

if and only if

< < yk � 4� 4Z l: l F 2 ª Z 0 a.s. as k ª `, k g Z.Ž .Ž .

Notice that the second condition involves only the behavior of the spectral

measure along a thin sequence of sets.

If either of these conditions holds for X, we say that the strong law of large

numbers holds, and we write X g SLLN. Gaposhkin includes many related

results in his paper; besides discussing the discrete case, he also discusses

the case in which one forms the averages over sequences of increasing sets.

w xAlso, Jajte 9 , which we mentioned above, considers the case of the discrete

form of the Hilbert transform. We will consider continuous, multidimensional

singular integrals below.

As mentioned above, we are interested in other averages, in particular,

averages with respect to singular measures, such as averages over spheres, in

dimension 2 or higher. In Rd, let S r denote the d y 1-dimensional sphere ofd

radius r, and let s r be the unique rotationally invariant normalized mea-d
r Ž .sure on S when r s 1, we just write S and s . Setd d d

A s X s t ds s X s ds .Ž . Ž .H Ht s d ts d
tS Sd d

If the map t ª X is a.s. measurable with respect to the Borel s-field in t,t

then A will be a random variable. This is not obvious, but is a consequencet

of the study of the spherical means. See the discussion at the beginning of
w x15 .

We prove in high dimensions that the formally weaker notion of conver-

gence of averages over spheres is equivalent to convergence of averages over

balls.
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Ž� 4.THEOREM 1.1. If d G 3, then A ª Z 0 a.s. if and only if X g SLLN.t

The restriction on dimension is sharp. In particular, in two dimensions, the

a.s. convergence of the averages A can fail for strictly stationary sequencest

w xX. This was pointed out by Stein 14 , but also see the elaboration by Jones
w x10 . On the other hand, the strong law of large numbers does hold for strictly

stationary sequences X with finite pth moment, where p must be strictly
w xgreater than 2; see 12 .

Also, the corresponding result for averages over the surface of cubes is not

true. Indeed, in two dimensions, consider the following convolution problem.

If C denotes the square and n the unit arc length measure on C, one sees

that the supremum

sup f x y ty n dyŽ . Ž .H
Ct

can be infinite a.e. even if f is taken to be a bounded function. Indeed, just

make f infinite on a single vertical line in the plane. Such examples, which

hold in all dimensions, can be transferred to strictly stationary sequences. In

short, the interesting feature of the spherical means is that positive results

are available, due to the curvature of the sphere.

One can obtain a sharp range of results in all dimensions by considering

certain generalizations of Cesaro averages, and in doing this we follow the`
w xlead of Stein and Wainger 15 . The averages below are defined initially only

for a ) 0:

ds
ydC s c t X ,Ha , t a , d s y1qa2 2< <s Ft < <1 y s rtŽ .

where c is a normalization constant. They are then extended to thea , d

Ž w x.complex plane by analytic continuation see 15 . In that instance, we recover

the spherical averages when a s 0. The C admit the representationa , t

Ž . Ž .dH m tl Z dl , withR a

ay1qd r2 < <1yayd r2 < <1.1 m l s 2 G a q dr2 l J l ,Ž . Ž . Ž . Ž .a ay1qd r2

Ž .where J is the nth-order Bessel function. Moreover, if Re a ) dr2 and ifn

Ž X. Ž .XC converges, then so does C , for Re a ) Re a .a , t a , t

We have the following motivations for considering the above averages: as

already mentioned, a sharp range of results in all dimensions can then be

obtained. Also, for certain a , the m give rise to the fundamental solution ofa

the wave equation.

Ž .THEOREM 1.2. In any dimension d, if Re a ) 1 y dr2, then

� 4C ª Z 0 a.s. as t ª `Ž .a , t

if and only if X g SLLN. In particular, for d G 3, we recover the previous

theorem.
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Ž .In one dimension, the condition Re a ) 1r2 is sharp. Indeed, Gaposhkin
w x5 has already shown that, for d s 1, the theorem above can fail, for

a s 1r2, in the weakly stationary case. In the strictly stationary case,

however, the C means converge a.s., yet the maximal function in t is not1r2, t

w xsquare integrable, but only weakly square integrable; see 2 . We remark that

the techniques employed in the present paper implicitly prove the square

integrability of the maximal function, and so they cannot be used in this

delicate case.

We also note that the convergence of the spherical averages trivially

implies the convergence of the Cesaro averages, for a ) 0.`
w xNext, we turn to a result suggested by Jajte 9 . He applied Gaposhkin’s

approach to the discrete Hilbert transform. We treat the continuous multidi-

mensional case as follows. First, let k denote a Calderon]Zygmund kernel on´
Rd. Such kernels can be defined in many ways. For specificity, we will require

that the kernel satisfy the following size and smoothness conditions. Let k be

a kernel on Rd, for which the following hold:

1.2 k ry s dy s 0 for all 0 - r - `Ž . Ž . Ž .H
Sd

Ž .in one dimension this means that the kernel must be odd ;

C
1.3 k y F ;Ž . Ž . d< <y

< < < <and for some d ) 1r2 and all 2 y F x ,

< <dy
1.4 k x y y y k x F C .Ž . Ž . Ž . dqd< <x y y

Ž .Typically, one only requires that d ) 0 in inequalities such as 1.4 .

For such kernels we consider the truncations

T s k y X dy, t G 1.Ž .Ht y
< <1rtF y Ft

THEOREM 1.3. With the notation above,

lim T exists a.s.t
tª`

if and only if

ˆlim k l Z dl s 0 a.s.,Ž . Ž .H
jªq` M j

jgZ

ˆ yj j� < < < < 4where k is the Fourier transform of k and M s l: 0 - l - 2 or l ) 2 .j

There is also an interesting equivalence between the strong law of large

numbers and the pointwise convergence of singular integrals. This was noted
w xby Jajte 9 , and we give an extension of his observation here.
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� t d4For 1 F i F d, let U : t g R be a continuous group of unitary operatorsi
2Ž . Ž .on L V, BB, PP , where V, BB, PP is a probability space. Suppose that the

operators in the different groups commute with one another. Set

U t s U t1 ??? U td for t s t , . . . , t g Rd .Ž .1 d 1 d

2Ž . 2For f g L V , we will consider the following limits, which exist in L :

y1d sAf v s lim c t U f v ds,Ž . Ž .Ž . Hd
tª` < <s Ft

where c is the volume of the d-dimensional unit ball. Also consider thed

following singular integrals:

sisR f v s lim U f v ds, 1 F i F d.Ž . Ž .Hi dq1< <tª` < < ss Ft

In the integral, s is the ith coordinate of the d-dimensional vector s. Thisi

makes R the ith Riesz transform. Note that in this definition we integratei

over s in a compact region of Rd, in analogy to the manner in which the

averages are formed.

THEOREM 1.4. The following are equivalent:

Ž . Ž . 2Ž .a The limit Af v exists a.s. for all f g L V .

Ž . Ž . Ž . Ž .b For some for all 1 F i F d, the limit s , R f v exists a.s. for alli
2Ž .f g L V .

Ž .Moreover, the existence of the limit Af v , for f fixed, is equivalent to the

variety of conditions in Theorem 1.2.

Proofs of these theorems occupy the two subsequent sections. The final

section contains some additional remarks on the theorems.

2. A lemma. The examples we treat are unified under the notation

M s m l Z dl ,Ž . Ž .Ht t
dR

Ž .where the multipliers m l are appropriately chosen, that is, for the spheri-t

Ž . Ž .cal averages, m l is s tl , and where d G 1.ˆt

Ž .Let us impose the following assumptions on the functions m l :t

2.1 m l F C for all t and l.Ž . Ž .t

For some b ) 1r2, for all tr2 - s - t - ` and all l,
bt y s

2.2 m l y m l F C ,Ž . Ž . Ž .t s ž /t

b
< <2.3 m l y m l F C t y s lŽ . Ž . Ž . Ž .Ž .t s

and

C
< <2.4 m l y m l F , l ) 0.Ž . Ž . Ž .t s b< <t lŽ .
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Notice that these inequalities weaken as b decreases; thus the exponents can

be different in each of the last three lines, as long as they are strictly larger
Ž .than 1r2. Notice also that in the previous theorems condition 2.1 implies

L2-convergence.

With these inequalities, we can reduce the question of convergence of Mt

to the convergence along a lacunary set of t. The lemma below is directly

inspired by Gaposhkin’s approach, and the proof uses the classical binary

decomposition technique.

LEMMA 2.1. Under the assumptions above,

`
2< <l2.5 EE sup M y M - `.Ž . Ý t 2

l lq1lsy` 2 -tF2

Ž . lAnd, in particular, M converges a.s. as t ª ` or t ª 0 if and only if Mt 2

Ž .converges a.s. as l ª ` or l ª y` .

The most important special case of this lemma occurs with the functions
Ž . Ž .m l being m tl for a fixed function m. In this instance, Lemma 2.1 can bet

simplified as follows.

LEMMA 2.2. Let m: Rd
ª R be a bounded continuous function which, for

some a ) 1r2, is Lipschitz of order a near the origin. Away from the origin,

suppose that for j G 1 we can write

yg j j < < jq12.6 m l s 2 n l , 2 F l - 2 , g ) 0,Ž . Ž . Ž .j

where, for some d g R,

5 5 jd2.7 n F C2 .Ž . LipŽa.j

Ž . Ž . Ž .dIf g ) d q 1r2, then 2.5 holds with M s H m tl Z dl .t R

PROOF OF LEMMA 2.1. Following Gaposhkin, the classical technique of

dyadic decomposition is used. Fix an integer l. We bound

< <2lEE sup M y Mt 2
l lq12 -tF2

by an appropriate integral against the spectral measure m. Write 2 l - t F 2 lq1

as

`
l yut s 2 1 q « 2Ý už /

us0

� 4 l lq1for « g 0, 1 . Every 2 - t F 2 can be written in this way. Further, givenu

Ž . � 4u lŽ u yv.« , . . . , « g 0, 1 , set a s 2 1 q Ý « 2 .1 u u vs0 v
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To make the next step clear, in the expectation above, replace the supre-
Ž . w l lq1.mum by a stopping time t v : v ª 2 , 2 . Write

`
l yut v s 2 1 q « v 2 .Ž . Ž .Ý už /

us0

Then, for an appropriate stopping time,

2 2< < < <l lEE sup M y M F 2 EE M y Mt 2 tŽv . 2
l lq12 -tF2

2`

F 2 EE M y MŽ .Ý t Žv . t Žv .u uy1

us0

Ž Ž . lŽ u Ž . yv . l .where t v s 2 1 q Ý « v 2 and t s 2u vs0 v y1

2`
y1

s 2 EE u q 1 u q 1 M y MŽ . Ž . Ž .Ý t Žv . t Žv .u uy1

us0

`
22

F C u q 1 EE M y MŽ .Ý t Žv . t Žv .u uy1

us0

Ž .by the Cauchy]Schwarz inequality in u

`
2 2u < <2.8 F C u q 1 2 max EE M y M .Ž . Ž .Ý a au uy1uŽ . � 4« , . . . , « g 0, 11 uus0

This last expectation is

22< <2.9 EE M y M s m l y m l m dl .Ž . Ž . Ž . Ž .Ha a a au uy1 u uy1dR

The integral against the spectral measure m is estimated in three distinct
� < < yl 4 Ž .ways. In the first instance, set R s l: l F 2 . Then, by 2.3 ,1, l

2 2 b 2 b< < < <m l y m l m dl F C a y a l m dl .Ž . Ž . Ž . Ž .H Ha a u uy1u uy1
R R1, l 1, l

Now, a and a are 2 l times numbers which disagree in the uth place ofu uy1

< < lyutheir dyadic expansions. Hence a y a F 2 , and let us further denoteu uy1

� yry1 < < yr 4the annuli A s l: 2 F l F 2 . Then continue the estimate above asr

`
2 2 b Ž lyu. y2 rb2.10 m l y m l m dl F C2 2 m A .Ž . Ž . Ž . Ž . Ž .ÝH a a ru uy1

R1, l rsl

Ž . � 4uThis estimate is independent of the choice of « , . . . , « g 0, 1 , as the two1 u

subsequent estimates will be.
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� yl < < ylqu4In the second instance, set R s l: 2 - l F 2 . Use the estimate2, l

Ž .2.2 to get

2 ba y a2 u uy1
m l y m l m dl F C m dlŽ . Ž . Ž . Ž .H Ha au uy1 ž /aR Ru2, l 2, l

2 blyu2
F C m dlŽ .Hlž /2 R2, l

2.11Ž .

lq1
y2 b uF C2 m A .Ž .Ý r

rslyu

� < < ylqu4In the third and final instance, set R s l: l ) 2 . Use the esti-3, l

Ž .mate 2.4 to get

C m dlŽ .2
m l y m l m dl FŽ . Ž . Ž .H Ha a 2 b 2 bu uy1 a < <lR Ru3, l 3, l

2.12Ž .
lyuq1

y2 lb 2 b rF C2 2 m A .Ž .Ý r

rsy`

Ž .We have completed our estimate of the expectation in 2.9 . Putting this into
Ž .2.8 , we get

`
22 u< <lEE sup M y M F C u q 1 2 r q r q r ,Ž . Ž .Ýt 2 1, l 2, l 3, l

l lq1 us02 -tF2

where r , for 1 F i F 3, is the contribution from the integration of m overi, l

the region R . This must be summed over l. Let us consider i s 1. Fromi, l

Ž .2.10 ,

` ` `
2 2u uq2 b Ž lyu. y2 rbu q 1 2 r F C u q 1 2 2 m AŽ . Ž . Ž .Ý Ý Ý1, l r

us0 us0 rsl

` `
22 b l uŽ1y2 b . y2 b rs C2 u q 1 2 2 m AŽ . Ž .Ý Ý r

us0 rsl

`
2 b l y2 b rs C2 2 m A ,Ž .Ý r

rsl

the last line following because 1 y 2b - 0, that is, 1r2 - b. Summing this

over l gives

` ` ` r
2 b l y2 b r y2 b r 2 b l2 2 m A s 2 m A 2Ž . Ž .Ý Ý Ý Ýr r

rsy`lsy` rsl lsy`

`

s C m AŽ .Ý r

rsy`

- `.

This completes the case of i s 1.
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Ž .In the second case, i s 2, from 2.11 ,

` ` lq1
2 2u uy2 b uu q 1 2 r F C u q 1 2 m A .Ž . Ž . Ž .Ý Ý Ý2, l r

us0 us0 rslyu

This must be summed over l:

` ` lq1 ` `
2 3uy2 b u uŽ1y2 b .u q 1 2 m A s m A u q 1 2Ž . Ž . Ž . Ž .Ý Ý Ý Ý Ýr r

rsy`lsy` us0 rslyu us0

`

F C m AŽ .Ý r

rsy`

- `,

since 1 y 2b - 0.

Ž .And last of all, with i s 3, from 2.12 ,

` ` lyuq1
2 2u y2 lb u 2 b ru q 1 2 r F C2 u q 1 2 2 m AŽ . Ž . Ž .Ý Ý Ý3, l r

rsy`us0 us0

lq1 lyrq1
2y2 lb 2 b r us C2 2 m A u q 1 2Ž . Ž .Ý Ýr

rsy` us0

lq1
2Ž1y2 b .l yŽ1y2 b .rF C2 l y r q 2 2 m A .Ž . Ž .Ý r

rsy`

Summing this over l gives

` lq1
2Ž1y2 b .l yŽ1y2 b .r2 l y r q 2 2 m AŽ . Ž .Ý Ý r

rsy`lsy`

` `
2yŽ1y2 b .r Ž1y2 b .ls 2 m A l y r q 2 2Ž . Ž .Ý Ýr

rsy` lsry1

`

s C m AŽ .Ý r

rsy`

- `.

This completes the proof of the lemma. I

PROOF OF LEMMA 2.2. With the assumptions placed upon the fixed func-
� Ž .tion m, we need to check that Lemma 2.1 applies to the functions m tl :

4t ) 0 . Write
`

m l s m l q m l ,Ž . Ž . Ž .Ý0 j

js1

Ž . � < < 4 Ž .where m l is supported on l: l - 2 , and, for j G 1, m l is supported on0 j

� j < < jq14 Ž .l: 2 F l - 2 . Then m is a bounded Lip a function, and0

yjg 5 5 jd2.13 m l s 2 n l with n F C2 .Ž . Ž . Ž . LipŽa.j j j
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Since the hypotheses weaken as a decreases to 1r2 and g ) d q 1r2, we can
� Ž . 4assume that g ) d q a. We check that the functions m tl : t ) 0 , for j G 0,j

Ž . Ž . Ž . Ž .satisfy 2.1 , 2.2 , 2.3 and 2.4 with constants that are summable in j.
Ž . Ž .Let us treat m . For tr2 - s - t, if either m tl or m sl are nonzero,0 0 0

< < Ž .then l - 4rt, since m is supported near the origin. Hence, to check 2.2 ,0

a< <m tl y m sl F C tl y slŽ . Ž .0 0

a
< <t y s

F C .ž /t

Ž . Ž .As a ) 1r2, 2.2 holds. The second equation 2.3 is immediate. And for the
< <third, notice that l t - 4; hence

5 5m tl y m sl F 2 mŽ . Ž . `0 0

C
F .

< <l t

Ž . Ž .Now, consider m l . Notice that 2.1 trivially holds with constantsj

Ž . Ž . Ž . Ž .summable in j. For 2.2 , recall 2.13 . If either m tl or m sl are nonzero,j j
jy1 < < jq2then 2 F tl - 2 . Hence

yjgm tl y m sl F 2 n tl y n slŽ . Ž . Ž . Ž .j j j j

yj Žgyd . < <aF C2 tl y sl
a

t y s
yj Žgydya.F C2 .

t

This is summable, as g ) d q a is assumed. Notice that the second line above
Ž .proves 2.3 with a coefficient summable in j, under the weaker condition

Ž .g ) d . Finally, the last condition 2.4 is seen by

yjgq1 5 5m tl y m sl F 2 nŽ . Ž . `j j j

F C2yjŽgyd .

yayjŽgydya. < <F C2 t l ,Ž .

again, as g ) d q a, this is summable in j. I

3. Proofs. Most of the work for the proofs of the theorems has been done

in the previous section. Recall that Theorem 1.2 contains the first theorem of

the paper, so that we need only prove it. And, to prove Theorem 1.2, we need
Ž .only apply Lemma 2.2 to the function m defined in 1.1 . To do this,a

asymptotics for the Bessel functions are needed. The classical reference for
w x w xthis is 18 . One can also consult 16 . From properties of the Bessel functions,
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< <it follows that m is a bounded Lipschitz function at the origin. For l large,a

we have

< <yŽ dy1.r2ya < < < <m l s c l cos l y apr2 y pr4 q sin l y apr2 y pr4� 4Ž . Ž . Ž .a a

< <y1
= 1 q O lŽ .Ž .

< <yŽ dy1.r2yReŽa . < <s c l v l ,Ž .a a

Ž . < <where v is a Lip 1 function on R which is bounded for l away from thea

Ž . Ž . Ž .origin. Thus, provided d y 1 r2 q Re a ) 1r2, that is, Re a ) 1 y dr2,

the hypotheses of Lemma 2.2 are fulfilled.

� 4We conclude that C converges a.s. to Z 0 if and only if the samea , t

conclusion holds for C k , for k s 1, 2 . . . . Then, sincea , 2

yb
< < < < < < < <m 0 s 1, m tl y 1 F C t l and m tl F C t l ,Ž . Ž . Ž . Ž . Ž .a a a

Ž . Ž .where b s d y 1 r2 q Re a ) 1r2, a simple square function inequality

shows that

2` `
2

k
k ykEE C y Z dl s m 2 l y 1 m dlŽ . Ž . Ž .Ý ÝH Ha , 2 a � < l < F 2 4

yk d< <l F2 Rks1 ks1

F C m dl .Ž .H
dR

Thus we arrive at Gaposhkin’s characterization of the strong law of large

numbers.

For the proof of the third theorem, concerning the singular integrals, we

need to check the following result.

LEMMA 3.1. Let k be a Calderon]Zygmund kernel as defined in the´
Introduction. Then the functions

m l s e il? yk y dyŽ . Ž .Ht
� < < 4 � < < 4y -1rt j y )t

satisfy the hypotheses of Lemma 2.1. In particular, if

T s k y X dy ,Ž .Ht y
� < < 4 � < < 4y -1rt j y )t

we have that T converges a.s. if and only if T k converges a.s.t 2

PROOF. There are four hypotheses of Lemma 2.1 to check. The first, that
< Ž . <m l F C for all t and l, is well known. We refer the reader to, fort

w xexample, 17 , Lemma XI.5.3. Let us check the other three conditions for

m l s e il? yk y dy ,Ž . Ž .Ht
� < < 4y )t

� < < 4the integration over y - 1rt being similar.
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Fix tr2 - s - t - ` and set

c l s m l y m lŽ . Ž . Ž .s t

s e il? yk y dy.Ž .H
< <s- y -t

Ž . Ž . Ž .Equation 2.2 is trivial. Using only the size condition on k y , 1.3 ,

c l F k y dyŽ . Ž .H
< <s- y -t

1t
F C drH

rs

F C log t y log sŽ .

t y s
F C .ž /t

The second condition is equally simple. As the spherical averages of k are 0,
Ž .according to 1.2 , we have

il? yc l s e y 1 k y dyŽ . Ž . Ž .H
< <s- y -t

< <F C l yk y dyŽ .H
< <s- y -t

< <F C t y s l .Ž .

Ž .Less trivial estimates are required for the third inequality, 2.4 . We comment
Ž . d Ž .that by rescaling k to k y s r k ry , where r ) 0, the kernel k satisfies1 1

the inequalities for Calderon]Zygmund kernels, with the same constant C.´
Ž .Thus we change the integration in the definition of c l as follows:

c l s e il? yk y dyŽ . Ž .H
< <s- y -t

s e i tl? x t dk tx dx .Ž .H
< <srt- x -1

Ž . d Ž . Ž .Observe that k x s t k tx is a bounded function. By virtue of 1.4 , k is1 1

� < < 4Lipschitz of order d on the annulus srt - y - 1 . Hence the decay estimate

C
c l FŽ . d< <t lŽ .

Ž w x .is a classical fact see, e.g., 11 , Theorem 1.4.6 . Since d ) 1r2 was assumed,

the proof of the lemma is done. I
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To finish the proof of Theorem 1.3, it is easily seen, using the above

estimates on m , thatt

2`

ˆkEE T y k l Z dlŽ . Ž .Ý H2
yk k� < < < < 4l F2 , l )2ks1

`
2

ˆk yk ks m l y k l 1 m dlŽ . Ž . Ž .Ý H 2 � < l < F 2 , < l < ) 2 4
dRks1

F C m dl .Ž .H
dR

In fact, we also note here that such simple square function estimates can

also be obtained in the general framework of Lemma 2.1. Hence, under the

appropriate conditions and with probability 1,

lim M k y m l Z dl s 0, where m s lim m .Ž . Ž .H2 ` ` t½ 5yk kkª` tª`� < < < < 4l F2 , l )2

From this, a spectral criterion for the a.s. convergence, as t ª `, of
$

Ž .dH m s X ds follows.R t s

We come to the final theorem of the Introduction, Theorem 1.4. Recall the
2Ž .notation introduced for that theorem. Note that, for each f g L V , the

� t d4process U f : t g R is weakly stationary. Indeed, from the commuting

property of the transformations,

t s sytU f U f dP s f U f dP ,H H
V V

establishing weak stationarity. Thus we have the spectral equivalences of

Theorems 1.2 and 1.3 at our disposal.

Now the spectral representation is

U t f s e i t?lZ dl f ,Ž .H
dR

Ž .where Z dl is an orthogonal projection-valued measure. In addition, if A
d Ž . Ž .and B are disjoint Borel sets in R , then the projections Z A and Z B are

Ž .orthogonal. Condition a of the theorem, with Gaposhkin’s characterization,

is equivalent to

dX yk yk 2w x � 4a Z y2 , 2 f ª Z 0 f a.s. for all f g L V .Ž . Ž .Ž .ž /
Ž .As well, we can characterize condition b . It is well known that the Fourier

transform of the Hilbert transform is

`
il ye

dy s ip sign l .Ž .H
yy`
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From this, and a little work, it follows that

siil?se ds s c sign l .Ž .H d idq1
d < <sR

We apply Theorem 1.3 to the Riesz transforms. Remembering that we only

truncated the singular integral at ` in the definition of R f , we see thei

Ž .following equivalence to condition b :

dyk ykw xZ l g y2 , 2 : l ) 0 f½ 5i

dyk ykw xy Z l g y2 , 2 : l - 0 f ª 0½ 5i

X
bŽ .

a.s. for all f g L2 V and for all for some 1 F i F d.Ž . Ž .

Ž X. Ž X.To prove Theorem 1.4, we have to prove the equivalence of a and b . This
Ž . � 4dis done with the aid of some projections. For « s « , . . . , « g y1, q1 , set1 d

« � 4P f s Z l: « l ) 0, 1 F i F d f .i i

Ž X. «Assume b holds for a single j. Apply it to the functions P f to see that

Z l: 0 - « l - 2yk , 1 F i F d f ª 0� 4i iY
bŽ .

d2 � 4a.s. for all f g L V and all « g y1, q1 .Ž .

Ž X. Ž . ŽBut this condition clearly implies a , so the proof that b in its restricted
. Ž .form implies a is done.

Ž . Ž X . Ž Y .Assuming a holds, and hence a holds, it clearly implies b . This last
Ž X.condition implies b , so that the proof of the theorem is complete.

4. Complements.

CASE 1. All of the results of this paper admit formulations valid in the

discrete setting. To illustrate this point, let us show how to formulate an
Ž w x. �analog of the result for spherical averages also see 10 . Let X s X :j

d4j g Z be a zero-mean, weakly stationary sequence of random variables

indexed by the d-dimensional integers. Then X admits the representation

X s e2p i j?lZ dl ,Ž .Hj
dT

where Z is a s-additive and orthogonally scattered measure on the Borel
d Ž x ds-algebra of T s y1r2, 1r2 . The covariances are given by

2p i j?lR j s EE X X s e m dl .Ž . Ž .Hjqk k
dT

Gaposhkin characterized the strong law of large numbers

cd
� 4X ª Z 0 a.s.Ž .Ý jdn < <j Fn
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by the condition

� 4Z dl ª Z 0 a.s.Ž . Ž .H
yk yk dw xy2 , 2

Again, the point in the second condition is that k goes to ` in the integers, so

that the second condition, in a sense, requires less than the first. Write

X g SLLN if either condition holds.

Our interest in Gaposhkin-style characterization suggests that we should

consider averaging over annuli but only of a restricted type. To do so, let us
� d < < 4introduce some notation. Let a s x g R : n F x - n q w be annuli ofn n

inner radius n and outer radius n q w . The interesting averaging case forn

Ž . dthese annuli is when w s o n . Denote by a s a l Z , the lattice points in˜n n n

a . Let alson

d< < < <� 4 � 4D r s vol x : x - r y a x : x - r l ZŽ . Ž . Ž .d

be the absolute error between the volume of ball of radius r and the number
Ž . �of lattice points in this ball a denotes cardinality . Again, for X s X :j

d4j g Z , weakly stationary, we write X g SLLN if and only if
Žw yk yk x d . Ž� 4.Z y2 , 2 ª Z 0 a.s.

Now, forming the averages

1
A s X ,Ýn j

aãn jgãn

we have the following result.

Ž .THEOREM 4.1. Let d G 3 and assume w s o n . Ifn

2q` D n q D n q wŽ . Ž .d d n
- q`,Ý dy1ž /n wnns1

Ž� 4.then A ª Z 0 a.s. as n ª q`, n g Z, if and only if X g SLLN.n

w x Ž . dy2According to Jones 10 , for d G 5, D r F cr . Hence the assumption ofd

the theorem is satisfied if

2 2dy2q` q`n 1
s - q`.Ý Ýdy1 ž /ž / nwn w nnns1 ns1

Ž .1r2q« 1r2This is in particular the case if w 4 log n rn for « ) 0.n

Ž . dy2For d s 4, D r F cr log r, and the assumption is satisfied ifd

2q` log n
- q`,Ý ž /nwnns1

3r2q« 'Ž .or w 4 log n r n for « ) 0.n
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w x Ž .Still following 10 , we note that aa rvol a ª 1 as n ª `. Indeed,˜n n

aa a Zd l B n q w y a Zd l B nŽ . Ž .˜ Ž .Ž .n n
s s 1 q « ,n

vol a vol B n q w y vol B nŽ . Ž . Ž .n n

where

D n q D n q wŽ . Ž .d d n
< <« F .n

vol B n q w y B nŽ . Ž .Ž .n

Ž Ž . Ž .. Ž . dy1 Ž .Now vol B n q w y B n s vol a , c n w as w s o n . Hence, un-n n d n n

der the assumption of the theorem, « ª 0. So the claim is proved, and wen

Ž .can use either vol a or aa for normalizations.˜n n

Let us now sketch the proof of Theorem 4.1. We need to study the

multipliers

y1 d2p i j?l< < w xm l s a e , l g y1r2, 1r2Ž . Ž .˜ Ýn n

jgãn

Ž < < .above and below, a is the volume of a . In particular, we want to known n

that they satisfy the estimates of Lemma 2.1.

Define

1
2p il? x dm l s e dx , l g R .Ž . Hn < <a an n

For d G 3, these functions do satisfy the estimates of Lemma 2.1. This is so,

because the Fourier transform of the surface measure of the sphere satisfies
Ž . Ž .the lemma, and the m l are smoother than that. Next, to compare m l˜n n

Ž .and m l , definen

1
2p il? xm l s e dxŽ . Ý Hn

d< <a w xjq y1r2, 1r2n jgãn

1
2p i j?l 2p il? xs e e dx s m l K l ,Ž . Ž .˜Ý H n½ 5 d< <a w xy1r2, 1r2n jgãn

Ž . Ž .where K l is a fixed bounded, Lip 1 function which is bounded away from
w x dthe origin in the complex plane for l g y1r2, 1r2 .

Ž . Ž .Now, comparing m l to m l , if D denotes the symmetric difference, wen n

get

d1 1 1
m l y m l F a D j q y ,Ž . Ž . Dn n n ½ 5< <a 2 2n jgãn

D n q D n q wŽ . Ž .n
F .

< <an
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`Ž . ŽThis last estimate is an L dl estimate. Under the hypothesis assumed in
.Theorem 4.1 that this last term is square summable, we can pass from

estimating

m lŽ .n
A s m l Z dl s Z dlŽ . Ž . Ž .˜H Hn n

d d K lŽ .w x w xy1r2, 1r2 y1r2, 1r2

to estimating

m lŽ .n
Z dl .Ž .H

d K lŽ .w xy1r2, 1r2

Ž . Ž . w x dThen one immediately sees that the functions m l rK l , l g y1r2, 1r2 ,n

satisfy the hypotheses of Lemma 2.1. From this, we can conclude the sketch.

CASE 2. There are also modifications of the results for the Cesaro aver-`
ages. In view of the elegant theorems available for these averages in the

Ž w x.deterministic continuous case see, e.g., 15 , this seems interesting, due to

the advantage gained from the curvature of the sphere. We, however, do not

pursue this topic here.

CASE 3. The methods of this paper, based as they are on spectral tech-

niques, extend to a wide variety of processes which admit such a representa-
w xtion. Using the terminology and the methods of 7 , the above results remain

valid for some classes of nonstationary sequences, namely, the so-called
Ž .p, q -bounded ones 0 F p F 2 F q F q`. These classes include harmoniz-

able stable sequences, periodically correlated sequences, L2-bounded orthogo-

nal sequences and, for example, some mixing sequences. In fact, the spectral

approach also works for different averages, for example, the Borel method of
Ž . w Ž .x Ž xsummation, in which case m u s exp yt 1 y exp iu , t ) 0, u g yp , p ,t

Ž . Ž . Ž .satisfy conditions 2.1 ] 2.4 with b s 1 . In the special case of harmoniz-

able stable sequences or Gaussian stationary sequences, the random spec-
Ž . Ž .trum Z is independently scattered, which is to say that Z A and Z B are

independent provided A and B are disjoint Borel sets. Consequently,

Gaposhkin’s spectral condition is always satisfied. Alternatively, the SLLN

for harmonizable stable variables can be seen directly from the Gaussian

result. This is done by using the conditioning argument provided to us by
Ž w x .J. Rosinski see 7 , Theorem 3.9 . These arguments rely on the representa-

tion of harmonizable stable variables by Fourier integrals. Local ergodic

theorems can also be obtained in a similar fashion.

In this regard, we ought to mention, too, that random sequences having a

Fourier representation with respect to an independently scattered measure Z

are, in general, not strictly stationary. Indeed, strict stationarity is character-

ized by the random measure Z being rotationally invariant. Another class of

variables for which the spectral condition of Theorem 1.1 is satisfied is the

class of stationary sequences whose spectrum m is absolutely continuous with

Radon]Nikodym derivative in L1q« for some « ) 0. See the proof of Corollary



SPECTRAL CRITERIA 855

w x Ž .3.4 of 7 . Other types of sufficient conditions on the covariances presented

there also apply here.

The results presented here also complement a Rademacher]Menchov-type
w x � 4result obtained in 8 and apply when the framework there is violated. If Xn

ˆ� Ž .4is a weakly stationary sequence and if k n is an odd Calderon]Zygmund´
ˆŽ .sequence, Ýk n X converges a.s. if and only if with probability 1,n

lim k u Z du s 0.Ž . Ž .H
yjjªq` < <u -2

� Ž yj . Ž yj .4This last condition is equivalent to lim Z 0, 2 y Z y2 , 0 s 0,jªq`

whenever k has a Lipschitz behavior of order a ) 0, in a neighborhood of the
ˆ inuŽ . Ž .origin. More generally, if k u ; Ýk n e has finitely many jumps, say,

yp - u @??? - u - p , with a ‘‘Calderon]Zygmund and Lipschitz behavior’’´1 M

ˆŽ .near each jump, then Ýk n X converges a.s. if and only ifn

M q yk u y k uŽ . Ž .m m yjlim Z u , u q 2Ž .Ý m m½ 2jªq` ms1

k uy y k uqŽ . Ž .m m yjq Z u y 2 , u s 0.Ž .m m 52

CASE 4. Some operators on Hilbert space, and L p-spaces, admit spectral

representation. By the well-known interchangeability between weakly sta-

tionary sequences and unitary operators, the above results have versions for
w xunitary operators. In fact, by the methods of 7 , they also apply to contrac-

tions on Hilbert space and to some classes of operators on L p-spaces. The
w xtechniques presented in 1 can also be adapted to obtain results as above for

some other classes of operators on L p-spaces. Reinterpreting these last

operator theoretic results in a stochastic framework provides, in particular,
Ž . Ž w x w x.spectral criteria for generalized moving average processes see 3 and 6

and so for two of the three elements in the decomposition of a stationary
w xstable process recently obtained by Rosinski 13 .
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