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MINIMA OF H-VALUED GAUSSIAN PROCESSES1

By J. M. P. Albin

Chalmers University of Technology and Göteborg University

We study low local extremes of Gaussian random fields with values
in a separable Hilbert space and constant variance. Our results are sharp
for certain stationary processes on the line and for these processes we also
prove global limits.

1. Introduction. Let T be a separable topological space and let (H;
�·�·�; � · �� be a real separable Hilbert space with unit ball H1 and bounded
linear operators L = L �H�. Further let �X�t��t∈T be a centered separable
P-continuous H-valued Gaussian random field, with respect to a complete
probability P, such that X�t� has variance R ∈ L independent of t. Also
let R have spectrum (eigenvalues) �λk�∞k=1 ⊆ �0;∞� and choose a complete
orthonormal system �ek�∞k=1 satisfying Rek = λkek.

In Section 3 we study the tail P��X�s0��2 < ε� as ε ↓ 0 for a fixed s0 ∈ T.
In Sections 4 and 5 we derive upper and lower bounds for

P
{
inf
t∈S
�X�t��2 < ε

}
as ε ↓ 0; for S ⊆ T;

and in Section 6 we give several applications of these results.
Let �ξk�t��t∈R, k=1, 2; : : : ; be independent R-valued stationary stand-

ardized Gaussian processes and let Y�t� be a separable version of∑∞
k=1

√
λkξk�t�ek. In Section 7 we sharpen the results of Sections 4 and

5 and find the exact asymptotic behavior of P�inf t∈�0;1� �Y�t��2 < ε� under
conditions on rk�t� ≡ E �ξk�0�ξk�t��. In Section 8 we prove global limits for
Y when rk�t� → 0 not too slowly as t→∞.

Low extremes for the stationary finite case (when the sequence �λk� ter-
minates) have been studied for T = R by, for example, Aronowich and Adler
(1986) and Albin (1990, 1992a). The finite case behaves radically differently
from than the infinite case.

Large values of �X� were investigated for X an Ornstein–Uhlenbeck pro-
cess on the line by, for example, Iscoe and McDonald (1989), Iscoe, Marcus,
McDonald, Talagrand and Zinn (1990), Albin (1992b) and Csáki and Csörgő
(1992). Albin (1992a) studied stationary L2-differentiable X. The (not so dif-
ferently behaved) finite cases were first studied by Sharpe (1978).

2. Regular variation. For easy reference we now state some facts from
the theory of regular variation which will be needed in the sequel. These facts
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can all be found (with proofs and notes on priority) in Bingham, Goldie and
Teugels (1987). [Other excellent general references for this area are Geluk and
de Haan (1987) and Resnick (1987).]

We study regular variation of a strictly positive function f�x� both as x ↓ 0
and as x → ∞. Therefore, we use the symbol x → U, where either U = 0+

or U = ∞. We assume that f is defined on �0;∞� if U = 0+ and on �x̂;∞�
for some x̂ ≥ 0 if U = ∞. Further we write IU ≡ �0;1� if U = 0+, whereas
IU ≡ �1;∞� if U = ∞.

Let IU�λ� ≡ �min�1; λ�;max�1; λ�� for λ ∈ IU and define

f?�Uyλ� ≡ lim sup
x→U

f�λx�
/
f�x�;

f?�Uyλ� ≡ lim inf
x→U

f�λx�
/
f�x�;

9?�U;fyλ� ≡ lim sup
x→U

sup
µ∈IU�λ�

f�µx�
/
f�x�;

9?�U;fyλ� ≡ lim inf
x→U

inf
µ∈IU�λ�

f�µx�
/
f�x�

for λ ∈ IU. We say that f�x� is O-regularly varying as x→ U if

0 < f?�Uyλ� ≤ f?�Uyλ� <∞ for each λ ∈ IU:

The upper and lower Matuszewska indices α�f� and β�f� are given by

α�Uyf� ≡ ∞; if 9?�U;fyλ� = ∞; for some λ ∈ IU;
α�Uyf� ≡ lim

x→U
ln�f?�Uyx��

/
� ln�x��; if 9?�U;fyλ� <∞ for each λ ∈ IU;

β�Uyf� ≡ −∞; if 9?�U;fyλ� = 0 for some λ ∈ IU;
β�Uyf� ≡ lim

x→U
ln�f?�Uyx��

/
� ln�x��; if 9?�U;fyλ� > 0 for each λ ∈ IU:

Writing f̂�x� ≡ f�1/x�, it is then easily seen that

α�Uy f̂ � = α�1/Uyf�; β�Uy f̂ � = β�1/Uyf�;
β�Uy1/f� = −α�Uyf�:

(2.1)

Further we have, by the Matuszewska indices theorem,

α�Uyf� <∞ ⇔ 9?�U;fyλ� <∞ for each λ ∈ IU;
β�Uyf� > −∞ ⇔ 9?�U;fyλ� > 0 for each λ ∈ IU;

f is O-regularly varying as x→ U

⇔ −∞ < β�Uyf� ≤ α�Uyf� <∞:

(2.2)

Let f be O-regularly varying and take ν ∈ �1;∞� if U = ∞ and ν ∈ �−∞;−1�
if U = 0+. Then there are constants C1 = C1�ν� > 1 and x̃ = x̃�ν� ∈ IU such
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that

C1�ν�−1λβ�f�/ν ≤ f�λx�
/
f�x� ≤ C1�ν�λα�f�ν

for λ ∈ IU and x ∈ IU − IU�x̃�:
(2.3)

We say that f has bounded increase if α�f� < ∞, bounded decrease if
β�f� > −∞, positive increase if β�f� > 0 and positive decrease if α�f� < 0.

Let f be nondecreasing and unbounded above and write f←�x� ≡ inf�y >
0:f�y� > x�. Then we have [Bingham, Goldie and Teugels (1987), Exercise
2.12.8]

α�∞yf� = 1/β�∞yf←� so that

α�∞yf� <∞ ⇔ β�∞yf←� > 0:
(2.4)

The upper order ρ�f� and lower order µ�f� of f�x� as x→ U are given by

ρ�Uyf� ≡ lim sup
x→U

ln�f�x��
/
� ln�x�� and µ�Uyf� ≡ lim inf

x→U
ln�f�x��

/
� ln�x��:

The relations with the Matuszewska indices are

β�Uyf� ≤ µ�Uyf� ≤ ρ�Uyf� ≤ α�Uyf�:(2.5)

We say that f belongs to the class 0 as x → U with auxiliary function
w: �0;∞� → �0;∞� if f is nondecreasing and

lim
x→U

f�x+ yw�x��
/
f�x� = ey for each y ∈ R:

In that case, for each y ∈ R,

w is self-neglecting, that is, lim
x→U

w�x+ yw�x��
/
w�x� = 1;(2.6)

g�x� ∼ x+ yw�x� ⇒ lim
x→U

f�g�x��
/
f�x� = ey:(2.7)

For f in 0 we further have

lim
x→U

f�λx�
/
f�x� = 0 for λ ∈ �0;1�;(2.8)

lim
x→U

xγf�x� = U for γ ∈ R:(2.9)

3. The tail of X�s0�
2. Fix an s0 ∈ T and write W ≡ X�s0�. In Propo-

sitions 1 and 2 we adapt an argument of Davis and Resnick (1991) (D&R) to
study aspects of the asymptotic behavior of P��W�2 < ε� as ε ↓ 0. Since the
emphasis of our work is on fields and processes rather than single random
variables, we will only, as briefly as possible, state and prove results needed
in later sections.

The idea of D&R is to note that a central limit argument should give
the tail of �W�2 since �W�2 is small only when the independent components
��ek�W��∞k=1 all are small simultaneously. An adequate central limit theorem
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is then obtained using (Laplace transform related) Esscher transform tech-
niques.

The Esscher transform of �W�2 at s ≥ 0 is a random variable �W�2s with dis-
tribution dF�W�2s �x� = e−sx dF�W�2�x�

/
φ�s�, where φ�s� ≡ E�exp�−s�W�2�� =∏∞

l=1�1+ 2λls�−1/2. It follows that

m�s� ≡ E��W�2s� =
∞∑
k=1

λk
1+ 2λks

;

V�s� ≡ Var��W�2s� =
∞∑
k=1

2λ2
k

�1+ 2λks�2
:

Proposition 1. Writing q�ε� ≡ inf�s > 0:m�s� < ε�, we have

P
{
�W�2 < ε+ x

q�ε�

}
∼ �expx�P��W�2 < ε�

∼ �expx� exp�q�ε�ε�φ�q�ε��
q�ε�

√
2πV�q�ε��

as ε ↓ 0
(3.1)

for each x ∈ R. Writing f�W�2 for the density function of �W�2 we further have

f�W�2�ε+ x/q�ε�� ∼ exq�ε�P��W�2 < ε� locally uniformly for x ∈ R:(3.2)

Proof. The only part of the argument for (3.1) and (3.2) in (D&R, Sec-
tion 3) which does not carry over to our setting is the verification that

lim
s→∞

∫
�t�>δs
√
V�s�

∣∣∣∣
∞∏
i=1

gλis

(
t

s
√
V�s�

)∣∣∣∣dt = 0 for δ > 0;(3.3)

where gs�t� ≡ E�exp�its��N�0;1�2�s−E��N�0;1�2�s���� and N�0;1� denotes a
standardized Gaussian random variable. The reason that D&R, proof of (3.3),
does not carry over is that their conditions 3.7 and 3.8 do not hold.

Let n�s� ≡ �i: λis ≥ 1� and choose c > 0 such that ln�1 + 4
9δ

2x� ≥ cx

for x ∈ �0;1�. Since
∫∞
δ �1 + t2�−ν dt ≤ 1

2π�1 + δ2�1−ν for ν > 1 and since
lims→∞ n�s� = ∞, the fact that (3.3) holds then follows from noting that

∫
�t�>δs
√
V�s�

∞∏
i=1

∣∣∣∣gλis
(

t

s
√
V�s�

)∣∣∣∣dt

= 2
∫ ∞
δs
√
V�s�

exp

{
−1

4

∞∑
i=1

ln
[
1+ 4λ2

i t
2

V�s��1+ 2λis�2
]}
dt

≤ 2
∫ ∞
δs
√
V�s�

exp

{
−n�s�

4
ln
[
1+ 4 t2

9 s2V�s�

]

− 1
4

∑

�i: λis<1�
ln
[
1+ 4λ2

i t
2

9V�s�

]}
dt
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≤ 3 s
√
V�s�

[∫ ∞
2δ/3
�1+ t2�−n�s�/4 dt

]
exp

{
− c

4

∑

�i: λis<1�
λ2
i s

2
}

≤ 3π
2

( ∞∑
i=1

2λ2
i s

2

�1+ 2λis�2
)1/2[

1+ 4
9
δ2
]1−n�s�/4

exp
{
− c

4

∑

�i: λis<1�
λ2
i s

2
}

≤ 3π√
2

[√
n�s�
2
+
√ ∑

�i: λis<1�
λ2
i s

2

][
1+ 4

9
δ2
]1−n�s�/4

× exp
{
− c

4

∑

�i: λis<1�
λ2
i s

2
}
: 2

Remark 1. Ibragimov (1982) proved (3.1) and (3.2) for x = 0, but gave
partial priority to G. N. Sytaya [Ibragimov (1982), page 2165]. Since we need
(3.1) and (3.2) for x 6= 0, as well as some facts [e.g., (3.4) and (3.5)] concerning
the quality of convergence provided by the method of D&R, the results of
Ibragimov and Sytaya are not sufficient for us. (Note that Ibragimov’s result
is Gaussian, whereas that of D&R is general.)

Proposition 2. If m has positive decrease as s → ∞, then q�ε� is O-

regularly varying as ε ↓ 0. Further Wk ≡W−
∑k
l=1�W�el�el satisfies

P��Wk�2 < ε� ∼
( k∏
l=1

√
2λl

)
q�ε�k/2P��W�2 < ε� as ε ↓ 0:(3.4)

Moreover there exist constants C2�k�, ε1�k� > 0 such that

f�Wk�2�ε− x/q�ε�� ≤ C2 q�ε�k/2+1 e−x/2 P��W�2 < ε�(3.5)

for 0 ≤ x < q�ε�ε and ε ∈ �0; ε1�.

Proof. Applying (2.4) to f ≡ �1/m�←: �1/m�0�;∞� → �0;∞� we get, by
(2.1),

α�0+y f̂� = α�∞yf� = β�∞yf←�−1 = β�∞y1/m�−1 = −α�∞ym�−1 <∞:

Hence q = f̂ has bounded increase. Since q (being nonincreasing) also has
bounded decrease, (2.2) shows that q�ε� is O-regularly varying.

Putting mk�s� ≡
∑∞
l=k+1 λl/�1+ 2λls� and q̂x�ε� ≡ q�ε+ 1

2x/q�ε��, we have

mk�q̂x�ε��





≤ ε+ 1
2�x− k�/q�ε� +

k∑
l=1

�2q̂x�ε��1+ 2λlq̂x�ε���−1

≥ ε+ 1
2x/q�ε� − 1

2k/q̂x�ε�
for x ≥ 0:

Since, by (3.1) and (2.6), q is self-neglecting, it follows that, given a δ ∈ �0;1�,
q̂�1+δ�k�ε� ≤ qk�ε� ≡ inf

{
s > 0:mk�s� < ε� ≤ q̂�1−δ�k�ε� for ε small:
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Hence we have qk�ε� ∼ q�ε�, so that m�qk�ε�� ∼ ε + 1
2k/q�ε� + o�1/q�ε��.

Consequently, (2.7) and (3.1) yield that

V�qk�ε��−1/2 exp�qk�ε�ε�φ�qk�ε��
∼ V�qk�ε��−1/2 exp�qk�ε�m�qk�ε�� − 1

2k�φ�qk�ε��
∼
√

2π e−k/2qk�ε�P��W�2 < m�qk�ε���
∼
√

2π q�ε�P��W�2 < ε�
∼ V�q�ε��−1/2 exp�q�ε�ε�φ�q�ε��:

Observing that Vk�s� ≡
∑∞
l=k+1 2λ2

l /�1+2λls�2 ∼ V�s� as s→∞, the fact that
(3.4) holds now readily follows from (3.1) and from noting that

E�exp�−s�Wk�2�� =
( k∏
l=1

√
1+ 2λls

)
φ�s�

∼ sk/2
( k∏
l=1

√
2λl

)
φ�s� as s→∞:

Since qk�ε − x/q�ε�� ≤ 29?�0+; qy 1
2�q�ε� for 0 ≤ x ≤ 1

2q�ε�ε, for ε small,
(3.2) and (3.4) readily yield that there are C3; ε2 > 0 such that

f�Wk�2�ε− x/q�ε�� ≤ C3q�ε�k/2f�W�2�ε− x/q�ε��(3.6)

for 0 ≤ x ≤ 1
2q�ε�ε and ε ∈ �0; ε2�. Moreover, by D&R (equation 3.20) there

exist s1, C4 > 0 such that

f�W�2�V�s�1/2y+m�s��
≤ C4 exp�− 1

2y
2�V�s�−1/2φ�s� exp�s�V�s�1/2y+m�s���

for s ≥ s1 and y ∈ R. Taking y = −x�sV�s�1/2�−1 and s = q�ε� we thus obtain

f�W�2�ε− x/q�ε�� ≤ C4V�q�ε��−1/2φ�q�ε�� exp�q�ε�ε− x�
for x ∈ R and ε small:

Combining this with (3.1) and (3.6) we deduce that (3.5) holds for 0 ≤ x ≤
1
2q�ε�ε and with the factor e−x/2 replaced by e−x. Using (3.2), (3.4) and the
proven part of (3.5), it follows that there are C5 > 1 and ε3 > 0 such that

f�Wk�2�ε− x/q�ε�� ≤ C5 qk�ε− x/q�ε��P��Wk�2 < ε− x/q�ε��
≤ C2

5 P��Wk+2�2 < ε− x/q�ε��
/√

4λk+1λk+2

≤ C2
5 P��Wk+2�2 < 1

2ε�
/√

4λk+1λk+2

≤ C3
5 f�Wk�2� 1

2ε�
≤ C4

5 q�ε�k/2+1 e−x/2 P��W�2 < ε�
for 1

2q�ε�ε ≤ x < q�ε�ε and ε ∈ �0; ε3�. 2
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4. An upper bound for local extremes of fields. For an R-valued
Gaussian process �ζ�t��t∈T the entropy Nζ�Sy ε� is the minimum number of
closed balls of radius ε in the pseudometric dζ�s; t� ≡

√
E��ζ�t� − ζ�s��2�

needed to cover S ⊆ T. Then
∫ 1

0

√
ln Nζ�Sy ε�dε < ∞ is sufficient [Dudley

(1967)] and, assuming stationarity, also necessary [Fernique (1975)] for a.s.
continuity of �ζ�t��t∈S. The influence of Nζ on the tail P�supt∈�0;1� ζ�t� > x�
as x → ∞ is also significant, for example, Weber (1989), Adler (1990),
Samorodnitsky (1991) and Albin (1994).

A stationary H-valued Gaussian process Z�t� is a.s. continuous when
supy∈H1

∫ 1
0

√
ln N�y�Z��Sy ε�dε <∞ [Fernique (1989), Théorème 3.3].

In Theorem 1 we give an upper estimate of the tail P�inf t∈S �X�t��2 < ε�
as ε ↓ 0 expressed in terms of N�y�X��Sy ·�, �λk�∞k=1 [through q�ε� ≡ inf�s >
0:m�s� < ε�] and P��X�s0��2 < ε�. [The behavior of P��X�s0��2 < ε� in turn
was expressed in terms of �λk�∞k=1 in (3.1).] It is required that N�y�X��Sy ε� is
O-regularly varying as ε ↓ 0. [By the proof of Theorem 1, open d�y�X� balls
are T-open, so N�y�X��Sy ε� is finite if, e.g., S is T-compact.] Our estimate is
essentially sharp in the stationary case (and other not too unbalanced cases)
since, under mild additional conditions, a lower bound of the same order will
be derived in Section 5.

The proof of Theorem 1 relies on two transparent ideas. The first idea has
its origins in the treatments of continuity by Dudley (1967) and Fernique
(1975, 1989) and concerns how to use the concept of entropy to sample the
process X�t� sparsely enough not to obtain redundant information, but yet
often enough not to overestimate inf t∈S �X�t��2. We find it surprising that
the influence of N�y�X��Sy ·� on the left tail of inf t∈S �X�t��2 is equally direct
as that on the right tail of supt∈S �X�t��2.

Define the covariance Rs; t ∈ L by �Rs; tx�y� = E��x�X�s���y�X�t��� so
that R = Rt; t. The second idea concerns estimation of supt∈N�s0� �X�t� −W�2
conditional on �W�2�= �X�s0��2� < ε for a neighborhood N�s0� of s0 ∈ S. If
Q ≡ Rs0; t

R−1 exists in a suitable sense [cf. (4.1)], one has

�X�t� −W�2 = �X�t� −QW�2 + 2
∞∑
k=1

�X�t� −QW�êk��êk��Q− 1�W�

+ ��Q− 1�W�2

(where �êk� is a suitable basis inH). SinceX�t�−QW andW are independent,
only �Q − 1�W is affected by the conditioning. Thus the size of X�t� − QW
and �X�t� − QW�êk� can be controlled via calculus of covariance operators.
The major part of the proof consists of an analysis of the size of the compo-
nents ��êk��Q − 1�W�� conditional on �W�2 < ε. The central limit theorem
of D&R discussed in the beginning of Section 3 indicates that the (weak)
limit behavior of ��êk��Q − 1�W� � �W�2 < ε� (suitably normalized) as ε ↓ 0 is
Gaussian. [In a special case this statement is made precise in Lemma 4 of
Section 7 and used in the proof of Theorem 4.] Here we shall estimate the
“simultaneous” sizes of ��êk��Q − 1�W��∞k=1 “before” (but close to) the limit.
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Via input from Samorodnitsky (1991) we then find a suitable separant Ŝ for
X along which to compute supt∈Ŝ∩N�s0� �X�t� −W�

2.
Although the classic concept of entropy is present in our result, our argu-

ments are mainly nonclassic: Dudley’s and Fernique’s direct connection be-
tween entropy and continuity/boundedness/suprema is unique for the study of
“high levels/large values” of Gaussian and some closely related processes. Low
levels are something entirely different, and although the last part of our proof
[the part after (4.12)] is more or less classic, the major part that precedes it
is new.

Let d�s; t� ≡ supz∈H1
d�z�X��s; t� and choose an S ⊆ T. Also write Sε ≡ �t ∈

T:d�t;S� ≤ ε� and Sε ≡ ��s; t� ∈ S×S: 0 < d�s; t� ≤ ε�, and assume that

there exists (a correlation) rs; t ∈ L such that

Rs;t = rs; tR for �s; t� ∈ Sε0

(4.1)

for some ε0 > 0. Further suppose that

there is a y ∈H1 such that

M1�y� ≡ sup
{ �1− rs; t�
d�y�X��s; t�2

: �s; t� ∈ Sε0

}
<∞:(4.2)

The requirement (4.1) holds when Rs; t does not have too many too wild off-
diagonal elements. In particular, if the component processes ��X�t��ek��∞k=1

are independent, then (4.1) holds with rs; tek = ρ
�k�
s; tek, where

ρ
�k�
s; t = Corr��ek�X�s���ek�X�t���:

Moreover, for independent components, d�el�X��s; t�2 = 2λl�1 − ρ
�l�
s; t�, so that

(4.2) holds when there is an l ∈ N for which ρ
�l�
s; t is minimal, that is, when

there is an l ∈ N such that

sup
{
�1− ρ�k�s; t�

/
�1− ρ�l�s; t�: k ∈ N; �s; t� ∈ Sε0

}
<∞:

Remark 2. Recall that a variance C ∈ L is positive; that is, C is self-
adjoint and �Cz�z� ≥ 0 for z ∈ H. Thus the eigenvalues �ck�∞k=1 of C are
nonnegative. Further C is trace class, so that tr�C� = ∑∞

k=1 ck < ∞ and∑∞
k=1�Cfk�fk� = tr�C� for any complete orthonormal system �fk�∞k=1. More-

over, there is a complete orthonormal system �gk�∞k=1 of eigenvectors to C
(satisfying Cgk = ckgk).

Theorem 1. Assume that m�s� =∑∞k=1 λk/�1+2λks� has positive decrease
as s→∞ and that (4.1) holds. Further assume that (4.2) holds for a y ∈ H1
such that MX�Sy ε� ≡ N�y�X��Sy ε� is O-regularly varying as ε ↓ 0. Then we
have

lim sup
ε↓0

P�inf t∈S �X�t��2 < ε�
MX�Syq�ε�−1/2�P��X�s0��2 < ε�

<∞:
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As described in Albin [1992(a), Section 5], the following lemma is an easy
consequence of a result due to Fernique (1971).

Lemma 1. For every H-valued centered Gaussian random variable N we
have

P��N� > u� ≤ exp
{

1
24
− u2

96 E��N�2�

}
for u ≥ 0:

Proof of Theorem 1. Write L? for the adjoint of L ∈ L , put ε4 ≡ ε0 ∧
M1�y�−1/2 and take �s; t� ∈ Sε4

. Note that, by (4.1), Ys; t ≡ 1
2 �1+ rs; t�X�s� has

variance R̂ ≡ 1
4 �1+ rs; t�R�1+ r?s; t�. Further write �λ̂k� for the spectrum of R̂

and let �êk� be a corresponding complete orthonormal system of eigenvectors.
Since by (4.2), �1− rs; t� ≤M1d�y�X��s; t�2 ≤ 1 for �s; t� ∈ Sε4

, we have

tr�R̂� = E��Ys; t�2� ≤ 1
4�2+ �rs; t − 1�

)2E��X�s��2� ≤ 9
4 tr�R�:(4.3)

Moreover an easy computation shows that

1−rs; t = 2� 1
2 �1−rs; t��N+1+

N∑
l=1

� 1
2 �1−rs; t��l�1+rs; t� →

∞∑
l=1

� 1
2 �1−rs; t��l�1+rs; t�

as N → ∞, with convergence in operator norm. In view of (4.1), and again
using that �1− rs; t� ≤M1d�y�X��s; t�2 ≤ 1, it follows that

E��X�t� − rs; tX�s��êk�2� =
〈
�R− 2Rs; tr

?
s; t + rs; tRr?s; t�êk

∣∣ êk
〉

=
〈
�1− rs; t�R�1+ r?s; t�êk

∣∣ êk
〉

= 4λ̂k

〈 ∞∑
l=1

� 1
2 �1− rs; t��lêk

∣∣∣ êk
〉

≤ 4λ̂k
1
2�1− rs; t�

/
�1− 1

2�1− rs; t��

≤ 4λ̂kM1d�y�X��s; t�2:

(4.4)

Consequently [and by (4.3)], Xs; t ≡X�t� − rs; tX�s� satisfies

tr�Var�Xs; t�� =
∞∑
k=1

〈
Var�Xs; t�êk

∣∣ êk
〉
≤ 4M1d�y�X��s; t�2 tr�R̂�

≤ 9M1d�y�X��s; t�2 tr�R�:
(4.5)

Further we have

�X�s� −Ys; t� = 1
2��1− rs; t�X�s��

≤ 1
2M1�X�s��/q for d�y�X��s; t�2q ≤ 1;

(4.6)
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but here �X�s�� ≤ �X�s� −Ys; t� + �Ys; t�, so that, by (4.6),

�X�s� −Ys; t� ≤ � 1
2M1�Ys; t�/q�

/
�1− 1

2M1/q� ≤M1�Ys; t�/q(4.7)

for d�y�X��s; t�2q ≤ 1 and ε small. Combining (4.6) and (4.7) we conclude that

�X�s��2 < ε ⇒ �Ys; t�2 ≤ ε+M1ε/q+ 1
4M

2
1ε/q

2 < ε+M1/q

⇒ �X�s��2 ≤ �1+M1/q��ε+M1/q� < ε+ 2M1/q
(4.8)

for d�y�X��s; t�2q ≤ 1 and ε small.
Clearly we have

�X�t��2 = �Xs; t − 1
2 �1− rs; t�X�s��2 + �rs; tX�s��2

− 1
4��1− rs; t�X�s��2 + 2�Xs; t�Ys; t�

≤ ��Xs; t� + 1
2��1− rs; t�X�s���2 + �rs; t�2�X�s��2 + 2�Xs; t�Ys; t�:

When there is a C6 > 0 [not depending on �s; t�] such that d�y�X��s; t�2q ≤ C6η,
this readily yields that

�X�t��2 ≥ ε− ν
q
; �X�s��2 < ε− ν + η

q
and 2�Xs; t�Ys; t� ≤

1
2
η

q

⇒ �Xs; t� ≥
(

1
2
η

q
− ��rs; t�2 − 1� �X�s��

)1/2

− 1
2
�1− rs; t� �X�s�� >

(
1
4
η

q

)1/2

(4.9)

for η > 0, ν + η ≥ 0, d�y�X��s; t�2q ≤ 1 ∧C6η and ε small.
Now observe that Xs; t is independent of X�s� and Ys; t. Furthermore,

the variables �sign��Ys; t�êk���∞k=1 are independent, identically distributed
Rademacher variables and independent of the sequence ���Ys; t�êk���∞k=1. It
follows that the variables ��Xs; t�êk�sign��Ys; t�êk���∞k=1 are uncorrelated and
independent of the sequence ���Ys; t�êk���∞k=1. Writing ε̃ ≡ ε + M1/q and
N�0;1� for a standardized Gaussian random variable which is independent
of Ys; t, we thus have

P
{
q
∞∑
k=1

�Xs; t�êk��Ys; t�êk� > 1
4η; �Ys; t�2 < ε̃

}

≤ P
{
N�0;1�

(
q2
∞∑
k=1

E��Xs; t�êk�2� �Ys; t�êk�2
)1/2

> 1
4η; �Ys; t�2 < ε̃

}
:
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Using Lemma 1, (4.4), (4.5), (4.8) and (4.9), we therefore obtain

P
{
�X�t��2 ≥ ε− ν

q
; �X�s��2 < ε− ν + η

q

}

≤ P
{
q�Xs; t�2 >

1
4
η

}
P��X�s0��2 < ε�

+P
{
q
∞∑
k=1

�Xs; t�êk��Ys; t�êk� >
1
4
η; �X�s��2 < ε

}

≤ exp
{

1
24
− η

3456M1 tr�R�d�y�X��s; t�2q

}
P��X�s0��2 < ε�

+P
{
N�0;1�

(
q
∞∑
k=1

λ̂k�Ys; t�êk�2
)1/2

>
η

8�M1q�1/2d�y�X��s; t�
;

�Ys; t�2 < ε̃
}
:

(4.10)

Let PJ ∈ L be the projection on EJ ≡ span�ei: i ∈ J� for J ⊆ N, P̂J the
projection on span�êi: i ∈ J�, P⊥J ≡ 1−PJ and P̂⊥J ≡ 1− P̂J. Since the density
function of a χ2�1�-distributed random variable is decreasing, (3.5) and (4.8)
then combine with elementary computations to show that

P
{
q�Ys; t�êk�2 > x; �Ys; t�2 < ε̃

}

=
∫ z=ε̃q
z=x

∫ y=ε̃q−z
y=0

f�P̂⊥�k�Ys; t�2

(
ε̃− y+ z

q

)
f�P̂�k�Ys; t�2

(
y+ x
q

)
dydz

q2

≤
∫ z=ε̃q
z=x

∫ y=ε̃q−z
y=0

f�P̂⊥�k�Ys; t�2

(
ε̃− y+ z

q

)
f�P̂�k�Ys; t�2

(
y

q

)
dydz

q2

= P
{
�Ys; t�2 < ε̃−

x

q

}

≤ P
{
�X�s��2 < ε− x− 2M1

q

}

=
∫ z=εq
z=x−2M1

∫ y=εq−z
y=0

f�P⊥�1�X�s0��2

(
ε− y+ z

q

)
f�P�1�X�s0��2

(
y

q

)
dydz

q2

≤ C2P��X�s0��2 < ε�√
2πλ1

∫ z=∞
z=x−2M1

∫ y=∞
y=0

y−1/2 exp
(
−y+ z

2

)
dydz

≤ C7 exp
(
−x

2

)
P��X�s0��2 < ε� for x ≥ 2M1 and ε small
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and for some constant C7 > 0. In view of (4.8) [and (3.1)] it follows that

E�qp�Ys; t�êk�2pI��Ys; t�2<ε̃��
P��X�s0��2 < ε�

≤ 2M1P��Ys; t�2 < ε̃�
P��X�s0��2 < ε�

+
∫ ∞

2M1

C7 exp
(
−x

1/p

2

)
dx ≤ C8

(4.11)

for p > 1 and ε small, for some C8 = C8�p� > 0. Hence Hölder’s inequality
gives

P
{
N�0;1�

(
q
∞∑
k=1

λ̂k�Ys; t�êk�2
)1/2

> x; �Ys; t�2 < ε̃
}

≤ x−2p E��N�0;1��2p�E
{( ∞∑

k=1

λ̂kq�Ys; t�êk�2
)p
I��Ys; t�2<ε̃�

}

≤ x−2p E��N�0;1��2p� tr�R̂�p−1

×E
{ ∞∑
k=1

λ̂kq
p�Ys; t�êk�2pI��Ys; t�2<ε̃�

}

≤ C8 x
−2p E��N�0;1��2p� tr�R̂�p P��X�s0��2 < ε�:

Recalling (4.3) and (4.10) we conclude that there is a C9 = C9�p� > 0 such
that

P
{
�X�t��2 ≥ ε− ν

q
; �X�s��2 < ε− ν + η

q

}

≤ exp
{

1
24
− η

3456M1 tr�R�d�y�X��s; t�2q

}
P��X�s0��2 < ε�

+ �12�2pMp
1C8 tr�R�pE��N�0;1��2p�

× d�y�X��s; t�2pqpη−2pP��X�s0��2 < ε�

≤ C9d�y�X��s; t�2pqpη−2pP��X�s0��2 < ε�

(4.12)

for d�y�X��s; t�2q ≤ 1 ∧C6η and ε small.
Put C0 ≡ �s0� and write mn for the maximal cardinality of a set Cn ≡

�s1; : : : ; smn
� which is contained in S and satisfies d�y�X��si; sj� > q−1/22−n

for i 6= j. Then we must have mn ≤ MX�Syq−1/22−�n+1��. Further it is clear
that

d�y�X��s; tn�s�� ≤ q−1/22−n for some tn�s� ∈ Cn for each s ∈ S:(4.13)

By L2-continuity of X, given s ∈ T and ε > 0, there is a T-neighborhood
U of s such that d�y�X��s; t�2 = E��y�X�t� −X�s��2� < ε2 for t ∈ U. Thus
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d�y�X� balls are T-open and X is d�y�X�-separable. Further we have, by (4.1)
and (4.2),

E��X�t� −X�s��2� = tr�Var�X�t� −X�s���
= tr�2�1− rs; t�R�

=
∞∑
k=1

2λk
〈
�1− rs; t�ek

∣∣ ek
〉

≤ 2 tr�R�M1d�y�X��s; t�2

→ 0 as d�y�X��s; t� → 0:

Hence (4.3), �X�t��t∈S is L2- and P-continuous in the d�y�X� topology. It follows
(from a well-known argument) that each d�y�X�-dense subset of S separates X.

Now let νn ≡ �
√

2−1�∑n
k=1 2−k/2/q and take p ≡ 3α�0+yMX�Sy ·�� [<∞ by

(2.4)] in (4.12). Since
⋃∞
n=1Cn separates X, (4.12) and (4.13) then yield that

P
{
inf
s∈S
�X�s��2 < ε− 1/q

}

≤ P��X�s0��2 < ε�

+P
{ ∞⋃
n=1

{
inf
s∈Cn
�X�s��2 < ε− νn

}
∩
{

inf
t∈Cn−1

�X�t��2 ≥ ε− νn−1

}}

≤ P��X�s0��2 < ε�

+
∞∑
n=1

P
{ ⋃
s∈Cn
��X�s��2 < ε− νn; �X�tn−1�s���2 ≥ ε− νn−1�

}

≤
[
1+

∞∑
n=1

C9�
√

2− 1�−6α�MX�23�2−n�α�MX�MX�Syq−1/22−�n+1��
]

×P��X�s0��2 < ε�:

[Here we used an idea of Samorodnitsky (1991), Section 3.] Further, for
ε small, by (2.6), ε̂ = ε − 1/q satisfies ε ≤ ε̂ + 2/q�ε̂�, whereas, by
(3.1), P��X�s0��2 < ε̂ + 2/q�ε̂�� ≤ 2e2P��X�s0��2 < ε̂�. Applying (2.3) to
MX�q−1/22−�n+1��/MX�q−1/2� [and noting that MX�q�ε�−1/2� ≤ MX�q�ε̂�−1/2�]
it thus follows that (for ε small)

P
{
inf
s∈S
�X�s��2 < ε̂

}

≤
[
1+

∞∑
n=1

C9�
√

2− 1�−6αC1�−2�2�8−n�αMX�Syq�ε̂�−1/2�
]

× 2e2P��X�s0��2 < ε̂�: 2
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5. Local lower bounds for fields. To derive lower bounds we assume
that there is a subspace E ⊆ H of a certain minimal dimension such that
d�x�X��s; t�/d�z�X��s; t� is bounded for x; z ∈H1 ∩E. Writing P for the projec-
tion on E and P ⊥ ≡ 1−P one then observes that

P��X�t��2 < ε; �X�s��2 < ε�
≤ 2P��PX�t��2 + �P ⊥X�s��2 < ε; �PX�s��2 + �P ⊥X�s��2 < ε�:

Here �PX�t�; PX�s�� yields to finite Gaussian methods after a decoupling of
the dependence between PX�t� and P ⊥X�s�, whereas Section 3 takes care of
P ⊥X�s�.

As in Section 4, although our result involves the classic concept of entropy,
it is only a minor part of the proof [essentially (5.9) and (5.10)] that is classic.

Now let EJ ≡ span�ei: i ∈ J� for J ⊆ N and assume that

there is an I ⊆ N such that

M2�I� ≡ sup
{
d�x�X��s; t�
d�z�X��s; t�

:x; z ∈H1 ∩EI; �s; t� ∈ Sε0

}
<∞:

(5.1)

If the components ��X�t��ek��∞k=1 are independent, then (5.1) holds when

sup
{
�1− ρ�i�s; t�/�1− ρ

�j�
s; t�: i; j ∈ I; �s; t� ∈ Sε0

}
<∞:

Theorem 2. Assume that m�s� has positive decrease as s → ∞ and that
(4.1) holds. Further assume that (4.2) and (5.1) hold with y ∈ H1 ∩EI. If, in
addition, MX�Sy ε� ≡ N�y�X��Sy ε� is O-regularly varying as ε ↓ 0,

n ≡ #I > ρ�0+yq�ρ�0+yMX�Sy ·��(5.2)

and

κ > 1
2ρ�0+yq�ρ�0+yMX�Sy ·��α�0+yMX�Sy ·��
× �n+ ρ�0+yMX�Sy ·���−1;

(5.3)

then we have

lim inf
ε↓0

P�inf t∈S �X�t��2 < ε�
εκMX�Syq�ε�−1/2�P��X�s0��2 < ε�

= ∞:

Remark 3. Since MX and, by Proposition 2, q are O-regularly varying,
(2.2) and (2.5) imply that ρ�q�, ρ�MX� and α�MX� all are finite. Furthermore,
(5.2) and (5.3) hold for any κ > 0 if I can be choosen with #I arbitrarily large
in (5.1).
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Proof of Theorem 2. Choose ε5 ∈ �0; ε0∧ε1� such that M1�y�d�s; t�2 ≤ 1
and 2M1�y�2M2�I�2�R�d�s; t�2 ≤ 1 for �s; t� ∈ Sε5

, where ε1 = ε1�n� is given
in Proposition 2. Since d�z�X��s; t�2 = 2

〈
�1 − rs; t�Rz

∣∣z
〉
, (4.1), (4.2) and (5.1)

yield that

〈
�R− rs; tRr?s; t�z

∣∣ z
〉
= d�z�X��s; t�2 −

〈
�1− r?s; t�z

∣∣ R�1− r?s; t�z
〉

≥ d�z�X��s; t�2 −M2
1�R�d�y�X��s; t�4

≥ 1
2M

−2
2 d�y�X��s; t�2 for z ∈H1 ∩EI and �s; t� ∈ Sε5

:

Using elementary rules for the computation of determinants we thus deduce
that

det

(
Var

(
PI�X�t� + �1− rs; t�X�s��

PIX�s�

))

= det

(
PI�2R− rs; tRr?s; t� PI PIRPI

PIRPI PIRPI

)

= det�PIRPI�det
(
PI�R− rs; tRr?s; t�PI

)

≥
(∏
i∈I
λi

)(
inf

z∈H1∩EI

〈
�R− rs; tRr?s; t�z

∣∣z
〉)n

≥
(∏
i∈I
λi

)
�2M2

2�−nd�y�X��s; t�2n

for �s; t� ∈ Sε5
. An elementary Gaussian argument therefore shows that

P
{
�PI�X�t� + �1− rs; t�X�s���2 < x; �PIX�s��2 < y

}

≤ �2M2
2�n/2�4

√
xy�n

�2π�n�∏i∈Iλ
1/2
i �d�y�X��s; t�n

(5.4)

[for �s; t� ∈ Sε5
]. Further we observe that, by (4.2),

�X�t��2 < ε; �X�s��2 < ε and �P⊥IX�s��2 ≤ �P⊥IX�t��2

⇒
∥∥PI�X�t� + �1− rs; t�X�s��

∥∥2

≤ �PIX�t��2 + 2 �X�t�� �1− rs; t� �X�s��

+ �1− rs; t�2�X�s��2

≤ ε− �P⊥IX�s��2 + 3M1d�y�X��s; t�2ε:

(5.5)
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Since X�t�−rs; tX�s� is independent of X�s� and PIX�s� of P⊥IX�s�, (5.4) and
(5.5) now combine with (3.5) to show that, for �s; t� ∈ Sε5

and ε ∈ �0; ε5�,

P��X�t��2 < ε; �X�s��2 < ε�
= 2P

{
�X�t��2 < ε; �PIX�s��2 + �P⊥IX�s��2 < ε;

�P⊥IX�s��2 ≤ �P⊥IX�t��2
}

≤ 2
∫ εq

0
P
{
�PI�X�t� + �1− rs; t�X�s��

∥∥2
< 3M1d�y�X��s; t�2ε+ x/q;

�PIX�s��2 < x/q
}

× f�P⊥IX�s��2�ε− x/q�dx/q

≤ 21+3n/2Mn
2C2P��X�s0��2 < ε�

πn�∏i∈Iλ
1/2
i �d�y�X��s; t�n

×
∫ ∞

0

(
3M1d�y�X��s; t�2ε+ x/q

)n/2
xn/2e−x/2 dx

≤ 23n+2Mn
2C2P��X�s0��2 < ε�
πn�∏i∈Iλ

1/2
i �

×
(
0

(
n+ 2

2

)(
3
2
M1ε

)n/2
+ 0�n+ 1�
qn/2d�y�X��s; t�n

)
:

(5.6)

Clearly, by (5.2) and (5.3), there exist % ∈ �0; 1
2� and ν ∈ �1;∞� such that

n > ν2ρ�q�ρ�MX�; n% > ν� 1
2 − %�ρ�MX�; κ > ν2%ρ�q�α�MX�:(5.7)

Further observe that, writing By�s; ε� ≡ �t ∈ T:d�y�X��s; t� ≤ ε� and given a
δ ∈ �0; ε5�, there exists s�δ� ∈ Sε5

such that

MX

(
S ∩By�s�δ�; ε5�y δ

)
≥MX�Sy δ�

/
MX�Sy ε5�:(5.8)

It is now an easy exercise in covering numbers/entropy to conclude that there
is a set Nδ ⊆ S ∩By�s�δ�; ε5� satisfying

MX

(
S ∩By�s�δ�; ε5�y δ

)
≤ #Nδ ≤MX

(
S ∩By�s�δ�; ε5�y 1

2δ
)

(5.9)

such that d�y�X��s; t� ≥ δ for Nδ 3 s 6= t ∈Nδ. Taking δ = q�ε�%−1/2, (5.6) thus
gives

P
{

inf
t∈Nδ

�X�t��2 < ε
}

≥ #Nδ P��X�s0��2 < ε� −
∑

Nδ3s6=t∈Nδ

P��X�s��2 < ε; �X�t��2 < ε�

≥ #Nδ P��X�s0��2 < ε�
[
1−C10MX�Sy 1

2q
%−1/2��εn/2 + q−n%�

]

(5.10)
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for ε small and for some C10 > 0. Here we have, by (5.7), choosing a C11 > 0
such that q�ε� ≤ C11ε

−νρ�q� and MX�Sy ε� ≤ C11ε
−νρ�MX�,

MX�Sy 1
2q

%−1/2��εn/2 + q−n%�

≤ C112νρ�MX��1/2−%�
(
C11ε

−ν2ρ�q�ρ�MX��1/2−%�εn/2

+ qνρ�MX��1/2−%�q−n%
)
→ 0

(5.11)

as ε ↓ 0. For ε small (5.8)–(5.10) therefore show that

P
{

inf
t∈S
�X�t��2 < ε

}
≥ 1

2MX�Sy ε5�−1MX�Syq%−1/2�P��X�s0��2 < ε�:

The theorem thus follows from (5.7) and the fact that, by applying (2.3) to MX,

MX�Syq−1/2� ≤ C1�−ν�C
ν%α�MX�
11 ε−ν

2%ρ�q�α�MX�MX�Syq%−1/2�: 2

Remark 4. By (4.1) and (4.2) we have d�z�X��s; t�2 ≤ 2M1�R�d�y�X��s; t�2
for z ∈H1, so that By�s; ε/

√
2M1�R� � ⊆ Bz�s; ε�. Consequently,

N�y�X��Sy ε� ≤ sup
z∈H1

N�z�X��Sy ε� ≤ N�y�X�
(
Sy ε

/√
2M1�R�

)
:

Since N�y�X��Sy ·� is O-regularly varying, it follows that one can replace MX =
N�y�X� with supz∈H1

N�z�X� in Theorems 1–3. 2

To get a sharp(er) lower bound we require that the y ∈ H1 given in (4.2)
satisfies

M3�y� ≡ sup
{

N�y�X��S ∩By�s; ε̂�y ε�N�y�X��Sy ε̂�
N�y�X��Sy ε�

:

0 < ε ≤ ε̂ ≤ ε0; s ∈ Sε0

}
<∞:

(5.12)

The requirement (5.12) essentially means that the ratio between the max-
imum entropy and the average entropy for a d�y�X� ball is bounded.

We say that �X�t��t∈T is stationary if T = �T;+� is an Abelian group and
if Rs; s+t = Rs+τ; s+t+τ for s; t; τ ∈ T. Then N�y�X��By�s; ε̂�y ε� does not depend
on s.

Proposition 3. Assume that �X�t��t∈T is stationary and that N�y�X��S; ε�
is O-regularly vaying as ε ↓ 0. If, in addition, S has nonempty d�y�X�-interior,
then (5.12) holds.

Remark 5. If for example, T is metric and S is T-compact with
E��y�X�t� −X�s��2� > 0 for S 3 s 6= t ∈ S, then d�y�X��s; ti� → 0 ⇒ ti →T s
for ��s; ti��∞i=1 ⊆ S × S. If S also has nonempty T-interior, it follows that S
has nonempty d�y�X�-interior.
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Proof of Proposition 3. Take ŝ ∈ S and ε6 > 0 such that By�ŝ;2ε6� ⊆ S.
Then it is an easy exercise in covering numbers/entropy to show that

N�y�X��S; ε� ≥ N�y�X��By�ŝ; ε6�y4ε̂�N�y�X��By�·; ε̂�y ε� for ε ≤ ε̂ ≤ ε6:

Here we have, by (5.8) (and Section 2), for ε̂ ≤ 1
4ε6 sufficiently small,

N�y�X��By�ŝ; ε6�y4ε̂� ≥ N�y�X��Sy4ε̂�/N�y�X��Sy ε6�
≥ �29�0+;N�y�X��S; ·�y 1

4��−1

×N�y�X��Sy ε̂�
/

N�y�X��Sy ε6�:

Hence (5.12) holds with M3�y� = 29�0+;N�y�X�y 1
4�N�y�X��Sy ε6�. 2

Theorem 3. Assume that m�s� has positive decrease as s → ∞ and that
(4.1) holds. Further asssume that (4.2), (5.1) and (5.12) hold with y ∈H1∩EI.
If, in addition, MX�Sy ε� ≡ N�y�X��Sy ε� is O-regularly varying as ε ↓ 0 and

n ≡ #I > max
{
ρ�0+yq�ρ�0+yMX�Sy ·��; α�0+yMX�Sy ·��

}
;(5.13)

then we have

lim inf
ε↓0

P�inf t∈S �X�t��2 < ε�
MX�Syq�ε�−1/2�P��X�s0��2 < ε�

> 0:

Proof. Take η; ν > 1 such that η�n− να�MX�� > 1 and n > ν2ρ�q�ρ�MX�
and let K > 0. Also choose Nδ as in the proof of Theorem 2, where now
δ = Kq�ε�−1/2. Then it is easily seen that εn/2#Nδ → 0 [consider (5.11) with
% = 0 but with the factor q−n% omitted]. Further we have, by (5.12) and (2.3)
(for ε small),

sup
s

#�t ∈Nδ: d�y�X��s; t� < q−1/2�k+ 1�ηK�

≤ sup
s

MX

(
S ∩By�s; q−1/2�k+ 1�ηK�y 1

2q
−1/2K

)

≤M3�y�MX�Sy 1
2q
−1/2K�/MX�Syq−1/2�k+ 1�ηK�

≤M3�y�C1�−ν�2να�MX� �k+ 1�ηνα�MX�:

Hence (5.6), (5.8) and (5.9) show that there is a C12 > 0 such that [cf. (5.10)]

P
{

inf
t∈Nδ

�X�t��2 < ε
}

≥ #Nδ P��X�s0��2 < ε�
−
∑
s∈Nδ

∑
k∈N

∑

�t∈Nδ: kηK≤q1/2d�y�X��s;t�<�k+1�ηK�
P��X�t��2 < ε; �X�s��2 < ε�
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≥ #NδP��X�s0��2 < ε�

×
[
1−C12ε

n/2#Nδ −C12

∞∑
k=1

�k+ 1�ηνα�MX��kηK�−n
]

≥ 1
2MX�Sy ε5�−1MX�SyKq−1/2�P��X�s0��2 < ε�

for ε and K large. Thus the theorem follows from applying (2.3) to MX. 2

6. Examples. In Examples 1–6 that follow it is assumed that �λk�∞k=1 ⊆
�0;∞� have been choosen so that m�s� = ∑∞k=1 λk/�1+ 2λks� has positive de-
crease as s→∞. Further, in Examples 1, 4 and 5, S, Ŝ ⊆ Rn are compact with
nonempty interior. There we also write �t� ≡ sup1≤i≤n �ti�,DS ≡ sups; t∈S �t−s�
and, choosing an n-dimensional hypercube K ⊆ S, dS ≡ sups; t∈K �t− s�.

Example 1 (An Ornstein–Uhlenbeck process). Let

X�t� ≡
∞∑
k=1

√
λkξk�t�ek for t ∈ Rn;

where �ξk�∞k=1 are independent standardized (Gaussian) such that

E�ξk�s�ξk�t+ s�� = exp
{
−ak

n∑
i=1

�ti�
}

where 0 < ak ≤ sup
l∈N

al ≡ a <∞:

Then independence of the components yields (4.1). Furthermore, we have

exp�−aknDS�ak�t− s� ≤ 1− ρ�k�s; t = 1− exp
{
−ak

n∑
i=1

�ti − si�
}

≤ na �t− s�:
Hence (4.2) holds for y = ek for any k ∈ N, whereas (5.1) holds for any finite
I ⊆ N. Recalling that d�ek�X��s; t�2 = 2λk�1− ρ

�k�
s; t�, we also conclude that

�s ∈ Rn: �s� ≤ ε2/�2λkan�� ⊆ Bek�0y ε�
⊆ �s ∈ Rn: �s� ≤ exp�aknDS�ε2/�2λkak��:

It follows that N�ek�X��Sy ε� is (O-) regularly varying with
(
exp�−aknDS�λkakdSε−2 − 1

)n ≤ N�ek�X��Sy ε� ≤
(
λkanDSε

−2 + 1
)n
:

Since by Proposition 3, (5.12) also holds, Theorems 1 and 3 combine to show
that

0 < lim inf
ε↓0

P�inf t∈S �X�t��2 < ε�
q�ε�nP��X�s0��2 < ε�

≤ lim sup
ε↓0

P�inf t∈S �X�t��2 < ε�
q�ε�nP��X�s0��2 < ε�

<∞:



MINIMA OF H-VALUED GAUSSIAN PROCESSES 807

Example 2 (Independent identically distributed components). Let

X�t� ≡
∞∑
k=1

√
λkξk�t�ek for t ∈ T;

where the processes �ξ1�t��t∈T, �ξ2�t��t∈T, : : : are independent identically dis-
tributed and standardized. Then (4.1) holds, (4.2) holds for y = ek for any
k ∈ N and (5.1) holds for any finite I ⊆ N. Provided that, given an S ⊆ T,
N�ek�X��Sy ε� is O-regularly varying, Theorems 1 and 2 now show that

lim sup
ε↓0

P�inf t∈S �X�t��2 < ε�
N�ek�X��Syq�ε�−1/2�P��X�s0��2 < ε�

<∞;

lim inf
ε↓0

P�inf t∈S �X�t��2 < ε�
εκN�ek�X��Syq�ε�−1/2�P��X�s0��2 < ε�

= ∞ for each κ > 0:

(6.1)

If the processes �ξk�∞k=1 are stationary and S has nonempty d�ek�X�-interior,
then (5.12) holds by Proposition 3, and Theorem 3 gives a sharp lower bound.

Example 3. Let X�t� ≡ ∑∞k=1

√
λkξk�t�ek, where �ξk�∞k=1 are independent

and standardized. Assume that there is an J ⊆ N such that �ξj�j∈J are iden-
tically distributed and satisfy ρ�j�s; t ≤ ρ

�k�
s; t for each choice of �j; k� ∈ J×�N−J�.

Then (4.1) holds, (4.2) holds for y = ej for any j ∈ J and (5.1) holds for finite
I ⊆ J. If N�ej�X��Sy ε� is O-regularly varying for j ∈ J, then Theorem 1 gives
an upper bound for P�inf t∈S �X�t��2 < ε�. If, in addition, #J is sufficiently
large [to satisfy (5.2)], then Theorem 2 gives a lower bound.

Example 4 (A nonstationary Ornstein–Uhlenbeck process generated from
fractional Brownian motion; space dependence in T). Choose an α ∈ �0;1�
and let

%s; t ≡
1
2

( n∑
i=1

exp�si�
)−α/2( n∑

i=1

exp�ti�
)−α/2

×
[( n∑

i=1

exp�si�
)α
+
( n∑
i=1

exp�ti�
)α
−
( n∑
i=1

(
exp

(
ti
2

)
− exp

(
si
2

))2)α]

for s; t ∈ Rn. Define X as in Example 2, where �ek�X�t�� =
√
λkξk�t� has

correlation ρ
�k�
s; t = %s; t. [Equivalently one may define ξk�t� ≡ �

∑
i exp ti�−α/2 ·

Wk�exp�t1/2�; : : : ; exp�tn/2��, where �Wk�∞k=1 are independent fractional
Brownian motions satisfying E�Wk�s�Wk�t�� = �s�2α + �t�2α − �t − s�2α.] By
Example 2, (4.1) holds, (4.2) holds for y = e1 and (5.1) holds for finite I ⊆ N.
Furthermore, a Taylor expansion reveals that

1−%s; t = 2−�1+2α�
(∑

i

�ti−si�2 exp�si�
)α/(∑

i

exp�si�
)α
+1s; t �t−s�min�2;1+2α�;
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where sup��1s; t�: �t− s� ≤ σ1; �s� ≤M4� <∞ for σ1;M4 > 0. It follows that

C−1
13 �t− s�1/α ≤ d�e1�X��s; t� ≤ C13�t− s�1/α for �t− s� ≤ σ2

for some constants C13, σ2 > 0. Now take an ŝ in the interior of S and write
Ŝ = S�ŝ� ≡ �t ∈ Rn: �ŝ− t� ≤ 1

2σ2�. Then we have

Ŝ ∩Be1
�sy ε̂� ⊆ �t ∈ Rn: �s− t� ≤ �C13ε̂�α�;

�t ∈ Rn: �s− t� ≤ �C−1
13 ε�α� ⊆ Be1

�sy ε� for ε ≤ ε7 ≡ C13σ
1/α
2 :

Consequently, N�e1�X��Ŝy ε� is (O-) regularly varying with
( 1

2C
−α
13 dŜε

−α − 1
)n ≤ N�e1�X��Ŝy ε� ≤

( 1
2C

α
13DŜε

−α + 1
)n for ε ≤ ε7:

The fact that (5.12) also holds (for �X�t��t∈Ŝ) thus follows from observing that

N�e1�X��Ŝ ∩Be1
�sy ε̂�y ε� ≤ N�e1�X�

(
�t ∈ Rn: �s− t� ≤ �C13ε̂�α�y ε

)

≤ �C2α
13�ε̂/ε�α + 1�n

for ε ≤ ε7. Applying Theorems 1 and 3 we conclude that

0 < lim inf
ε↓0

P�inf t∈Ŝ �X�t��2 < ε�
q�ε�nα/2P��X�s0��2 < ε�

≤ lim sup
ε↓0

P�inf t∈Ŝ �X�t��2 < ε�
q�ε�nα/2P��X�s0��2 < ε�

<∞:
(6.2)

Since Ŝ = S�ŝ� ⊆ S for σ2 small, while S ⊆ ⋃N
i=1S�ŝi� for some choice of

�ŝi�Ni=1 ⊆ S, Boole’s inequality shows that (6.2) also holds when Ŝ is replaced
by S.

Example 5 (L2-differentiability; space dependence in H). Let X�t� ≡∑n
i=1Xi�ti� for t ∈ Rn, where �X1�τ��τ∈R; : : : ; �Xn�τ��τ∈R are independent

stationary H-valued variables with common variance R̂. Assume that each
Xi�τ� satisfies (4.1) with

R�i�τ1;τ2
= r�i�τ1;τ2

R̂ where r�i�0;τ = 1− 1
2r
′′
i τ

2 + 1�i�τ τ2 and lim
τ→0
�1�i�τ � = 0;

for some r′′i , 1
�i�
τ ∈ L . Then X�t� possesses a derivative X′�t� such that

limh→0 E��h−1�X�t + h� −X�t�� −X′�t��2� = 0 and X�0� and X′�0� are in-
dependent. Furthermore, R = nR̂ and Rs; t = ��1/n�

∑
i r
�i�
si; ti
�R, so that (4.1)

holds. It follows that

d�z�X��0; t�2 =
〈∑
i

�r′′i − 21�i�ti �R̂t
2
iz
∣∣ z
〉

≥
[

inf
i

〈
r′′i R̂z

∣∣z
〉
− 2 sup

i

�1�i�ti R̂�
]
�t�2;

d�z�X��0; t�2 ≤ �R̂� sup
i

��r′′i � + 2�1�i�ti �� �t�
2

(6.3)
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for z ∈H1 and, in particular, �r′′i R̂z�z� ≥ 0. [In fact r′′i R̂ = Var�X′i�τ��, so that
r′′i R̂ is positive.] We now make the additional assumption that

there is a finite I ⊆ N such that #I > nρ�0+yq� and

inf
i

inf
z∈H1∩EI

�r′′i R̂z�z� > 0:

Then (6.3) implies (5.1). Furthermore, we have

�1− r0; t� = �2n�−1

∥∥∥∥
∑
i

�r′′i − 21�i�ti �t
2
i

∥∥∥∥ ≤ �2n�
−1 sup

i

��r′′i � + 2�1�i�ti ���t�
2:

Hence, by (6.3), (4.2) holds for y ∈ EI. For DŜ sufficiently small we also obtain

C−1
14 ε
−n ≤ N�y�X��Ŝy ε� ≤ 1+C14ε

−n

for some C14 > 0. Thus N�y�X��Ŝy ·� is (O-) regularly varying with ρ�0+y
N�y�X�� = α�0+yN�y�X�� = n. [As in Example 4 we can first study a sufficiently
small (in terms of DŜ) set Ŝ ⊆ Rn and then easily extend results to a larger
S afterwards.] It is also clear that Ŝ has nonempty d�y�X�-interior. Hence, by
Proposition 3, (5.12) holds. Since ρ�0+yq� ≥ 1 it also follows that (5.13) holds
when #I > nρ�0+yq�. [If ρ�0+yq� < 1, then there is a δ < 1 such that εδq�ε�
is bounded for ε small. However, then m�s�δs is bounded for s large, which
contradicts the fact that m�s�s→∞.] In conclusion, by Theorems 1 and 3, X
satisfies (6.2) with α = 1.

Example 6 (A nonstationary Ornstein–Uhlenbeck process generated from
set-indexed Brownian motion). Take X as in Example 2 with T = �A ⊆
�0;1�n: A Borel set� and ρA;B = ��A��B��−1/2×�A∩B� forA;B ∈ T, where �·� is
the Lebesgue measure. Take a δ ∈ �0; 1

2� and let S = S�δ� ≡ �A ∈ T: �A� ≥ δ2�.
Then we have �ek�X�A�� =

√
λk/�A�W�A�, where W is Brownian motion on

T with E�W�A�W�B�� = �A ∩ B� and dW�A;B�2 = �A� + �B� − 2�A ∩ B�. It
follows that

d�ek�X��A;B�
2 = λk��A��B��−1/2[2

√
�A��B� − 2�A ∩B�

]

≤ λkδ−2dW�A;B�2

for A;B ∈ S. On the other hand, we have

(√
�A� −

√
�B�
)2 = ���A� ∨ �B�� − ��A� ∧ �B���

2

�
√
�A� ∨ �B� +

√
�A� ∧ �B��2

≤ ��A� ∨ �B�����A� ∨ �B�� − ��A� ∧ �B���
��A� ∨ �B�� + δ2 + 2δ

√
�A� ∨ �B�

≤ �1+ 2δ�−1���A� ∨ �B�� − ��A� ∧ �B���
≤ �1+ 2δ�−1dW�A;B�2



810 J. M. P. ALBIN

for A;B ∈ S, which implies that

d�ek�X��A;B�
2 = λk�dW�A;B�

2 − �
√
�A� −

√
�B��2�√

�A��B�

≥ 2δλkdW�A;B�2
δ2�1+ 2δ�

≥ δ−1λkdW�A;B�2

for A, B ∈ S. Given an R-valued Gaussian process �ζ�t��t∈T, if we write
N 0
ζ �Sy ε� for the minimum number of closed dζ balls of radius ε centered at

S needed to cover S ⊆ T, then it is an easy exercise in covering numbers
to see that Nζ�Sy ε� ≤ N 0

ζ �Sy ε� ≤ Nζ�Sy 1
2ε�. Combining this with the facts

above, we conclude that

NW

(
Sy2

√
δ/λk ε

)
≤ N 0

W

(
Sy2

√
δ/λkε

)
≤ N 0

�ek�X��Sy2ε�
≤ N�ek�X��Sy ε�;

N�ek�X��Sy ε� ≤ N 0
�ek�X��Sy ε� ≤ N 0

W �Sy δλ
−1/2
k ε�

≤ NW

(
Sy 1

2δλ
−1/2
k ε

)
:

(6.4)

Now consider the pinned Brownian motion W�A� ≡W�A� − �A�W��0;1�n�.
Since ��A� − �B��2 ≤ �1− δ2�dW�A;B�2 for A, B ∈ S, we have

δ2dW�A;B�2 ≤ dW�A;B�2 − ��A� − �B��2 = dW�A;B�2 ≤ dW�A;B�2

for A, B ∈ S. It follows that

NW�Sy ε� ≥ N 0
W �Sy2ε� ≥ N 0

W
�Sy2ε� ≥ NW�Sy2ε�;

NW�Sy ε� ≤ N 0
W �Sy ε� ≤ N 0

W
�Sy δε� ≤ NW

(
Sy 1

2δε
)
:

In view of (6.4) we thus obtain

NW

(
Sy4

√
δ/λkε

)
≤ N�ek�X��Sy ε� ≤ NW

(
Sy 1

4δ
2λ
−1/2
k ε

)
:(6.5)

The next lemma is proved in Samorodnitsky [(1991), Remark 6.2 and Exam-
ple 6.2].

Lemma 2. Let S�%� ≡ �A ∈ T: E�W�A�2� > %2� for % ∈ �0−; 1
2 �. Then there

is a constant C15 > 0 such that

NW

(
S
( 1

2 − δ0
)
y ε
)
≥ C−1

15 ε
−4n

√
δ0 for δ0 ∈

[
0; 1

2

]
;(6.6)

NW

(
S�δ1� −S�δ2�y ε

)
≤ C15ε

−4n
[√
δ2 − δ1 + ε2

]
for 0− ≤ δ1 ≤ δ2 ≤ 1

2 :(6.7)
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In view of the easily established facts that S�δ
√

1− δ2 � = S�δ+� −
S�
√

1− δ2 � and T = S�0−� −S� 1
2�, (6.5)–(6.7) readily combine to show that

C−1
15

[ 1
2 − δ

√
1− δ2

]1/2�16δ/λk�−2nε−4n

≤ NW

(
S
(
δ
√

1− δ2
)
y4
√
δ/λk ε

)

≤ N�ek�X��Sy ε�

≤ NW

(
S�0−� −S

( 1
2

)
y 1

4δ
2λ
−1/2
k ε

)

≤ C15�16λk/δ4�2n
[√

1/2+ 1
16δ

4ε2/λk
]
ε−4n:

Hence X satisfies (6.1) with S = S�δ� and C−1
16 ε
−4n ≤ N�ek�X��Sy ε� ≤ C16ε

−4n.

7. Local extremes for stationary processes. The treatment is special-
ized to the process Y�t� = ∑∞

k=1

√
λkξk�t�ek, t ∈ T = R, where �ξk� are in-

dependent (R-valued) stationary and standardized with covariance functions
�rk�. Using Albin (1990, 1992b) the upper and lower estimates of Sections 4
and 5 combine with a weak convergence argument linked to the linear struc-
ture of R to give the exact asymptotic behavior of P�inf t∈�0;h� �Y�t��2 < ε�
under conditions on �rk�.

For easy reference we now state the needed results from Albin (1990,
1992b): Let �κ�t��t≥0 be an �0;∞�-valued separable stationary stochastic
process such that 0 < P�κ�0� < ε� → 0 as ε ↓ 0. Assume that there are
constants −∞ ≤ x0 < 0 < x1 ≤ ∞, a function w: �0;∞� → �0;∞� and a
strictly decreasing continuous function F: �x0; x1� → �0;∞� such that

lim sup
ε↓0

P�κ�0� < ε− xw�ε��
/

P�κ�0� < ε� = F�x� for x ∈ �x0; x1�:(7.1)

Further assume that there is a nondecreasing function p: �0;∞� → �0;∞�
and a stochastic process �χ�t��t>0 such that

the finite-dimensional distributions of
{(
κ�p�ε�t� − ε

w�ε�
∣∣∣κ�0� < ε

)}

t>0

→D those of �χ�t��t>0 as ε ↓ 0:

(7.2)

We shall make the additional requirements that, given an h > 0,

lim
N→∞

lim sup
ε↓0

�h/ap�ε��∑
k=N

P�κ�ap�ε�k� < ε
∣∣ κ�0� < ε� = 0 for each a > 0;(7.3)

and that there are constants A, b, c, d; ε8; η1 > 0 such that

P�κ�p�ε�t� < ε− ηw�ε�; κ�0� ≥ ε� ≤ Atb+1η−c P�κ�0� < ε�(7.4)

for 0 < td < η < η1 and ε ∈ �0; ε8�. [Here (7.1) implies that w�ε� = o�ε�.]
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Lemma 3. Assume that (7.1)–(7.4) hold. Then the limit

lim
a↓0

a−1P
{
inf
k≥1

χ�ak� ≥ 0
}
≡ L

exists and 0 < L <∞. Furthermore, we have

P
{

inf
t∈�0; h�

κ�t� < ε
}
∼ hLp�ε�−1P�κ�0� < ε� as ε ↓ 0:

Proof. This follows from combining Albin [(1990), Theorem 1] and Albin
[(1992b), Proposition 2(i) and the remark following that result]. Of course,
although results in Albin (1990, 1992b) are stated for suprema, they are triv-
ially adapted to deal with the infimum of a process κ�t� by considering the
supremum of −κ�t�. 2

Suppose that there are constants α ∈ �0;2� and c1, c2; : : : ∈ �0;∞� such that

rk�t� ∼ 1− ck�t�α as t→ 0 for k ∈ N:(7.5)

For the convergence in (7.5) we need a property reminiscent of uniformity for
k ∈ N:

M5 ≡ sup
k∈N

sup
t∈R
�t�−α�1− rk�t�� <∞:(7.6)

Of course, (7.5) implies that there exists an h > 0 such that

sup
k∈K

rk�t� < 1 for t ∈ �0; h�:(7.7)

Theorem 4. Let �ζk�∞k=1 be independent zero-mean R-valued Gaussian pro-
cesses with covariances E�ζk�s�ζk�t�� = ck��s�α + �t�α − �t − s�α� and let E be
a unit-mean exponential random variable such that Y, �ζk�∞k=1 and E are

independent. Further put Z�t� ≡ ∑∞
k=1

√
λkζk�t�ek and assume that m�s� =∑∞

k=1 λk/�1 + 2λks� has positive decrease as s→ ∞ and that (7.5)–(7.7) hold.
If, in addition,

K ≡ �k ∈ N: ck > 0� satisfies #K > 2ρ�0+yq�/α(7.8)

(with q defined as before), then the limit

L��λk�; α; �ck��

≡ lim
a↓0

1
a

P

{
inf
k≥1

[
�Z�ak��2 +

∞∑
l=1

√
2
λl
�el�Z�ak���el�Y�0��

]
≥ E

}

exists with L ∈ �0;∞�. Moreover, we have

P
{

inf
t∈�0;h�

�Y�t��2 < ε
}
∼ hLq�ε�1/αP��Y�0��2 < ε� as ε ↓ 0:
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Remark 6. Here Z�t� is a well-defined Gaussian process since, by (7.6),

∞∑
l=1

Var
{√
λl ζl�t�

}
=
∞∑
l=1

2λlcl�t�α ≤ 2 tr�R�M5�t�α <∞:

Furthermore,
∑∞
l=1

√
2/λl�el�Z�t���el�Y�0�� is well defined since

∞∑
l=1

Var
{√

2/λl �el�Z�t���el�Y�0��
}

=
∞∑
l=1

4λlcl�t�α ≤ 4 tr�R�M5�t�α:

Lemma 4. Let p ≡ q−1/α; w ≡ q−1 and κ�t� ≡ �Y�t��2. Then (7.2) holds
with

χ�t� ≡ �Z�t��2 +
∞∑
l=1

√
2/λl�el�Z�t���el�Y�0�� − E :

Proof. Let �ξ̃k�∞k=1 be an independent copy of �ξk�∞k=1 and write ζ̃k�t� ≡
ξ̃k�t� − rk�t�ξ̃k�0�. Since ξk�t� − rk�t�ξk�0� and ξk�0� are independent,

the finite-dimensional distributions of q��Y�pt��2 − ε�

=D those of
∞∑
k=1

qλk
(
ζ̃k�pt�2 + 2ζ̃k�pt�rk�pt�ξk�0�

− �1− rk�pt�2�ξk�0�2
)
+ q��Y�0��2 − ε�:

(7.9)

Here we have, by (7.5), q�1− rk�pt�2� → 2ck�t�α, and since

Cov�q1/2ζ̃k�ps�; q1/2ζ̃k�pt�� = q�rk�p�t− s�� − rk�ps�rk�pt��;(7.10)

it follows that

the finite-dimensional distributions of q1/2ζ̃k�pt� →D those of ζk�t�:(7.11)

Writing N�0;1� for a standardized Gaussian random variable independent of
Y�0� [and recalling that E��N�0;1��2� =

√
2/π] we further have, by (7.10)

and Jensen’s inequality and by an application of (4.11) (with s = t),

E
{∣∣∣∣

∞∑
k=l+1

qλkζ̃k�pt�rk�pt�ξk�0�
∣∣∣∣
∣∣∣ �Y�0��2 < ε

}

= E
{( ∞∑

k=l+1

q2λ2
k�1− rk�pt�2�rk�pt�2ξk�0�2

)1/2

�N�0;1��
∣∣∣ �Y�0��2 < ε

}
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≤
√

2
π

( ∞∑
k=l+1

qλk�1− rk�pt�2�rk�pt�2E
{
qλkξk�0�2

∣∣ �Y�0��2 < ε
})1/2

≤
(

2
π

∞∑
k=l+1

qλk�1− rk�pt�2�C8�1�
)1/2

:

Since by (7.6), supk∈N q�1− rk�pt�2� ≤ 2M5�t�α, it follows that

lim sup
ε↓0

E
{∣∣∣∣

∞∑
k=l+1

qλk
(
ζ̃k�pt�2 + 2ζ̃k�pt�rk�pt�ξk�0�

)

−
∞∑
k=1

qλk�1− rk�pt�2�ξk�0�2
∣∣∣∣
∣∣∣ �Y�0��2 < ε

}

≤ lim sup
ε↓0

∞∑
k=l+1

qλk�1− rk�pt�2�

+ lim sup
ε↓0

(
�8/π�

∞∑
k=l+1

qλk�1− rk�pt�2�C8

)1/2

+ lim sup
ε↓0

q sup
k∈N
�1− rk�pt�2�E

{
�Y�0��2

∣∣ �Y�0��2 < ε�

≤ 2M5�t�α
∞∑

k=l+1

λk +
√

16C8M5�t�α/π
( ∞∑
k=l+1

λk

)1/2

+ 2M5�t�α lim sup
ε↓0

ε;

where the right-hand side tends to zero as l→∞. In view of (7.9) and (7.11),
(7.2) will therefore follow if we can prove that W ≡ Y�0� satisfies

(
q1/2�W�e1�; : : : ; q1/2�W�el�; q��W�2 − ε�

∣∣ �W�2 < ε
)

→D

(
�2λ1�−1/2�W�e1�; : : : ; �2λl�−1/2�W�el�; −E

)(7.12)

for each l ∈ N. However, by (3.2) and (3.4), we have

fq1/2�W�e1�;:::; q1/2�W�el� �q��W�2−ε��y1; : : : ; yl
∣∣ x�

=
f�Wl�2�ε+ �x−

∑l
k=1y

2
k�/q�

∏l
k=1f
√
λkN�0;1��yk/q1/2�

ql/2f�W�2�ε+ x/q�

→
l∏

k=1

f√1/2N�0;1��yk� for �y1; : : : ; yl; x� ∈ Rl+1:
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Since, by (3.2), fq��W�2−ε� � �W�2<ε�x� → ex for x < 0, it follows that

fq1/2�W�e1�;:::; q1/2�W�el�; q��W�2−ε� � �W�2<ε�y1; : : : ; yl; x�
= fq1/2�W�e1�;:::; q1/2�W�el� �q��W�2−ε��y1; : : : ; yl �x�fq��W�2−ε� � �W�2<ε�x�

→
l∏

k=1

f√1/2N�0;1��yk� ex

= f�2λ1�−1/2�W�e1�;:::; �2λl�−1/2�W�el�;−E �y1; : : : ; yl; x�

for �y1; : : : ; yl; x� ∈ Rl × R+. Hence (7.12) holds. 2

Lemma 5. The condition (7.3) holds for κ�t� = �Y�t��2.

Proof. First we observe that, by (7.6),

d�y�Y��s; t�2 = 2
∞∑
k=1

λk�y�ek�2�1− rk�t− s��

≤ 2M5�t− s�α
(

sup
k∈N

λk

)(7.13)

for y ∈H1. On the other hand, by (7.5), there is an h1 > 0 such that

d�y�Y��s; t�2 ≥ 2 inf
k∈K

λk�1− rk�t− s�� ≥ �t− s�α
(

inf
k∈K

λkck

)
(7.14)

for y ∈ H1 ∩EK and �t − s� ≤ h1. Thus (5.1) holds for I = K. Moreover, (4.1)
holds with rs;tek = rk�t− s�ek. In view of (7.5) and (7.14) it follows that

�1− rs; t�
d�y�Y��s; t�2

≤ M5

�inf k∈K λkck�
for y ∈H1 ∩EK and �t− s� ≤ h1:

Hence (4.2) also holds. Writing n ≡ #K, an application of (5.6) [which requires
(4.1), (4.2) and (5.1), but not (5.2), (5.3) or O-regular variation] now shows that

P��Y�t��2 < ε � �Y�s��2 < ε�
≤ C17�εn/2 + pnα/2�t− s�−nα/2� for �t− s� ≤ h2

for some constants h2, C17 > 0. Furthermore, by (7.7), there is a C18 ≥ C17
such that

P��Y�t��2 < ε
∣∣ �Y�0��2 < ε�

= P
{ ∞∑
k=1

λk�ζ̃k�t� + rk�0�ξk�0��2 < ε
∣∣ �Y�0��2 < ε

}
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≤ P
{∑
k∈K

λkζ̃k�t�2 < �
√
ε+ �Y�0���2

∣∣ �Y�0��2 < ε
}

≤
∏
k∈K

P
{
λk�1− rk�0�2��N�0;1��2 < 4ε

}

≤ C18 ε
n/2 for min�h;h2� ≤ �t− s� ≤ h

[where ζ̃k�t� is defined as in the proof of Lemma 4]. It follows readily that

�h/�ap��∑
k=N

P
{
�Y�apk��2 < ε

∣∣ �Y�0��2 < ε
}

≤ C18

[
�h/a�εn/2q1/α +

∞∑
k=N
�ak�−nα/2

]
:

Here, since by (7.8), nα/2 > ρ�q� ≥ 1 (cf. Example 5), the right-hand side
tends to

∑∞
k=N�ak�−nα/2 as ε ↓ 0, which in turn tends to 0 as, N→∞. 2

Proof of Theorem 4. Clearly, by (3.1), (7.1) holds with F�x� ≡ e−x (and
w = q−1). To verify (7.4) we take a j ∈ N such that jα > 1. Using (7.13), an
application of (4.12) with ν = 0 then shows that there is a η2 > 0 such that

P��Y�pt��2 < ε− η/q; �Y�0��2 ≥ ε�
≤ C9�j�d�y�Y��0; p�ε�t�2jqjη−2jP��Y�0��2 < ε�

≤ 2jC9M
j
5t
jαη−2j

(
sup
k∈K

λk

)j
P��Y�0��2 < ε�

for 0 < tα < η < η2 and ε small. [Note that, by (7.13), the condi-
tion d�y�X��0; pt�2q ≤ C6η required for the validity of (4.12) is satisfied
when tα < η.] In view of Lemmas 4 and 5, Theorem 4 now follows from
Lemma 3. 2

8. Global limits for stationary processes. By well-established prin-
ciples in extremal theory, control of local extremes combines with a suitable
global mixing property to imply one of three possible global limit results. How-
ever, it is often difficult to prove mixing since that involves manipulation of
and verification of sharp quantitative results for finite-dimensional distribu-
tions of arbitrary order. In Lemma 11 we will show that a careful adaption of
finite Gaussian ideas of Berman (1964) and Sharpe [(1978), pages 384–387]
[in the sequence of estimates (8.5)] combine with estimates needed to allow
passage to infinite dimensions to verify the required mixing property. Then
we use Albin (1990) to prove global limits.

For easy reference we now state the needed results from Albin (1990). As-
sume that (7.1)–(7.4) hold and letT�ε� ∼ p�ε�/�LP�κ�0� < ε�� as ε ↓ 0 (where
L is given in Lemma 3). Further assume that

p�ε+ xw�ε�� ∼ p�ε� as ε ↓ 0 for x ∈ �x0; x1�:(8.1)
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Condition D. This condition holds if, for any choice of a > 0 and τ ∈ �0;1�
and for any choice of points s1 < · · · < sI < t1 < · · · < tJ belonging to
�akp�ε�: k ∈ Z;0 ≤ akp�ε� ≤ T�ε�� and satisfying t1 − sI ≥ τT�ε�, we have,
as ε ↓ 0,

∣∣∣∣P
{ I⋂
i=1

�κ�si� ≥ ε� ∩
J⋂
j=1

�κ�tj� ≥ ε�
}

−P
{ I⋂
i=1

�κ�si� ≥ ε�
}

P
{ J⋂
j=1

�κ�tj� ≥ ε�
}∣∣∣∣→ 0:

Condition D′. This condition holds if, for any choice of a > 0, we have

lim
τ↓0

lim sup
ε↓0

�τT�ε�/ap�ε��∑

k=1+�h/ap�ε��
P�κ�akp�ε�� < ε �κ�0� < ε� = 0:

Definition 1. We say that κ has a δ-downcrossing of the level ε at t if
κ�t� = ε and κ�s� > ε for s ∈ �t− δ; t�.

Lemma 6. If (7.1)–(7.4), (8.1) and Conditions D and D′ hold, then we have

lim
ε↓0

P
{
w�ε�−1

[
inf

t∈�0;T�ε��
κ�t� − ε

]
≤ x

}

= 1− exp�−F�−x�� for x ∈ �x0; x1�:

If, in addition, κ�t� is a.s. continuous, then

Nε�κyA� ≡ #�t ∈ T�ε�A:κ has a δ-downcrossing of ε at t� for A ⊆ R+

converges weakly as a random measure to a Poisson process with intensity 1.

Proof. Since, by (8.1), Albin [(1990), equation 2.15] holds with c = 0, the
lemma follows from Albin [(1990), Theorems 2(c) and 10]. 2

Theorem 5. Let m�s� have positive decrease as s→∞. Further let T�ε� ∼
�Lq�ε�1/αP��Y�0��2 < ε��−1 (where L is given in Theorem 4) and assume that

r�t� ≡ sup
s≥t; k∈N

�rk�s�� satisfies lim
ε↓0

q�ε�2r�T�ε�� = 0:(8.2)

If, in addition, (7.5), (7.6) and (7.8) hold, then we have

lim
ε↓0

P
{
q�ε�

[
inf

t∈�0;T�ε��
�Y�t��2 − ε

]
≤ x

}
= 1− exp�−ex� for x ∈ R:

Moreover, Nε��Y�2y ·� converges weakly to a Poisson process with intensity 1.
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Lemma 7. (i) limε↓0 q�ε�2r�τ1T�τ2ε�� = 0 for τ1; τ2 > 0.
(ii) The right inverse r→�t� ≡ sup�s > 0: r�s� > t� satisfies

lim
ε↓0

q�ε�1/α P��Y�0�� < τε� r→��εq�ε� + 1�−1/2� = 0 for each τ > 0:

Proof. (i) By (2.6) and (3.1) we have q�ε − ln� 1
2τ1�/q�ε�� ∼ q�ε� and

T�ε−ln� 1
2τ1�/q�ε�� ∼ 1

2τ1T�ε�, so thatT�ε−ln� 1
2τ1�/q�ε�� ≤ τ1T�ε� for ε small.

Since q is O-regularly varying we get, by [the change of variable ε → ε/τ2
and] (8.2),

lim sup
ε↓0

q�ε�2r�τ1T�τ2ε��

≤ 9?�0+; qy1 ∧ τ−1
2 �2 lim sup

ε↓0
q�ε�2r�τ1T�ε��

≤ 9?�0+; qy1 ∧ τ−1
2 �2 lim sup

ε↓0
q�ε− ln� 1

2τ1�/q�2r�T�ε− ln� 1
2τ1�/q��

= 0:

(ii) Since by (i), r�T� 1
2τε�� < q�ε�−2 ≤ �εq�ε� + 1�−1/2 for ε small, we have

r→��εq�ε� + 1�−1/2� ≤ T� 1
2τε�. Consequently,

q

(
1
2
τε

)1/α

P
{
�Y�0�� < 1

2
τε

}
r→��εq�ε� + 1�−1/2�

∼ r
→��εq�ε� + 1�−1/2�

LT� 1
2τε�

≤ 2
L

for ε small. Since by (2.8) and (3.1), P��W� < τε�
/

P��W� < 1
2τε� → 0, (ii) now

follows using that q� 1
2τε� ≥ 1

29
?�0+; qy1 ∧ �2/τ��−1q�ε� for ε small. 2

The next lemma is contained in Hoffmann-Jørgensen, Shepp and Dudley
[(1979), Theorem 2.1].

Lemma 8. For every H-valued centered Gaussian random variable N we
have

P��N� < ε� ≥ P��N+ z� < ε� for each ε > 0 and z ∈H:

Lemma 9. If limt→∞ r�t� = 0, then r�t� < 1 for t > 0 and (7.7) holds.

Proof. Assume that r�t� = 1 for some t > 0. Then there exists �tk�∞k=1 ⊆
�t;∞� satisfying rk�tk� > 1 − k−1. Now choose t̂ ∈ �0;∞� and ε > 0. Further,
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take k;n ∈ N such that nt ≥ t̂ and
√

2/k < ε/n. Then we have

rk�ntk� = rk��n− 1�tk� +E��ξk�ntk� − ξk��n− 1�tk��ξk�0��

≥ rk��n− 1�tk� −
√

E��ξk�ntk� − ξk��n− 1�tk��2�
≥ rk��n− 1�tk� − ε/n
≥ · · · ≥ 1− ε;

so that r�t̂ �≥1−ε. Hence r�t̂ �=1, which contradicts the fact that r�t�→0. 2

Lemma 10. Condition D′ holds.

Proof. Since Ŷ�t� ≡ ∑∞k=1�ek�Y�t� − rk�t�Y�0��ek is independent of Y�0�
with Var��ek�Y�t� − rk�t�Y�0��� ≥ �1 − r�t�2�Var��ek�Y�0���, we have, by
Lemma 8,

P��Y�t��2 < ε; �Y�0��2 < ε�

= E
{

P
{∥∥∥∥Ŷ�t� +

∞∑
k=1

rk�t��ek�Y�0��ek
∥∥∥∥

2

< ε
∣∣∣Y�0�

}
I��Y�0��2<ε�

}

≤ E
{
P��Ŷ�t��2 < ε�I��Y�0��2<ε�

}

≤ P
{
�Y�0��2 < ε

/
�1− r�t�2�

}
P��Y�0��2 < ε� for t > 0:

(8.3)

[Here r�t� < 1 by (8.2) and Lemma 9.] Since ε/�1− r�t�2� ≥ ε+ 1/q�ε� ⇒ t ≤
r→��εq�ε� + 1�−1/2�, Lemma 7(ii) and (3.1) yield

lim sup
ε↓0

�τT/�ap��∑

k=1+�h/�ap��
P��Y�akp��2 < ε

∣∣ �Y�0��2 < ε�

≤ lim sup
ε↓0

�ap�−1r→��εq�ε� + 1�−1/2�P��Y�0��2 < ε/�1− r�h�2��

+ lim sup
ε↓0

�τT/�ap��P��Y�0��2 < ε+ 1/q�ε��

= τe/�aL� → 0 as τ ↓ 0: 2

Lemma 11. Condition D holds.

Proof. Choose ρ = �ρ1; : : : ; ρn� ∈ �−1;1�n and let �ζk�nk=1 be indepen-
dent standard Gaussian processes with parameter space �1;2� and such that
E�ζk�1�ζk�2�� = ρk. Further write % ≡ sup1≤k≤n ρk, let k0 satisfy λk0

=
supk≥2 λk and define

Z
ρ;n
k �t� ≡

∑
2≤l≤n
l6=k

λlζl�t�2 and X
ρ;n
k �t� ≡ Z

ρ;n
k �t� + λ1ζ1�t�2
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for n ≥ k ≥ 2. Since e−x/2 ≤ �ex�−1/2 and

fλ1ζ1�1�2; λ1ζ1�2�2�x1; x2� ≤
[
2πλ1

√
�1− ρ1

2�x1x2

]−1
;

we obtain, writing B�·; ·� for the beta function and using (8.3),

E
{ 2∏
l=1

exp
[
− ε−X

ρ;n
k �l�

2λk�1+ �%��

]
I�Xρ;n

k �l�<ε�

}

≤ λk�1+ �%��
e

×E
{
�ε−Xρ;n

k �1��−1/2�ε−Xρ;n
k �2��−1/2I�Xρ;n

k �1�<ε;X
ρ;n
k �2�<ε�

}

= λk�1+ �%��
e

×
∫

0<x1<ε−z1
0<x2<ε−z2
0<z1; z2<ε

fλ1ζ1�1�2; λ1ζ1�2�2�x1; x2�fZρ;n
k �1�;Z

ρ;n
k �2��z1; z2�

�ε− x1 − z1�1/2�ε− x2 − z2�1/2
dxdz

= λk�1+ �%��
e

∫
0<x1; x2<1;0<z1; z2<ε

z
1/2
1 z

1/2
2 fλ1ζ1�1�2; λ1ζ1�2�2�x1z1; x2z2�
�1− x1�1/2�1− x2�1/2

× fZρ;n
k �1� ;Z

ρ;n
k �2��ε− z1; ε− z2�dxdz

≤ B�
1
2 ;

1
2�2λk

√
1+ �%�

2πeλ1

√
1− �%�

∫
0<z1; z2<ε

fZρ;n
k �1�;Z

ρ;n
k �2��ε− z1; ε− z2�dz

≤ B� 1
2 ;

1
2�2λk

πeλ1

√
2�1− �%��

P�Zρ;n
k �1� < ε; Z

ρ;n
k �2� < ε�

≤ B� 1
2 ;

1
2�2λk

πeλ1

√
2�1− �%��

P
{
Z
ρ̂;n
k0
�1� < ε

1− %2

}
P�Zρ̂;n

k0
�1� < ε�

for any ρ̂ ∈ �−1;1�n:

(8.4)

Let η1�t�; ν1�t�; : : : ; ηn�t�; νn�t� be independent centered stationary Gauss-
ian processes and choose u1; : : : ; uN ∈ R. Define the N �N matrices 0k; 6k ∈
RN�N by

�0k�ij ≡ Cov�ηk�ui�; ηk�uj�� and �6k�ij ≡ Cov�νk�ui�; νk�uj��

and assume that �0k�ii = �6k�ii = λk. Also define Chk ≡ h0k+�1−h�6k ≡ λkchk.
Further write f�3y ·� for a centered Gaussian density based on the covariance
matrix 3 ∈ Rk�k and define ij3 ∈ R2�2 by �ij3�11 ≡ 3ii, �ij3�12 ≡ 3ij, �ij3�21 ≡
3ji and �ij3�22 ≡ 3jj. For the χ2 processes Y�n��t� ≡∑n

k=1 ηk�t�2 and Z�n��t� ≡
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∑n
k=1 νk�t�2 we then obtain, using the elementary facts that �∂/∂3ij�f�3yx� =
�∂/∂xi��∂/∂xj�f�3yx� and that �y2+ z2− 2%̂yz�/�1− %̂2� ≥ �y2+ z2�/�1+ �%̂��,

P
{ N⋂
i=1

�Y�n��ui� ≥ ε�
}
−P

{ N⋂
i=1

{
Z�n��ui� ≥ ε�

}

=
∫
h∈�0;1�⋂N
m=1�

∑n
l=1�x lm�2≥ε�

∂

∂h

n∏
l=1

f�Chl yx l�dxdh

=
∫
h∈�0;1�⋂N
m=1�

∑n
l=1�x lm�2≥ε�

∑
1≤i<j≤N

1≤k≤n

��0k�ij − �6k�ij�∂ijf�Chkyxk�

×
∏
l6=k
f�Chl yx l�dxdh

=
∑

1≤i<j≤N
1≤k≤n

∫
h∈�0;1�⋂
m6=i;j�

∑n
l=1�x lm�2≥ε�∑n

l=1�x li �2<ε;∑n
l=1�x lj�2<ε

��0k�ij − �6k�ij�∂ijf�Chkyxk�

×
∏
l6=k
f�Chl yx l�dxdh

=
∑

1≤i<j≤N
1≤k≤n

σ1; σ2∈�−1;1�

∫
h∈�0;1�⋂
m6=i;j�

∑n
l=1�x lm�2≥ε�∑

l6=k�x li �2<ε∑
l6=k�x lj�2<ε

σ1σ2��0k�ij − �6k�ij�
( ∏
l6=k
f�Chl yx l�

)

× f
(
Chkyxk; xki = σ1

√
ε−

∑
l6=k
�x li �2; xkj = σ2

√
ε−

∑
l6=k
�x lj�2

)
dxdh

≤
∑

1≤i<j≤N
1≤k≤n

σ1; σ2∈�−1;1�

∫
h∈�0;1�∑
l6=k�x li �2<ε;∑
l6=k�x lj�2<ε

∣∣�0k�ij − �6k�ij
∣∣
( ∏
l6=k
f�ijChl yx l�

)

× f
(
ijChkyσ1

√
ε−

∑
l6=k
�x li �2; σ2

√
ε−

∑
l6=k
�x lj�2

)
dxdh

≤ 4
∑

1≤i<j≤N
1≤k≤n

sup
h∈�0;1�

∫
∑
l6=k�x li �2<ε;∑
l6=k�x lj�2<ε

∣∣�0k�ij − �6k�ij
∣∣
( ∏
l6=k
f�ijChl yx l�

)

× 1

2πλk
√

1− ��chk�ij�
exp

{
−

2ε−∑l6=k�x li �2 −
∑
l6=k�x lj�2

2λk�1+ ��chk�ij��

}
dx:

(8.5)

(When one or more of the Chk ’s are singular, a continuity argument shows
that this inequality still holds.) Using (8.4) it follows that (in the notation of
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Condition D)
∣∣∣∣ P
{ I⋂
i=1

{ n∑
k=1

λkξk�si�2 ≥ ε
}
∩

J⋂
j=1

{ n∑
k=1

λkξk�tj�2 ≥ ε
}}

−P
{ I⋂
i=1

{ n∑
k=1

λkξk�si�2 ≥ ε
}}

P
{ J⋂
j=1

{ n∑
k=1

λkξk�tj�2 ≥ ε
}} ∣∣∣∣

≤
∑

1≤i≤I
1≤j≤J
1≤k≤n

sup
h∈�0;1�

[
2�r�tj − si��

π
√

1− h�r�tj − si��

×E
{ 2∏
l=1

exp
[
−ε−X

�hr�tj−si�;:::;hr�tj−si��; n
k �l�

2λk�1+ �hr�tj − si���

]

× I�X�hr�tj−si�;:::;hr�tj−si��; nk �l�<ε�

}]

≤
n∑
k=1

√
2B� 1

2 ;
1
2�2�T/�ap��2r�τT�λk

eπ2λ1�1− r�τT��

×P
{
Z
·;n
k0
�1� < ε

1− r�τT�2
}

P�Z·; nk0
�1� < ε�

→
√

2B� 1
2 ;

1
2�2T2r�τT� tr�R�

eπ2λ1�1− r�τT���ap�2

×P
{∥∥∥∥

∑
k6=1
k6=k0

λkξk�0�2
∥∥∥∥

2

<
ε

1− r�τT�2
}

×P
{∥∥∥∥

∑
k6=1
k6=k0

λkξk�0�2
∥∥∥∥

2

< ε

}
as n→∞:

(8.6)

Here ε/�1 − r�τT�2� ≤ ε + 1/q�ε� for ε small since, by Lemma 7(i),√
εq�ε� + 1 r�τT� → 0. In view of Lemma 7(i), the fact that the Condition D

holds thus follows from observing that, by (3.1), (3.4) and (8.6),

lim sup
ε↓0

∣∣∣∣∣ P
{ I⋂
i=1

��Y�si��2 ≥ ε� ∩
J⋂
j=1

��Y�tj��2 ≥ ε�
}

−P
{ I⋂
i=1

��Y�si��2 ≥ ε�
}

P
{ J⋂
j=1

��Y�tj��2 ≥ ε�
} ∣∣∣∣∣

≤
4
√

2λk0
B� 1

2 ;
1
2�2 tr�R�

�πaL�2 lim sup
ε↓0

q�ε�2r�τT�: 2
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Proof of Theorem 5. By (7.13) we have
{
s ∈ R: �s� ≤

(
2M5

[
sup
k∈N

λk

])−1/α
ε2/α

}
⊆ By�0y ε� for y ∈H1;

so that N�y�Y���0;1�y ε� ≤ 1 + 1
2�2M5�supk∈N λk��1/αε−2/α. Consequently,

supy∈H1

∫ 1
0

√
ln N�y�Y���0;1�y ε�dε < ∞ so that Y is a.s. continuous (see the

beginning of Section 4). In view of Lemma 6 [and the fact that, by Sec-
tion 7, (7.1)–(7.4) and (8.1) hold] the theorem thus follows from Lemmas 10
and 11. 2

Proposition 4. Equation (8.2) holds when tσ supk∈N �rk�t�� → 0 for some
σ > 0.

Proof. Choose C19 > 0 such that supk∈N �rk�t�� ≤ C19t
−σ for t > 0. Then

we also have r�t� ≤ C19t
−σ . Consequently,

q�ε�2r�T�ε�� ≤ C19L
σq�ε�2+σ/α�P��W�2 < ε��σ ;

where, by (2.9), the right-hand side tends to zero [since ε2ρ�q�q�ε� → 0]. 2

In the finite case with precisely n nonzero λk’s and n > 2/α, sufficient
mixing requires that tσr�t� → 0 for some σ > �n/2 − 1/α�−1; compare Albin
[(1992b), Section 3].
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Sweden
E-mail: palbin@math.chalmers.se


