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NONLINEAR SUPERPROCESSES

BY L. OVERBECK
1

Universitat Bonn¨

Nonlinear martingale problems in the McKean]Vlasov sense for su-

perprocesses are studied. The stochastic calculus on historical trees is

used in order to show that there is a unique solution of the nonlinear

martingale problems under Lipschitz conditions on the coefficients.

1. Introduction. Nonlinear diffusions, also called McKean]Vlasov pro-

cesses, are diffusion processes which are associated with nonlinear second

order partial differential equations. Many authors have studied R
d-valued

Ž .McKean]Vlasov diffusions in detail, for example, Funaki 1984 , Oelschlager¨
Ž . Ž .1984 and Sznitman 1984, 1991 . The main issues are approximation by a

sequence of weakly interacting diffusions, associated large deviations and

fluctuations and finally uniqueness and existence of the nonlinear martingale

problem associated with a McKean]Vlasov process.

In this paper we focus on the latter question in the setup of branching

measure-valued diffusions processes, also called superprocesses. For an excel-
Ž .lent introduction to the theory of superprocesses, we refer to Dawson 1993 .

In order to formulate the basic definition we need to introduce some notation.

Ž .The space of finite resp., probability measures over a Polish space E is
Ž . w Ž .xdenoted by M E resp., M E and is equipped with the weak topology. We1

Ž . w xfix a time T ) 0. The space of continuous resp., cadlag paths from 0, T to
Ž . Ž .E is denoted by C resp., D and C E is the set of bounded continuousE E b

Ž . Ž .functions on E. The expression m f with m g M E means Hf dm.1

Ž . Ž Ž . .DEFINITION 1.1. i Let LL s L m , DD be a family of linearmg M ŽM ŽE ..1

Ž .operators with common domain DD ; C E where b, c are measurable func-b

Ž Ž ..tions on M M E = E with c G 0.1

Ž . Ž . Ž .ii Fix n g M E . A measure P on C , FF, FF with canonical filtrationM ŽE . t

FF and s-algebra FF generated by the coordinate process X is called at

Ž .nonlinear superprocess with parameter LL , b, c started from n , if for each
Ž .f g DD, the process M f defined by

M f [ X f y n fŽ . Ž . Ž .t t

t
y1 y1y X L P ( X f q b P ( X f dsŽ . Ž .Ž .H s s s

0
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is a local martingale with increasing process

t
2 y11.2 f x c P ( X , x X dx ds,Ž . Ž . Ž .Ž .H H s s

0 E

y1 Ž Ž ..where P ( X g M M E denotes the distribution of X under P.s 1 s

In the superprocess terminology LL describes the one-particle motion and

the functions b and c determine the branching behavior. In particular, b

measures the noncriticality of the branching and is sometimes viewed as an

immigration function.

In terms of partial differential equations, the flow of the one-dimensional

marginals u [ P ( Xy1 of a solution of the nonlinear martingale problems s

Ž . Ž . Ž .1.1 , 1.2 solves the weak nonlinear equation

1.3 u s AA
U u u ,Ž . Ž .˙s s s

Ž .where for nice functions F on M E ,

1.4 AA m F m s m L m = F m q b m = F m q c m =Ž2.F mŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .. . .

with

F m q «d y F mŽ . Ž .z
= F m [ lim ,Ž .x «« x0

where d denotes Dirac measure on x g E. This is one motivation for thex

study of nonlinear superprocesses from the point of view of partial differen-

tial equations. Another motivation is a kind of law of large numbers for

weakly interacting N-type superprocesses, which also provides a proof of the

existence of a nonlinear superprocess. A weakly interacting N-type superpro-
N Ž 1 N . Ncesses X s X , . . . , X g C is characterized by the martingale prop-M ŽE .

erty of the processes

e X N y e X NŽ . Ž .f t f 0ž
N N N1 1t

N j
i , N i , Nq e X X L d f q b d fŽ . Ý Ý ÝH f s s X j X js sž / ž /ž N N0 js1 is1 is1

1.5Ž .

N1
2

i , Nyc d f ds ,Ý X jsž / / /N is1 tG0

Ž N . Ž N Ž .. N Ž . Ž .Nwhere e m [ exp yÝ m f for m s m , . . . , m g M E and f sf is1 i i 1 N

Ž . Ž .Nf , . . . , f g C E . The actual proof of the approximation is based on the1 N b

w Ž .xpropagation of chaos technique cf. Sznitman 1984, 1991 , which is carried
Ž .out in Overbeck 1994b . The large deviations and the fluctuations associated

with the approximation if the weakly interacting superprocesses are super-
Ž .processes with mean-field interaction are studied in Overbeck 1994a, b .

The main result of the present paper is the proof that there is a unique
Ž . Ž . Ž .solution to 1.1 , 1.2 under Lipschitz conditions on the parameter LL , b, c .
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In order to state the result, we have to introduce for p G 1 the Wasserstein
Ž Ž ..metric r on M M E :p 1

1rp

p1.6 r m , m [ inf d m , n Q dm , dn ,Ž . Ž . Ž . Ž .Hp 1 2 ŽE , d .ž /Q Ž . Ž .M E =M E

Ž Ž . Ž ..where the infimum is taken over all Q g M M E = M E whose marginal1

distributions are m and m and where for a Polish space E with metric d,1 2

Ž .the metric d on M E is defined asŽE, d .

5 51.7 d m , n [ sup m f y n f ; f F 1 ,� 4Ž . Ž . Ž . Ž . BLŽE , d .

where

5 5 5 5f s f n inf K ; f x y f y F Kd x , y ; x , y g E .� 4Ž . Ž . Ž .BL `

Notice that if we replace d by d n 2 in the definition of r , then rŽE, d . ŽE, d . 1 1

is smaller than the original r and equivalent to the Prohorov metric and1

also to d . Recall that by Holder’s inequality, r F K r if q F p¨ŽM ŽE ., d . q p, q pŽE, d .

with some constant K .p, q

Ž . Ž .THEOREM 1. a Let L m s L be independent of m, c s 1 and b:
Ž Ž .. w xM M E = E ª yR, 0 for some R ) 0. If1

21.8 b m , x q b m , x F K r m , mŽ . Ž . Ž . Ž .1 2 b 2 1 2

for some positive constant K , then there is a unique solution to the nonlinearb

Ž . Ž .martingale problem 1.1 , 1.2 .

Ž . qb Assume that E s R , q g N, b s 0, c is constant and that for f g
2Ž q.C R ,b

q 21 ­ f
1.9 L m f x s =f x ? d m , x q a m , x x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ý i j

2 ­ x ­ xi ji , js1

U Ž Ž q.. q q q Ž Ž q..where a s s ? s , s : M M R = R ª R = R and d: M M R =1 1

R
q ª R

q are bounded functions, which are Lipschitz-continuous with respect
ŽŽ . Ž .. Ž . < <to the metric r m , x , m , x s r m , m q x y x . Then there exists1 1 2 2 2 1 2 1 2

Ž . Ž .a unique solution of 1.1 , 1.2 .

The proof relies on the fact that for two superprocesses P i, i s 1, 2, with

different parameters, that is, with different one-particle motion and branch-
˜ ˜ ˜Ž .ing functions b and c, there exists a filtered probability space V, FF , FF, P ont

which we can construct processes X i with distribution P i, i s 1, 2. This

follows from the stochastic calculus along historical trees, recently developed
Ž . Ž .by Perkins 1992, 1995 and by Evans and Perkins 1995 . We specialize to

the noninteractive case and, in fact, only use the existence, or more precisely

the constructive part of their approach, and not the uniqueness result. Once

this is established, the proof of existence and uniqueness is carried out by a

Picard]Lindelof approximation. We also emphasize that it is sufficient to¨
i Ž . Ž .prove that two solutions P , i s 1, 2, of 1.1 , 1.2 have the same flow as their

one-dimensional distributions; that is, P1
( Xy1 s P 2

( Xy1 for all 0 F s F T.s s
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˜ ˜ ˜Ž . Ž .In Theorem 1 a the probability space V, FF , FF, P is the canonical space oft

wŽ . xa marked historical process as in Evans and Perkins 1995 , Section 2 . In
˜ ˜ ˜Ž . Ž .the proof of Theorem 1 b we can take V, FF , FF, P to be the canonical spacet

Ž .of the historical Brownian motion, as in Perkins 1992 . We formulate the
Ž .assertion in part b only for constant c and b s 0, but the proof in Section 3

will be carried out for nonconstant c. The more general uniqueness statement

can be found in Proposition 3.3, and it requires strong conditions on c and

some relations between the functions c, b and d. The existence result that
Ž .covers Theorem 1 b is proved in Corollary 3.5 under more restrictive, but

also more explicit assumptions on c. These restrictions are required by the
Ž .further development of the results in Perkins 1992 in his second paper

w Ž .x Ž .Perkins 1995 . Despite the fact that the conditions of Perkins 1995 are

simplified in our noninteractive case, they are still quite involved and give
Ž .only complicated and somehow artificial examples cf. end of Section 3 .

In both cases it turns out that the historical process plays the same role for

nonlinear superprocesses as the Brownian motion plays for nonlinear diffu-

sions on R
q, namely, as a driving term for strong stochastic equations. The

fundamental role of the historical process also becomes apparent in several
Ž .other papers, for example, in Perkins 1992, 1995 where interacting mea-

Ž .sure-valued processes are considered, in Evans and Perkins 1995 , where a
Ž .Clark-type formula for measure-valued processes is proved, in LeGall 1991 ,

where the connections to Brownian excursions are investigated, and in
Ž .Dynkin 1993 , where the relations to quasilinear partial differential equa-

tion are explored.

Ž . Ž .In the following two sections we will prove parts a and b of Theorem 1

separately.

2. Nonlinearity in the immigration function. In this section we con-
Ž .sider the case in which L m s L is a generator of a time-homogeneous Hunt

process independent of m and c s 1. Hence the nonlinearity appears only in

the immigration function b. Because we need the historical process from now

on I will briefly describe it.

2.1. Historical process. The historical process over a one-particle motion

j , for example, over a Hunt process with state space E, can be seen as the

superprocess constructed over the path process of the one-particle motion. A

path process is a path-valued process and evolves from a path of length s to a

path of length t ) s by pasting on the given path j s a new path of length

t y s, which is distributed as the underlying one-particle motion started from
sŽ .j s . By construction this is a time-inhomogeneous Markov process with

Ž h Ž h..state space D and it has a generator L , D L in the sense of martingaleE

w Ž .xproblems cf., e.g., Perkins 1992, 1995 . If we superpose a critical branching

mechanism onto this path process and take the usual ‘‘superprocess limit,’’

we arrive at the historical process, which can then be viewed as the solution
Ž . Ž . Ž . Ž .of the martingale problem described in 1.1 , 1.2 with c m s 1, b m s 0

Ž . hand L m s L . It is called historical because every particle carries all the

information about the places it and its ancestor visited. Additionally one can
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reconstruct from this information the genealogy of a present particle by

investigation of the overlap of the paths of two different particles. Because we

only use the historical process as a tool and we will not prove theorems about
wŽ . xit, we will omit an exact definition and refer to Dawson 1993 , Section 12 or

Ž . Ž . Ž .Dawson and Perkins 1991 , Perkins 1992, 1995 and Dynkin 1991 .

2.2. Superprocesses with emigration as functionals of the marked historical
Ž . Ž Ž w x..process. Let X s Y, N g D D E = 0, 1 denote the path process of the

Hunt process j generated by L and an independent Poisson process with
w x Žuniform jumps on 0, 1 i.e., N is the path process of a Poisson point measure

w . w x .on 0, ` = 0, 1 with intensity ds = dx . Denote by P the distribution of the
Ž .superprocess G over the one-particle motion Y, N starting from G , that is,0

the historical process over the Hunt process j and an independent Poisson
Žw . Ž ..process. Then P is a measure on V [ C 0, ` , M D equipped withE= w0, 1x

the canonical filtration FF and canonical s-algebra. The process G is now thet

Ž .canonical process on V. Let us denote by x s y, n a generic element in
w .D . Let n also denote the point measure Ý d on 0, ` =E= w0, 1x sF t, n / n s, n yns sy s sy

w x0, 1 .

w x w xLet b be a measurable function from 0, T = E to y1, 0 , the candidate
Žfor the immigration term. Because b is negative, we may view b now as an

.emigration rather than an immigration function.

Ž .In order to meet the formulation of Evans and Perkins 1995 , we define
w x w xthe 0, 1 -valued function b on 0, T = D = V byE

2.1 b s, y , v s yb s, y s .Ž . Ž . Ž .Ž .

Further we define the functions

<x w w x2.2 A t , x , v s n s, z g 0, t = 0, 1 b s, y , v ) z ,� 4Ž . Ž . Ž . Ž .Ž .

2.3 B t , x , v s 1 t , x , v .Ž . Ž . Ž .� As04

wLet K be the martingale measure of the historical process G for the

definition of martingale measures for measure-valued processes, cf. Dawson
Ž .1993 , Section 7, and for historical processes a definition can be found in

Ž .x bPerkins 1992 . Then we can define a new measure P on V by

bdP t
b[ R [ exp b s, y K ds, dxŽ . Ž .H Ht ½

FFdP Ž w x.0 D E= 0, 1t

2.4Ž .
1 t

2y b s, y G dx dsŽ . Ž .H H s 52 Ž w x.0 D E= 0, 1

w Ž . Ž .xcf. Dawson 1993 , Section 7; Evans and Perkins 1995 . Finally let us define

the measure-valued processes

2.5 H b J s 1 y B t , x G dx ,Ž . Ž . Ž . Ž . Ž .Ht J t
Ž w x.D E= 0, 1

2.6 H J s 1 y G dx .Ž . Ž . Ž . Ž .Ht J t
Ž w x.D E= 0, 1
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From the definition of P it is obvious that the distribution of H under P is

the historical process over j . The following proposition is basic for us.

w Ž . x bPROPOSITION 2.1 Evans and Perkins 1995 , Theorem 5.1 . Under P the

process H b is the historical process over j .

We need a slightly different version of this result which will be obtained by
Ž h Ž h..a Girsanov argument. Let L , D L be the martingale operator of the path

process of j .

Ž h. bŽ .PROPOSITION 2.2. For every f g D L the process H f is under P at

Ž . bŽ Ž . .semimartingale with increasing process V f y H H b s f ds, where0 s. b h b bŽ . Ž . Ž .V f s H H L f ds is the increasing process of H f under P . The0 s . b 2Ž . wquadratic variation of the martingale part equals H H f ds. Hence under0 s
b Ž .P the process H is a historical process with negative immigration yb, or

xin other words, with an emigration function b.

PROOF. Applying the Girsanov transformation for martingales we can

calculate the semimartingale decomposition of H b under P
b from the semi-

martingale decomposition of H b under P. In order to do this, we have to
Ž b . <consider the martingale Z of the densities Z s dPrdP . Let M denoteFFt t

the martingale measure associated with the historical Brownian motion H

under P. Then we have

t
Z s exp y b s, y M ds, dyŽ . Ž .H Ht ½

Ž .0 D E

t1 2q b s, y H dy dsŽ . Ž .H H s2 5
Ž .0 D E

t
s exp y b s, y M ds, dyŽ . Ž .H H½

Ž .0 D E

t
2y b s, y H dy dsŽ . Ž .H H s

Ž .0 D E

2.7Ž .

t1 2y b s, y H dy dsŽ . Ž .H H s2 5
Ž .0 D E

t
bs exp y b s, y N ds, dyŽ . Ž .H H½

Ž .0 D E

t1 2y b s, y H dy ds ,Ž . Ž .H H s2 5
Ž .0 D E

where N b is the martingale measure associated with H under P
b. That is,

Ž b . t Ž . bŽ .b ? N [ H H b s, y N ds, dy is the martingale in the semimartingalet 0 DŽE .
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Ž Ž .. b bdecomposition of H b t under P . This yields, in particular, that under Pt

Z solves the equation

t
b2.8 Z s 1 y Z d b ? N .Ž . Ž .Ht s s

0

wAccording to Proposition 2.1 and Girsanov’s theorem e.g., Revuz and Yor
Ž . x1991 , page 303 ,

. 1
b bH f y V f y Z , H f y V f² :Ž . Ž . Ž . Ž .H s sZ02.9 sŽ .

b ² b b :s H f y V f q b ? N , H f y V fŽ . Ž . Ž . Ž .

is a martingale under P. The bracket in the last line equals, again according
wŽ . xto Revuz and Yor 1991 , page 303 ,

² bmartingale in the decomposition of H b under P ,Ž .
b b :martingale in the decomposition of H f under PŽ .

²s martingale in the decomposition of H b under P,Ž .
b :martingale in the decompostion of H f under PŽ .

² :s b ? K , B ? f ? K

.

s G Bbf dsŽ .H s
0

.
bs H bf ds.Ž .H s

0

Because the quadratic variation of this martingale remains unchanged under

a change of measure, the proposition is proved. I

2.3. Comparison of two historical processes with different noninteractive
i w x w xemigrations. We consider two functions b , i s 1, 2, from 0, T = E to 0, 1

i i b i i Ž . Ž . Ž . iand define b , A and H in terms of b as in 2.1 , 2.2 and 2.5 . Then b ,
� t < 4 w tŽ .i s 1, 2, do not depend on v. For a measure H on x x g D where x s [

Ž . tŽ . Ž . x Ž . Ž .x s , s - t, x s [ x t , s G t and a function f g C E , we define H f [b

Ž t . Ž .H f x H dx .D t

LEMMA 2.3. For every T ) 0 there exists a constant C - ` such thatT

2
t1 2b b 1 2

E sup H f y H f F C E b s, j y b s, j dsŽ . Ž . Ž . Ž .Ht t T s sž /
05 5f F1BL

for all t F T, where j is the Hunt process generated by L.
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PROOF. Let us write n s ÝN d ,is1 t , Zi i

2
1 2b b

E sup H f y H fŽ . Ž .t tž /
5 5f F1BL

2

1 2s E sup f x 1 y 1 G dxŽ . Ž .Ž .H A Ž t , x .s0 A Ž t , x .s0 tž /
5 5f F1BL

< <1 2F E 1 y 1 G dx E G 1 q tŽ . Ž .Ž .H A Ž t , x .s0 A Ž t , x .s0 t 0ž /
N 1 2F E 1 G dx E G 1 q tŽ . Ž .Ž .H D �b Ž t , yŽ t ..F Z , is1, . . . , N , b Ž t , yŽ t ..) Z 4 t 0js 1 i i i j j j

N 1 2q E 1 G dx E G 1 q t .Ž . Ž .Ž .H D �b Ž t , yŽ t ..F Z , is1, . . . , N , b Ž t , yŽ t ..) Z 4 t 0js1 i i i j j j

w Ž .xN 1 2The term E H1 G dx equalsD �b Ž t , yŽ t ..F Z , is1, . . . , N , b Ž t , yŽ t ..) Z 4 tjs 1 i i i j j j

N
1 22.10 P b t , j F Z , i s 1, . . . , N , b t , j ) Z ,Ž . Ž . Ž .D ½ 5i t i j t ji j

js1

w x w xwhere Z , t are uniformly distributed on 0, 1 = 0, t , N has a Poissonj j

distribution and all random variables are mutually independent. Because

1 2p b t , j F Z - b t , j t , jŽ . Ž . Ž .j t j j t j tj j j

s b2 t , j y b1 t , j 1 2 1 ,Ž . Ž .ž /j t j t b Ž t , j .G b Ž t , j .j j j t j tj j

Ž .we obtain by conditioning that the probability 2.10 is bounded by

t
2 1w x 2 1E N ? E b t , j y b t , j 1 dsrt .Ž . Ž .H ž /j t j t b Ž t , j .G b Ž t , j .j j j t j tj j0

w 2Ž . 1Ž . <Ž .xBy the same argument for P b t , j F Z - b t , j t , j we can finallyj t j j t j tj j j

prove the assertion. I

Ž . Žw x2.4. Proof of Theorem 1 a . Let us define the map a on C 0, T ,
Ž Ž ...M M E by1

2.11 a u [ P u
( Xy1 ,Ž . Ž . Ž .s 0FsFT

u uŽ . Ž .where P is the superprocess with immigration function b s, x [ b u , xs

Žw x Ž ..on the canonical space C 0, T , M E with coordinate process X. Define now
i Žw x Ž Ž ... b i

for u g C 0, T , M M E , i s 1, 2, the process H and H as in Proposi-1
iŽ . Ž . Ž i Ž ..tion 2.2 and Lemma 2.3 with b t, y, v s 1rR b u , y trR and over thetr R

one-particle motion generated by LrR. By an obvious scaling property, the
Ž b i

.superprocesses projected down from the processes H have distribu-tR t F 0
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tions P u i

, i s 1, 2. Because H b i

, i s 1, 2, satisfy the assumptions of Proposi-

tion 2.2 and Lemma 2.3, we can conclude that

2
b2 1 2 b1 2r a u , a u F E sup H f y H fŽ . Ž . Ž . Ž .Ž .t t2 tR tRž /

5 5f F1BL

tR
2 1 2F K r u , u dsŽ .Ht , b 2 sr R sr R

0

2.12Ž .

tX 2 1 2F K r u , u ds.Ž .HT , b 2 s s
0

Hence

tY1 2 1 22.13 sup r a u , a u F K sup r u , u ds.Ž . Ž . Ž .Ž . Ž .Hr r2 2 r r
0rFt rFs

A Picard]Lindelof approximation yields that there is a solution uF of the¨
equation

2.14 a u s u.Ž . Ž .
1 Ž 0 y1. 0The approximation starts with u [ P ( X , where P is the su-s 0 F sF T

0Ž . Ž . Ž Ž ..perprocess with b s, x s b m , x with some m g M M E , and for n g0 0 1
nq1 Ž n. Ž .N we define u s a u . Applying successively the inequality 2.13 with

unq1 and un we obtain that there exists uF [ lim unq1, which solvesnª`

Ž . Ž . u F

2.14 . By the property 2.14 the superprocess P is a solution of the
Ž . Ž . u F

nonlinear martingale problem 1.1 , 1.2 . The measure P is the unique
i Ž i y1.solution because if we denote by u , i s 1, 2, the flow P ( X of twos 0 F sF T

i Ž . Ž . 1 2solutions P of the martingale problem 1.1 , 1.2 , then both u and u are
Ž . Ž . Ž .solutions of the equation 2.14 . The properties 2.14 and 2.13 imply by

Gronwall’s inequality that u1 s u2 and therefore P i s P u F

, i s 1, 2. I

3. Nonlinear one-particle motion. Now we consider the nonlinear
Ž . Ž . q Ž .martingale problem 1.1 , 1.2 , where E s R and L m equals a linear

partial differential operator. We want to couple two different solutions of the

nonlinear martingale problem in order to prove uniqueness. We will use the
Ž .stochastic calculus ‘‘along historical trees’’ developed by Perkins 1992, 1995 .

In order to describe interacting superprocesses he constructs a unique solu-

tion of a strong integral equation, in which the stochastic integral is an

‘‘H-historical integral.’’

3.1. Stochastic calculus along historical trees. Let me recall some of the
Ž .results in Perkins 1992, 1995 specialized to the case of noninteractive

Žw x q. Ž .parameters. Let C s C 0, T , R , let CC be the canonical filtration on C,t

ˆŽw x Ž ..V s C 0, T , M C , V s V = C with product s-algebra and let the Camp-
ˆ ˆ y1w x w Ž .x w Ž .xbell-type measure P be defined by P A = B [ P 1 H B P H 1 ,A T T

Ž .where the coordinate process H on the filtered probability space V, HH, HH , Pt

is the historical Brownian motion with branching rate 1 and with starting
wŽ . xpoint H . For the definition of H we refer again to Perkins 1995 , page 3 .0
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ˆ q q=q 0 qw x w xLet FF [ HH = CC . Let the functions s : 0, T = R ª R , d : 0, T = R ªt t t
q w x q Ž . q

R and c: 0, T = R ª 0, ` be bounded and Lipschitz continuous in x g R .

Ž .Ž . Ž 2 .Ž .We assume that ­ cr­ s s, ? and ­ cr­ x ­ x s, ? exist and are Lipschitzi j

continuous in x with a Lipschitz constant uniform in s. Define the functions
U Ž . Ž .Ž . Ž . Ž .Ž .a [ ss , h s, x [ = c s, x and g s, x [ ­ cr­ s s, x qx

1 2Ž .Ž . Ž .Ý ­ cr­ x ­ x s, x a s, x ,i, j i j i j2

3.1 d [ d0 q ahUcy1 and b [ g q hd0 cy1 .Ž . Ž .

w Ž . xPROPOSITION 3.1 Perkins 1995 , Theorems 4.10 and 5.1 and Example 4.4 .
ˆ q ˆŽ . Ž . Ž Ž .. Ž .a Let K ? [ H1 c 0, Y y H dy , where Y : V ª R is FF -mea-0 �Y Ž y .g ? 4 0 0 0 00

ˆ qsurable. Then there is an FF -predictable R -valued continuous process Y andt

Ž .an FF -predictable M C -valued process K such thatt

t t
03.2 Y y s Y y q s s, Y y dy s q d s, Y y ds,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H Ht 0 s s

0 0

t
3.3 K v f s f Y v , y c t , Y v , y H v dy ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ht t t

ˆwhere the first equation holds a.s. with respect to the first component of P,
w Ž .xthat is, w.r.t. Wiener measure with initial distribution P H ? . The second0

Ž .equality holds for all f g C C and 0 F t F T, P-a.s.b

Ž . Ž q. Ž . Ž .b We define the M R -valued projection P K of the M C -valued process

K by

3.4 P K f [ f y s K dy , f g C R
q .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Hs s b

C

2Ž q.Under P we have that for every f g C R the processb

t
3.5 M f [ P K f y P K f y P K A s f dsŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ht t 0 s

0

is a martingale with quadratic variation

t
23.6 c s, x f x P K dx ds,Ž . Ž . Ž . Ž . Ž .H H s

q0 R

where

A s f x s f x b s, x q =f x ? d s, xŽ . Ž . Ž . Ž . Ž . Ž .
q 21 ­ f

q a s, x xŽ . Ž .Ý i j
2 ­ x ­ xi ji , js1

2Ž q.for f g C R .b

wŽ .PROOF. The proposition is a special case of Perkins 1995 , Theorems 4.10
x Ž .and 5.1 . In Example 4.4 in Perkins 1995 the case of noninteractive c is

considered. The fact that the expression ‘‘H-a.s.’’ used in Theorem 4.10 in
Ž .Perkins 1995 is equivalent to ‘‘a.s. with respect to Wiener measure’’ if all
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Ž . Ž .coefficients of the stochastic equation 3.2 , 3.3 do not depend on the process
Ž . Ž . Ž .K follows by Remarks 3.3 a and 3.13 d in Perkins 1992 . I

Since linear martingale problems for noninteractive superprocesses have
w Ž .xunique solutions cf. Dawson 1993 , we obtain the following corollary.

Ž . Ž .COROLLARY 3.2. The distribution Q of the process P K with P K s n ,0

Ž q. Ž Žw x Ž q...n g M R is the unique measure in M C 0, T , M R such that1

t
3.7 M f [ X f y n f y X A s f dsŽ . Ž . Ž . Ž . Ž .Ž .Ht t s

0

is a local martingale with increasing process

t
23.8 f x c s, x X dx dsŽ . Ž . Ž . Ž .H H s

0 E

2Ž q.for all f g C R , where A is defined in Proposition 3.1 and where X is theb

Žw x Ž q.. Ž . Ž .coordinate process on C 0, T , M R . Of course, each solution to 3.7 , 3.8
Ž . Ž .can be obtained as a solution of a strong equation 3.2 , 3.3 as in Proposition

3.1.

3.2. Nonlinear martingale problem. In the case of a nonlinear martingale
Ž . Ž .problem we want to consider functions a, b, c, d in 3.5 and 3.6 which

Ž .depend on the external force caused by the distribution of P K at time s.s
0 Ž Ž q.. qHence we consider bounded functions s , d , c on M M R = R instead of1

w x qfunctions on 0, T = R . We assume that the functions are Lipschitz continu-

ous with respect to both variables, where in the first variable we use the
Ž Ž q.. w Ž .xWasserstein metric r on M M R cf. 1.6 . That is, we assume2 1

< <3.9 r m , x y r m , x F K r m , m q x y xŽ . Ž . Ž . Ž .Ž .1 1 2 2 r 2 1 2 1 2

0 Ž .with some constant K for r s d , s , c. Note that 3.9 is a stronger conditionr

Ž . Ž .than the condition 1.8 on b; however, we do not assume 3.9 for b because b
Ž .will be defined by 3.1 . Hence the Lipschitz condition is fulfilled for b if it is

fulfilled for the other functions. Because of the differentiability assumption

for the function c, there is an additional condition on c which will be

formulated in the next proposition.

PROPOSITION 3.3. Let us suppose that there exist bounded and Lipschitz
Ž Ž q.. qcontinuous functions c , c , c , 1 F i, j, k F q, on M M R = R such that˜ ˜ ˜0 i jk 1

y1 Ž . Ž .for the flow u [ P ( X of any solution P of 1.1 , 1.2 we haves s

­
c u , x s c u , x ,Ž . Ž .˜s 0 s­ s

­
c u , x s c u , x ,Ž . Ž .˜s i s­ x i

3.10Ž .

­ 2

c u , x s c u , xŽ . Ž .˜s jk s­ x ­ xj k



L. OVERBECK754

Ž .for 1 F i, j, k F q. Assume 3.9 . Then there exists at most one probability
Žw x Ž q.. Ž . Ž . 0 U y1measure P on C 0, T , M R which solves 1.1 , 1.2 with d s d q ah c ,

Ž 0. y1b s g q hd c , where

3.11 h m, x s c m, x , . . . , c m , x ,Ž . Ž . Ž . Ž .˜ ˜Ž .1 q

q
13.12 g m, x s c m , x q c m , x a m , xŽ . Ž . Ž . Ž . Ž .˜ ˜Ý0 jk jk2

j, ks1

and a s ss U
.

PROOF. First, we need the following lemma, which is implied by the

definition of a solution of a nonlinear martingale problem.

Ž Žw x Ž q... Ž . Ž .LEMMA 3.4. If Q g M C 0, T , M R is a solution of 1.1 , 1.2 , then it1

Ž .is a linear noninteractive superprocess. That is, Q is the only measure on
Žw x Ž q..C 0, T , M R such that X s n and such that0

t
3.13 M f [ X f y n f y X L s f q b s f dsŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ht t s Q Q

0

is a local martingale with increasing process

t
23.14 f x c s, x X dx ds,Ž . Ž . Ž . Ž .H H Q s

0 E

where
q 21 ­ f

Q QL s f x s =f x ? d u , x q a u , x xŽ . Ž . Ž . Ž .Ž . Ž .ÝQ s i j s
2 ­ x ­ xi ji , js1

2Ž q. Q y1for f g C R with u [ Q( X , the distribution of the coordinate process Xb s s

at time s under the measure Q.

i Ž . Ž .Let P , i s 1, 2, be two solutions of 1.1 , 1.2 . Define the corresponding

flows by ui s P i
( Xy1. We want to apply Proposition 3.1 and Corollary 3.2s s

iŽ . Ž . Ž i . 0, iŽ . 0 Ž .i iwith the functions s s, x [ s s, x [ s u , x , d s, x [ d s, x [P s P
0Ž i . iŽ . Ž . Ž i . i i i i

id u , x and c s, x [ c s, x [ c u , x . We define a , h , g and b as ins P s

Ž . i 0 i 03.1 with the functions s , d , and c instead of s , d and c.

Ž .By assumption 3.10 it is sufficient to show that for i s 1, 2 the mappings
Ž . Ž i . Ž . Ž i .s, x ª c u , x , l s 1, . . . , q and s, x ª c u , x , j, k s 1, . . . , q, are˜ ˜l s jk s

w xLipschitz continuous with a Lipschitz constant independent of s g 0, T .

This follows from the Lipschitz continuity of c and c , 1 F l, j, k F q. For˜ ˜jk l

example,

i i i i < < < <c u , x y c u , y F K r u , u q x y y s K x y y .˜ ˜Ž . Ž . Ž .Ž .l s l s c 2 s s c˜ ˜l l

Ž 1 1. Ž 2 2 . Ž . Ž .Let Y , K and Y , K now be the solutions of 3.2 , 3.3 driven by the

same historical Brownian motion H but with different functions s , d0 and c,
1 0, 1 1 Ž 1 1.namely, with the functions s , d and c for Y , K and with the

2 0, 2 2 Ž 2 2 . Ž .functions s , d and c for Y , K . By Proposition 3.1 b and properties
Ž . Ž . Ž i.3.5 and 3.6 for each i s 1, 2, the distribution of the process P K as

Ž .defined in 3.4 solves a linear martingale problem for a noninteractive

superprocess with one-particle motion given by the diffusion matrix s i and
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drift vector d i and with branching parameters c i and b i. By Corollary 3.2 and
Ž i. iby Lemma 3.4 the distribution of the process P K coincides with P for

each i s 1, 2. Hence we have constructed one strong coupling of the two

different solutions; that is, we have constructed them on the same probability
ˆspace V equipped with one single historical Brownian motion H. By the

Ž .definition of the Wasserstein metric and by Proposition 3.1 b we have that

2

2 1 2 1 2r u , u F P sup P K f y P K fŽ . Ž . Ž . Ž .Ž .2 t t t tž /
5 5f F1BL

1 1 1F P sup f Y t , y c u , Y t , yŽ . Ž .Ž . Ž .H tž
5 5f F1BL

2

2 2 2yf Y t , y c u , Y t , y H dy .Ž . Ž . Ž .Ž . Ž .t t /
The last expression can be bounded by

1 25 5P c Y t , y y Y t , yŽ . Ž .�H `ž
3.15Ž .

2

1 1 2 2q c u , Y t , y y c u , Y t , y H dy .Ž . Ž . Ž .4Ž . Ž .t t t /
iŽ . iŽ . t 0Ž i iŽ ..Because Y t y Y 0 y H d u , Y s, y ds are continuous martingales forj j 0 s

Ž i iŽ .. i1 F j F q with covariation Ý a u , Y s, y ds, i s 1, 2, and because c gk jk s

C1, 2, we have for i s 1, 2, by the Ito formula, thatˆb

t
i i i i i i ic t , Y t , y s c 0, Y 0, y q h s, Y s, y dY s, yŽ . Ž . Ž . Ž .Ž . Ž . Ž .H

0

t
i iq g s, Y s, y ds.Ž .Ž .H

0

Ž .Hence 3.15 equals

t
1 1 2 2

P s u , Y s, y y s u , Y s, y dy sŽ . Ž . Ž .Ž . Ž .H H s s½ž
0

t
0 1 1 0 2 2 5 5q d u , Y s, y y d u , Y s, y ds cŽ . Ž .Ž . Ž .H `s s

0

t
1 1 2 2q hs u , Y s, y y hs u , Y s, y dy sŽ . Ž . Ž .Ž . Ž .H s s

0

t
0 1 1q hd q g u , Y s, yŽ .Ž . Ž .H s

0

2

0 2 2y hd q g u , Y s, y ds H dy .Ž . Ž .Ž . Ž .s t5 /
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By the Cauchy]Schwarz inequality and the formula for the second moment of

a superprocess, this is bounded by

t
1 1 2 2

P s u , Y s, y y s u , Y s, y dy sŽ . Ž . Ž .Ž . Ž .H H s s½
0

t
0 1 1 0 2 2 5 5q d u , Y s, y y d u , Y s, y ds cŽ . Ž .Ž . Ž .H `s s

0

t
1 1 2 2q hs u , Y s, y y hs u , Y s, y dy sŽ . Ž . Ž .Ž . Ž .H s s

0

t
0 1 1q hd q g u , Y s, yŽ .Ž . Ž .H s

0

2

0 2 2y hd q g u , Y s, y ds H dyŽ . Ž .Ž . Ž .s t5
= P H 1 q tŽ .Ž .0

t
1 1 2 2s E s u , Y s, W y s u , Y s, W dW sŽ . Ž . Ž .Ž . Ž .H H s s½

0

t
0 1 1 0 2 2 5 5q d u , Y s, W y d u , Y s, W ds cŽ . Ž .Ž . Ž .H `s s

0

t
1 1 2 2q hs u , Y s, W y hs u , Y s, W dW sŽ . Ž . Ž .Ž . Ž .H s s

0

t
0 1 1q hd q g u , Y s, WŽ .Ž . Ž .H s

0

2

0 2 2y hd q g g , Y s, W dsŽ .Ž . Ž .s 5
= P H 1 q t ,Ž .Ž .0

w Ž .x iŽ .where W is a Brownian motion with initial distribution P H ? and Y s, W0

Ž . iŽ . Ž i .is a solution of 3.2 with W instead of y and s s, W s s u , W . Becauses s s
0 Ž .hd q g and hs also satisfy 3.9 , we can bound the last expression by

22 2 2 2 5 50 04 P H 1 q t max K , tK , tK , K c k 1Ž . � 4Ž . Ž .`0 s d Žhd qg . s h

t 21 2 1 2= E Y s, W y Y s, W ds q r u , u dsŽ . Ž . Ž .H 2 s sž /
0

t 2X 1 2 1 2F K E Y s, W y Y s, W ds q r u , u ds.Ž . Ž . Ž .HT 2 s sž /
0

It remains to prove that

t21 2 2 1 23.16 E sup Y s, W y Y s, W F K r u , u dsŽ . Ž . Ž . Ž .HT 2 s s
0sFt
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Ž .with a finite constant K . We define similarly as in Funaki 1984 ,T

t
0 1 1 0 2 2A [ d u , Y s, W y d u , Y s, W ds,Ž . Ž .Ž . Ž .Ht s s

0

t
1 1 2 2M [ s u , Y s, W y s u , Y s, W dW s .Ž . Ž . Ž .Ž . Ž .Ht s s

0

By the Burkholder]Davis]Gundy inequality we obtain

2< <E sup Ms
sFt

q q
t 2

1 1 2 2F K 2 E s u , Y s, W y s u , Y s, W dsŽ . Ž . Ž .Ž . Ž .Ý ÝH i j s i j s
0is1 js1

22 1 2F K 2 K t E sup Y s, W y Y s, WŽ . Ž . Ž .s
sFt

t
2 2 1 2q K 2 K r u , u dsŽ . Ž .Hs 2 s s

0

Ž .with some constant K 2 . For A we obtain

2
t t2 2 1 2 1 2< < 0E sup A F K E r u , u ds q Y s, W y Y s, W dsŽ . Ž .Ž .H Hs d 2 s sž /

0 0sFt

t
2 2 1 2

0F 2 K t r u , u dsŽ .Hd 2 s s
0

22 2 1 2
0q 2 K t E sup Y s, W y Y s, W .Ž . Ž .d

sFt

Therefore,

21 2E sup Y s, W y Y s, WŽ . Ž .
sFt

2 2< < < <F 2 E sup M q 2 E sup As s
sFt sFt

22 2 1 2
0F 2 K 2 K q 4K t t E sup Y s, W y Y s, WŽ . Ž . Ž .Ž .s d

sFt

t
2 2 2 1 2

0F 2 K 2 K q 4K t r u , u ds.Ž .Ž . Ž .Hs d 2 s s
0

w Ž Ž . 2 2 .x Ž .0Hence for t - 1r 2 K 2 K q 4K n 1 we have 3.16 . This implies by thes d

previous calculations that

tX2 1 2 2 1 2r u , u F K r u , u dsŽ . Ž .H2 t t T 2 s s
0
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for small t. Gronwall’s lemma yields that u1 s u2 for small t. Exploring nowt t

the Markov property of the two solutions, we obtain uniqueness for all t F T
w Ž .xcf. Funaki 1984 and the assertion is proved. I

In order to prove an existence result we have to be more specific about the

function c; for example, it suffices that c is a finitely based function with

finitely based base functions.

Ž . Ž Ž . Ž . . 3Ž kqq.COROLLARY 3.5. Let c m, x s F m F , . . . , m F , x with F g C R1 k b

Ž . Ž Ž . Ž .. 2Ž q.and F m s f m f , . . . , m f such that f g C R , j s 1, . . . , k , k gi i 1 i k i ji b i ii
2Ž k i. Ž .N, f g C R , i s 1, . . . , k. We keep on assuming 3.9 and the boundednessi b

of the functions a , d0, 1 F i, j, l F q. Then there exists a unique solution ofi j l

Ž . Ž .the nonlinear martingale problem 1.1 , 1.2 .

PROOF. Uniqueness follows by Proposition 3.3, if we take for c the appro-˜
priate derivatives of c. Let P u denote the superprocess with parameters

Žw x Ž Ž q... u Ž .depending on the flow u g C 0, T , M M R ; for example, a s, x s1 i j

Ž . uŽ . Ž Ž . Ž . .a u , x and c s, x s F u F , . . . , u F , x . The starting point of thei j s s 1 s k

Picard]Lindelof approximation as in Section 2 is now u0, the flow of the¨
superprocess pu m0

with parameter depending on some constant flow um0 s ms 0
nq1 Ž n. Ž u n y1 .for all s. Define u s a u s P ( X . We have by the bounded-s 0 F sF T

ness assumptions that

­ ­n n nu u u ny1 < <c s, x y c s, y F sup sup E AA u F X K x y yŽ . Ž . Ž .Ž .t i t F­ s ­ s 1FiFk tFT

< <F sup K P H 1 x y yŽ .t
tFT

w Ž . Ž .xwith a finite constant K s K where AA m is defined in 1.3 .F , f , f , a , d , b, ci i i j k

Hence the Lipschitz condition for ­ cu n

r­ s formulated at the beginning of

Section 3.1 is satisfied. It is straightforward to see that the other conditions

for Proposition 3.1 are all satisfied. Hence we can construct P u n

and P u nq 1

as

strong solutions of stochastic equations driven by a historical process. Pro-

ceeding now as in the proof of Proposition 3.2 with P1 s P u n

and P 2 s P u nq 1

we are led to

tX2 nq1 n 2 n ny1r u , u F K r u , u ds,Ž . Ž .H2 t t T 2 s s
0

F Ž F . F u F

which finally yields a solution u of a u s u . The superprocess P
Ž . Ž .solves 1.1 , 1.2 . I

Of course, all assumptions on c are satisfied for constant c and we can
Ž .restate Theorem 1 b as the following corollary.

COROLLARY 3.6. Assume c is constant and s and d are bounded and
Ž .Lipschitz continuous in m, x with respect to r in the first component. Then2

Žw x Ž q..there exists a unique probability measure P on C 0, T , M R which solves
Ž . Ž .the nonlinear martingale problem 1.1 , 1.2 with b s 0.
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EXAMPLES. Assume that c satisfies the assumption of Proposition 3.3. Let
Ž .us now give examples for which we can satisfy condition 3.1 in Proposition

3.1. First of all, a necessary condition is that hd q g s hahUcy1 q cb with h
Ž . Ž .and g as in 3.12 and 3.11 . That is,

q q
1c m, x c m , x a m , x q c m, x d m , xŽ . Ž . Ž . Ž . Ž .˜ ˜Ý Ýjk jk i i2ž /

j, ks1 is1

q

2s c m , x b m , x q c m , x a m , x c m , x .Ž . Ž . Ž . Ž . Ž .˜ ˜Ý j jk k

j, ks1

3.17Ž .

Ž .i Hence if c, a, d are given with c strictly positive, a possible choice is

q
y1 1b m, x s c m , x c m , x a m , xŽ . Ž . Ž . Ž .˜Ý jk jk2ž

j, ks1

q

q c m , x d m , xŽ . Ž .˜Ý i i /
is1

3.18Ž .

q
y2

y c m , x c m , x a m , x c .Ž . Ž . Ž .˜ ˜Ý j jk k

j, ks1

It is clear that b is Lipschitz continuous and bounded if c, a , d are as well.˜ jk i

Under the same conditions d0 [ d y cy1Ýd a c is also Lipschitz continu-˜i js1 i j j

ous and bounded. Then the functions a, b, c, d0 satisfy all assumptions of

Proposition 3.1 and 3.3.

Ž . 0ii If a and b are given, a possible choice for the functions d and d is

y1q

d m , x s c m , xŽ . Ž .˜Ýj jž /
js1

=

q

c m , x a m , x c m , xŽ . Ž . Ž .˜ ˜Ý j jk kž
j, ks1

q
1

yc m, x b m, x y c m , x a m , xŽ . Ž . Ž . Ž .˜Ý jk jk2 /
j, ks1

and d0 s d y cy1Ýd a c for 1 F j F q.˜j j is1 jk i

Ž .iii If b s 0 and a, d are given, then c has to satisfy

q q
1c m , x c m , x a m , x q c m , x d m , xŽ . Ž . Ž . Ž . Ž .˜ ˜Ý Ýjk jk i i2ž /

j, ks1 is1

q

s c m , x a m , x c m, x ,Ž . Ž . Ž .˜ ˜Ý j jk k

j, ks1

3.19Ž .

which seems to be very restrictive.



L. OVERBECK760

Ž . Ž . Ž . 3Ž q. Ž .iv If c m, x s c x with c g C R then the functions in 3.10 are0 0 b

Ž . Ž . Ž .Ž . Ž .computed as follows: c m, x s 0, c m, x s ­c r­ x x and c m, x s˜0 i 0 i jk

Ž 2 .Ž . Ž .­ c r­ x ­ x x , 1 F i, j, k F q. Inserting these relations into 3.18 , a0 j k

concrete example for a nonlinear superprocess with nonconstant c can be

given.
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