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A COUNTABLE REPRESENTATION OF THE FLEMING–VIOT
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The Fleming]Viot measure-valued diffusion arises as the infinite

population limit of various discrete genetic models with general type

space. The paper gives a countable construction of the process as the

empirical measure carried by a certain interactive particle system. This

explicit representation facilitates the study of various properties of the

Fleming]Viot process. The construction also carries versions of the fa-

miliar genealogical processes from population genetics, in particular,

Kingman’s coalescent, thus unifying the genealogical and measure-valued

approaches to the subject.

Introduction. The approach to infinite population genetics models taken
Ž .by Fleming and Viot 1979 views gene frequencies as probability distribu-

w Ž .tions on some space E of genetic ‘‘types.’’ See Ethier and Kurtz 1993 for a
xrecent survey of Fleming}Viot processes. It is useful to let this space of

w Ž .xtypes be very general see, e.g., Ethier and Griffiths 1987, 1990 , so we will

allow E to be any complete, separable metric space. The Fleming]Viot
Ž .process is a Markov process with sample paths in PP E , the space of

probability measures on E. Our primary goal in the present paper is to
` Ž .introduce an E -valued process X s X , X , . . . whose infinite empirical1 2

measure

n1
I.1 Z t ' lim dŽ . Ž . Ý X Ž t .knnª` ks1

is a Fleming]Viot process. A process of this type appears implicitly in the
Ž .work of Dawson and Hochberg 1982 , who used the process to study the

support properties of the Fleming]Viot process with Brownian mutation.

Here we will see that the desired process is Markov with a generator of a
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THE FLEMING]VIOT PROCESS 699

simple form and that an explicit construction of the process can be given in

terms of a collection of Poisson processes and E-valued Markov processes.

This explicit construction allows us to derive a variety of properties of the

Fleming]Viot process under very general assumptions on the mutation pro-

cess.

Along with recent interest in measure-valued processes in genetics, there

has been a complementary focus on the genealogical structure induced by

genetics models. Genealogical techniques have provided powerful tools for

studying such models. The particle model we construct not only carries the

Fleming]Viot process, but it also contains within it the familiar genealogical

processes, including Kingman’s coalescent. The construction in this paper
Ž .thus provides a unification of these previously formally separate approaches

to infinite population genetics models. In addition, it carries various urn
w Ž .models which have recently emerged e.g., Hoppe 1987 and Ethier and

Ž .xGriffiths 1987 as convenient devices for constructing probability distribu-

tions of interest. One practical consequence of this unification is that results

or calculations derived from one approach immediately apply to the other,

without the need for separate proofs.

In the next section we introduce the simplest model for demography in

population genetics, the so-called Moran model. The Fleming]Viot process

can be obtained as the limit of the empirical measure processes associated

with a suitably scaled sequence of Moran models. Certain symmetries in

the resulting generators motivate our ‘‘particle model’’ construction of the

process.

The discrete construction of the process, as the empirical measure associ-

ated with a certain infinite particle system, is introduced in Section 2. A key

result, Lemma 2.1, shows that for each n, the first n particles in this system

may be coupled with a Moran model of size n, in such a way that the

empirical measures of each process are the same. It follows that the marginal

distributions of the E`-valued particle process are exchangeable and hence
Žthat the associated empirical measure exists as the de Finetti representing

.measure . As it also arises as the limit of the empirical measures associated

with the Moran models, it should correspond to the Fleming]Viot measure.

The main result of the section, Theorem 2.4, extends this ‘‘finite dimensional’’

convergence to show that the empirical measure associated with the particle

system exists as a process and that it is a version of the appropriate

Fleming]Viot process.

Section 3 is concerned with the genealogical structure of the particle
Ž .process. We show that n-coalescents, for each n, and the infinite coalescent

arise by tracing ‘‘ancestry’’ in the particle system. One can reconstruct the
Žtypes of the particles, and hence sampling distributions or moment mea-

.sures and in fact the empirical measure itself, by tracing forward through

the genealogy from the common ancestor, superimposing the effects of the
Ž .mutation processes. This gives rise to generalizations of various urn-type

models which have recently proved to be valuable tools for studying these

distributions.
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The final two sections illustrate the use of the particle model, and the

associated genealogical structure, in deriving various results about the Flem-

ing]Viot process. Section 4 is concerned with ergodicity and estimates of

distance from stationarity and Section 5 with sample-path properties of the

process.

� n41. The Moran model. We consider a sequence V of Moran models
w Ž .xMoran 1958 with mutation probabilities g and mutation distributionsn

Ž . Ž . nh x, ? g PP E , x g E. That is, for n s 2, 3 . . . , V is a continuous time,n

En-valued Markov process representing the types of the individuals in a
1population of size n which evolves as follows. With intensity , the jth2

individual in the population dies and is replaced by an offspring of the ith
Ž .individual i / j . With probability 1 y g the offspring has the same type yn i

as the parent, and with probability g the type of the offspring is randomlyn

Ž .determined according to the distribution h y , ? . Definen i

Qn f y , . . . , yŽ .i j 1 n

s g f y , . . . , y , z , y , . . . , y h y , dzŽ . Ž .Hn 1 jy1 jq1 n n i1.1Ž .

q 1 y g f u y , . . . , y ,Ž . Ž .Ž .n i j 1 n

Ž . nwhere u y g E is obtained from y by replacing y by y . Then thei j j i

generator of the nth Moran model is

1 n1.2 C f s Q f y fŽ . Ž .Ýn i j2

1Fi/jFn

Ž n. w Ž .for f g B E where B S denotes the bounded Borel measurable functions
xon a metric space S .

We want to derive the Fleming]Viot process as the limit of the sequence of

Moran models as the population size n ª `. The critical hypothesis for

convergence can be stated in terms of the sequence of operators defined by

ngnn1.3 B g x s g z y g x h x , dzŽ . Ž . Ž . Ž . Ž .Ž .H n
2

Ž . nfor g g B E . Note that B is the generator of a pure jump Markov process

on E, and we assume that B n converges to the generator B of an E-valued

Markov process and that the corresponding sequence of jump Markov pro-

cesses converges in distribution to the limiting process in the Skorohod
Žtopology. Note that the limiting process need not be pure jump. In the

.original work of Fleming and Viot, the limiting process was Brownian motion.
n Ž . Ž . Ž m.For y g E , define m g PP E by 1rn Ýd , and for g g B E , m - n,y y i

Ž n. Ž . Ž .define Gg g B E by defining g y ' g y , . . . , y andi ? ? ?i i i1 m 1 m

1
1.4 Gg y ' g y .Ž . Ž . Ž .Ý i ? ? ?im 1 mn 1Fi / ??? /i Fn1 m
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Ž < .In the following computation, for a vector x and an element u, u x u is thek

vector of the same length obtained by replacing the kth component of x by u
w Ž . Ž < .x Ž m. Ž . Ž Ž ..e.g., u x s u x x ; for f g B E , F f x ' f u x andi j j i i j i j

ngnn <1.5 B f x s f u x z y f x h x , dz .Ž . Ž . Ž . Ž . Ž .Ž .Ž .Hk k n k
2

Note that B n is just B n applied to the kth variable in f. Note also that ifk

Ž . Ž . Ž .f y does not depend either on y or y , then Q f y s f y . It follows thati j i j

1
C Gg s C g yŽ .Ýn n i ? ? ? im 1 mn 1Fi / ??? /i Fn1 m

m1
ns Q g y gŽ .Ý Ý Ý ji i ? ? ? i i ? ? ? im k 1 m 1 mž2n 1Fi / ??? /i Fn ks1 � 4jf i , . . . , i1 m 1 m

q Qn g y gŽ .Ý i i i ? ? ? i i ? ? ?il k 1 m 1 m /
l/k

m1 2
ns B gÝ Ý Ý k u Ž i , . . . , i < j.m k 1 mžž2n n1Fi / ??? /i Fn ks1 � 4jf i , . . . , i1 m 1 m

1.6Ž .

q g y gŽ .u Ž i , . . . , i < j. i ? ? ? ik 1 m 1 m /
2

nq B g q 1 y g g y gŽ . Ž .Ý k u Ž i , . . . , i . n u Ž i , . . . , i . i ? ? ? ilk 1 m lk 1 m 1 mž / /nl/k

m n y m 1 2
n ns GB g q GF B g q 1 y g G F g y g ,Ž . Ž .Ý Ýk lk k n lkž /n 2 nks1 1Fl/kFm

where in the last step we have used the fact that

g s g s n y m Gg .Ž .Ý Ýi ? ? ? i u Ž i , . . . , i < j.1 m k 1 m

1Fi / ??? /i /jFn 1Fi / ??? /i /jFn1 m 1 m

Ž m. Ž . Ž . ² m:For g g B E and m g PP E , define G m ' g, m to be the integral of

g against the m-fold product measure for m. As n ª `,

< ² m: <sup Gg y y g , m ª 0,Ž . y
nygE

and if g ª 0 and for each k, B ng ª B g uniformly on Em, thenn k k

< Ž . Ž . <nsup C Gg y y AG m ª 0, wherey g E n y

m
m my1 m² : ² : ² :1.7 AG m s B g , m q F g , m y g , m .Ž . Ž . Ž .Ý Ýk lk

ks1 1Fk/lFm

n Ž n n.For V s V , . . . , V defined above, let Z be defined by1 n n

n1
n1.8 Z t s d .Ž . Ž . Ýn V Ž t .in is1
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Then under appropriate conditions on the convergence of B n to B and thek k

� Ž .4assumption that Z 0 converges in distribution, the above calculationn

w .implies that Z converges in distribution in the Skorohod space D 0, ` ton PPŽE .

Ž . Ž . wa PP E -valued Markov process Z whose generator is given by 1.7 . See
Ž . xEthier and Kurtz 1986 , Chapter 10.

To be precise about the conditions we will place on the mutation process,
Ž . Ž .let E, r be a complete, separable metric space, and let P t, x, G be a

transition function corresponding to a Markov process with sample paths in
w . w Ž .D 0, ` . In particular, P t, x, G is assumed to be jointly measurable inE

Ž . Ž . x w .t, x for each G g BB E . Let P denote the distribution on D 0, ` of thex E

version of the process starting from x, and note that x ª P is a Borelx

Ž w ..measurable mapping of E into PP D 0, ` . This process will be the mutationE

Ž .process for our model. Define the corresponding semigroup on B E by

1.9 T t f x s f y P t , x , dy .Ž . Ž . Ž . Ž . Ž .H
E

˜ � Ž . Ž . 4 ŽLet L s f g B E : bp-lim T t f s f . bp-lim will denote the bounded,0 t ª 0

.pointwise limit. The assumed right continuity of the corresponding processes
˜Ž . w Ž .implies that C E ; L where C E denotes the bounded continuous func-0

˜x Ž . Ž .tions on E , which in turn implies that L is bp-dense in B E , that is, B E0

˜is the smallest collection of functions that contains L and is closed under0

bounded-pointwise convergence. Define

T t f y fŽ .
1.10 Bf ' bp-limŽ .

ttª0

wwhen the limit exists. Note that this is the ‘‘weak infinitesimal operator’’ for
� Ž .4 Ž .T t as defined in Dynkin 1965 . We could work with the ‘‘full generator’’ as

Ž .defined in Ethier and Kurtz 1986 , but the weak infinitesimal operator is
xnotationally simpler. B will be called the mutation operator for the process.

We will need the following consequence of these conditions for the mutation

operator.

Ž .LEMMA 1.1. There exists a countable subset D ; DD B , the domain of B,
Ž . Ž .that is separating for PP E in the sense that for m, n g PP E , H f dm s H f dn

for all f g D implies that m s n .

PROOF. By the separability of E, there exists a countable separating
ˆ Ž .subset D ; C E . Let D contain all functions of the form

`
yl t1.11 f s e T t g dtŽ . Ž .Hl

0

ˆŽ .for l g 0, ` l Q, g g D. Since bp-lim l f s g, it follows that D islª` l

separating. I

� Ž .4 Ž `. `Define T t on B E to be the semigroup corresponding to the E -valued
Ž .Markov process X s X , X , . . . each of whose components is Markov with1 2
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Ž . � 4transition function P t, x, G , with X conditionally independent givenk

� Ž .4 Ž m.X 0 . In particular, for f g B E ,k

T t f x , . . . , xŽ . Ž .1 m

s ??? f y , . . . , y P t , x , dy ??? P t , x , dy .Ž . Ž . Ž .H H 1 m 1 1 m m
E E

1.12Ž .

� Ž .4 Ž `.Let B also denote the weak infinitesimal operator for T t on B E . We

will write

m

1.13 Bf x , . . . , x s B f x , . . . , x ,Ž . Ž . Ž .Ý1 m k 1 m

ks1

where B is B applied to f as a function of the kth variable alone, when thek

right side is defined.

Ž m.For 1 F i - j F m, define the replacement operators F : B E ªi j

Ž my 1.B E by letting F f be the function obtained from f by replacing xi j j

w Ž . Ž 3.by x and renumbering the variables e.g., for f x , x , x g B E ,i 1 2 3

Ž . Ž . Ž . Ž .xF f x , x s f x , x , x and F f x , x s f x , x , x .12 1 2 1 1 2 23 1 2 1 2 2

Ž m. Ž Ž .. Ž . ² m: mFor f g B E , define F g B PP E by F m s f , m , where m de-f f
mŽ . Ž Ž ..notes the m-fold product measure of m, and let L E ; B PP E be the

mŽ .collection of functions of this form. Note that L E is a linear subspace of
Ž Ž .. Ž . Ž m.B PP E . For f g DD B l B E , the generator of the neutral Fleming]Viot

process A is given by

² m: ² my 1: ² m:1.14 A F m s Bf , m q F f , m y f , m .Ž . Ž . Ž .Ýf i j

1Fi-jFm

Since for f / g, one may still have F s F , it is not clear from this definitionf g

Žthat AA is single-valued, nor is it clear that A is dissipative i.e., satisfies
5 5 5 5 .lF y A F G l F , l ) 0 . Consequently, we should really define A as the

�Ž . Ž m. 4set of ordered pairs F , G : f g B E , m s 1, 2, . . . with G defined by thef f f

Ž .right side of 1.14 . The martingale problem for multivalued generators is
Ž .developed in Ethier and Kurtz 1986 and that theory can be applied here.

Consequently, we do not need to verify single-valuedness here. In Section 2,

we will prove the existence of solutions of the martingale problem for A for

every initial distribution. This existence implies that A is, in fact, dissipative
w Ž . xEthier and Kurtz 1986 , Proposition 4.3.5 . Under some conditions, dissipa-

tivity in turn implies single-valuedness. If, for example, E is compact and
� Ž . Ž . Ž .4 Ž . �D s f g DD B l C E : f , Bf g C E is dense in C E , then D s f g1 m

Ž . Ž m. Ž m.4 Ž m. �DD B l C E : Bf g C E is dense in C E and D s F : f g D , m sf m

4 Ž Ž ..1, 2, . . . is dense in C PP E . It follows that A restricted to D is single-valued.

w Ž . x Ž .See Ethier and Kurtz 1986 , Lemma 1.4.2. If A defined in 1.15 below is a
� Ž .4 Ž . wrestriction of the weak infinitesimal operator for S t in 1.18 which will be

mŽ . Ž . Ž .x Ž .the case if DD B l B E ; C E , then it follows from 1.18 that A is a

restriction of the weak infinitesimal operator. In general, we are not aware of

a direct proof of single-valuedness of A. We will, however, continue to use the
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simpler ‘‘single-valued’’ notation A F with the understanding that the mar-f

tingale property must hold for all ‘‘values’’ of A F .f

We are interested in the relationship between this Fleming]Viot process
` Ž . Ž m.and the E -valued process whose generator for f g DD B l B E is given by

Af x , . . . , x s Bf x , . . . , xŽ . Ž .1 m 1 m

q f u x , . . . , x y f x , . . . , x ,Ž . Ž .Ž .Ý Ž .i j 1 m 1 m

1Fi-jFm

1.15Ž .

Ž . mwhere u x , . . . , x denotes the element of E obtained by replacing x byi j 1 m j

Ž .x in x , . . . , x . The jth component of this process will evolve as a Markovi 1 m

Ž .process with generator B independently conditioned on its initial position of

the other components for a period of time exponentially distributed with

parameter j y 1. It then ‘‘looks down’’ at a component chosen at random from

among the first j y 1, assumes the value of that component and then evolves

independently for another exponentially distributed length of time. Note that
Ž m.the restriction of A to B E is a bounded perturbation of the restriction of

Ž m. ŽB to B E , so existence of this process as a solution of the martingale
. wŽ . xproblem for A follows from Ethier and Kurtz 1986 , Proposition 4.10.2 .

Ž . Ž m. Ž m.Furthermore, RR l y B l B E is bounded-pointwise dense in B E and
< m < m Ž .the fact that A is a bounded perturbation of B implies RR l y ABŽE . BŽE .

Ž m. Ž m. Ž .l B E is bounded-pointwise dense in B E . It follows that RR l y A is
` ˆŽ . wbounded-pointwise dense in B E . In particular, the full generator A see

Ž . xEthier and Kurtz 1986 , Section 1.5 is the bounded-pointwise closure in
Ž `. Ž `. �Ž . Ž .4 ŽB E = B E of f , Af : f g DD B . Uniqueness of the process that is,

.uniqueness for solutions of the martingale problems for A follows from
Ž .Theorem 4.4.1 of Ethier and Kurtz 1986 .

To see that the process with generator A is closely related to the
Ž . Ž m.Fleming]Viot process with generator A, observe that if f g DD B l B E

Ž . ² m:and F m s f , m , then

² m:1.16 A F m s Af , mŽ . Ž .

Ž m. Ž . ² m:and for g g B E and G m s g, m

y1 y1
mˆ ˆ² :1.17 l y A G m s l y A g , m .Ž . Ž .Ž . Ž .

It follows that

² m:1.18 S t G m s S t g , m ,Ž . Ž . Ž . Ž .

� Ž .4where S t is the semigroup corresponding to the Fleming]Viot process and
� Ž .4S t is the semigroup corresponding to A. In Section 2, we will see that the

relationship between the Fleming]Viot process and the particle process is

much more than a functional analytic identity.

2. Construction of the particle model. In order to be able to make an

explicit construction of the desired particle model, we assume that there is a
Ž . Ž . w .probability space V , FF , P and a BB E = BB 0, ` = FF -measurable map-0 0 0 0

w . Ž .ping U: E = 0, ` = V ª E such that U x, 0, v s x for all x and v, and0
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Ž .that for each x, U x, ? , ? is a Markov process with transition function
Ž . w .P t, x,G and sample paths in D 0, ` . For example, existence of such a UE

follows from the measurability of the mapping x ª P and the constructionx

Ž .of Blackwell and Dubins 1983 . In fact, if the mapping x ª P is continuousx

w . Ž .as a mapping from E into D 0, ` which it typically will be , the BlackwellE

and Dubins construction ensures that U is almost surely continuous at each
� Ž . Ž .4x. That is, for each x, P v: lim U Y, ? , v s U x, ? , v s 1, where con-y ª x

vergence is in the Skorohod topology. Alternatively, for diffusion processes
Ž .that can be obtained as unique, strong solutions of Ito equations, U x, ? , ?ˆ

can simply be the solution of the Ito equation with initial value x.ˆ
� 4 � 4Let U , 1 F i - j, 1 F k - ` and U , i G 1 be independent realizationsi jk i0

Ž w ..of U thought of as an E-valued stochastic process with index set E = 0, ` ,
� 4let N , 1 F i - j be independent, unit rate Poisson processes, independenti j

� 4 � Ž . 4of U and let t denote the kth jump time of N . Let X 0 , i G 1 be ani jk i jk i j i

� 4exchangeable sequence of E-valued random variables, independent of U ,i jk

� 4 � 4 � 4U and N . Define g s min t , i9 - j: t ) t ; that is, g is thei0 i j i jk i9 jk 9 i9 jk 9 i jk i jk

� 4first jump time of N ' Ý N after t , and define g s min t : i - j .j i- j i j i jk j0 i j1

Finally, define

2.1 X t s U X 0 , t , 0 F t - g ,Ž . Ž . Ž .Ž .j j0 j j0

and

2.2 X t s U X t , t y t , t F t - g .Ž . Ž . Ž .Ž .j i jk i i jk i jk i jk i jk

Note that between the jump times of the Poisson processes, the X behave asj

Ž .independent Markov processes with transition function P t, x, G and that at

the jump times of N , X ‘‘looks down’’ at X , assumes the value of X at thei j j i i

Ž .jump time, and then evolves independently according to P t, x, G until the

next jump time of N . We see that X is the desired process with generatorj

Ž .1.15 .

To better understand the properties of the E`-valued process X s
Ž .X , X , . . . , we want to compare it to a sequence of Moran-type models.1 2

ŽThese models differ from standard Moran models in that mutation may

occur any time during the life of an individual rather than only at birth. Both

types of Moran models, appropriately rescaled, converge to the Fleming]Viot
˜. � 4process. Let N , 1 F i / j F m be independent Poisson processes with in-i j

1 ˜ ˜� 4 � 4tensity , let U , 1 F j F m and U , 1 F i / j F m, k G 1 be independentj0 i jk2
mŽ . mŽ .copies of U and let Y 0 , . . . , Y 0 be exchangeable E-valued random1 m

variables, independent of the other processes. Let t be the kth jump timeĩ jk

˜ � 4of N , g s min t : i9 / j, t ) t and let g be the first jump time of˜ ˜ ˜ ˜ ˜i j i jk i9 jk 9 i9 jk 9 i jk j0

˜ ˜N ' Ý N . Definej i/ j i j

¡ mŨ Y 0 , t , 0 F t - g ,Ž . ˜Ž .j0 j j0
m ~2.3 Y t sŽ . Ž .j m¢Ũ Y t , t y t , t F t - g .˜ ˜ ˜ ˜Ž .Ž .i i jk i jk i jk i jk
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m Ž m m.Note that the components of Y s Y , . . . , Y behave as independent1 m

Ž .Markov processes with transition function P t, x, G except that at the jump
˜ m mtimes of N , Y is set equal to Y . In particular, with B as above, thei j j i

generator for Y m is given by

A f y , . . . , yŽ .m 1 m

s Bf y , . . . , yŽ .1 m2.4Ž .
1q f u y , . . . , y y f y , . . . , y ,Ž . Ž .Ž .Ý Ž .i j 1 m 1 m2

1Fi/jFm

Ž . Ž .where, as before, u y , . . . , y is obtained from y , . . . , y by replacing yi j 1 m 1 m j

by y .i
m Ž m m.We now want to construct Y s Y , . . . , Y in a particular way on the1 m

same sample space as X. Let S denote the collection of permutations ofm

Ž . Ž .1, . . . , m which we write as ordered m-tuples s s s , . . . , s . Let p : S ª1 m i j m

S denote the mapping such that p s is obtained from s by interchanging sm i j i

� 4and s and let M : 1 F i / j F m, k G 1 be independent random mappingsj i jk
1� 4 � 4M : S ª S such that P M s s s s P M s s p s s . Define ani jk m m i jk i jk i j 2

m ˜� 4S -valued process S and counting processes N , 1 F i / j F m as follows.m i j
mŽ .Let S 0 be uniformly distributed on S and independent of all otherm

processes. Let

t
˜ m m2.5 N t s I dN rŽ . Ž . Ž .Ý Hi j �S Žry.sk , S Žry.sl4 k li j

01Fk-lFm

m mŽ .and let S be constant except for discontinuities determined by S t sĩ jk
m ˜Ž .M S t y , where t is the kth jump time of N , or more precisely,˜ ˜i jk i jk i jk i j

interpreting Sm as a Z
m-valued process,

t
m m ˜2.6 S t s M S r y dN r .Ž . Ž . Ž . Ž .˜Ý H Ž .i jN Žry.q1 i ji j

01Fi-jFm

˜ mŽ . Ž .Equations 2.5 and 2.6 determine the N and S recursively. In addition,i j

ˆ� 4define N , 1 F i F m - j byi j

m
t

ˆ m2.7 N t s I dN rŽ . Ž . Ž .Ý Hi j �S Žry.sk4 k ji
0ks1

ˆand let t denote the kth jump time of N . Note that for j ) m,î jk i j

ˆ2.8 N s N s N q N .Ž . Ý Ý Ýj i j i j i j

1Fi-j 1FiFm m-iFj

˜ ˆŽ . � 4 � 4LEMMA 2.1. a The N and N constructed above are independenti j i j
1˜ ˆPoisson processes; the N have intensity and the N have intensity 1, andi j i j2

m ˜ ˆŽ . Ž Ž . Ž .for each t G 0, S t is independent of GG ' s N s , N s : s F t, 1 F i /t i j k l

.j F m, 1 F k F m - l .

Ž . mŽ . m m Ž m m.mb Define Y t s X , j s 1, . . . , m. Then Y s Y , . . . , Y isj S Ž t . 1 mj

Ž .Markov with generator 2.4 .
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˜ mŽ . Ž .c For i F m - j, let U s U , where a s S t y and b sˆi jk a , j, b i i jk

Ž .mN t . Then for j ) m, X satisfiesˆS Žt y. j i jk jˆi i jk

¡U X 0 , t , 0 F t - g ,Ž .Ž .j0 j j0

~U X t , t y t , t F t - g , m - i - j,Ž .Ž .2.9 X t sŽ . Ž . i jk i i jk i jk i jk i jkj

m¢Ũ Y t , t y t , t F t - g , i F m ,ˆ ˆ ˆŽ .Ž .i jk i i jk i jk i jk i jk

mŽ . m Ž mŽ . Ž . .and S t is independent of HH s s Y s , X s , X , . . . , s F t .t mq1 mq2

˜ ˜ ˆ ˆ� 4 � 4PROOF. Let N denote the array N and let N denote the array N .i j i j
m ˜ ˆŽ .Then the process S , N, N is a Markov process with generator

Cf s, u , vŽ .
f p s, uqe , v qf s, uqe , vŽ . Ž .i j i j i j

s I yf s, u , vŽ .Ý �s - s 4i j ž /21Fi/jFm
2.10Ž .

q f s, u , v q e y f s, u , v ,Ž . Ž .Ž .Ý i j

1FiFm-j

where e denotes the array with ijth element 1 and all other elements 0. Leti j

F denote the uniform distribution on S . Thenm

Cf s, u , v F dsŽ . Ž .H

1s f s, u q e , v F ds y f s, u , v F dsŽ . Ž . Ž . Ž .Ý H Hi j2 ž /
1Fi/jFm

2.11Ž .

q f s, u , v q e F ds y f s, u , v F ds .Ž . Ž . Ž . Ž .Ý H Hi jž /
1FiFm-j

Ž .The right side of 2.11 is the generator for an array of independent Poisson
˜ ˆŽ . Ž . Ž . Ž .processes applied to the function g u, v s Hf s, u, v F ds . If L, L is such

an array, for all bounded f,

t
˜ ˆ ˜ ˆ2.12 f s, L t , L t F ds y Cf s, L r , L r F ds drŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H H

0

L ˜ ˆŽ Ž . Ž . .is a martingale with respect to the filtration FF s s L r , L r : r F t . Con-t

˜ ˆŽ .sequently, F, L, L is a solution of the filtered martingale problem for C in
Ž .the sense of Kurtz and Ocone 1988 . By the uniqueness of such solutions, it

˜ ˆ ˜Ž .follows that N, N is an array of independent Poisson processes, N with
1 ˆparameter and N with parameter 1, and that the conditional distribution2

mŽ . mŽ . Ž .of S t given GG is F. In particular, S t is independent of GG and part at t

follows.

Ž .To prove part b , for 1 F i, j F m, define

˜ mU s U , where a s S 0 ,Ž .j0 a 0 j

˜ m mU s U , where a s S t y , b s S t y ,˜ ˜Ž . Ž .i jk a , b , g i i jk j i jk2.13Ž .

g s N m mS Žt y. , S Žt y.˜ ˜i i jk j i jk
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mŽ . Ž . � 4 � 4 � Ž .4mand Y 0 s X 0 , 1 F i F m. Since, by definition, U , U and X 0j S Ž0. j0 i jk jj

m ˜ m� 4 Ž . � 4 � 4are independent of N and S 0 , and N and S are functions of Ni j i j i j
mŽ . � 4 � 4 � Ž .4 � 4and S 0 , it follows that U , U and X 0 are independent of N ,j0 i jk j i j

m ˜� 4 � 4 � 4S and N . Since U and U are independent and identically dis-i j j0 i jk

� Ž .4 Žtributed and X 0 is exchangeable, by Lemmas A5.1 and A5.2 in thej

˜ ˜ m ˜ m ˜. � 4 � 4 � Ž .4 � 4Appendix , U , U and Y 0 are independent of N and S , the Uj0 i jk j i j j0

˜ m mŽ Ž . Ž ..and the U have the same distribution as U and U and Y 0 , . . . , Y 0i jk j0 i jk 1 m

Ž Ž . Ž ..has the same distribution as X 0 , . . . , X 0 . Note that using this particu-1 m

˜ ˜ m m� 4 � 4 Ž . Ž . Ž .mlar choice of N , U and so forth in 2.3 , Y t s X and part bi j j0 j S Ž t .j

follows.

Ž . m mFinally, 2.9 follows by the construction of Y and S . As in the proof of
˜ ˜Ž . � 4 � 4 �part b , the s-algebra EE generated by U , 1 F j F m , U , i F m , U , j )j0 i jk j0

4 � 4 � mŽ . 4 � Ž . 4 � 4m , U , i ) m , Y 0 , j F m , X 0 , j ) m and N , m - i - j is inde-i jk j j i j

˜ ˆ m m m� 4 � 4 Ž .pendent of N , i, j F m , N , i F m - j and S . Since HH ; GG k EE, S ti j i j t t
m Ž .is independent of HH by part a . It

m Ž m m.Note that the process Y s Y , . . . , Y constructed above has the same1 m

Ž .empirical measure as X , . . . , X .1 m

Ž Ž . Ž . .THEOREM 2.2. For each t ) 0, X t , X t , . . . is exchangeable.1 2

Ž Ž . Ž ..PROOF. It is enough to show that for each m, X t , . . . , X t is ex-1 m
mŽ . Žchangeable. Since in the above construction, S t is independent of GG ast

. mŽ . mŽ .defined in Lemma 2.1 , S t must also be independent of Y t and the
Ž Ž . Ž ..exchangeability of X t , . . . , X t follows from the exchangeability of1 m

Ž mŽ . mŽ ..Y t , . . . , Y t . I1 m

We will need the following lemma concerning the Fleming]Viot process.
0 Ž Ž . .Let GG s s Z s : s F t .t

LEMMA 2.3. Let Z be a Fleming]Viot process with generator A, let g g
Ž . Ž . ² Ž .:DD B and define S t s g, Z t . Then S has a continuous modification and

t
² :2.14 M t s S t y Bg , Z s dsŽ . Ž . Ž . Ž .H

0

� 04is a GG martingale with quadratic variationt

t 22² : ² :2.15 g , Z s y g , Z s ds.Ž . Ž . Ž .Ž .H
0

2Ž .In particular, for each f g C R ,

t 21 2² : ² :f S t y g , Z s y g , Z s f 0 S sŽ . Ž . Ž . Ž .Ž . Ž .Ž .H Ž 2
0

² :q Bg , Z s f 9 S s dsŽ . Ž .Ž . .2.16Ž .

t
s f 9 S s dM sŽ . Ž .Ž .H

0

is a martingale.
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˜Let W be a Brownian motion independent of Z. Then there exists a Brown-

ian motion W such that

t 22² : ² : ² : ² :'g , Z t s g , Z 0 q g , Z s y g , Z s dW sŽ . Ž . Ž . Ž . Ž .H
0

2.17Ž .
t
² :q Bg , Z s ds.Ž .H

0

Ž .PROOF. The fact that M is a martingale follows by applying A to G m s
² :g, m . The existence of a continuous modification follows as in Ethier and

wŽ . x Ž .Kurtz 1987 , Lemma 2.1 . The fact that 2.15 gives the quadratic variation
2Ž . Ž . Ž . ² 2 : ² :2

follows by noting that AG m y 2G m AG m s g , m y g, m , and

Ž . Ž . ² 2 Ž .: ² Ž .:2
2.16 follows by Ito’s formula. Define Q t s g , Z t y g, Z t . Thenˆ

1t t
˜2.18 W t s I dM s q I dW sŽ . Ž . Ž . Ž .H H�QŽ s.) 04 g �QŽ s.s04'Q s0 0Ž .

Ž .is a Brownian motion satisfying 2.17 . I

� 4 Ž . 5 5THEOREM 2.4. Let f ; DD B , with f F 1 for all k, be separating fork k

Ž . Ž . Ž .PP E see Lemma 1.1 and define a metric on PP E by
` 1

2.19 q m , n s f dm y f dn , m , n g PP E .Ž . Ž . Ž .Ý H Hk kk2ks1

Let
m m1 1

m2.20 Z t s d s dŽ . Ž . Ý Ým X Ž t . Y Ž t .i im mis1 is1

m Ž Ž . Ž Ž . Ž . . . mand define HH s s Z s , X s , X s , . . . , s F t and HH s F HH .t m mq1 mq2 t t

Ž .Then there exists a q-continuous, PP E -valued process Z such that for each

t ) 0,
2.21 lim Z t s Z t a.s.Ž . Ž . Ž .m

mª`

in the weak topology,

2.22 lim sup q Z s , Z s s 0 a.s.Ž . Ž . Ž .Ž .m
mª` sFt

and Z is a Fleming]Viot process with generator A.

Ž k . mFor 1 F k F m, f g B E and y g E , define

m y k !Ž .
2.23 G f y ' f y , . . . , y .Ž . Ž . Ž .Ýk m i i1 km! 1Fi / ??? /i Fm1 k

Then
m m<2.24 E f X t , . . . , X t HH s G f Y tŽ . Ž . Ž . Ž .Ž .Ž .1 k t k m

and, with Zk denoting the k-fold product of Z,
k< ² :2.25 E f X t , . . . , X t HH s f , Z t .Ž . Ž . Ž . Ž .Ž .1 k t

In particular,

< m2.26 P X t g G HH s Z t , G� 4Ž . Ž . Ž .k t m
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and

<2.27 P X t g G HH s Z t , G .� 4Ž . Ž . Ž .k t

ŽREMARK 2.5. Typically, convergence in q will imply weak convergence in
.particular if the mutation process is a Feller process , but not necessarily. For

example, let E s R and suppose the mutation process decreases at rate 1

until it hits an integer, say k, and then jumps to a point uniformly dis-
Ž x Ž . Ž .tributed on the interval k, k q 1 . Then Bf x s yf 9 x for f with bounded

Ž . kq1 Ž .left derivatives satisfying f k q s H f x dx, for each integer k. Note, ink

particular, that the Fleming]Viot process with this mutation operator does

not have sample paths continuous in the weak topology.

PROOF OF THEOREM 2.4. By Lemma 2.1, Sm is independent of HH
m whicht

Ž . m mq1 Ž .implies 2.24 . Since HH > HH , for fixed t and G, the left side of 2.24 is at t

Ž .reverse martingale and converges a.s. to 2.25 . In particular,

m<2.28 E f X t HH s f x Z t , dxŽ . Ž . Ž . Ž .Ž . Hk t m

Ž .converges almost surely for each f g C E . Since E is separable, there is a
Ž .countable convergence determining collection in C E , and it follows that

Ž . Ž . Ž . Ž . Ž .Z t converges almost surely to Z t in PP E , and 2.25 follows from 2.24 .m

Ž .In fact, since 2.28 is a reverse martingale with uniformly bounded differ-

ences, for « ) 0, Lemma A3.1 gives

yh m2.29 P f x Z t , dx y f x Z t , dx G « F Ce ,Ž . Ž . Ž . Ž . Ž .H Hm½ 5
5 5 wwhere C and h ) 0 depend only on « and f . The argument here is the

standard martingale proof of de Finetti’s theorem. See, for example, Durrett
Ž . Ž . x1991 or Chow and Teicher 1988 .

To see that Z is a solution of the martingale problem for A, first verify that
Ž . Ž k . Ž . Ž . Ž .for f g DD B l B E , A G f s G Af. From 2.24 , 2.25 and 1.16 itm k m k m

follows that

0 s E E G f Y t q s y G f Y tŽ . Ž .Ž . Ž .k m m k m m

tqs
my A G Y u du HH HHŽ .Ž .H m k m m t t

t

s E f X t q s , . . . , X t q s y f X t , . . . , X tŽ . Ž . Ž . Ž .Ž . Ž .1 k 1 k

2.30Ž .
tqs

y Af X u , . . . , X u du HHŽ . Ž .Ž .H 1 k t
t

tqsk k k² : ² : ² :s E f , Z t q s y f , Z t y Af , Z u du HHŽ . Ž . Ž .H t
t

tqs
s E F Z t q s y F Z t y A F Z u du HHŽ . Ž . Ž .Ž . Ž . Ž .H t

t

and it follows that Z is a solution of the martingale problem for A.
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Ž . Ž . Ž .Lemma 2.3 ensures that for f g DD B , H f x Z t, dx has a continuous

modification, so in particular, Z has a q-continuous modification.

Ž . Ž xLet R t, h s 1 if X ‘‘looks down’’ during the time interval t, t q h andi i

Ž . Ž Ž . 4 yŽ iy1.h Ž .R t, h s 0 otherwise. Note P R t, h s 0 s e . For f g DD B andi i

« ) 0,

P sup f x Z s, dx y f x Z t , dx G «Ž . Ž . Ž . Ž .H Hm m½ 5
tFsFtqh

m m1 1
s P sup f X s y f X t G «Ž . Ž .Ž . Ž .Ý Ýi i½ 5m mtFsFtqh is1 is1

m1
F P sup f X s y f X tŽ . Ž .Ž . Ž .Ý i i½ žmtFsFtqh is1

s «
y Bf X u du 1 y R t , h )Ž . Ž .Ž . Ž .H i i 5/ 4t

2.31Ž .

m1 «
yŽ iy1.h5 5 5 5q P 2 f q h Bf R t , h y 1 q e )Ž .Ž . Ž .Ý i½ 5m 4is1

m1 «tqh
< <q P Bf X u du )Ž .Ž .Ý H i½ 5m 4tis1

m1 «
yŽ iy1.h5 5 5 5q P 2 f q h Bf 1 y e G .Ž .Ž . Ý½ 5m 4is1

The independence of the R from the evolution of the X between look-downsi i

implies that the process in the first term on the right is a martingale.

Ž . yl x l xDefining w x, l s e q e , Doob’s inequality bounds this term byˆ

m1
inf E w f X t q h y f X tŽ . Ž .Ž . Ž .ˆ Ý i iž½ ž ml)0 is1

tqh
y Bf X u du 1 y R t , h , lŽ . Ž .Ž . Ž .H i i/

t

2.32Ž .

y1
= w « , l .Ž .ˆ 5

Ž .It follows as in the proof of Theorem 5.9 of Kurtz 1972 that there exist C
5 5 5 5 Žand h ) 0 depending only on « and 2 f q h Bf a constant bounding the

. yh msummands such that the first term is bounded by Ce . The second term is

bounded by a similar expression, and the third and fourth terms are zero if
5 5 Ž 5 5 5 5.Ž yh Žmy1..h Bf - «r4 and 2 f q h Bf 1 y e - «r4. Consequently, C and

5 5 5 5h ) 0 may be selected depending only on « , f and Bf such that for h
Ž . Ž .sufficiently small, 2.29 holds and the left side of 2.31 is also bounded by

Ceyh m. Let h ª 0 slowly enough so that Ýeyh mrh - ` for every h ) 0 andm m

Ž y2 . �fast enough so that mh ª 0 e.g., h s m . For T ) 0, let H s kh :m m m , T m
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4 Ž . Ž . Ž .k F Trh . Let f g DD B , assume H f x Z ?, dx is continuous and definem

2.33 D s sup sup f x Z s, dx y f x Z t , dx - « .Ž . Ž . Ž . Ž . Ž .H Hm ½ 5
tFT tFsFtqhm

Ž . Ž . Ž .Note that D ; D and by the continuity of H f x Z ?, dx , P D ª 1. Form mq1 m

Ž .m sufficiently large i.e., h sufficiently small ,m

P sup f x Z t , dx y f x Z t , dx G 3« l DŽ . Ž . Ž . Ž .H Hm m½ 5ž /
tFT

F P f x Z t , dx y f x Z t , dx G «Ž . Ž . Ž . Ž .Ý H Hm½ 5
tgHm , T

q P sup f x Z s, dx y f x Z t , dx G «Ž . Ž . Ž . Ž .Ý H Hm m½ 5
tFsFtqhtgH mm, T

2.34Ž .

2CT
yh mF e .

hm

Summing over m, the right side converges, and Borel]Cantelli and the

properties of D ensure thatm

2.35 lim sup f x Z t , dx y f x Z t , dx s 0,Ž . Ž . Ž . Ž . Ž .H Hm
mª` tFT

which completes the proof of the theorem. I

� 4 Ž Ž . Ž . .COROLLARY 2.6. Let t be a finite HH stopping time. Then X t , X t , . . .t 1 2

is exchangeable.

Ž .PROOF. If t is discrete, then 2.25 implies the desired exchangeability.

� 4 � 4For the general case, let t be a decreasing sequence of discrete HH stoppingn t

Ž Ž . Ž . .times converging to t . By the right continuity of the X , X t , X t , . . .k 1 n 2 n

Ž Ž . Ž . .ª X t , X t , . . . and the exchangeability follows. I1 2

We now consider a construction similar to that of Y m above, but involving
˜ nŽ .X , . . . , X . Define an S -valued process S and counting processesmq 1 mqn n

˜ ˜ n� 4 Ž .N , 1 F i / j F n as follows. Let S 0 be uniformly distributed on S andi j n

independent of all other processes. Let

t
˜ n n2.36 N t s I dN sŽ . Ž . Ž .˜ ˜Ý Hi j �S Ž sy.sk , S Ž sy.sl4 mqk , mqli j

01Fk-lFn

˜ n ˜ nŽ .and let S be constant except for discontinuities determined by S t sĩ jk

˜ n ˜Ž .M S t y , where t is the kth jump time of N or, more precisely,˜ ˜i jk i jk i jk i j

˜ n ninterpreting S as a Z -valued process,

t
n n n˜ ˜ ˜ ˜2.37 S t s M S s y y S s y dN s .Ž . Ž . Ž . Ž . Ž .˜Ý H ž /i , j , N Ž sy.q1 i ji j

01Fi-jFn
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˜ ˜ nŽ . Ž .Equations 2.36 and 2.37 determine the N and S recursively. In additioni j

ˆ� 4define N , 1 F i F m, 1 F j F n byi j

n
t

ˆ n2.38 N t s I dN s .Ž . Ž . Ž .˜Ý Hi j �S Ž sy.sk4 i , mqkj
0ks1

˜ nŽ .As in Lemma 2.1, S t is independent of

˜ ˜ ˆ2.39 GG s s N s , N s : s F t , 1 F i , j F n , 1 F k F m , l F l F n .Ž . Ž . Ž .½ 5t i j k l

˜n ˜ ˜nŽ . Ž .nDefine Y t s X t . Then N counts the number of times that Y˜j mqS Ž t . i j jj

˜n ˆ ˜n‘‘copies’’ Y , and N counts the number of times Y copies X . Settingi i j j i
m m ˜nŽ . Ž .X s X , . . . , X , it follows that X , Y is a solution of the martingale1 m

problem for

Am n f x , y s Bf x , y q f u x , y y f x , yŽ . Ž . Ž . Ž .Ž .Ý Ž .i j

1Fi-jFm

<q f x , u y x y f x , yŽ .Ž .Ž .Ý ž /j i

1FiFm
mq1FjFmqn

2.40Ž .

1q f x , u y y f x , yŽ . Ž .Ž .Ý Ž .i j2

mq1Fi , jFmqn

Ž . Ž mq n. Ž . Ž mq k .for f g DD B l B E . For g g DD B l B E , define

1
n2.41 G g x , y ' g x , y , . . . , y .Ž . Ž . Ž .Ý i ik 1 kn 1Fi / ??? /i Fn1 k

Applying Am n we obtain

Am nG ng s G nBg q G ng u ? , ? y G ngŽ .Ž .Ý Ž .i j

1Fi-jFm

n < nq G g ?, u ? x y G gŽ .Ž .Ý ž /j i

1FiFm
mq1FjFmqk

2.42Ž .

1 nq G F g y g .Ž .Ý i j2

mq1Fi/jFmqk

Noting that

n n1 1
n2.43 lim d s lim d s Z t a.s.Ž . Ž .˜Ý ÝY Ž t . X Ž t .i mq in nnª` nª`is1 is1

and in particular that

kn m m m² :lim G g X t , Y t s g X t , ? , Z t a.s.,Ž . Ž . Ž . Ž .Ž . Ž .
nª`

we have the following theorem.
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Ž . Ž mq k .THEOREM 2.7. Let X and Z be as in Theorem 2.4. For g g DD B l B E
Ž . m Ž . Ž . ² Ž . k:and x, m g E = PP E , define G x, m s g x, ? , m and

m ² k: k
A G x , m s Bg x , ? , m q g u x , ? y g x , ? , mŽ . Ž . Ž . Ž .² :Ž .Ý i j

1Fi-jFm

< kq g x , u ? x y g x , ? , mŽ .¦ ;Ž .Ž .Ý j i

1FiFm
mq1FjFmqk

2.44Ž .

² k:q F g x , ? y g x , ? , m .Ž . Ž .Ý i j

mq1Fi-jFmqk

Ž . mThen X , . . . , X , Z is a solution of the martingale problem for A .1 m
m ŽThe martingale problem for A is well posed i.e., existence and uniqueness
. Ž .hold for each initial distribution and it follows that X , . . . , X , Z is a1 m

Markov process.

Ž . Ž mq k .PROOF. For g g DD B l B E ,

t
n m n m n n m n˜ ˜2.45 G g X t , Y t y A G g X s , Y s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .H

0

m n m ˜mŽ Ž . Ž . .is a martingale with respect to the filtration GG s s X s , Y s : s F t .t

Ž .Each term in 2.45 converges a.s. to the corresponding term in

t
m m m2.46 G X t , Z t y A G X s , Z s ds.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H

0

1wThe elimination of the and the change in the range of the summation is2

² Ž . Ž . k: ² Ž . Ž .permitted by the fact that F g x, ? y g x, ? , m s F g x, ? y g x, ? ,i j ji
k: x Ž .m . The assertion that X , . . . , X , Z is a solution of the martingale1 m

m Ž .problem for A then follows by Theorem 4.8.10 of Ethier and Kurtz 1986 .

Ž . Ž mq k . m Ž . ² Ž . k:Observe that for g g DD B l B E , A G x, m s Ag x, ? , m .

Uniqueness of solutions of the martingale problem then follows from Corol-
Ž .lary 3.3 of Kurtz 1995 , and the Markov property follows from uniqueness by

Ž .Theorem 4.4.2 of Ethier and Kurtz 1986 . I

Theorem 2.7 gives us the following generalization of Lemma 2.3. Let
m Ž mŽ . Ž . .GG s s X s , Z s : s F t .t

COROLLARY 2.8. Let Z be a Fleming]Viot process with generator A, let
Ž . Ž . ² Ž .:g g DD B and define S t s g, Z t . Then for each m ) 0,

m
t
² :2.47 M t s S t y Bg , Z s q g X s y S s dsŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .ÝH iž /0 is1

� m4is a GG martingale with quadratic variationt

t 22² : ² :2.48 g , Z s y g , Z s ds.Ž . Ž . Ž .Ž .H
0
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˜ mLet W be a Brownian motion independent of X and Z. Then there exists a

Brownian motion W such that

t 22² : ² : ² : ² :'g , Z t s g , Z 0 q g , Z s y g , Z s dW sŽ . Ž . Ž . Ž . Ž .H
0

m
t
² : ² :q Bg , Z s q g X s y g , Z s ds.Ž . Ž . Ž .Ž .Ž .ÝH iž /0 is1

2.49Ž .

� m4PROOF. The fact that M is a GG martingale follows immediately fromt

Theorem 2.7. The quadratic variation does not depend on the filtration, so
Ž . Ž .2.48 follows from Lemma 2.3. The proof of 2.49 is the same as the proof of
Ž .2.17 . I

Stationary versions. If B has a stationary distribution, then the construc-

tion of the process X can be carried out on the doubly infinite time interval.
� Ž . 4In this construction, X t , y` - t - ` is a stationary Markov process with1

Ž .generator B and the N are Poisson point processes on y`, ` with inten-i j

sity 1. Associating each point in N with an independent version of U, thei j

construction is essentially the same as before. Note that the stationarity of

X and the increments of the N imply the stationarity of X and Z. In1 i j

particular, we see that the existence of a stationary version X of the1

mutation process implies the existence of a stationary version of the corre-

sponding Fleming]Viot process. Furthermore, if X is ergodic, then Z is1

ergodic. See Section 4.

THEOREM 2.9. Suppose that the mutation process is an R
d-valued process

Žwith stationary independent increments e. g., Brownian motion or a continu-
. nous time random walk . Let X be as above, and define X for t G yn by

nŽ . Ž . Ž . n `X t s X t q n y X n . Then X converges in distribution to a process Xk k 1

Ž d .`defined on the doubly infinite time interval, and the R -valued process
ˆ ` ` ` `Ž .X s 0, X y X , X y X , . . . is stationary and ergodic.2 1 3 1

˜nŽ . Ž .REMARK 2.10. a A similar limit theorem can be proved for X t sk

Ž . Ž . Ž .X t q n y H xZ t q n, dx . See Dawson and Hochberg 1982 and Shigak

Ž .1982 for analogous results. Similar ideas of centering first appeared in
Ž . Ž .Moran 1975, 1976 and Kingman 1976 .

Ž . `b Note that X can be constructed directly in the same way as

the stationary particle model constructed above starting with a process
` Ž .with stationary independent increments X defined on y`, ` satisfying1

`Ž .X 0 s 0.1

PROOF OF THEOREM 2.9. Convergence in distribution of X n follows from
nŽ . Ž . Ž .convergence in distribution of the first component X t s X t q n y X n1 1 1

nŽ . nŽ .which is immediate, since the joint distribution of X t , . . . , X t does1 1 1 m

Ž .not depend on n for n G max yt . Ii i
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Ž3. Genealogical structure. Assume that the demographic process by
.which we mean the process of ‘‘look-downs’’ determined by the N is definedi j

Ž .on the time interval y`, ` . For s - t, the ancestor at time s of the particle

at level j at time t will be the particle at the level i determined by following
Ž xthe look-down processes backward in time. To be precise, define N a, b sj

Ž x Ž Ž xÝ N a, b where N a, b denotes the number of points in N falling ini- j i j i j i j

Ž x. Ž .the time interval a, b . Let g t be the time of the most recent look-downj

Ž . � Ž x 4 Ž Ž ..from the jth level, that is, g t s sup u: N u, t ) 0 , and let a g t be thej j j j

Ž . Ž . Ž . Ž .level i such that g t g N . Define a s, t s j for g t F s - t and a s, t sj i j j j j

Ž Ž .. Ž Ž .. Ž . Ž .a g t for g g t F s - g t , and extend the definition a s, t to allj j a Žg Ž t .. j j jj j

Ž .s - t in the obvious manner. Then a s, t gives the level of the ancestor atj

time s of the particle at level j at time t.
Ž . � Ž . 4 Ž .Let G s, t s a s, t : j s 1, . . . , n ; that is, G s, t is the collection ofn j n

indices of particles at time s that have descendants among the first n
< Ž . < Ž .particles at time t. Let G s, t denote the cardinality of G s, t . For ann n

Ž . < Ž . <˜ ˜ ˜arbitrary but fixed t and u G 0, define D u s G t y u, t and define ann n
nŽ . � 4 Ž . nŽ .equivalence relation R u on 1, . . . , n by i, j g R u if and only if

Ž . Ž . nŽ .˜ ˜ ˜ ˜a t y u, t s a t y u, t . Thus the equivalence classes of R u consist of thei j

˜ ˜levels of particles at time t that have the same ancestor at time t y u.

Recall that an n-coalescent is a continuous time Markov chain with state
� 4 �Ž .space SS , the set of equivalence relations on 1, . . . , n , initial value i, i : i sn

41, . . . , n and transition intensities, for j / h g SS ,n

1, if h is obtained by coalescing two of the equivalence¡
~3.1 q sŽ . classes of j ,jh ¢

0, otherwise.

� nŽ . 4 Ž .THEOREM 3.1. The process R u , u G 0 is an n-coalescent and D u sn

< Ž . < < nŽ . < nŽ .˜ ˜G t y u, t s R u , the number of equivalence classes in R u , is a puren

death Markov chain with transition intensities

k k y 1Ž .
3.2 q s , k s 2, . . . , n.Ž . k ,ky1

2

Ž . nŽ . �Ž . 4˜ ˜PROOF. Since a t, t s i, i s 1, . . . , n, R 0 s i, i : i s 1, . . . , n . Thei

above construction naturally associates a level with each equivalence class of
nŽ . Ž .˜ ˜R u , the common value of a t y u, t for each value of i in the equivalencei

˜class, that is, the level of the ancestor at time t y u of the equivalence class.
nŽ .Transitions occur in R u exactly when the ancestor of one equivalence class

looks down to the level associated with one of the other classes. For each pair

of classes an event of this sort happens at rate 1. The effect of such an event

is to coalesce the two equivalence classes.

Ž . Ž .In particular, for small h, D u q h s D u y 1 if there is a look-downn n

Ž . Ž .˜ ˜ ˜ ˜from one of the levels in G t y u, t to one of the other levels in G t y u, t inn n

Ž x˜ ˜the time interval t y u y h, t y u . The probability of a look-down occurring
Ž . Ž .in this interval for a particular pair is h q o h , so if D u s k, the probabil-n
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kŽ . Ž .˜ ˜ity of a look-down occurring for some pair in G t y u, t is just h q o h .n ž /2

The Markov property for Rn and D is an immediate consequence of then

independence of the increments of the Poisson processes used in our construc-

tion. I

n � Ž . 4Let t s inf u: D u s k . Thenk n

n 2 2 2
n3.3 E t s s yŽ . Ýk

m m y 1 k nŽ .mskq1

Ž . Ž .which converges as n ª `. It follows that D u s lim D u - ` for allnª` n

Ž .u ) 0, and hence that G s, t , the collection of indices of particles at time s

that have a descendent at some level at time t, is a finite set. In particular,
Ž .the equivalence relation R u , u G 0, on the natural numbers N defined by

Ž . Ž . Ž . Ž .˜ ˜ ˜ ˜i, j g R u if and only if a t y u, t s a t y u, t has the property that fori j

all u ) 0 it determines a finite collection of equivalence classes.

� Ž . 4THEOREM 3.2. The process R u , u G 0 is a coalescent.

PROOF. This assertion is immediate from the previous theorem, since the

coalescent on N is defined to be a process of equivalence relations on N with
� 4the property that for each n, its restriction to 1, . . . , n gives an n-coalescent.

I

The two major new tools in population genetics of the last decade have

been the uses of genealogy and measure-valued diffusions. There are a

variety of limit theorems which show that appropriate genealogical or mea-

sure-valued processes arise as robust descriptions of certain classes of dis-

crete models. One consequence of our construction is that these two previ-

ously somewhat disparate approaches are unified by the embedding of the

Fleming]Viot process and the familiar genealogical processes in the particle

model. In particular,the genealogical tree with mutation considered by Don-
Ž .nelly and Tavare 1987a can be embedded in the particle model. Another´

Ž .consequence is an explicit construction of the coalescent. Kingman 1982b

uses ‘‘paintboxes’’ to construct its jump chain.

We collect various properties of R in the following proposition. All are
w Ž .xproperties of the coalescent Kingman 1982b and so follow from the previ-

ous theorem.

Ž .PROPOSITION 3.3. a The process D is a Markov death process on N with
k Ž . Ž .an entrance boundary at ` and death rate from k, D 0 s `, D u - `ž /2

Ž . � Ž . 4 w xa.s. for u ) 0 and lim D u s 1 a.s. For t ' inf u: D u s k , E t suª` k k

2rk.

Ž .b D is independent of the jump chain of R.

Ž . Ž . Žc For each u, R u is exchangeable that is, its distribution is invariant
. Ž .˜under relabelings of the levels at time t , as is R ' R t , for each k. Itk k
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Ž . Ž . Ž .follows that for u ) 0 or k finite all the equivalence classes of R u or Rk

are infinite and in fact each class has positive density a.s., that is, if C is such

an equivalence class,
y1 < <� 43.4 x s lim n C l 1, . . . , nŽ . C

nª`

exists and is positive a.s.

Ž . Ž . Ž . Ž .d Let C u , . . . , C u denote the equivalence classes of R u , labeled in1 DŽu.

a way that does not depend on their composition. Then for j / j / ??? / j ,1 2 m
m

<3.5 P j g C u , k s 1, . . . , m D u , x , . . . , x s x .Ž . Ž . Ž .� 4 Łk i C Žu. C Žu. C Žu.k 1 D Žu. ikks1

Ž . Ž .3.4. REMARK. The statement in d , due to Kingman 1982a , is an analog

of de Finetti’s theorem for exchangeable random equivalence relations. Es-
Ž .sentially, it says that the interesting randomness in R u is contained in the

number of equivalence classes and their sizes.

In the sequel it will be useful to consider the coalescent with time running
˜in the opposite direction, that is, to reverse time about the point t y t at1

˜which all of the particles at time t first have a common ancestor. For
˜`Ž . ŽŽ . . Ž .˜definiteness, take t s 0. Define R s s R t y s y , where R u y de-1

˜`notes the left limit at u. We use the left limit in order to make R right

continuous. The usual direction of time for the coalescent is with time
Ž .running backward in our original particle construction, so we now consider

time running forward from yt . Transitions now involve the splitting of1

Ž .equivalence classes. In view of Proposition 3.3 b , we may consider separately

the time reversal of the process D, which determines the time points at
� 4which the coalescent jumps, and that of its jump chain R . The former,k

˜`Ž . ŽŽ . .D s s D t y s y , is easy. It is simply a Markov birth process with1

k` n˜ ˜Ž . Ž .D 0 s 2 and birth rates from state k. For finite n, we consider R s sž /2
nŽŽ n . .R t y s y , the reversal of the n-coalescent around the time at which the1

first n particles at time 0 first have a common ancestor. Analogous observa-
˜` `tions hold for R , the time reversal of R .

Ž .From Kingman 1982b , the sequence R , R , . . . is Markov with the1 2

�Ž . 4structure R s i, j : i, j s 1, 2, . . . , and the transition from R to R1 k kq1

involves the splitting of an equivalence class of R . The class to be split, C, isk

chosen with probability equal to its size, x . It is split into two classes C9 andC

Ž .C y C9 of sizes Ux and 1 y U x , where U is uniformly distributed onC C

w x0, 1 independent of everything else, and conditional on U, each element of C

is independently assigned to C9 with probability U.

� n4 nIf R denotes the jump chain of the n-coalescent R , then again thek
n �Ž . 4sequence is Markov with R s i, j : i, j s 1, . . . , n and transition probabili-1

ties
n < nP R s j , . . . , j , j *, j y j *, j , . . . , j R s j , . . . , j� 4Ž . Ž .kq1 1 iy1 i iq1 k k 1 k

y1
< <2 j is , j * ; j , j * / j ,i iž /< <n y k j *

3.6Ž .
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n Ž . nwhere R s j , . . . , j means that the equivalence classes of R arek 1 k k

� n4j , . . . , j . The dynamics of the sequence R are the discrete analog of those1 k k

� 4 n nof R . In the transition from R to R , a particular class j will be splitk k kq1 i

Ž < < . Ž .with probability j y 1 r n y k . The splitting consists of partitioning itsi

Ž �Ž .size uniformly i.e., choosing an ordered pair uniformly from a, b : a q b s
< <4.j and then choosing uniformly one of the possible assignments of thei

individuals in j to two classes of sizes a and b.i

� n Ž � 4.Since the transition probabilities for R or R depend only on the sizesk k

˜n n nŽ .nof the equivalence classes, it follows that the process D , S , . . . , S , where˜1 D
n ˜nthe S are the cardinalities of the equivalence classes in R , is Markoviani

and has generator

nG f k , s , . . . , sŽ .1 k

s y1k i1ks f k q 1, s , . . . , s , m ,ŽŽÝ Ý 1 iy1ž /2 n y kŽ .is1 ms1

3.7Ž .

s y m, s , . . . , s y f k , s , . . . , s ,. Ž . .i iq1 k 1 k

˜`Ž .`and the process D , x , . . . , x , where the x are the sizes of the equiva-˜1 R i

Ž .lence classes as defined in 3.4 , is Markovian with generator

G`f k , x , . . . , xŽ .1 k

`
1ks x f k q 1, x , . . . , x , ux , 1 y u x ,Ž .ŽŽÝ Hi 1 iy1 i iž /2 0is1

3.8Ž .

x , . . . , x y f k , x , . . . , x du.Ž .. .iq1 k 1 k

w ` nObserve that G can be obtained as the limit of the G under the map
Ž . Ž . xk, s , s ª k, s rn, . . . , s rn .1 k 1 k

Ž .Now assume that the particle model is defined for all time y`, ` as, for

example, in Theorem 2.9, where the mutation process is either stationary or a

process with independent increments. Associate with each equivalence class
˜n ˜ ˜Ž . w Ž .x Ž .C of R s or R s , the type X s of the common ancestor for thati i

˜ nŽ . Ž .nequivalence class. That is, X s is the type of X s y t for j g C .i a Ž syt , 0. 1 ij 1

˜ŽNote that C and X depend on n; however, the meaning should be cleari i

.from context and we suppress the superscript. Since the mutation process

between look-downs is independent of the demography, it follows easily that
˜n n n ˜ ˜ nŽ . �Ž .n nfor finite n, D , S , . . . , S , X , . . . , X , as a process in SS s k, s, x :˜ ˜1 D 1 D

˜ ˜k k 4 ns g N , Ýs s n, x g E , k s 2, . . . , n , is, up to time t , Markovian withi 1

generator

Gn f k , s, xŽ .
k k 1ks B f k , s, x qŽ .Ý Ýi ž /2 n y kŽ .˜ ˜is1 is1

s y1i

= f k q 1, s , . . . , s , m , s y m , s , . . . , s ,ŽŽÝ 1 iy1 i iq1 k

ms1

3.9Ž .

x , . . . , x , x , x , x , . . . , x y f k , s, x ,. Ž . .1 iy1 i i iq1 k
˜ ˜
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where B denotes the mutation operator applied to f as a function of x .i i

w n Ž . xDefine G f n, s, x s 0. Note that when the ith equivalence class splits, the
˜ ˜two new equivalence classes have type x , but after the split the types evolvei

˜` ˜ ˜Ž .` `independently. The analogous generator for D , x , . . . , x , X , . . . , X in˜ ˜1 R 1 R
` �Ž . k 4SS s k, x , x : x G 0,Ý x s 1, x g E , k s 2, 3, . . . , ` isi i

˜ ˜˜ k
`G f k , x , x s B f k , x , xŽ . Ž .Ý i

˜ ˜is1˜ ˜
k

1kq x f k q 1, x , . . . , x , ux , 1 y u x ,Ž .ŽÝ H ži 1 iy1 i iž /2 0is1

3.10Ž .

x , . . . , x , x , . . . , x , x , x ,iq1 k 1 iy1 i i

x , . . . , x y f k , x , x du. Ž . /iq1 k
˜˜` Ž .for k - ` and G f `, x , x s 0.

˜˜ˆn k ˆn�Ž . 4Let SS s k, x : x g E , k s 2, 3, . . . , n and define G by
˜ ˜k k y 1

nĜ f k , x s B f k , x q I kŽ .Ž . Ž .Ý i w2, n.
2˜ ˜is1

k

= f k q 1, x , . . . , x , x , x , x , . . . , xŽ .ŽÝ 1 iy1 i i iq1 k

is1

3.11Ž .

yf k , x , xŽ . .
˜ˆ Ž .for k - ` and Gf `, x s 0.

˜�Ž . 4Let P s s , . . . , s : 1 F s F n y k, Ýs s n . For s g P , definek , n 1 k i i k , n

n y 1
y1

Ž .p s s , that is, the uniform distribution on P .k , n k , nž /k y 1

THEOREM 3.5. Assume, as above, that the particle model is defined for all
n ˜n ˜Ž . Ž Ž . Ž .time y`, ` . For n s 1, 2, . . . , `, let GG s s q D s , X s , . . . ,t 1

˜ nŽ .. 4 Ž Ž .n nX s : s F t . Then p is the conditional distribution of S t ,˜ ˜D Ž s. D Ž t ., n 1
n n ˜n ˜ ˜Ž .. Ž . Ž Ž . Ž ..n n. . . ,S t given GG . In particular, given D t , X t , . . . , X t is˜ ˜D Ž t . t 1 D Ž t .

Ž nŽ . n Ž ..nindependent of S t , . . . , S t .˜1 D Ž t .

Ž . 5 5For f g DD B with f - 1, define

˜nŽ .D t

˜M t s f X tŽ . Ž .Ž .Łf i
is1

˜nŽ .D s ˜n Bf X sŽ .ž /tnt j1y ÝH
˜�0 f X sŽ .js1 ž /j

˜nD s y 1Ž .
n˜ ˜qI D s f X s y 1Ž . Ž .Ž . ž /ž /w2 , n. j

2 0
3.12Ž .

˜nŽ .D s

˜= f X s ds,Ž .Ž .Ł i
is1
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Ž .where we assume in the case n s ` that infinite products are zero. Then Mf

is a GG
n martingale.t

Ž .PROOF. Consider n - `. For a bounded function f k, s, x , define
˜ ˜

3.13 Pf k , x s f k , s, x p s .Ž . Ž .Ž . Ž .Ý k , n
˜ ˜ ˜sgP k , n

By the assumptions on B, the closure of

k
n˜3.14 G f k , s, x s B f k , s, xŽ . Ž . Ž .Ý i

˜ ˜ ˜ ˜is1

Ž n.generates a Markov semigroup on some separating subspace of B SS . For
n ˜n nn - `, G is a bounded perturbation of G , so the closure of G will generate

ˆna Markov semigroup on the same subspace. By the same observation, G
ˆnŽ .generates a Markov semigroup on some separating subspace of B SS . For

n - `, a straightforward calculation gives

n ˆn3.15 PG f k , x s G Pf k , xŽ . Ž . Ž .
˜ ˜

˜n ˜ ˜Ž . Ž .nand it follows from results of Kurtz and Ocone 1988 that D , X , . . . , X ˜1 R

ˆn n
nis a Markov process with generator G stopped at time t and that p is˜1 D , n

n n ˜n ˜ ˜Ž . Ž .n nthe conditional distribution of S , . . . , S given D , X , . . . , X . The final˜ ˜1 D 1 D

assertion of the theorem then follows from the fact that the integrand on the
ˆn ˜n ˜ ˜ kŽ . Ž . Ž . Ž .nright of 3.12 is just G f D , X , . . . , X for f k, x s P f x .˜1 D is1 i

˜For n s `, the conclusion of the theorem follows from the fact that

˜n ˜ ˜ ˜` ˜ ˜n `3.16 lim D , X , . . . , X s D , X , . . . , X . IŽ . ˜ ˜ž / ž /1 D 1 D
nª`

Ž .In the next theorem, we see that the martingale property of 3.12 uniquely
˜n ˜ ˜Ž Ž . Ž . Ž ..ncharacterizes the distribution of D t , X t , . . . , X t . In Theorem 3.9,˜1 D Ž t .

we show that the Markov chain embedded in this process is just the urn
Ž . Ž .model considered by Ethier and Griffiths 1987 and Ethier and Kurtz 1992

that generates a random sample from a population whose distribution of

types is given by a stationary Fleming]Viot process.

For x, y g Em, define x to be equivalent to y, if x is a permutation of y.

Let E*m be the collection of equivalence classes and for x g E*m define
< < � 4 ` mx s m. Define S* s ` j D E* , where ` is defined to be the limit ofms 2

� 4 ` m < <any sequence x in D E* in which x ª `.n ms2 n

Ž . 5 5 Ž . < x < Ž .THEOREM 3.6. For f g DD B with f - 1, let h x s Ł f x iff ks1 k

< < Ž .x - ` and h ` s 0. Definef

< < < <x x< <Bf x x y 1Ž . Ž .j
3.17 Hh x s q f x y 1 f xŽ . Ž . Ž . Ž .Ž .Ý Łf j kž /f x 2Ž . ks1jjs1

< < Ž .if x - ` and Hh ` s 0. Then the martingale problem for H is well posed.f



P. DONNELLY AND T. G. KURTZ722

PROOF. Let
< < < <x x2 Bf xŽ .j

3.18 H h x s f xŽ . Ž . Ž .Ý Ł0 f k< <x y 1 f xŽ . ks1jjs1

and
< < < <x x

3.19 H h x s f x y 1 f x .Ž . Ž . Ž . Ž .Ž .Ý Ł1 f j k
ks1js1

Let U , U , . . . be independent copies of U as defined at the beginning of1 2

Section 2. For x g E*n, Y defined by

Y t s U x , 2 tr n y 1 , . . . , U x , 2 tr n y 1Ž . Ž . Ž .Ž . Ž .Ž .1 1 n n

is a solution of the martingale problem for H . Let L be the closure of the0

� Ž . 5 5 4 � Ž .4linear span D of D s h : f g DD B , f - 1 . Let T t be the semigroups f

generated by B and define.

< <x

< <u t , x s T 2 tr x y 1 f xŽ . Ž . Ž .Ž .Łf k
ks1

Then
d

3.20 u t , x s H u t , xŽ . Ž . Ž .f 0 f
dt

Ž .and it follows by Proposition 1.3.4 of Ethier and Kurtz 1986 that the closure

of the linear extension H e of H generates a strongly continuous, contraction0 0

semigroup on L. Since the closure of the linear extension H e of H defines a1 1

bounded linear operator on L, it follows that the closure of H e q H e gener-0 1

ates a strongly continuous contraction semigroup on L. By Theorem 4.4.1 and
Ž .Proposition 4.10.1 of Ethier and Kurtz 1986 , the martingale problem for

H q H is well posed. Suppose that V is a solution of the martingale0 1

� < Ž . < 4problem for H and define g s lim inf t: V t s n . Letnª`

< <V s y 1Ž .Ž .b t
3.21 ds s t .Ž . H

20

ˆ ˆŽ . Ž Ž ..Then V defined by V t s V b t is a solution of the martingale problem for

H q H , and uniqueness for the martingale problem for H q H implies0 1 0 1

Ž .that the distribution of V ?n g is uniquely determined by the distribution of
Ž .V 0 . For 0 - a - 1, M defined bya

< <a y 1 V s y 1Ž . Ž .Ž .t
<V Ž t . < <V Ž s. <3.22 M t s a y a dsŽ . Ž . Ha

20

is a martingale and since the integrand is nonnegative, L defined bya

Ž . <V Ž t . < � Ž .L t s a is a nonnegative supermartingale. Since g s inf t: L t y sa a

4 Ž .0 it follows that, with probability 1, for all t ) g , L t s 0 and hence thata

Ž .V t s `. Consequently, the distribution of V is determined by the distribu-
Ž .tion of V 0 , giving the desired uniqueness. I

The next theorem exhibits the structure of stationary sampling distribu-
Ž .tions equivalently moment measures in the Fleming]Viot process. In partic-
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ular, the theorem implies that one can obtain a realization of a sample of size

n from the appropriate Fleming]Viot process at stationarity by the following

algorithm:

1. Choose a realization of the genealogy of a sample of size n from the

n-coalescent.

2. Independently, choose the type of the common ancestor of the sample from

the stationary distribution of the mutation process.

3. Conditional on steps 1 and 2, follow the evolution of the types forward

through the genealogy from the common ancestor. These types evolve

according to the mutation process independently on distinct branches of

the genealogical tree.

THEOREM 3.7. Suppose the Fleming]Viot process is stationary.

˜n ˜ ˜Ž . Ž . Ž Ž . Ž .. Ž .a D 0 s 2 a.s. and the distribution of X 0 , X 0 is that of X, X ,1 2

where the distribution of X g E is the stationary distribution of the mutation
˜ ˜ ˜n nŽ Ž . Ž .. w .process. Further, X 0 , X 0 is independent of R on 0, t .1 2 1

˜ n ˜ nŽ . Ž Ž . Ž ..b The distribution of X t y , . . . , X t y is that of an independent1 1 n 1

sample of size n from the Fleming]Viot measure.

˜n n nŽ . < Ž . <PROOF. Note that D 0 s R t y s 2 a.s. Further, by right continu-1

˜ ˜ nŽ . Ž . Ž .ity of the mutation process, X 0 s X 0 s X yt , the type of particle 1 at1 2 1 1

the time yt n at which the first n particles at time zero first have a common1

Ž n.ancestor. Now the distribution of X yt depends on the mutation process1 1
n n ˜nŽ xfor particle 1 on y`, yt . The value of t , and indeed the behavior of R ,1 1

depends only on the Poisson processes of look-downs from each of the first n

levels, which is independent of the mutation process on the bottom level.
Ž .Stationarity ensures that, for any t, the distribution of X t is that of the1

Ž .stationary distribution of the mutation process and a follows.
˜ n ˜ n ˜ nŽ . Ž Ž . Ž . Ž ..For b , observe that by construction X t y , X t y , . . . , X t y is1 2 1 n 1

Ž Ž . Ž ..a permutation of X 0 , . . . , X 0 with the permutation independent of the1 n

Ž Ž . Ž ..values of X 0 , . . . , X 0 . I1 n

The next theorem considers the ancestral type measure, that is, the

frequency distribution of the types of the ancestors at a time s - t of the

individuals alive at time t.

THEOREM 3.8. For s - t, let

1
3.23 Z s s dŽ . Ž . Ýt X Ž s.k< <G s, tŽ . Ž .kgG s , t

Ž Ž . Ž ..and let q be as in Theorem 2.4. Then lim q Z s , Z t s 0 a.s.sª t t

Ž . � 4 Ž xPROOF. Since G s, t depends only on N in the time interval s, t ,i j

Ž x Ž . � Ž .4G s, t is independent of X s . Consequently, since the X s are condition-k
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Ž . Ž .ally iid with distribution Z s , by Lemma A3.1, for any f g B E and « ) 0,
5 5there exist C and h ) 0 depending only on f and « such that

yh <GŽ s , t . <3.24 P f x Z s, dx y f x Z s, dx ) « G s, t F Ce .Ž . Ž . Ž . Ž . Ž . Ž .H Ht½ 5
� < Ž . < 4 Ž .Furthermore, if we define t s sup s: G s, t s k , G t y , t is independentk k

Ž . Ž Ž . Ž . . Žof X t y and the sequence X t y , X t y , . . . is exchangeable. Tok 1 k 2 k
d �check the exchangeability, approximate t by t s max d m: m g N,k k

< Ž . < 4 .G d m, t F k . We then have

yh k3.25 P f x Z t y , dx y f x Z t , dx ) « F Ce .Ž . Ž . Ž . Ž . Ž .H Ht k k½ 5
Ž . Ž . Ž . Ž .For f g DD B , the continuity of H f x Z s, dx and 3.25 imply that

Ž . Ž . Ž . Ž . Ž . Ž .lim Hf x Z t y , dx s H f x Z t, dx a.s. Since G t y , t and G t , tk ª` t k k k

differ by only one value,

3.26 lim f x Z t , dx s f x Z t , dx a.s.Ž . Ž . Ž . Ž . Ž .H Ht k
kª`

Ž .as well. As in 2.31 ,

P sup f x Z s, dx y f x Z t , dx ) «Ž . Ž . Ž . Ž .H Ht t k½ 5
t Fs-tk kq1

F P sup f x Z s, dx y f x Z t , dxŽ . Ž . Ž . Ž .H Ht t k½
t Fs-tk kq1

3.27Ž .
s «

y Bf x Z s, dx ds )Ž . Ž .H H t 52tk

t «kq1

< <q P Bf x Z s, dx ds )Ž . Ž .H H t½ 52tk

and the left-hand side can be bounded by Ceyh Žkq1., where C and h depend
5 5 5 5 Ž .only on f , Bf and « . This estimate along with 3.26 confirms the desired

convergence. I

Now suppose that the mutation operator has the form

u
3.28 Bf x s f y y f x h x , dyŽ . Ž . Ž . Ž . Ž .Ž .H

2

with stationary distribution p . Define S s D
` E and, for clarity, denotens2 n

Ž .an element of S by both its dimension and components n, x . Consider the
� 4following discrete-time urn-type process, U , k s 0, 1, 2, . . . . Take U sk 0

Ž .2, X , X , where X s X have distribution p . To obtain U from U s1 2 1 2 kq1 k

Ž .n, X , . . . , X :1 n

Ž . Ž Ž ..1. For i s 1, . . . , n, with probability n y 1 r n n q u y 1 duplicate X toi

Ž .obtain U s n q 1, X , . . . , X , X .kq1 1 n i
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Ž Ž ..2. For i s 1, . . . , n, with probability ur n n q u y 1 mutate X to obtaini

Ž .U s n, X , . . . , X , Y, X , . . . , X , where the distribution of Y iskq1 1 iy1 iq1 n

Ž .given by h X , ? .i

� n4Write s s min k: U g n = E for th epoch at which U first has nn k

Ž .components. The next result was first obtained by Ethier and Griffiths 1987 .

THEOREM 3.9. For the urn model U just described, the joint distribution of

the n types in the urn immediately before the time s is that of a sample ofnq1

size n from the Fleming]Viot process at stationarity.

PROOF. Observe that the urn model U is simply the embedded Markov
˜` ˜ ˜ ˜` ˜Ž . Ž . Ž .`chain of the process D , X , . . . , X . Further, D 0 s 2 a.s. and X 0 s˜1 D 1

˜ Ž .X 0 have distribution p exactly as in the proof of Theorem 3.7. If we write2
` `˜ ˜ ˜ ˜� Ž . 4 Ž . Ž .`t s inf t: D t s n , then the dynamics of D , X , . . . , X on 0, t are˜ ˜n 1 D nq1

n n˜ ˜ ˜Ž . Ž .nthe same as those of D , X , . . . , X on 0, t , so the result follows from1 D 1

Theorem 3.7. I

Finally, we remark that Theorem 3.8 ensures that the empirical measure

associated with the collection of types in the urn process converges as k ª `
and that the distribution of the limiting empirical measure is the stationary

distribution for the Fleming]Viot process. We study more detailed properties
Ž .of these urn processes in Donnelly and Kurtz 1996 .

4. Ergodicity and convergence to stationarity. The particle con-

struction provides a useful device for coupling Fleming]Viot processes. We

illustrate this device with results on rate of convergence to stationarity.

Recall that the total variation distance between two probability measures n1

and n on a space S is given by2

5 5 < <4.1 n y n s sup n G y n G .Ž . Ž . Ž .1 2 1 2
Ž .GgBB S

� Ž .4 Ž .THEOREM 4.1. Let T* t denote the adjoint mutation semigroup on PP E
� Ž .4 Ž Ž ..and let S* t denote the adjoint Fleming]Viot semigroup on PP PP E .

Suppose that the mutation process is strongly ergodic with stationary distribu-

tion p in the sense that

5 54.2 lim T* t n y p s 0Ž . Ž .
tª`

Ž .for all n g PP E . Then the Fleming]Viot process is strongly ergodic with a
Ž Ž ..stationary distribution P, and for each C g PP PP E there exist independent

random variables T and T such thatm d

5 5 � 44.3 S* t C y P F P T q T ) t ,Ž . Ž . m d

5 5� 44.4 P T ) t s T* t n y pŽ . Ž .m
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Ž .for n s HmC dm and

`

4.5 T s E ,Ž . Ýd DD i

is2

w xwhere the E are independent exponential random variables with E E si i

i
y1

, i s 2, 3, . . . . In particular, strong ergodicity of the mutation processž /2

guarantees strong ergodicity of the Fleming]Viot process.

REMARK 4.2. A different coupling of Fleming]Viot processes and proof

that strong ergodicity of the mutation process implies strong ergodicity of the
Ž .associated Fleming]Viot process is given in Ethier and Kurtz 1995 .

PROOF OF THEOREM 4.1. We will couple two versions of the particle
˜ ˜process, X and X, with X stationary. Then

˜5 5 � 44.6 S* t C y P F P X / X .Ž . Ž .

Make the demography identical in each process. That is, for each i - j, use

the same Poisson process of look-downs between levels j and i in the two

processes. Further, recalling the construction defined at the beginning of
� 4Section 2, use the same mutation processes U , 1 F i - j, 1 F k - ` andi jk

˜� 4 Ž . Ž Ž . Ž . .U , i G 2 in both X and X. Let X 0 s X 0 , X 0 , . . . be exchangeablei0 1 2

˜ ˜ ˜Ž . Ž Ž . Ž . .with de Finetti measure determined by C and X 0 s X 0 , X 0 , . . .1 2

exchangeable with de Finetti measure determined by P. There exists a

maximal coupling between the mutation process with initial distribution n
wand the mutation process with initial distribution p see Sverchkov and

Ž .x wSmirnov 1990 , and by an appropriate pasting argument see Ethier and
˜Ž . xKurtz 1986 , Lemma 4.5.15 we can construct X and X with coupling time1 1

T so thatm

˜ 5 5� 44.7 P X t / X t s P T ) t s T* t n y p .Ž . Ž . Ž . Ž .� 41 1 m

Ž . � � < Ž . < 4Let G s, t be as in Section 3 and, for each t, let T s inf s: G t y s, t s 1 .t

˜Since the demography is independent of X and X , T is independent of T .1 1 t m

˜Ž . Ž .Since X t s X t , after time T , it follows from the construction that1 1 m

˜ � 44.8 P X t / X t F P t y T ) TŽ . Ž . Ž .� 4 t m

and since T is distributed as the appropriate sum of exponentials, the resultt

follows. I

We note that similar arguments may be used to study rates of convergence

for various functionals of the Fleming]Viot process. In particular, conver-
Ž . Ž .gence of sampling distributions is related, through X t , . . . , X t , to the1 n

behavior of the n-coalescent.

For certain kinds of mutation processes, a slightly different construction is

also informative.
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THEOREM 4.3. Suppose the mutation operator has the form

u
4.9 Bf x s f y y f x n dyŽ . Ž . Ž . Ž . Ž .Ž .H 0

2

for u ) 0. Then

˜5 5 � 44.10 S* t C y P G P T ) t ,Ž . Ž .

˜ ` ˜ ˜where T s DDÝ E in which the E are independent exponential randomis1 i i

˜w x Ž Ž ..variables with E E s 2r i i q u y 1 , i s 1, 2, . . . . Further, equality holdsi

Ž . Ž .in 4.10 if n s HmC dm and n are mutually singular.0

Ž .REMARK 4.4. This theorem is originally due to Ethier and Griffiths 1993 ,

who derived it directly from the transition density of the Fleming]Viot

process. The construction given here and properties of the lines of descent
w Ž .xand associated genealogical processes Donnelly and Tavare 1987a can be´

used to give an alternative derivation of the transition density obtained
Ž .originally by Ethier and Griffiths 1993 .

PROOF OF THEOREM 4.3. Again, we construct two versions of the particle
˜process, X and X. Use the same demography in each as before. In addition,

construct the mutation processes in each from a sequence K u, i s 1, 2, . . . , ofi

w .independent Poisson processes on 0, ` = E, each with mean measure den-
Ž . Ž . usity ur2 dt = n dx . Think of the first coordinate of K as giving the times0 i

Ž .at which mutations occur at level i in each process and the second coordi-

nate as specifying the type at level i immediately after the associated
u ŽŽ x .mutation. Then K a, b = E counts the number of mutations on level i ini

Ž xthe time interval a, b .

Now consider a slightly different genealogical process which is known
w Ž .xGriffiths 1980 as the lines of descent process. Fix t ) 0 and, for each

particle at time t, trace the ancestry backward in time. In addition to having

the level of an ancestor jump each time it encounters a look-down, ‘‘kill’’ the

ancestor each time it encounters a mutation. Formally, recall that for s F t,
Ž .a s, t is the level at time t y s of the ancestor of particle j at time t. Writej

Ž . w xs - s - ??? - s for the jump times of a ?, t over 0, s , and write aj1 j2 jk j jlj

Ž . Ž xfor the value of a ?, t on s , s , l s 1, 2, . . . , k q 1, with s ' 0 andj jly1 jl j j0

s ' s. Definejk q1j

k q1j¡
u w xa s, t , if K s , s = E s 0,Ž . Ž .Ý~ j a jly1 jljl4.11 a s, t sŽ . Ž .˜j ls1¢

d , otherwise.

Ž xNote that a s, t s d if there has been a mutation since time s in the˜j

ancestral line of the jth particle at time t.
˜Ž . � Ž .For our purposes, it is enough to study G s, t s a s, t , j s˜j

Ž . 41, 2, . . . , a s, t / d , the levels of ‘‘surviving’’ ancestors at time s of particles˜j

at time t. For a detailed description of an associated equivalence relation, or
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Ž .frequency-valued process, see Donnelly and Tavare 1987a, b . Note that on´
˜w x Ž . < ŽŽ . . < � 40, t , L s s G t y s y , t is a Markov death process on 0, 1, . . . , ` with

1 Ž . Ž .death rates k k q u y 1 from state k, k s 1, 2, . . . , and L 0 s `. That is,2

there is a ‘‘death’’ if there is either a look-down between two of the ancestors
k Ž .rate or a mutation in one of the ancestors rate kur2 .ž /2

Ž .Since X t is the type of the most recent mutation in the ancestral line ofi

˜the ith level particle at time t and since the coupled processes X and X are
Ž .constructed using the same demography and mutation process, a 0, t s d˜i

˜ ˜Ž . Ž . � Ž . 4implies X t s X t . Thus X s X on L t s 0 and we havei i

˜ ˜4.12 P Z t s Z t G P X t s X t G P L t s 0� 4Ž . Ž . Ž . Ž . Ž . Ž .� 4 � 4

giving the desired inequality. If n and n are mutually singular, then0

Ž .L t ) 0 implies some level of X has its original type which, by Lemma 5.1
˜Ž . � Ž . Ž .4below, must correspond to an atom of Z t . Consequently, P Z t / Z t G

� Ž . 4 Ž . Ž .P L t ) 0 implying equality in 4.12 and 4.10 . I

5. Sample path properties. In this section we describe a variety of

sample-path properties for the Fleming]Viot process and their relationship to

the particle model. If the mutation operator for the process is of the form

u
5.1 Bf x s f y y f x h x , dyŽ . Ž . Ž . Ž . Ž .Ž .H

2 E

we will say that the process has mutation rate u . If h is nonatomic for all x
Ž .i.e., all mutants are new , then we will say that the process is an infinite-

alleles model with mutation rate u . Note that in this case the values of the

Fleming]Viot process are purely atomic and the descending order statistics of

the sizes of the atoms form an infinite-alleles diffusion model as in Ethier and
Ž . w Ž . xKurtz 1981 . See Ethier and Kurtz 1987 . The particle model with muta-

tion rate u can be constructed by associating with each level i a Poisson

process K u with intensity ur2, where the K u are independent and indepen-i i

dent of the N determining the look-downs. The K u then give the times ati j i

which mutations occur. In particular, if t is a jump time for K u, theni

� Ž . < 4 Ž Ž . .yP X t g G FF s h X t y , G .i t i

In the next theorem we extend the assertion of purely atomic values to any

Fleming]Viot process with a pure jump mutation process. We will need the

following lemma, which describes the behavior of the atom in the

Fleming]Viot process that corresponds to a mutant x that is ‘‘stable’’ in the

sense that the mutation process has a nonzero exponentially distributed
Ž .holding time in x. If the mutation process is pure jump, then by definition

all states are stable; however, mutation processes that are not pure jump

may have some stable states.

Ž . Ž . Ž .For s - t, let a s, t be as in Section 3 and define X s, t s X s .j j a Ž s, t .j

Ž .That is, X s, t gives the type of the ancestor at time s of the jth levelj

particle at time t.
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LEMMA 5.1. Suppose that a mutation occurs at time t in level k of the1

particle model and the mutant type x is stable with holding time parameter0

Ž .l ' l x . Let t be the time of the next mutation or look-down on level k and0 2

Žset D s t y t . D will be exponentially distributed with parameter l q k y2 1

. Ž . Ž .1. Let j t s 1 if there exists s G 0 such that a t q s, t q t s k andj j 1 1

Ž . Ž . Ž .X t q u, t q t s X t q s, t q t for s F u F t and j t s 0 otherwise.j 1 1 j 1 1 j

Then the limit

m1
5.2 S t s lim j tŽ . Ž . Ž .Ý j

mmª` js1

Ž .exists a.s. Note that S t is the fraction of the levels at time t q t that are of1

type x by direct descent from the mutant on level k. Further, up to time D, S0

is a Wright]Fisher diffusion with generator

15.3 Gf s s s 1 y s f 0 s q 1 y l q k s f 9 sŽ . Ž . Ž . Ž . Ž . Ž .Ž .2

Ž . Ž .and S 0 s 0. In particular, S t ) 0 for 0 - t F D.

PROOF. Clearly the distribution of S will depend only on l and not on

other properties of the mutation process, so without loss of generality, we can
w .assume that the process is an infinite-alleles model with type space E s 0, 1

and mutation operator

1
5.4 Bf x s l f y y f x dy.Ž . Ž . Ž . Ž .Ž .H

0

ŽTo simplify notation, assume t s 0. Otherwise translate the Poisson pro-1

� 4 2 l4cesses N and K in the construction of the particle model by the stoppingi j i

˜ ˜ 2 l.time t . Define N s N for 1 F i - j, and define K s K q1 i j iqk , jqk i iqk
k ˜Ý N for i G 1. Note that K is Poisson with parameter l q k. Wejs1 jŽ iqk . i

˜� 4define a new particle model whose demography is determined by N andi j

˜� 4whose mutation times are determined by K . Level i in the new model isi

level k q i in the old. The type at new level i mutates at the jump times of

K 2 l as before and, in addition, for 1 F j F k, at the jump times of N , theiqk jkqi

type at new level i is set to a new type j. The new model then is a particle
˜ w . � 4model as constructed in Section 2 with type space E s 0, 1 j 1, . . . , k and

mutation operator

k
1

˜5.5 Bf x s f j y f x q l f y y f x dy.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý H
0js1

Note that the type at level i at time t in the new model is type k if and
Ž .only if in the original model there exists s ) 0 such that a s, t s k andkq i

Ž . Ž .X u, t s X t for s F u F t. That is, the type of the particle at level i atkq i kqi

Ž . wtime t in the new model is k if and only if j t s 1. Since in the new model,i

mutation to type j F k corresponds to a look-down to level j in the original
Ž .model, the assumption that a s, t s k rules out the possibility thatkq i

˜ Ž . xX u, t s j for any s F u F t in the new model. Consequently, the limit ini
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Ž . Ž .5.2 exists by exchangeability in the new model, and up to time D, S t is
˜Ž .just A t , the size of the atom at k g E in the new model. Taking g s I ink �k4

Lemma 2.3, we see that A is a solution of the martingale problem for G, andk

Ž .the first part of the lemma follows. To see that A t ) 0 for all t ) 0, checkk

that the solution of Gf s 0 is unbounded at 0 and that the solution of0

w xGf s 1 is continuous on 0, 1 . These calculations imply that the solution of1

the martingale problem with initial value 0 leaves 0 instantaneously and that

no solution hits 0 at a positive time. I

THEOREM 5.2. Let the mutation operator be of the form

5.6 Bf x s l x f y y f x h x , dyŽ . Ž . Ž . Ž . Ž . Ž .Ž .H
E

and suppose that the mutation process has the property that

sup l X s - ` a.s. for each t ) 0.Ž .Ž .1
0FsFt

� Ž . Ž . 4 w Ž .Then P Z t g PP E , t ) 0 s 1. PP E denotes the collection of purelya a

xatomic probability measures on E.

PROOF. The condition on the mutation process ensures that X is a purek

jump process for each k, that is, there is no accumulation point of discontinu-

ities on any level. Furthermore, the independence assumptions on mutations

between look-downs ensures that no two levels have simultaneous disconti-
w .nuities. Fix a level k and let a, b be a time interval on which X is constantk

Ž Ž .. Ž .and let l s l X a . By Lemma 5.1, there is a strictly positive atom in Z t0 k

Ž .at X a for all a - t F b. On each level k, there are countably many timek

w .intervals a , a on which X is constant with a s 0 - a -k i k Ž iq1. k k 0 k1

Ž � Ž .4.a - ??? . Consequently, with probability 1 for all i, k, Z t, X a ) 0 fork 2 k k i

Ž . Ž . Ž .all t g a , a . Since with probability 1, a / a for m, j / k, i ,k i k Ž iq1. k i m j

Ž .for all t ) 0, at most one level fails to correspond to an atom of Z t , and the

theorem follows. I

Ž .THEOREM 5.3. Assume that B is of the form 5.1 and define m by

` 1
k5.7 m x , F s h x , F ,Ž . Ž . Ž .Ý k2ks1

1Ž . Ž . kq1Ž . kŽ . Ž .where h x, F s h x, F and h x, F s Hh y, F h x, dy . Let S be thex

Ž . � Ž Ž ..support of the measure m x, ? . That is, S s y: m x, B y ) 0 for allx «

4 Ž .« ) 0 where B y is the ball of radius « centered at y. Let C denote the« t

� Ž . 4closure in E of the set X t , i G 1 . Fix t ) 0. Suppose there exists k andi

Ž .h ) 0 such that X s s x for t y h F s - t. Then with probability 1, C >k 0 t

Ž .S . In particular, if the mutation process has generator of the form 5.1 andx 0

Ž .is recurrent in the sense that for any choice of X 0 , X visits every open ball1 1

Ž .infinitely often hence S s E for every x , then with probability 1, C s E.x t
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REMARK 5.4. Note that this result is a probability 1 statement for each

fixed t. The next results will show that even in the recurrent case, in general

there exist t such that C / E.t

Ž .PROOF OF THEOREM 5.3. Proposition 2.2 of Donnelly and Kurtz 1996

ensures that all but finitely many of the types that appear in the mutation

process on the genealogical tree for the population at time t will be repre-

sented in the population at time t. Lemma 5.1 ensures that the population at

time t will include infinitely many replicates of x . The results on the urn0

Ž .model in Donnelly and Kurtz 1995 then ensure that the population at time t

will include infinitely many kth order mutants from x . In particular, it will0
kŽ .include an infinite independent sample from the distribution h x , ? , and0

Ž Ž .. Ž .hence, for any y g E and any « ) 0 such that m B y ) 0, B y will« «

Ž .contain infinitely many of the X t . Ii

THEOREM 5.5. For an infinite-alleles model, with probability 1, there will

exist times t at which the Fleming]Viot measure consists of a single atom if

and only if u - 1. If u G 1, then there will always be an infinite number of

atoms.

Ž .REMARK 5.6. Schmuland 1991 proves this result using Dirichlet forms.

Ž .PROOF OF THEOREM 5.5. Let S t denote the size of the largest atom in1
3Ž . � Ž . 4 � Ž . 4Z t and define t s inf t: S t s 1 . Define recursively a s inf t: S t G ,1 1 1 1 4

1 3� Ž . 4 � Ž . 4b s inf t ) a : S t F and a s inf t ) b : S t G . Fix a timek k 1 kq1 k 12 4

˜w . Ž . Ž .interval a , b and define S t s S a q t . By the strong Markov prop-k k 1 k

erty, we can let g in Lemma 2.3 be the indicator of the location of the largest

atom at time a . Noting that this location does not change during the timek

˜interval, Lemma 2.3 implies that S satisfies

ut t
2˜ ˜ ˜ ˜'S t s S a q S s y S s dW s y S s ds, t - b y a ,Ž . Ž . Ž . Ž . Ž . Ž .H H1 k k k k

20 0

for some standard Brownian motion W . Consequently, on any such timek

interval S behaves like the Wright]Fisher diffusion with mutation away1

from the allele under consideration at rate u , that is, with generator

1 u
5.8 G f s s s 1 y s f 0 s y sf 9 s .Ž . Ž . Ž . Ž . Ž .u

2 2

For this diffusion, the boundary at 1 is accessible; that is, S can reach 1 if1

and only if u - 1. If u - 1, a renewal argument shows that t - `. If u G 1,1

� 4t ) b for every k. Since b y a is iid by the strong Markov property for1 k k k

S , we must have lim b s ` and hence that t s `.1 k ª` k 1

Ž .Now assume that u G 1. Let S t denote the sum of the sizes of the two2

� Ž . 4 �largest atoms at time t and define t s inf t: S t s 1 . Let s s inf t:2 2 n

Ž . n4S t G 1 y 1r4 , and note that lim s s `, since S never equals 1.1 nª` n 1

� Ž . nq14 � Ž .Fix n and define a s inf t: S t G 1 y 1r4 , b s inf t ) a : S t F1 2 k k 2
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Ž n.4 � Ž . nq141 y 1r 2 ? 4 and a s inf t ) b : S t G 1 y 1r4 . If b - s , then,kq1 k 2 k n

w .as above, on the interval a , b , the locations of the two largest atoms dok k

not change and S behaves like the Wright]Fisher diffusion with generator2

G . Consequently, it follows that t G b n s , but by a renewal argument,u 2 k n

b G s for some k. Since s ª `, it follows that t s ` and hence that therek n n 2

will always be at least three atoms. An induction argument now shows that

there will always be at least k atoms, and the final assertion of the theorem

follows. I

COROLLARY 5.7. In the infinite-alleles particle model with mutation rate u ,

with probability 1, there will exist times at which all particles are of the same

type if and only if u - 1.

PROOF. Let t be the first time that the Fleming]Viot measure consists of
� Ž .4a single atom. Then by Corollary 2.6 the collection of particle types X t isk

Ž .exchangeable with de Finetti distribution Z t , and hence with probability 1,
Ž .all X t are the same. Since the empirical measurek

m1
5.9 Z t s dŽ . Ž . Ým X Ž t .km ks1

Ž .converges to Z uniformly on bounded time intervals, all X t will be thek

Ž .same only if Z t consists of a single atom. However, by Theorem 5.5, there
Ž .exists a t at which Z t consists of a single atom if and only if u - 1. I

Ž . Ž . Ž Ž . Ž .. Ž .THEOREM 5.8. Let Bf x s l x H f y y f x h x, dy with l sE

Ž .sup l x - `.x

1Ž . Ž . Ž . Ža If l x - and for every n there exists t ) n such that X t s x in12

particular, if X is stationary and ergodic and the stationary distribution has1

. Ž .an atom at x , then, with probability 1, there exist times t such that Z t s d .x
1Ž .If l x G , there exist no such times.2

Ž .b For A ; E, let

c cl ' sup l x h x , A and l ' inf l x h x , A .Ž . Ž . Ž . Ž .A A
xgAxgA

1 Ž . wIf l - and for every n there exists t ) n such that X t g A in particular,A 12

if X is stationary and ergodic and the stationary distribution p for the1

Ž . xmutation process satisfies p A ) 0 , then, with probability 1, there exist
1Ž .times t such that Z t, A s 1. If l G , there exist no such times.A 2

1cŽ . Ž . Ž .c Let A , A , . . . ; E with l ' sup sup l x h x, A - . If for ev-1 2 k x g A k 2k

Ž .ery n there exists t ) n such that X t g D A , then, with probability 1, there1 k

Ž . wexist times t such that for some k, Z t, A s 1. For example, if E isk
1Ž .countable and B corresponds to a transient Markov chain with sup l x - ,x 2

Ž . xthen there will exist times t such that Z t has a single atom.

Ž .REMARK 5.9. a Similar results have been derived independently in
Ž .Overbeck, Rockner and Schmuland 1995 using Dirichlet form techniques.¨
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Ž . Ž . Ž . Ž . Ž .b The existence of times at which Z t, A s 1 in b or Z t, A s 1 in ck

does not depend on the boundedness or the form of the generator off the set
Ž .A resp. D A .k k

Ž . Ž .PROOF OF THEOREM 5.8. Part a is a special case of part b . Assume
1 w . Žl - . Let t , t be an interval on which X is in A. We can assume thatA 1 2 12

the length of the interval is bounded below by an exponential random
.variable D with parameter l . For any bounded measurable g, by CorollaryA

² Ž .:2.8, we can write g, Z t as

t 22² : ² : ² : ² :'g , Z t s g , Z 0 q g , Z s y g , Z s dW sŽ . Ž . Ž . Ž . Ž .H
0

5.10Ž .
t
² : ² :q Bg , Z s q g X s y g , Z s ds.Ž . Ž . Ž .Ž .Ž .H 1

0

Assume for simplicity that t s 0. Then taking g s I , for t F t ,1 A 2

t 2'Z t , A s Z 0, A q Z s, A y Z s, A dW sŽ . Ž . Ž . Ž . Ž .H
0

t
² :q BI , Z s q 1 y Z s, A dsŽ . Ž .Ž .H A

0

t 2'G Z 0, A q Z s, A y Z s, A dW sŽ . Ž . Ž . Ž .H
0

5.11Ž .
t

c² :q y l ? h ?, A I , Z s q 1 y Z s, A dsŽ . Ž . Ž . Ž .Ž .H A
0

t 2'G Z 0, A q Z s, A y Z s, A dW sŽ . Ž . Ž . Ž .H
0

t
q yl Z s, A q 1 y Z s, A ds.Ž . Ž .Ž .H A

0

Ž . w x wNote that Z t, A cannot be identically zero on any interval 0, « . Replace
Ž . Ž . xZ s, A by zero on the right side of 5.11 and observe the contradiction. If
Ž .Z « , A ) 0 and « - D, then let V satisfy

t 2'V t s V s y V s dW sŽ . Ž . Ž . Ž .H
«

5.12Ž .
t

q yl V s q 1 y V s ds.Ž . Ž .Ž .H A
«

Ž . Ž .Then by Lemma A4.1, Z t, A ) V t at least until the minimum of b s
� Ž . 4 Ž .inf t: V t s 0 or 1 and D. It is easy to check that V t ) 0 for all t ) « and

� Ž . 4 � 4that b ' inf t: V t s 1 - `. Since b is independent of D, r s P b - D ) 0,

and since there are infinitely many disjoint intervals satisfying the conditions
w x Ž .on t , t , it follows that Z t, A s 1 for a sequence of arbitrarily large1 2

Ž .values of t. Part c follows by the same argument.
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Ž .The converse result in part b follows similarly by first observing that

Z t , A s Z 0, AŽ . Ž .

t 2'q Z s, A y Z s, A dW sŽ . Ž . Ž .H
0

t
² :q BI , Z s q 1 y Z s, A dsŽ . Ž .Ž .H A

0

t 2's Z 0, A q Z s, A y Z s, A dW sŽ . Ž . Ž . Ž .H
0

t
c² : ² :cq l ? h ?, A I , Z s y l ? h ?, A I , Z sŽ . Ž . Ž . Ž . Ž . Ž .ŽH A A

0

5.119Ž .

q1 y Z s, A dsŽ . .
t 2'F Z 0, A q Z s, A y Z s, A dW sŽ . Ž . Ž . Ž .H

0

t
q yl Z s, A q 1 q l 1 y Z s, A ds. IŽ . Ž . Ž .Ž .Ž .H A

0

� 4 � u 4THEOREM 5.10. Let N and K be the Poisson processes determiningi j i

the demography and times of mutation and, for each t, let T be the genealogi-t

� 4cal tree of the population at time t determined by the N .i j

Ž .a With probability 1, at no time t will the genealogical tree T have finitet

total length.

Ž .b If u - 1, then, with probability 1, there exist times t such that Tt

� u 4contains no jump times of the K .i

Ž .c If u G 1, then, with probability 1, for every t, T will contain infinitelyt

� u 4many jump times of the K .i

Ž .PROOF. For u G 1, the fact that in an infinite-alleles model Z t must

have infinitely many atoms for all t implies T must contain infinitely manyt
u Ž .mutation times, that is, jump times of the K , proving c . For u - 1, the facti

Ž .that there exist t at which Z t consists of a single atom implies there exist t

for which T contains no jump times of the K u. If there existed a time t sucht i

� u 4that T had finite length, then by the independence of T and K , theret t i

Ž .would be positive probability of Z t having only finitely many atoms. How-

ever, this is false for u G 1, so T must have infinite length for all t. It

Ž .There is an alternative proof of Theorem 5.8 and Theorem 5.11 below

employing coupling arguments and the properties of the genealogy given by

Theorem 5.10. For example, the jump times of the mutation process out of the
Ž .set A in Theorem 5.8 b can be obtained by thinning a Poisson process with
Ž .rate l . Theorem 5.10 b guarantees that there will be an infinite number ofA

times t for which the genealogical tree of the population at time t contains no
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jumps of this Poisson process, so that if the common ancestor has type in A,
Ž .Z t, A s 1.

w Ž .xTHEOREM 5.11 Ohta]Kimura model 1973, 1974 . Let E s Z and

f k q 1 q f k y 1Ž . Ž .
5.13 Bf k s l y f k .Ž . Ž . Ž .ž /2

1Ž .a If l - , then, with probability 1, there exist times t at which2

Ž � 4.Z t, 0 s 1.
1Ž .b If F l - 1, then, with probability 1, there exist times t at which2

Ž � 4. Ž � 4. wZ t, 0, 1 s 1, but no time t at which Z t, 0 s 1. In fact, with probability
Ž � 4. x1, there is no time t at which Z t, k: k even s 1.

Ž .c If l G 1, then, with probability 1, there exist times t at which
Ž � 4. Ž � 4. wZ t, y1, 0, 1 s 1, but no time t at which Z t, 0, 1 s 1. In fact, there is no

Ž � 4. xtime t at which Z t, k: k s 0 or 1 mod 3 s 1.

Ž . Ž .PROOF. Part a is an immediate consequence of Theorem 5.8 a and the
Ž . Ž � 4.recurrence of symmetric random walk. In part b , the fact that Z t, 0, 1 s 1

Ž .for some t is an immediate consequence of Theorem 5.8 b and the nonexis-
Ž � 4. Ž �tence of a time at which Z t, 0 s 1 follows from the fact that Z t, k: k

4.even is a Wright]Fisher diffusion with generator

15.14 G f s s s 1 y s f 0 s q l 1 y s y ls f 9 s .Ž . Ž . Ž . Ž . Ž . Ž .Ž .b 2

� 4. Ž .Let A s k: k s 0 or 1 mod 3 . In part c , the fact that there are no times at
Ž . Ž .which Z t, A s 1 follows from the fact that Z t, A is a Wright]Fisher

diffusion with generator

1 l
5.15 G f s s s 1 y s f 0 s q 1 y s y ls f 9 s .Ž . Ž . Ž . Ž . Ž . Ž .c ž /2 2

Ž � 4.To see that Z t, q1, 0, 1 s 1 for some time t, note that the recurrence of X1

� Ž � 4. 4and Lemma 1 ensure that for any m ) 2, a s inf t: Z t, 0 G 1 y 1rml ,1

� Ž � 4. 4 � Ž � 4.b s inf t ) a : Z t, 0 F 1 y 1r2l and a s inf t ) b : Z t, 0 G 1 yk k kq1 k

4 Ž . Ž � 4.1rml are finite for all k. Define S t s 1 y Z t, y1, 0, 1 . By Lemma 2.3,

there exists a Brownian motion W such that

t'S t s S 0 q S s 1 y S s dW sŽ . Ž . Ž . Ž . Ž .Ž .H
0

l lt
� 4 � 4q Z s, y1, 1 y Z s, y2, 2 ds.Ž . Ž .H ž /2 20

5.16Ž .

w x Ž � 4. Ž .Note that on the interval a , b , Z s, y1, 1 F 1r2l and S a F 1rml.k k k

w xHence, by Lemma A4.1, on the interval a , b , S is bounded by the solutionk k

of

1 1t
ˆ ˆ ˆ5.17 S t s q 'S s 1 y S s dW s q t y a .Ž . Ž . Ž . Ž . Ž . Ž .Ž .H k

ml 4ak
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ˆ� Ž . 4Let t s inf t ) a : S t s 0 . There exist d ) 0 and m such that for m G m ,k 0 0

� 4 � 4P b y a ) d G d . However, for m sufficiently large, P t F d ) 1 y dr2.k k

� Ž . 4Consequently, P inf S t s 0 G dr2, and the conclusion follows by aa F t F bk k

renewal argument. I

THEOREM 5.12. Suppose there exist A , A , . . . , B , B , . . . ; E with B >1 2 1 2 k

Ž . Ž . Ž Ž . Ž .. Ž .A such that for x g D B , Bf x s l x H f y y f x h x, dy , l 'k k E 1
1c cŽ . Ž . Ž . Ž .sup sup l x h x, A - `, l ' sup sup l x h x, B - andk x g A k 2 k x g A k 2k k

Ž . Ž c.l ' sup sup l x h x, B - `. If for every n there exists t ) n such that3 k x g B kk

Ž . wX t g D A in particular, if X is stationary and ergodic and the station-1 k 1

Ž . xary distribution p for the mutation process satisfies p D A ) 0 , then, withk

Ž .probability 1, there exist times t such that for some k, Z t, B s 1.k

EXAMPLE 5.13. If the mutation process is a finite range random walk on

Z
d, then there will be times when Z is concentrated on a finite set. In

Ž . Ž Ž . Ž .. � 4particular, if Bf k s lÝ p f k q m y f k , then take A s k and B sm k k

� 4k q m: p ) 0 .m

PROOF OF THEOREM 5.12. The finiteness of l and the recurrence condi-1

tion imply that for any « ) 0, there will be infinitely many disjoint time
w x Ž . Ž . Ž .intervals a , b on which Z t, A G 1 y 1 y 2l r4l and Z a , A Gi i k 2 3 i k

Ž .1 y « for some k. As in the proof Theorem 5.11 c , for « sufficiently small,
� Ž c. 4inf P inf Z t, B s 0 ) 0. Ii a F t F b ki i

In sharp contrast to the assertion of Theorem 5.3 that the support of Z is

all of E if the mutation operator is bounded and the mutation process is
Ž .recurrent, Dawson and Hochberg 1982 prove in the case of Brownian

mutation that the support of Z is compact. We extend their result to more

general continuous mutation processes. Their proof is based on genealogies

and is similar to the one presented here.

Ž .THEOREM 5.14. Let P t, x, F be the transition function for the mutation
cŽ . Ž Ž . .process and define p t, « s sup sup P s, x, B x . Let C sx g E sF t « t

� Ž Ž .. 4x: Z t, B x ) 0 for every « ) 0 . Suppose that there exists a sequence of«

positive integers k and a sequence « ) 0 such thatn n

` ` 1
5.18 « - `, k p , « - `,Ž . Ý Ýn nq1 nž /knns1 ns1

Then with probability 1, C is compact.t

Ž . n y2REMARK 5.15. a In the case of Brownian mutation, k s 2 and « s nn n

Ž .satisfy 5.18 .

Ž . y1 Ž Ž .c.b Recall that lim t sup P t, x, B x s 0 for each « ) 0 is at ª 0 x «

classical condition for continuity of the sample paths of a Markov process. See
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wŽ . x wŽ .Dynkin 1965 , Theorem 3.5 and Ethier and Kurtz 1986 , Proposition 4.2.9
xand Problem 4.11.17 .

Ž .c The uniform stochastic continuity implied by the assumptions of the

theorem will not hold for many diffusions at least under the usual metric. If

E is locally compact, however, then for many processes one can show exis-
w Ž .xtence of a ‘‘stochastic Lyapunov function’’ V see, e.g., Kushner 1967 such

� Ž . 4that K s x: V x F c is compact for each c ) 0 and p defined byc

5.19 p t , « s sup sup P s, x , y : V y G V x q «� 4Ž . Ž . Ž . Ž .Ž .
xgE sFt

satisfies the conditions of the theorem. In this case, the argument below

shows that C ; K for some c.t c

� < Ž . < 4 w Ž .PROOF OF THEOREM 5.14. Let b s inf s: G s, t G n . G s, t is as inn

x Ž .Section 3. Then lim n t y b s 2 a.s. The limit follows from the factnª` n

that
` `2 2 2

5.20 t y b s D s q D y 1Ž . Ž .Ý Ýn k k
k k y 1 n k k y 1Ž . Ž .ksnq1 ksnq1

Ž y6 .and the fourth moment of the second term on the right is O n .

Ž .Let A be the event that some particle with index in G b , t is anq1 3k nq 1

distance greater than « from its ancestor at time b . Define FF sn 3k nn

� 4 Ž < . Ž .s A , b : k F n . Then P A FF F 3k p t y b , « , and hencek 3k nq1 n nq1 3k nk n

`

<5.21 P A FF - `.Ž . Ž .Ý nq1 n

ns1

wBy the conditional version of Borel]Cantelli see, for example, Breiman
Ž . x1968 , page 96 , only finitely many of the A occur. Let d s Ý « . Thenn n k G n k

for all n sufficiently large,

5.22 C ; B X b ,Ž . Ž .Ž .Dt d j 3kn n

Ž .jgG b , t3k n

which implies that C is totally bounded and hence compact. It

APPENDIX

A1. Relative compactness for measure-valued processes.

� 4LEMMA A1.1. Let E be a complete separable metric space and let Z be am

w . � 4sequence of processes with sample paths in D 0, ` . Then Z is relatively
PPŽE . m

compact if and only if for each « ) 0 and T ) 0 there exists a compact K ; E

such that

P sup Z t , K c G « F «Ž .½ 5m
tFT

Ž . �² :4and there exists a linear separating set D ; C E such that f , Z ism

w .relatively compact in D 0, ` for each f g D.R
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PROOF. Necessity follows from Prohorov’s theorem and the continuous

mapping theorem. Fix h ) 0, select K compact such thatk

h h
cP sup Z t , K G FŽ .m k k k½ 52 2tFT

� Ž . k 4and define KK s m: m K G 1 y hr2 , k s 1, 2, . . . . Then KK is compact byk

Prohorov’s theorem and

P Z t g KK, t F T G 1 y h .� 4Ž .m

�Ž² : ² :.4The linearity of D ensures that for f , . . . , f g D, f , Z , . . . , f , Z is1 k 1 m k m

w . Ž k . � Ž² :krelatively compact in D 0, ` and hence for g g C R , g f , Z ,R 1 m

² :.4. . . , f , Z is relatively compact. The theorem then follows by Theoremk m

Ž .3.9.1 of Ethier and Kurtz 1986 . I

� 4 w .LEMMA A1.2. Suppose X is relatively compact in D 0, ` , for each m,m E

� m4 Ž . Ž .FF is a filtration, and Z t is the conditional distribution of X t givent m m

F m. Then for each « ) 0 and T ) 0 there exists compact K ; E such thatt

P sup Z t , K c G « F « .Ž .½ 5m
tFT

Ž c. Ž . w < m xcPROOF. For t F T, Z t, K F M t ' E I FF . Since Mm �X Ž s.g K , some sF T 4 tm

is a martingale, we have

P X s g K c , some s F T� 4Ž .mcP sup Z t , K G « F P sup M t G « FŽ . Ž .½ 5 ½ 5m «tFT tFT

� 4and by the relative compactness of X there exists a compact K such thatm

the probability on the right is less than « 2 for all m. I

[ )A2. Convergence in probability in D 0, `̀̀̀̀ .
E

� 4LEMMA A2.1. Let X be a sequence of processes with sample paths inn

w . � 4D 0, ` defined on the same sample space. Suppose that X is relativelyE n

w . Ž .compact in D 0, ` in the sense of convergence in distribution and that for aE

w . � Ž .4dense set H ; 0, ` , X t converges in probability in E for each t g H. Thenn

� 4 w .X converges in probability in D 0, ` .n E

REMARK A2.2. The lemma is not correct if convergence in probability is
� 4replaced by convergence almost everywhere. Let f be any sequence inn

w .D 0, ` that converges pointwise to zero but does not converge uniformly onR

� 4bounded intervals, and let j be any sequence of random variables, boundedn

by 1, that converges in probability to zero but not almost surely. Define

X s j f .n n n

� 4PROOF OF LEMMA A2.1. The relative compactness of X implies thatn

�Ž .4 w . w . ŽX , X is relatively compact in D 0, ` = D 0, ` but not necessarily inn m E E
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w .. Ž . �Ž .42D 0, ` . Let X, Y be a limit point as n, m ª ` of X , X . Then forE n m

� Ž .4t g H, the convergence in probability of X t ensures that with probabilityn

Ž . Ž . Ž . Ž . Ž . Ž .1, one of the following holds: X t s Y t , X t s Y t y , X t y s Y t ,
Ž . Ž .X t y s Y t y . Since H is dense, the right continuity of X and Y then

Ž .ensures that X s Y. Let d x, y be a metric giving the Skorohod topology on
w . Ž .D 0, ` . Along the subsequence converging to X, Y , the continuous map-E

Ž . Ž .ping theorem implies d X , X « d X, Y s 0. However, this observationn m

�Ž .4applies to any convergent subsequence of X , X with n and m going to `.n m

Consequently, for « ) 0,

lim P d X , X ) « s 0� 4Ž .n m
n , mª`

� 4and convergence in probability of X follows. In

A3. Averages of bounded martingale differences.

Ž .LEMMA A3.1. Let j , . . . , j be martingale or reverse martingale differ-1 n

< <ences with j F L for some constant L. Then for « ) 0, there exist positivek

constants C and h depending only on « and L, such that

n1
yh nP j ) « F Ce .Ý k½ 5n ks1

Ž .PROOF. The proof is the same as that of Theorem 5.9 of Kurtz 1972 . I

A4. Comparison lemma.

LEMMA A4.1. Suppose X and Y satisfy

t t
X t s A t q s X s dW s q b X s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0

and

t t
Y t s B t q s Y s dW s q b Y s ds,Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H

0 0

Ž . Ž .where V ' B y A is continuous and nondecreasing and B 0 ) A 0 . Let

< < < <s Y t y s X t b Y t y b X tŽ . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
t s inf t : q G cc ½ 5< < < <Y t y X t Y t y X tŽ . Ž . Ž . Ž .

Ž . Ž .and t s lim t . Then with probability 1, Y t ) X t for all t - t .cª` c
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PROOF. Observe that

1t
ln Y t y X t s ln Y 0 y X 0 q dV sŽ . Ž . Ž . Ž . Ž .Ž . Ž . H

Y s y X sŽ . Ž .0

s Y s y s X sŽ . Ž .Ž . Ž .t
q dW sŽ .H

Y s y X sŽ . Ž .0

2
s Y s y s X sŽ . Ž .Ž . Ž .Ž .t

y dsH 2
0 Y s y X sŽ . Ž .Ž .

b Y s y b X sŽ . Ž .Ž . Ž .t
q ds.H

Y s y X sŽ . Ž .0

Since the second term on the right is nonnegative, the right side is bounded
w xbelow on the interval 0, t n t for every c ) 0 and t ) 0, implying thec

conclusion of the lemma. I

A5. Independence of random selections of iid random variables.

Ž . � 4LEMMA A5.1. Let S, SS be a measurable space and let j : m s 1, 2, . . .m

be independent, identically distributed, S-valued random variables with dis-
� 4tribution m. Suppose that A , k s 1, 2, . . . are positive integer-valued ran-k

� 4 � 4dom variables satisfying P A / A s 1 for all i / j and that A is inde-i j k

� 4pendent of j . Then j , j , . . . are independent and have distribution m,m A A1 2

� 4 � 4and j is independent of A .A ki

Ž .PROOF. It is enough to show that for each m and h , . . . , h g B S ,1 m

n n

E h j A , . . . , A s dm ,Ž .Ł Ł Hk A 1 mk hS kks1 ks1

but this identity is a special case of Proposition A.4.5 of Ethier and Kurtz
Ž .1986 . I

Ž . � 4LEMMA A5.2. Let S, SS be a measurable space and let j : m s 1, 2, . . .m

� 4be exchangeable, S-valued random variables. Suppose that A , k s 1, 2, . . .k

� 4are positive integer-valued random variables satisfying P A / A s 1 for alli j

� 4 � 4 � 4i / j and that A is independent of j . Then j : m s 1, 2, . . . is ex-k m Am

� 4 � 4changeable and has the same distribution as j : m s 1, 2, . . . and j ism Am

� 4independent of A .k

w Ž .x w Ž .xPROOF. Since E g j , . . . , j s E g j , . . . , j as long as i , . . . , ii i 1 m 1 m1 m

� 4 � 4are distinct, the independence of A from j impliesk m

<E g j , . . . , j A , . . . , A s E g j , . . . , jŽ .Ž .i i 1 m 1 m1 m
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Ž .and Proposition A.4.5 of Ethier and Kurtz 1986 gives

<E g j , . . . , j A , . . . , A s E g j , . . . , jŽ .Ž .A A 1 m 1 m1 m

and the lemma follows. I
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