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HYDRODYNAMICAL LIMIT FOR SPACE INHOMOGENEOUS
ONE-DIMENSIONAL TOTALLY ASYMMETRIC

ZERO-RANGE PROCESSES1

By C. Landim

Instituto de Matemática Pura e Aplicada

We consider totally asymmetric attractive zero-range processes with
bounded jump rates on Z. In order to obtain a lower bound for the large
deviations from the hydrodynamical limit of the empirical measure, we
perturb the process in two ways. We first choose a finite number of sites and
slow down the jump rate at these sites. We prove a hydrodynamical limit for
this perturbed process and show the appearance of Dirac measures on the
sites where the rates are slowed down. The second type of perturbation
consists of choosing a finite number of particles and making them jump
at a slower rate. In these cases the hydrodynamical limit is described by
nonentropy weak solutions of quasilinear first-order hyperbolic equations.
These two results prove that the large deviations for asymmetric processes
with bounded jump rates are of order at least e−CN. All these results can be
translated to the context of totally asymmetric simple exclusion processes
where a finite number of particles or a finite number of holes jump at a
slower rate.

Introduction. Totally asymmetric one-dimensional zero-range processes
are among the simplest interacting particle systems and can be informally
described as follows. Consider indistinguishable particles moving on the one-
dimensional integers Z. Let g: N→ R be a nonnegative nondecreasing func-
tion with g�0� = 0. If a site x is occupied by n particles, then at a rate g�n�
one of them jumps to x+ 1.

For each density ρ ≥ 0 there exists an invariant measure, denoted by νti
ρ ,

which is translation invariant and has mean density ρ:

νti
ρ �η�0�� = ρ:

Here and in the sequel “ti” stands for translation invariant.
The configuration space NZ is denoted by X and the configurations by

Greek letters η, ξ and χ. In this way, for an integer x, η�x� denotes the total
number of particles at site x for the configuration η.

Fix an integer N. For each configuration η we associate a Radon measure
πN = πN�η� on R rescaling Z and assigning mass N−1 to each particle of η:

πN =N−1 ∑
x∈Z

η�x�δx/N:

In this last formula, for a real u, δu denotes the Dirac measure on u.
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For a bounded continuous function m∗: R→ R+, denote by µNm∗ the product
measure on the configuration space X with marginals given by

µNm∗�ηy η�x� = k� = νti
m∗�x/N��ηy η�0� = k�

for x ∈ Z and k ∈ N. At the macroscopic point u ∈ R, the measure µNm∗ is close
to the invariant state of the process with density m∗�u� [in our setting the
measure νti

m∗�u�].
Denote by ηt the state of the process at time t and by πNt the empirical

measure at time tN: πNt = πN�ηtN�. Rezakhanlou [7] proved a law of large
numbers for the empirical measure. More precisely, he showed that, starting
from the product measure µNm∗ , the empirical measure πNt converges in prob-
ability to the absolutely continuous Radon measure M�t; du� = m�t; u�du
whose density m�t; u� is the entropy solution of the quasilinear hyperbolic
equation

∂tm+ ∂uϕ�m� = 0;

m�0; ·� =m∗�·� :
Here ϕ is a smooth increasing function associated with the microscopic dy-
namic: ϕ�ρ� = νti

ρ �g�η�0���. This law of large numbers that describes the
macroscopic evolution of the process is called the hydrodynamical limit (cf.
[6] for a proof of the conservation of local equilibrium). Once a law of large
numbers is established, a natural question is to study the large deviations.

A first step was taken in this direction by Kipnis and Léonard [4], who
proved, through explicit computations, a large deviation principle for the em-
pirical measure of a superposition of independent asymmetric random walks.
They showed that the exponential decay rate of the large deviation probabili-
ties is of order N2 in dimension 1.

In the interacting case, however, Varadhan pointed out that large deviations
should be of order e−CN and that the perturbations which must be introduced
in order to observe large deviations should be a deceleration of the jump rates
at a finite number of sites. Moreover, with these perturbations one would ob-
tain as the hydrodynamical limit nonentropy weak solutions of the hyperbolic
equations.

In this article we consider totally asymmetric zero-range processes in one
dimension and show that indeed large deviations are at least of order e−CN.
In order to do this we study two different types of perturbations. The first one
consists in slowing down the jump rates at a finite number of sites. We prove
a hydrodynamical limit for this process and show the appearance of Dirac
measures on sites where the jumps are decelerated.

The second type of perturbation consists of slowing down the jump rates of
a finite number of particles. We show, through an example, that the hydrody-
namical limit of this process is given by nonentropy solutions of the hyperbolic
equation.

These two types of perturbations enable us to obtain lower bounds for the
large deviations for a class of profiles. This in particular shows that the large
deviations are at least of order e−CN.
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By a well-known correspondence between nearest-neighbor zero-range pro-
cesses and nearest-neighbor simple exclusion processes, all the previous re-
sults can be translated into the context of simple exclusion processes. In this
case the perturbation consists of decelerating the jump rates of some particles
or the jump rates of some holes. In both cases we obtain nonentropy solutions
of Burgers’ inviscid equations.

We consider the totally asymmetric case in order to avoid some technical
problems. In fact, the method relies on the existence of product invariant
measures. This is also the case for the nearest-neighbor processes. The results
should therefore extend to this case.

The article is organized as follows. In Section 1 we introduce the notation
used throughout this article and state the hydrodynamical limit for the first
kind of perturbation considered. In Section 2, based on the first theorem, we
study an example of the second type of perturbation. In Section 3 we prove
a lower bound for the large deviations for a class of profiles. In Sections 4, 5
and 6 we prove the theorem stated in Section 1, and in the Appendix we fix
the terminology of entropy weak solution of hyperbolic equation used in this
article.

1. Notation and results. In this section we establish the notation and
state the main results of the article.

The state space of the process NZ is denoted by X and the configurations
by Greek letters η and ξ. In this way, for an integer x, η�x� represents the
number of particles at site x for the configuration η.

Fix a nondecreasing bounded function g: N→ R+ vanishing at 0:

0 = g�0� < g�1�; sup
k≥0

g�k� = g�∞� <∞; g�k� ≤ g�k+ 1�(1.1)

for all nonnegative integers k. Fix also a finite sequence of reals u1 < u2 <
· · · < un and an associated sequence of functions αj: R+→ �0;1� for 1 ≤ j ≤ n.
For each positive integerN, the totally asymmetric space inhomogeneous zero-
range process �ηt�t≥0 associated with the rate function g and the sequence
��u1; α1�; : : : ; �un; αn�� is the Markov process on X whose generator acts on
functions that depend only on a finite number of coordinates as

�LN; tf��η� =
∑
x∈Z

pN�t; x�g�η�x���f�ηx; x+1� − f�η��:(1.2)

In this formula, for configurations η with at least one particle at x, ηx; x+1

stands for the configuration obtained from η letting one particle jump from
site x to site x+ 1:

ηx; x+1�y� =





η�y�; if y 6= x; x+ 1;

η�x� − 1; if y = x;
η�x+ 1� + 1; if y = x+ 1;

(1.3)
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and pN: R+ × Z→ �0;1� is a function equal to 1 on all but a finite number of
macroscopic sites xi = �uiN�. More precisely,

pN�t; x� =
{
αi�t�; if x = �uiN� for 1 ≤ i ≤ n;
1; otherwise.

We will say that LN; t is the generator associated with the sequence
��u1; α1�; : : : ; �un; αn��. This terminology is used throughout the article.

To keep the notation simple, we omitted the dependence of the generator on
the sequence ��u1; α1�; : : : ; �un; αn��. However, to stress this dependence, we
sometimes denote LN; t by LN; t���u1; α1�; : : : ; �un; αn���. We denote by Lh the
generator of the space homogeneous process, that is, the one with pN�t; x� = 1
for all �t; x�.

The existence of the space inhomogeneous zero-range process is proved
in [1].

The monotonicity assumption made on the rate function g�·� is important
since it allows the use of coupling techniques. On the other hand, we will see
below that the asumption that the jump rate is bounded is crucial in this
article.

To fix ideas, the reader may take n to be equal to 1, u1 to be equal to 0
and α1 a constant function. For this process particles which are not at site 0
evolve as in the usual zero-range process; that is, particles at site x 6= 0 wait
a mean g�η�x��−1 exponential time after which one of them jumps to x + 1.
On the other hand, jumps at site 0 are slower. At this site particles jump to
site 1 at rate αg�η�0��.

Since stating the theorems in their full generality would require much no-
tation, for didactical reasons in this article we concentrate our attention on
the case n = 1 and u1 = 0. The reader should notice, however, that all the
statements and proofs apply to any n ≥ 1. Furthermore, for the sake of sim-
plicity, we assume that α1�·� is a step function. The hypothesis that α1�·� is
strictly smaller than 1 is useful because it avoids unbounded profiles.

It can be seen in a simple example that the macroscopic behavior of the
process may change with a modification of the jump rate at site 0. Consider
the space inhomogeneous zero-range process with rate g0�·� given by g0�k� =
1�k≥1�.

For a nonnegative real ρ, let νρ be the product invariant measure with
density ρ for the space homogeneous zero-range process with jump rate g0.
Recall that the marginals of νρ are given by

νρ�ηyη�x� = k� = �1− ϕ�ρ��ϕ�ρ�k

for every nonnegative integer k. In this formula ϕ: R+→ �0;1� is the function
defined by

ϕ�ρ� = ρ

1+ ρ ·

Consider the space inhomogeneous zero-range process with jump rates at 0
equal to some constant α in �0;1� and starting from the measure νρ. At the left
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of the origin particles evolve as the space homogeneous zero-range process. In
particular, by Burke’s theorem, the jumps of particles from site −1 to site 0
are a Poisson point process with intensity ϕ�ρ� (cf. [8] for a simple proof of
this result). On the other hand, for the space inhomogeneous process, particles
can leave site 0 at rate at most α. Therefore in this case the total number of
particles at site 0 is a birth and death Markov process on N. For a positive
integer k, the intensity of a jump from k to k + 1 is ϕ�ρ� and that of a jump
from k to k − 1 is α. On the other hand, jumps from 0 to −1 are not allowed
and jumps from 0 to 1 occur with rate ϕ�ρ�. It is now easy to show that in
the case where the density of particles for the initial measure is greater than
ρα = ϕ−1�α� the number of particles at site 0 increases linearly in time.

In the interesting case where ϕ�ρ� > α, ρ > ρα, with a little more work using
coupling arguments, one can prove a law of large numbers for the empirical
measure associated with the space inhomogeneous zero-range process. More
precisely, for each positive integerN, letPNνρ represent the probability measure
on the path space D��0;∞�;X � of the inhomogeneous zero-range process with
generatorLN; t defined in (1.2), accelerated byN and starting from the product
measure νρ. For every γ > 0, for every t ≥ 0 and for every continuous function
H: R→ R with compact support,

lim
N→∞

PNνρ

[ ∣∣∣∣N
−1∑

x

H

(
x

N

)
ηt�x� −

∫
H�u�M�t; du�

∣∣∣∣ > γ
]
= 0;

where the measure M�t; du� =m�t; u�du+ β�t�δ0 is such that

m�t; u� = ρ1�u6∈�0;C�α; ρ�t�� + ρα 1�u∈�0;C�α; ρ�t��;

with

C�α; ρ� = ϕ�ρ� − α
ρ− ρα

and

β�t� = �ϕ�ρ� − α�t:
In these formulas δ0 represents the Dirac measure on 0.

Before stating the first main result of this article, we introduce some in-
variant product measures of the inhomogeneous process.

Recall the definition of g�∞� given in (1.1). Define the strictly increasing
analytic function Z: �0; g�∞�� → R+ by

Z�ϕ�:=
∑
k≥0

ϕk

g�k�! ;

where, for k ≥ 1, g�k�! stands for
∏

1≤j≤k g�j� and, by convention, g�0�! = 1.
Let ρ: �0; g�∞�� → R+ be the strictly increasing function defined by

ρ�ϕ� = 1
Z�ϕ�

∑
k≥0

k
ϕk

g�k�! = ϕ
Z′�ϕ�
Z�ϕ� ·(1.4)
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It is easy to show that ρ is onto R+. Denote by ϕ: R+→ �0; g�∞�� the inverse
function:

ϕ�·� = ρ−1�·�:(1.5)

For each ρ ≥ 0, let νti
ρ be the translation invariant product measure with

marginals given by

νti
ρ �ηyη�x� = k� =

1
Z�ϕ�ρ��

ϕ�ρ�k
g�k�! ; k ≥ 0:(1.6)

In this notation ti stands for translation invariant. Notice that the expected
number of particles and the expected value of the jump rate under the measure
νti
ρ are ρ and ϕ�ρ�, respectively:

νti
ρ �η�0�� = ρ; νti

ρ �g�η�0��� = ϕ�ρ�:

For α in �0;1�, denote by ρα the value at αg�∞� of the function ρ defined in
(1.4). In this way

g�∞�α = ϕ�ρα�:(1.7)

For ρ < ρα, the product measure νρ; α defined by

νρ; α�ηyη�x� = k� =





1
Z�ϕ�ρ��

ϕ�ρ�k
g�k�! ; x 6= 0;

1
Z�ϕ�ρ�α−1�

�ϕ�ρ�α−1�k
g�k�! ; x = 0;

(1.8)

is an invariant measure for the space inhomogeneous zero-range process as-
sociated with the rate function g and the sequence ��0; α��. Here α�·� is the
constant function equal to α.

To obtain invariant measures with density of particles at the left of the
origin larger than ρα, we have to allow an infinite number of particles at
site 0. We therefore denote by N the nonnegative integers with the point +∞
included and consider the zero-range process evolving on N

Z
. If at some site x

there are infinitely many particles, one of them jumps to x+ 1 at rate g�∞�.
For ρ ≥ 0 the product measure ν0

ρ; α with marginals given by

ν0
ρ; α�ηyη�x� = k� =





1
Z�ϕ�ρ��

ϕ�ρ�k
g�k�! ; x < 0; 0 ≤ k <∞;

1
Z�ϕ�ρα��

ϕ�ρα�k
g�k�! ; x > 0; 0 ≤ k <∞;

1�k=∞�; x = 0;

(1.9)

is invariant for the space inhomogeneous zero-range process. Here the super-
script 0 indicates that there are infinitely many particles at 0.
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We now introduce some notation needed in order to state the first main re-
sult. We first define the initial measures and then describe the hydrodynami-
cal equation which governs the macroscopic evolution of space inhomogeneous
zero-range processes.

Recall from (1.6) the measures �νti
ρ yρ ≥ 0�. For a function m∗: R → R+,

denote by µNm∗ the product measure with marginals given by

µNm∗�ηyη�x� = k� = νti
m∗�x/N��ηyη�x� = k�(1.10)

for x ∈ Z and k ≥ 0. We will say that the sequence µNm∗ is associated with the
profile m∗.

Since our purpose in this article is not to present a proof of the hydro-
dynamical behavior of space inhomogeneous zero-range processes in its full
generality but rather to present some phenomena that appear when introduc-
ing these inhomogeneous rates, we assume throughout this article that m∗ is
a bounded continuous function.

Throughout this paper, for a measure µ on X , we denote by PNµ the prob-
ability measure on the path space D��0;∞�;X � corresponding to the Markov
process with generator LN; t defined by (1.2) and associated with the sequence
��0; α�·���, accelerated by N and starting from the measure µ.

We now pass to the hydrodynamical equation. Since at the left of the ori-
gin the space inhomogeneous zero-range processes behave exactly as ordinary
zero-range processes and since the macroscopic behavior of the latter is de-
scribed by entropy solutions of first-order quasilinear hyperbolic equations,
we introduce the following functions.

Recall the definition of the smooth strictly increasing function ϕ�·� given in
(1.5). Denote by λ: R × R → R+ the entropy solution of the one-dimensional
conservation law ∂tλ+∂uϕ�λ� = 0 for the Cauchy problem with initial datam∗:

∂tλ+ ∂uϕ�λ� = 0;

λ�0; ·� =m∗�·�:
(1.11)

We saw through an example above that for some initial profiles a Dirac mass
at the origin may appear. We will denote by β�t� the total mass at the origin
at time t. To study the behavior of the Dirac measure at the origin, we recall
some facts on the entropy solution of this scalar conservation law. Since the
initial profile is bounded and since ϕ′�·� is bounded below by a strictly positive
constant on each compact subset of R+, the speed of the shocks of the entropy
solution is bounded below by a strictly positive constant. It is also known that
entropy solutions are continuous outside at most a countable number of shock
lines. For this reason there exists a version λ which is continuous at �t;0� for
all but a countable set of points t.

The following identity, easy to prove, will be used in the analysis of the
evolution of the Dirac measure at the origin:

∫ ∞
0
�λ�t; u� − λ�0; u��du =

∫ t
0
ϕ�λ�s;0��ds:
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Mass arrives at the origin at a rate

∂t

∫
R+
λ�t; u�du = ϕ�λ�t;0��:(1.12)

On the other hand, it leaves the origin at a rate bounded above by α�·�g�∞�
which is the maximum rate at which a particle jumps from 0 to 1. Moreover,
if β�t� > 0 this is exactly the rate at which particles leave the origin. In the
case where β�t� = 0, the rate at which mass leaves the origin is the minimum
of α�·�g�∞� and the rate at which mass arrives at the origin. Therefore β�·�
should be the solution of

∂tβ�t� =
{
ϕ�λ�t;0�� − α�t�g�∞�; if β�t� > 0;

�ϕ�λ�t;0�� − α�t�g�∞��+; if β�t� = 0;
(1.13)

with initial data β�0� = 0.
Finally, at the right of the origin, particles behave as in ordinary zero-

range processes. Therefore the macroscopic behavior should be described by
the entropy solution of a first-order quasilinear hyperbolic partial differential
equation with mass creation at the origin. Denote by ω�t� the rate at which
mass is created at the origin. If there is mass at 0, that is, if β�t� > 0, the rate
at which mass is transferred from the origin to the positive axis is α�t�g�∞�.
Otherwise it is the minimum of the rate at which it arrives at 0 and α�t�g�∞�
which is equal to the minimum between (1.12) and α�t�g�∞�. Therefore ω�t�
is given by

ω�t� =
{
α�t�g�∞�; if β�t� > 0;

α�t�g�∞� ∧ ϕ�λ�t;0��; otherwise.
(1.14)

We are therefore naturally led to consider the following differential equa-
tions in the semi-infinite line. Denote by λ+: R+ × R+ → R+ the entropy
solution of the conservation law in the semiinfinite line with mass production
rate at 0 given by ω�·� defined in (1.14):

∂tλ
+ + ∂uϕ�λ+� = 0;

∂t

∫
R+
λ+�t; u�du = ω�t�;

λ+�0; ·� =m∗
∣∣
R+
�·�:

(1.15)

In the Appendix we fix the terminology of entropy solutions of the above equa-
tions and state a uniqueness theorem.

Let M�t; du� be the measure on R defined by

M�t; du� =m�t; u�du+ β�t�δ0;(1.16)

where

m�t; u� = λ�t; u�1�u<0� + λ+�t; u�1�u>0�
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and β�·� is the solution of (1.13). We shall say that M�t; du� is the measure
associated with the rate α�·� and the initial profile m∗�·�.

We are now in a position to state the first main theorem of this article.
Denote by CK�R� the space of all real continuous functions with compact
support.

Theorem 1. For everyH inCK�R�; every t ≥ 0 and every strictly positive γ;

lim
N→∞

PN
µNm∗

[ ∣∣∣∣N
−1∑

x

H

(
x

N

)
ηt�x� −

∫
H�u�M�t; du�

∣∣∣∣ > γ
]
= 0:

2. Nonentropy weak solutions as hydrodynamical limits of space in-
homogeneous processes. In this section we consider zero-range processes
where, instead of modifying the jump rates at fixed sites, we modify the jump
rates of a fixed number of particles. Thus, for an integer n and a sequence
of functions αj: R+ → �0;1�, we choose n particles and set the jump rate of
the jth particle to be equal to αj�t� at time t. The interesting feature of this
perturbation is that the macroscopic behavior of the process is described by a
nonentropy weak solution of the hyperbolic conservation law

∂tλ+ ∂uϕ�λ� = 0;

λ�0; ·� =m∗�·�:
(2.1)

To define precisely the process, we need some notation. Throughout this
section the jump rate g�·� is fixed to be

g�k� = 1�k≥1�:(2.2)

To avoid technical details, we will consider only configurations with in-
finitely many particles to the left and to the right of the origin. Denote by X0
this subset of configurations:

X0 =
{
ηy
∑
x≤0

η�x� = ∞ and
∑
x>0

η�x� = ∞
}
:

We label particles of each configuration η in X0. The labeling is done in such
a way that:

(a) all particles are labeled.

We assume also that there are no jumps in the labeling. Since we assumed
that there are infinitely many particles this is equivalent to requiring that:

(b) for each integer i there is a particle labeled i.

Denote by X�i; η� =X�i� ∈ Z the position of the particle labeled by i. The
labeling is done from left to right:

(c) X�i� ≤X�i+ 1� for all integers i.

Finally, to fix ideas, we assume that the particle labeled by 0 is the first one
at the left of the origin. Thus we label by 0 a particle at the origin. If there is
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no particle at the origin we label by 0 a particle on the first nonempty site at
the left of the origin:

(d) X�0� ≤ 0 < X�1�.
In this way, with each configuration η of X0 we associated a configuration

X of the subset Y of ZZ defined by

Y = �X ∈ ZZyX�i� ≤X�i+ 1��:
It is easy to recover the configuration η from X since η�x� is the number of
labeled particles at site x:

η�x� =
∑
i

1�X�i�=x�:(2.3)

Notice that the space homogeneous zero-range process with rate (2.2) is the
process where each particle X�i� jumps at rate 1 to the site on its right if the
particle X�i + 1� is not at the same site as X�i�. Thus the generator of the
zero-range process can be rewritten as

�Lphf��X� =
∑
i

1�X�i�<X�i+1���f�Xi� − f�X��;

where, for an integer i, Xi is the configuration obtained from X where the
particle labeled i jumped to the right:

Xi�j� =
{
X�i� + 1; if j = i;
X�j�; otherwise.

Notice furthermore that this dynamic preserves the order of the labeling
just defined and therefore defines a process on Y .

We consider in this section a perturbation of this process setting some par-
ticles to jump at a slower rate.

Fix a positive integer n, a finite sequence of reals u1 < u2 < · · · < un and
an associated sequence of functions αj: R+ → �0;1� for 1 ≤ j ≤ n. For each
positive integer N, consider the Markov process on Y whose generator acts
on functions that depend only on a finite number of coordinates as

�LpN; tf��X� =
∑
i∈Z
pN�t; i�1�X�i�<X�i+1���f�Xi� − f�X��:

Here pN�t; i� is a function equal to 1 at all but a finite number of sites:

pN�t; i� =
{
αk�t�; if i = �ukN� for 1 ≤ k ≤ n;
1; otherwise.

In order to use the result stated in the last section, we restrict our attention
to the case where just one particle, say X�0�, has a jump rate smaller than 1.
The purpose of this section is to present an example where the hydrodynamical
behavior of this process is described by a nonentropy solution of (2.1).

The result is the following. For a strictly positive constant α0, denote by
PNp;ρ the measure on D��0;∞�;X � corresponding to the process ηt evolving
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according to the generator LpN; t associated with the couple ��0; α0�� acceler-
ated by N and starting from the equilibrium measure νti

ρ .

Theorem 2. For every smooth function H: R→ R with compact support,
every ρ < ρα0

; every t ≥ 0 and every ε > 0;

lim
N→∞

PNp;ρ

[ ∣∣∣N−1∑
x

H�x/N�ηt�x� −
∫
H�u�ρ�t; u�du

∣∣∣ > ε
]
= 0;

where

ρ�t; u� =





ρα0
; if ϕ�ρα0

� − ρα0

ϕ�ρ� − ϕ�ρα0
�

ρ − ρα0

<
u

t
≤ ϕ�ρα0

�;

0; if ϕ�ρα0
� < u

t
≤ ϕ�ρ�;

ρ; otherwise:

(2.4)

Notice that ρ�t; ·� has a decreasing shock at ϕ�ρα0
�t. Therefore it is not an

entropy solution. On the other hand, a simple computation shows that ρ�t; u�
is a weak solution of (2.1) with initial profile ρ.

Proof of Theorem 2. Since we only use the assumption that the jump
rate is a constant equal to α0 at the end of the proof when we identify the
profile obtained, we suppose for the moment that it is given by a positive
function α�·� strictly smaller than 1.

To reduce this problem to the one studied in the previous section, we inter-
change the roles of particles and sites. So, for a configuration X in Y , define
a configuration χ = χ�X� in X0 by

χ�x� =X�x+ 1� −X�x�:(2.5)

In this way χ counts the number of sites between two adjacent particles for
the configuration η.

It is easy to see that the process χt = χ�Xt� evolves as the space inhomo-
geneous asymmetric zero-range process with generator defined in (1.2) associ-
ated with the couple ��0; α�·��� but with particles jumping to the left instead
of to the right.

Notice that the number of jumps of particle X�i� in the interval �0; t� is
exactly the number of particles that jumped from site i to site i− 1 for the χ
process:

Xt�i� −X0�i� =
i−1∑
−∞
�χt�x� − χ0�x��:(2.6)

To prove the theorem, the first task is to obtain the initial distribution of
the χ particles.

Denote by T : X0 → X0 the functional that sends an η configuration to a
χ configuration. Extend this functional to the space of probability measures on
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X0. A classical computation, passing through configurations on �0;1�Z, shows
that the image of the product measure νti

ρ under T is a product measure,
denoted by ν̃ρ, with marginals given by

ν̃ρ�χyχ�x� = k� = νti
1/ρ�ηyη�0� = k� if x 6= 0:

At site 0, from the way we labeled the particles, there is at least one particle
for the configuration χ. In fact, we have

ν̃ρ�χyχ�0� = k� = νti
1/ρ�ηyη�0� + η�1� = k− 1� for k ≥ 1:

Thus χ starts from a product measure associated with the constant profile 1/ρ
and evolves as a space inhomogeneous process associated with ��0; α�·��� and
Theorem 1 describes the hydrodynamical behavior of the process χt.

Fix a smooth functionH: R→ R in CK�R�. To prove a law of large numbers
for the empirical measure, we need to study the behavior of the sum

N−1∑
x

H

(
x

N

)
ηt�x�:

In order to use the result proved in the last section, we have to replace the con-
figuration η by a function of χ. From (2.3), we may rewrite the last expression
as

N−1 ∑
x∈Z

∑
i∈Z
H

(
x

N

)
1�Xt�i�=x� =N

−1 ∑
i∈Z
H�N−1Xt�i��:

Replacing X by χ, we obtain from (2.6) that the last sum is equal to

N−1 ∑
i∈Z
H

(
N−1X0�i� +N−1

i−1∑
−∞
�χt�x� − χ0�x��

)
;

which, after some simple computations taking advantage of relation (2.5), is
equal to

N−1 ∑
i∈Z
H

(
N−1X0�0� +N−1

i−1∑
−∞
χt�x� −N−1

−1∑
−∞
χ0�x�

)
:

Notice that, though both sums are infinite, a simple coupling argument shows
that the difference is finite almost surely.

Recall that the initial measure is a product measure with density 1/ρ and
that χt evolves as the space inhomogeneous zero-range process associated
with the couple ��0; α�·��� with particles jumping to the left. Since N−1X0�0�
converges to 0 in L1, from Theorem 1, the last expression converges in prob-
ability to

∫
H�M�t; �−∞; u�� −M�0; �−∞;0���du;

where M�t; du� is the measure associated with the rate α�·� and the initial
profile constant equal to 1/ρ in the terminology introduced after (1.16).
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Let v�t; u� be the function

v�t; u� =M�t; �−∞; u�� −M�0; �−∞;0��:

A simple computation shows that

v�t; u� =





∫ u
0
m�t; r�dr+

∫ t
0
ϕ�m�s;0+��ds; for u > 0;

∫ u
0
m�t; r�dr+

∫ t
0
ω�s�ds; for u < 0:

(2.7)

Notice that, for each fixed time t, v�t; ·� is an increasing function continuous
in R− �0� since m�t; ·� is positive and

∫ t
0
ϕ�m�s;0+�� =

∫ t
0
ω�s�ds+ β�t� ≥

∫ t
0
ω�s�ds:

The first equality follows immediately from the definition of β�·� and ω�·�
given in (1.13) and (1.14).

A change of variables in the last integral shows that it is equal to

∫ ∫ t
0 ω�s�ds

−∞
H�v� 1

m�t; u�t; v�� dv+
∫ ∞
∫ t

0 ϕ�m�s;0+��ds
H�v� 1

m�t; u�t; v�� dv:

Here, for each fixed t, u�t; v� denotes the inverse function of the one defined
in (2.7).

In the case where α�·� = α0 and ρ > ρα0
, a simple computation shows that

this last sum is equal to
∫
H�v�ρ�t; v�dv;

with ρ�t; v� given by (2.4). 2

3. Lower-bound large deviations. This section is devoted to the
proof that the large deviations from the hydrodynamical limit of attractive
asymmetric zero-range processes with bounded jump rates are of order at
least e−CN.

More precisely, for a fixed density ρ and a fixed time T0, denote by PN;ρh the
probability on the path space D��0;T0�;X � of the space homogeneous zero-
range process with generator accelerated by N starting from the invariant
measure νti

ρ .
For a positive integer N and a configuration η, denote by πN the Radon

measure on R obtained by assigning to each particle a mass N−1:

πN = πN�η� =N−1∑
x

η�x� δx/N:(3.1)

Here, for a real u, δu denotes the Dirac measure concentrated on u. We use the
shorthand πNt for πN�ηt� and we denote by M+�R� the space of positive Radon
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measures on R endowed with the vague topology. For a continuous function H
with compact support and a Radon measure π in M+�R�, we denote by �π;H�
the integral of H with respect to π.

We show that, for a class of positive Radon measures M�t; du� on R,

lim inf
N→∞

N−1 logPN;ρh �πN ∈ VM� ≥ −I�M� > −∞

for every neighborhood VM of the path M�t; du�.
Two different types of large deviations are observed. The first one comes

from the deviations from the initial product measure and the second from
the dynamic. Since the analysis of the first kind of deviation is trivial, we
concentrate on the second type.

At a formal level, to obtain a lower bound of order e−CN of the large de-
viations, it is enough to find a perturbation of the original process for which
we are able to prove a law of large numbers for the empirical measure and
such that the relative entropy of the perturbation with respect to the original
process is bounded by CN.

Indeed, let P̃N be a probability measure on D��0;T0�;X � and assume the
following:

(a) Under P̃N the empirical measure converges to a deterministic path
M̃�t; du�.

(b) lim supN→∞N
−1H�P̃N�PN� ≤ C.

Recall that the entropy H�P̃N�PN� is given by

H�P̃N�PN� = ẼN

[
log

dP̃N

dPN

]
:

Let V denote a neighborhood of M̃�t; du�. We have that

N−1 logPN�πN ∈ V� =N−1 log ẼN

[
dPN

dP̃N
1�πN∈V�

]
:

Since, by assumption (a), πN converges to M̃�t; du� under P̃N, the indica-
tor function on the right-hand side can be removed. Therefore, by Jensen’s
inequality, the expression is bounded below by

N−1ẼN

[
log

dPN

dP̃N

]
= −N−1H�P̃N�PN�:

The lower bound follows then from assumption (b).
In Section 1 we proved the hydrodynamical limit for a class of perturbations

of the space homogeneous zero-range process. In view of this formal argument,
to get a lower bound, we just have to compute the limit of the entropy divided
by N.
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Recall from Section 1 the definition of PNνti
ρ
. Denote by PNνti

ρ
�T0� the measure

PNνti
ρ

restricted to D��0;T0�;X �. A simple computation shows that

N−1H
(
PNνti

ρ
�T0�

∣∣PN;ρh

)

= EN
νti
ρ

[∫ T0

0
�α�s� log α�s� − α�s� + 1�g�ηs�0��ds

]
;

which is bounded above by g�∞�
∫ T0

0 �α�s� log α�s� − α�s� + 1�ds. The formal
argument presented above can be made rigorous (details are left to the reader)
and provides a lower bound for a large deviation of the empirical measure.

To obtain the best possible lower bound for a fixed path M�t; du�, we have
to choose among all perturbations for which the empirical measure converges
to M�t; du� the one with smallest relative entropy with respect to the original
process.

We conclude this section by obtaining a lower bound for certain paths
M�t; du� that we believe is the correct lower bound of the large deviation
principle.

Fix a positive Radon measure M�t; du� on R and suppose that M�t; du� is
absolutely continuous with respect to the Lebesgue measure away from the
origin:

M�t; du� =m−�t; u�1�u<0� du+ β�t�δ0 +m+�t; u�1�u>0� du

and that M�0; du� = ρdu.
We now enumerate properties thatM�t; du�must satisfy in order to be able

to prove a lower bound for the probability that the empirical measure belongs
to a neighborhood of M�t; du�.

Assume that m−�t; u� = ρ for every �t; u�. Assume that β�·� is strictly
positive on �0;T0�, continuous, piecewise linear and such that

ϕ�ρ� − g�∞� < �∂tβ��t� ≤ ϕ�ρ�
for every 0 ≤ t ≤ T0. Define α: �0;T0� → �0;1� by

α�t� = g�∞�−1�ϕ�ρ� − �∂tβ��t��:(3.2)

Notice that α�·� is a step function. Finally, assume that m+ is the entropy
solution of (1.15) with boundary conditions ρ at u = 0 and ϕ�ρ� − �∂tβ��t� at
t = 0. For this path M�t; du� the previous arguments give the following lower
bound.

Theorem 3. Fix a path M�t; du� possessing the properties just described.
For every neighborhood V of M�t; du�;

lim inf
N→∞

N−1 logPN;ρh

[
πN ∈ V

]
≥ −g�∞�

∫ T0

0

[
α�s� log α�s� − α�s� + 1

]
ds;

where α�·�g�∞�; defined in (3.2), is the rate at which
∫∞

0 m+�t; u�du increases
in time.
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4. Proof of Theorem 1. Throughout this section we use the notation
established in Section 1.

The proof of Theorem 1 is divided into several lemmas. We first prove the
hydrodynamical behavior at the left of the origin. This part is easy and follows
from previous results since at the left of the origin particles evolve as particles
in usual space homogeneous zero-range processes. The second step consists of
studying the behavior of the Dirac measure at the origin. This is done in
Proposition 4.4. Finally, the last step consists of proving the hydrodynamical
behavior at the right of the origin. This is postponed until Section 6.

First of all, by coupling arguments, it is easy to show that it is enough to
prove Theorem 1 for initial profiles m∗ with compact support. Therefore, from
now on, we assume that m∗ is continuous with compact support. In particular,
the total number of particles is µNm∗ -a.s. finite since

µNm∗

[∑
x

η�x�
]
=
∑
x

m∗
(
x

N

)
<∞:(4.1)

To start, we need some terminology on attractive processes. On the con-
figuration space X we introduce the natural partial order defined by η ≤ ξ
if η�x� ≤ ξ�x� for all x ∈ Z. A continuous function f is said to be monotone
if f�η� ≤ f�ξ� whenever η ≤ ξ. We denote by M the set of monotone func-
tions and we extend the partial order to the measures on X in the natural
way: µ ≤ ν if

∫
fdµ ≤

∫
fdν for every monotone function f. A Feller pro-

cess is said to be attractive if its semigroup St preserves the partial order:
µ ≤ ν ⇒ µSt ≤ νSt for every t > 0. It is proved in [1] that the monotonocity
of g implies the attractiveness of inhomogeneous zero-range processes.

Recall the definition given in (3.1) of the Radon measure πN = πN�η�
associated with each configuration η.

Fix a time T0 > 0 and recall from (1.10) the definition of the product mea-
sure µNm∗ . Throughout this section we denote by QN the probability measure
on the path space D��0;T0�;M+�R�� corresponding to the Markov process πNt
evolving according to the generator LN; t defined in (1.2) and associated with
��0; α�·���, accelerated by N and starting from the product measure µNm∗ .

We start with the tightness of the sequence QN.

Lemma 4.1. The sequence QN is tight. All its limit points are concentrated
on weakly continuous paths π�t; du� which are absolutely continuous with
respect to the Lebesgue measure outside the origin and with density bounded
by a constant which depends only on the initial profile m∗�·� and the jump
rates at the origin α�·�:

π�t; du� = ρ�t; u�du+ b�t�δ0 and ρ�t; u� ≤ A = A�m∗; α�:

Moreover, since all limit points are concentrated on continuous paths, every
converging subsequence converges also in the uniform topology. In particular,
its one-dimensional marginals converge.
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The proof of this lemma is omitted. It relies on standard arguments on
tightness of interacting particle processes and on the following coupling lemma
that will be used several times later.

Lemma 4.2. Let µN be a sequence of measures on X bounded by some
translation invariant product measure νti

ρ0
. Denote by SNt the semigroup of the

Markov process with generator LN; t���0; α�·���� defined in (1.2), accelerated
by N. There exists a density ρ1 = ρ1�ρ0; α� such that, for every N and every
t ≥ 0; µNSNt is bounded by νti

ρ1
outside from the origin. More precisely, for

every bounded monotone cylinder function 9 which does not depend on the
variable η�0�;’

µNSNt �9� ≤ νti
ρ1
�9�:

Proof. Let α∗ = supt≥0 α�t�. By assumption α∗ < 1. For ρ > 0 and α∗ <
α < 1, consider the product invariant measure ν0

ρ; α of the space inhomogeneous
process defined in (1.9). Choose ρ1 and α1 such that νρ0

≤ ν0
ρ1;α1

. This is always
possible since �ν0

ρ; α; ρ ≥ 0; 0 ≤ α < 1� is an increasing family and

lim
ρ→∞
α→1

inf
x
ν0
ρ; α�η�x�� = ∞:

By the attractiveness and invariance of ν0
ρ1; α1

,

µNSNt ≤ νρ0
SNt ≤ ν0

ρ1; α1
SNt = ν0

ρ1; α1
:

The lemma is thus proved since ν0
ρ1; α1

coincides with some νti
ρ away from the

origin. 2

We now prove the hydrodynamical behavior of the process at the left of the
origin.

Lemma 4.3. For every continuous function H with compact support in
�−∞;0� and vanishing at 0, for every 0 ≤ t ≤ T0 and for every positive γ,

lim
N→∞

PN
µNm∗

[ ∣∣∣∣N
−1∑

x

H

(
x

N

)
ηt�x� −

∫
H�u�M�t; du�

∣∣∣∣ > γ
]
= 0:

There are two ways to prove Lemma 4.3. The first method consists of prov-
ing that the empirical measure on �0;T0� × �−∞;0� converges to the entropy
solution of the conservation law ∂tρ+∂uϕ�ρ� = 0 with initial datam∗ restricted
to �−∞;0�, repeating the arguments of Rezakhanlou [7]. The second method
consists of taking advantage of knowledge of the hydrodynamical behavior of
space homogeneous asymmetric processes. The idea is to couple the process
with a space homogeneous zero-range process with jump rate g�·� in such a
way that at the left of the origin the two processes are equal at any time. The
result follows then from the hydrodynamical behavior of the latter process.
We sketch the second method, which is simpler.
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Proof of Lemma 4.3. The proof requires some notation. Let �ξt�t≥0 denote
a totally asymmetric space homogeneous zero-range process associated with
the rate function g�·� with generator accelerated by N. We couple �ηt�t≥0 and
�ξt�t≥0 in order that the η and ξ particles jump together as much as possible.
Assume that, at time 0, ξ coincides with η. The generator of the coupled
process, denoted by LN, is given by

�LNf��η; ξ�
=
∑
x∈Z

min�pN�t; x�g�η�x��; g�ξ�x����f�ηx;x+1; ξx; x+1� − f�η; ξ��

+
∑
x∈Z

(
pN�t; x�g�η�x�� − g�ξ�x��

)+�f�ηx; x+1; ξ� − f�η; ξ��

+
∑
x∈Z

(
g�ξ�x�� − pN�t; x�g�η�x��

)+�f�η; ξx; x+1� − f�η; ξ��:

(4.2)

This coupling possesses two properties since pN�t; x� = 1 for x < 0:

ηt�x� = ξt�x� for all x < 0 and t > 0(4.3)

if these equalities hold at time 0 and
∑
y≥x

ηt�y� ≤
∑
y≥x

ξt�y� for all x ∈ Z and t > 0(4.4)

if the two processes start from the same configuration.
The statement of the lemma follows therefore from the hydrodynamical

limit for attractive space homogeneous zero-range processes starting from
product measures, which is proved in [7]. 2

Recall from Section 1 that λ�·;0� is discontinuous at most at a countable
set of points and that

∫ ∞
0
�λ�t; u� − λ�0; u��du =

∫ t
0
ϕ�λ�s;0��ds:(4.5)

This relation will be used in the analysis of the evolution of the Dirac measure
at the origin.

Proposition 4.4. Let Q∗ be any limit point of the sequence QN. Let t0 be
a continuity point of λ�·;0� and α�·�. Then Q∗-a.s.

�∂+t b��t0� x= lim
h↓0

h−1�b�t0 + h� − b�t0��

exists and

�∂+t b��t0� =
{
ϕ�λ�t0;0�� − α�t0�g�∞�; if b�t0� > 0;

�ϕ�λ�t0;0�� − α�t0�g�∞��+; otherwise.
(4.6)

This proposition is a corollary of the following result.
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Lemma 4.5. Let RN be the probability measure on D��0;T0�;R+� corre-
sponding to the process N−1ηt�0�; where ηt is the Markov process evolving
with generator LN; t���0; α���, accelerated by N and starting from µNm∗ . The

sequence RN converges in the uniform topology to the probability concentrated
on the deterministic path solution of (4.6) with initial condition b�0� = 0.

We first show that Proposition 4.4 follows from this result.

Proof of Proposition 4.4. Denote by β�t� the solution of (4.6) with initial
condition β�0� = 0. Fix a time 0 ≤ t ≤ T0. For each ε > 0, let Hε be a positive
continuous function bounded by 1, equal to 1 at the origin and with support
contained in �−ε; ε�.

Let Q∗ be a limit point of the sequence QN. To keep the notation as sim-
ple as possible, assume that the sequence QN converges to Q∗. By Lemma
4.1 the one-dimensional marginals QNπ−1

t converge to Q∗π−1
t . By the weak

convergence, for every γ > 0,

Q∗
[
��πt;Hε� − β�t�� > γ

]

≤ lim
N→∞

QN
[
��πt;Hε� − β�t�� > γ

]

≤ lim
N→∞

PN
[
�N−1ηt�0� − β�t�� >

(
γ

2

)]

+ lim
N→∞

PN
[ ∣∣∣∣N

−1 ∑
x6=0

Hε

(
x

N

)
ηt�x�

∣∣∣∣ >
(
γ

2

)]
:

For each positive γ the next to the last limit is equal to 0 by virtue of Lemma
4.5. On the other hand, by Lemma 4.2 there exists ε�γ� such that the last
limit is equal to 0 for ε < ε�γ�. Therefore, for ε < ε�γ�,

Q∗���πt;Hε� − β�t�� > γ� = 0:

Since by Lemma 4.1 the density outside the origin is bounded by a constant,
letting ε ↓ 0, we obtain that

Q∗��b�t� − β�t�� > γ� = 0

for every positive γ. This concludes the proof. 2

It remains to prove Lemma 4.5. Its proof is divided into several lemmas.
We start by proving that the sequence RN is tight and that all its limit points
are concentrated on continuous paths.

Lemma 4.6. The sequence RN is tight. All its limit points are concentrated
on continuous trajectories b�t� that satisfy the following inequalities:

∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

≤ b�t+ h� − b�t� ≤
∫ t+h
t

ϕ�λ�s;0��ds
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for every t, h ≥ 0. In particular, every converging subsequence RNk converges
in the uniform topology and

lim
k→∞

RNk�ηt�0� ≥ θNk� = R∗�b�t� ≥ θ�

for every 0 ≤ t ≤ T0 and θ such that R∗�b�t� = θ� = 0. In this formula R∗

stands for the limit point of RNk .

Proof. The proof relies on the coupling (4.2) defined in the proof of
Lemma 4.3. For any t and h ≥ 0, the difference ηt+h�0� − ηt�0� is equal to
the total number of particles that arrived at the origin between t and t + h
minus the total number of particles that left the origin in this interval. By
property (4.3) of the coupling, the total number of particles that arrived at
the origin is equal to the total number of particles that arrived at the origin
in the interval �t; t+ h� for the space homogeneous process:

∑
x≥0

�ηt+h�x� − ηt�x�� =
∑
x≥0

�ξt+h�x� − ξt�x��:

Notice that these sums are well defined since by (4.1) the total number of
particles is µN-a.s. finite.

By the hydrodynamical limit for space homogeneous zero-range processes,
the right-hand side divided by N converges in probability to

∫ ∞
0
�λ�t+ h;u� − λ�t; u��du =

∫ t+h
t

ϕ�λ�s;0��ds:

This last equality follows from identity (4.5).
On the other hand, the rate at which particles leave the origin is bounded

by a Poisson point process of rate α�·�g�∞�.
Therefore, for every ε > 0,

lim
N→∞

PN
µNm∗

[
−
∫ t+h
t

α�s�g�∞�ds− ε

≤N−1�ηt+h�0� − ηt�0�� −
∫ t+h
t

ϕ�λ�s;0��ds ≤ ε
]
= 1:

Therefore, to conclude the proof of the lemma, we only have to show the tight-
ness of the sequence RN and that all limit points are concentrated on contin-
uous paths. This follows from the coupling. Indeed, to prove tightness, it is
enough to show that

lim sup
C→∞

lim sup
N→∞

sup
0≤t≤T0

PN
µNm∗
�N−1ηt�0� ≥ C� = 0;

lim sup
γ→0

lim sup
N→∞

PN
µNm∗

[
sup
�t−s�≤γ

N−1�ηt�0� − ηs�0�� ≥ ε
]
= 0

(4.7)

for every positive ε. The first statement follows from the inequality

N−1ηt�0� ≤N−1η0�0� +N−1 ∑
x≥0

�ξt�x� − ξ0�x��
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and the law of large numbers for the homogeneous process. To prove the second
statement, we first remark that we have the following inequality

N−1�ηt�0� − ηs�0�� ≤N−1 ∑
x≥0

�ξt�x� − ξs�x�� +N−1�UN�t� −UN�s��;

where UN�·� represents a Poisson process with rate α�·�g�∞� accelerated by
N. The tightness follows therefore from the law of large numbers for both
processes on the right-hand side of the inequality. Moreover, (4.7) implies that
all limit points are concentrated on continuous paths. This, in turn, shows
that every converging subsequence converges in the uniform topology. 2

A slight refinement of the above arguments gives the exact behavior of b�·�
at points where b�·� is strictly positive. Denote by α the maximum of α�·� in
�0;T0�:

α = sup
t∈�0;T0�

α�t�:

Lemma 4.7. Let R∗ be a limit point of the sequence RN. Fix t > 0 and
assume that there exists θ > 0 such that

R∗�b�t� ≥ θ� > 0; R∗�b�t� = θ� = 0:

Then, for all 0 ≤ h ≤ θ�αg�∞��−1;

R∗
[
b�t+ h� − b�t� =

∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

∣∣ b�t� ≥ θ
]
= 1:

Proof. Fix h < θ�αg�∞��−1 and ε > 0. Assume, to keep the notation as
simple as possible, that RN converges to R∗. From Lemma 4.6 and from its
proof,

R∗
[ ∣∣∣∣ b�t+ h� − b�t� −

∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

∣∣∣∣ ≤ ε
∣∣ b�t� ≥ θ

]

≥ lim
N→∞

PN
[ ∣∣∣∣N

−1�ηt+h�0� − ηt�0��

−
∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

∣∣∣∣ ≤ ε
∣∣ηt�0� ≥ θN

]
:

(4.8)

Therefore, to prove the lemma, it is enough to show that the right-hand
side of the last inequality is equal to 1 for every ε > 0.

Notice that on the set �inf�ηs�0�y s ∈ �t; t + h�� ≥ 1� particles leave the
origin as a Poisson point process of rate α�·�g�∞�. This is the key remark in
order to prove this lemma. Thus ηt+h�0� − ηt�0� is equal to the total number
of particles that arrive at the origin in the interval �t; t+ h� minus a Poisson
point process of rate α�·�g�∞�.
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By the hydrodynamical limit for space homogeneous zero-range processes
the total number of particles that arrive at the origin in the interval �t; t+h�
divided by N converges in probability to

∫ t+h
t ϕ�λ�s;0��ds. To conclude the

argument, we have only to show that the conditional probability of the set
�inf�ηs�0�y s ∈ �t; t+h�� ≥ 1�, given that ηt�0� ≥ θN, converges to 1. But this
is a simple consequence of the law of large numbers for Poisson processes.

More precisely, the probability appearing on the right-hand side of (4.8) is
bounded below by

PN
[ ∣∣∣∣N

−1�ηt+h�0� − ηt�0�� −
∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

∣∣∣∣ ≤ ε

and inf�ηs�0�y s ∈ �t; t+ h�� ≥ 1
∣∣∣ηt�0� ≥ θN

]
:

Denote by �UN�t��t≥0 a Poisson point process with parameter α�·�g�∞� accel-
erated by N. With this notation, on the set

{
inf�ηs�0�y s ∈ �t; t + h�� ≥ 1

}
,

ηt+h�0� − ηt�0� is equal to

∑
x≥0

�ξt+h�x� − ξt�x�� − �UN�t+ h� −UN�t��:

By Lemma 4.3, by conservation of the total number of particles and by the law
of large numbers for Poisson processes, this expression divided byN converges
in probability as N ↑ ∞ to

∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds:

Therefore the last probability, which is bounded below by

PN
[ ∣∣∣N−1 ∑

x≥0

�ηt+h�x� − ηt�x�� −N−1�UN�t+ h� −UN�t��

−
∫ t+h
t
�ϕ�λ�s;0�� − α�s�g�∞��ds

∣∣∣ ≤ ε
∣∣ηt�0� ≥ θN

]

−PN
[
inf�ηs�0�y s ∈ �t; t+ h�� = 0

∣∣ηt�0� ≥ θN
]
;

has a limit bounded below by

1− lim sup
N→∞

PN�inf�ηs�0�y s ∈ �t; t+ h�� = 0
∣∣ηt�0� ≥ θN�:

Since h < θ�αg�∞��−1 and ηs�0� decreases at most at rate α�s�g�∞�, this last
expression is equal to 1. 2

Letting h ↓ 0 and then θ ↓ 0, we obtain the following result as an immediate
consequence of the previous lemma.
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Corollary 4.8. For all limit points R∗ of the sequence RN and all conti-
nuity points t0 of λ�·;0� and α�·�;

R∗��∂tb��t0� = ϕ�λ�t0;0�� − α�t0�g�∞� � b�t0� > 0� = 1:

The first claim in Lemma 4.5 is therefore proved. We now complete the
proof of this lemma.

Proof of Lemma 4.5. Assume first that ϕ�λ�t0;0�� < α�t0�g�∞�. There
exist ε0 and h0 such that ϕ�λ�t0+h;0�� < α�t0+h�g�∞�−ε0 for all 0 ≤ h < h0.
From Lemma 4.6, b is continuous. On the other hand, Lemma 4.7 gives the
behavior of b�·� when b�·� is positive. It is easy to see from these two facts that
b�·� has to be identically equal to 0 on the interval �t0; t0 + h0�.

We now turn to the case Z�t0� x= ϕ�λ�t0�� − α�t0�g�∞� ≥ 0. By the lower
bound of Lemma 4.6,

lim inf
h↓0

h−1�b�t0 + h� − b�t0�� ≥ Z�t0�:

Assume first that Z�t0� > 0. In this case b�·� is positive on some inter-
val �t0; t1�. Corollary 4.8 describes the behavior of b�·� when b�·� is positive:
∂tb�t� = Z�t�. Thus, in the interval �t0; t1�, b�t� =

∫ t
t0
Z�s�ds and �∂+t b��t0� =

Z�t0�.
Suppose now that Z�t0� = 0. We want to show that

lim sup
h↓0

h−1�b�t0 + h� − b�t0�� = 0:

Assume by contradiction that this limit is greater than a strictly positive
constant 2ε. There would exist therefore a sequence sk ↓ t0 with b�sk� ≥
2ε�sk − t0�. Since t0 is a continuity point of Z�·�, there exists δ > 0 such that
Z�t� ≤ ε/2 for t in �t0; t0 + δ�. Assume, without loss of generality, that sk
belongs to �t0; t0 + δ� for all k. By definition, b�s1� > 2ε�s1 − t0�. Since b�·�
is continuous, limk b�sk� = b�t0�. There exists therefore k0 such that b�s1� −
b�sk0

� ≥ ε�s1−sk0
�. This is impossible because when b is positive its derivative

at t is equal to Z�t� which in this interval is bounded by ε/2. 2

5. An entropy inequality at the microscopic level. In this section and
the next we follow the approach proposed by Rezakhanlou [7] to prove the hy-
drodynamical behavior of asymmetric attractive interacting particle systems.
For this reason some proofs are only sketched.

Throughout this section, for an integer x, τx denotes the translation by x
units on the configuration space. These translations are naturally extended to
cylinder functions. We will use repeatedly the following notation throughout
this section. For an integer x and a positive integer l, ηl�x� represents the
mean density of particles in a box of length 2l+ 1 centered at x:

ηl�x� = �2l+ 1�−1 ∑

�y−x�≤l
η�y�:(5.1)
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The symbol LN denotes the basic coupling of two inhomogeneous zero-range
processes with evolution described by the generator (1.2) associated with the
couple ��0; α��:

�LNf��η; ξ�
=
∑
x∈Z

pN�t; x�min�g�η�x��; g�ξ�x����f�ηx; x+1; ξx; x+1� − f�η; ξ��

+
∑
x∈Z

pN�t; x��g�η�x�� − g�ξ�x���+�f�ηx; x+1; ξ� − f�η; ξ��

+
∑
x∈Z

pN�t; x��g�ξ�x�� − g�η�x���+�f�η; ξx; x+1� − f�η; ξ��:

(5.2)

This section is devoted to the proof of an entropy inequality at the mi-
croscopic level. In order to state the first result, for a probability µN on the

configuration space NZ × NZ = X 2, denote by P
N

µN the probability measure
on the path space D��0;∞�;X 2� corresponding to the Markov process �ηt; ξt�
evolving according to the generator LN defined above, accelerated by N and
starting from µN.

For a measure µN on the product space X 2, we denote by µNi its ith
marginal.

Proposition 5.1. Let µN be a measure with both marginals bounded by a
translation invariant product measure νti

ρ0
:

µNi ≤ νti
ρ0

(5.3)

for i = 1; 2 and some density ρ0. Recall the definition of ϕ given in (1.5) and
the definition of ηl�x� given in (5.1). For every smooth positive function H of
CK��0;∞�×R� and every positive ε;

lim
l→∞

lim
N→∞

P
N

µN

[∫ ∞
0
dtN−1∑

x

{
∂tH

(
t;
x

N

)∣∣ηlt�x� − ξlt�x�
∣∣

+ ∂uH
(
t;
x

N

)∣∣ϕ
(
ηlt�x�

)
− ϕ

(
ξlt�x�

)∣∣
}
≥ −ε

]
= 1:

Notice that the assumption (5.3) on the initial measure µN implies that
there is a finite density of particles on each compact set:

lim sup
N→∞

µN
[
N−1 ∑

�x�≤CN
η�x� + ξ�x�

]
<∞(5.4)

for every C > 0. The next lemma requires only this weaker assumption on the
sequence of initial measures.

The proof of Proposition 5.1 is divided in several lemmas. We first prove
that in the limit as N ↑ ∞ the configurations η and ξ are ordered.
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Lemma 5.2. Assume that the sequence of initial measure µN satisfies hy-
pothesis (5.4). Then, for every positive smooth functionHwith compact support,
for every time T > 0 and every integer y;

lim
N→∞

E
N

µN

[∫ T
0
dtN−1∑

x

H�x/N�Gx;x+y�ηt; ξt�
]
= 0;

where, for two sites x and y; Gx;y�η; ξ� is an indicator function equal to 1 if
the configurations η and ξ are not ordered at sites x and y:

Gx;y�η; ξ� = 1�η�x�<ξ�x� ; η�y�>ξ�y�� + 1�η�x�>ξ�x� ; η�y�<ξ�y��:(5.5)

Proof. We sketch the proof of this result to avoid long but simple compu-
tations.

The proof is done in three steps. We first show that

lim
N→∞

E
N

µN

[∫ T
0
dtN−1∑

x

H

(
x+ 1
N

) ∣∣g�ηt�x�� − g�ξt�x��
∣∣Gx; x+1�ηt; ξt�

]
= 0;

considering the martingale

N−1∑
x

H

(
x

N

)∣∣ηt�x� − ξt�x�
∣∣−

∫ t
0
dsN−1∑

x

H

(
x

N

)
NLN

∣∣ηs�x� − ξs�x�
∣∣

and using the assumption on the initial measure µN. From this result it fol-
lows that

lim
N→∞

E
N

µN

[ ∫ T
0
dtN−1∑

x

H

(
x+ 1
N

){
1 0=ηt�x�<ξt�x�
ηt�x+1�>ξt�x+1�

+ 1 ηt�x�>ξt�x�=0
ηt�x+1�<ξt�x+1�

}]
= 0:

The second step consists of removing the condition ηt�x� ∧ ξt�x� = 0 in the
last expression. This is done by induction. For a positive integer m, let

Im�η; ξ� =N−1∑
x

H

(
x+ 1
N

)
1 m=η�x�<ξ�x�
η�x+1�>ξ�x+1�

:

In the first step we proved that

lim
N→∞

E
N

µN

[∫ T
0
dt I0�ηt; ξt�

]
= 0:

A simple computation of the martingale Im�ηt; ξt� −
∫ t

0 NLNIm�ηs; ξs�ds
shows that

g�m+1�EN

µN

[∫ T
0
dt Im+1�ηt; ξt�

]
≤N−1C�H�+4g�∞�EN

µN

[∫ T
0
dt Im�ηt; ξt�

]
:

It follows from this inequality and the statement proved in the first step of
the proof that

lim
N→∞

E
N

µN

[∫ T
0
dtN−1∑

x

H

(
x+ 1
N

)
1 m=ηt�x�<ξt�x�
ηt�x+1�>ξt�x+1�

]
= 0
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for every positive integer m. This result, the assumption made on the initial
measure µN and a simple coupling argument show that

lim
N→∞

E
N

µN

[∫ T
0
dtN−1∑

x

H

(
x+ 1
N

)
Gx; x+1�ηt; ξt�

]
= 0:

This concludes the second step.
The last step in the proof consists of replacing x+ 1 by x+ y in the above

formula. This can be done since H is uniformly continuous and Gx; x+y�η; ξ�
is bounded above by

x∨y−1∑
z=x∧y

Gz; z+1�η; ξ�: 2

This ordering of the coordinates made by the process allows us to replace
averages of absolute values of differences of monotone functions by absolute
values of averages. This statement is made clear in the next lemma.

A cylinder function 9 is said to be Lipschitz if there exists a finite subset
3 of Z and a constant C�9� such that

∣∣9�η� −9�ξ�
∣∣ ≤ C�9�

∑
x∈3

∣∣η�x� − ξ�x�
∣∣:

Notice that for all Lipschitz cylinder functions 9 there exists a constant C′�9�
and a finite subset 3 of Z such that

∣∣9�η�
∣∣ ≤ C′�9�

(
1+

∑
x∈3

η�x�
)
:

Lemma 5.3. Let µN be a sequence of measures satisfying the assumption
stated in Proposition 5.1. Let 9 be a monotone Lipschitz function. Then, for
every positive continuous function H: R+ ×R→ R with compact support and
for every positive integer l;

lim
N→∞

E
N

µN

[∫ ∞
0
dtN−1∑

x

H

(
t;
x

N

){
�2l+ 1�−1 ∑

�y−x�≤l

∣∣τy9�ηt� − τy9�ξt�
∣∣

−
∣∣∣�2l+ 1�−1 ∑

�y−x�≤l
�τy9�ηt� − τy9�ξt��

∣∣∣
}]
=0:

Proof. In the case where 9 is a bounded function, this result is an im-
mediate consequence of the preceding lemma. Indeed, let 3l be the subset of
Z consisting of all integers at a distance smaller than l from 3: 3l = �y ∈ Z;
∃ x ∈ 3; �x− y� ≤ l�. Define G3; l�η; ξ� as the indicator function defined to be
equal to 1 if η and ξ are not ordered at 3l:

G3; l�η; ξ� = 1−
∏

x;y∈3l
�1−Gx;y�η; ξ��:
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If the configurations η and ξ are ordered on the set 3l translated by x, the
expression that appears under brackets in the expectation vanishes because
9 is monotone. Therefore, to prove the lemma for bounded functions 9, it is
enough to show that

lim
N→∞

E
N

µN

[∫ ∞
0
dtN−1∑

x

H

(
t;
x

N

)
τxG3; l�ηt; ξt�

]
= 0

and this follows from the previous lemma since G3; l�η; ξ� is bounded by
∑

x;y∈3l
Gx;y�η; ξ�:

We now turn to the general case. Since the negative part of a monotone
Lipschitz function is bounded, we assume, without loss of generality, that 9
is positive. The idea is to reduce the general case to the bounded case. At the
origin, however, the cutoff needed may not work since the number of particles
at site 0 can be of order N. This statement will be made clear later in the
proof. For this reason we have to consider sites around the origin separately.
We therefore divide the sum over all sites x in the expected value appearing
in the statement of the lemma into two pieces. The first one takes into account
sites near the origin, �x� ≤ 2l0, and the second one sites far from the origin,
�x� > 2l0. Here l0 is chosen in such a way that the support of τx9 is contained
in �−l0; : : : ; l0� for every �x� ≤ l.

We show that each piece converges to 0 separately. We concentrate first on
the second piece. For a real positive A, let 9A be the cutoff of 9 at level A:

9A�η� = 9�η� ∧A:
The second piece is bounded above by

E
N

µN

[ ∫ ∞
0
dtN−1 ∑

�x�>2l0

H

(
t;
x

N

){
�2l+ 1�−1 ∑

�y−x�≤l

∣∣τy9A�ηt� − τy9A�ξt�
∣∣

−
∣∣∣∣�2l+ 1�−1 ∑

�y−x�≤l
�τy9A�ηt� − τy9A�ξt��

∣∣∣∣
}]

+EN

µN

[ ∫ ∞
0
dt2N−1 ∑

�x�>2l0

H

(
t;
x

N

)

×
{
�2l+ 1�−1 ∑

�y−x�≤l
�τy9�ηt� − τy9�ηt� ∧A�

+ �2l+ 1�−1 ∑

�y−x�≤l
�τy9�ξt� − τy9�ξt� ∧A�

}]
:

For every A the first term converges to 0 as N increases to∞ by the first part
of the proof. On the other hand, since both marginals of the initial measure
µN are bounded by the translation invariant measure νti

ρ0
, by Lemma 4.2,

there exist a density ρ1 and a rate α1 such that the state of the process at any
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time is bounded by the invariant measure ν0
ρ1; α1

of the inhomogeneous process.
Therefore, since 9�η� −9�η� ∧A is an increasing function, the second term
is bounded by

4C0�H�ν0
ρ1; α1

[
N−1 ∑

2l0<�x�≤C1�H�N

{
�2l+ 1�−1 ∑

�y−x�≤l
τy9�η� − τy9�η� ∧A

}]
:

We now see why we needed to separate from the global sum over all sites
the part where η�0� interferes. Indeed, to show that this expression converges
to 0, we need to use the fact that the sum does not take into account the
occupation variable η�0�.

Since outside the origin the measure ν0
ρ1; α1

is bounded by a translation
invariant product measure νti

ρ2
with an appropriate density ρ2, the last ex-

pression is bounded by

C2�H�νti
ρ2

[
9�η� −9�η� ∧A

]

and this expected value converges to 0 as A increases to ∞ by the dominated
convergence theorem.

We now concentrate on the sum over sites near the origin. For a fixed integer
y, let 9y�η� = 9y�η�0�� be the function τy9 evaluated on the configuration
η0 defined by

η0�x� =
{
η�0�; if x = 0;

0; otherwise.

With this notation the sum may be rewritten as

E
N

µN

[∫ ∞
0
dtN−1 ∑

�x�≤2l0

H

(
t;
x

N

){
�2l+ 1�−1 ∑

�y−x�≤l

∣∣9y�ηt� −9y�ξt�
∣∣

−
∣∣∣∣�2l+ 1�−1 ∑

�y−x�≤l
�9y�ηt� −9y�ξt��

∣∣∣∣
}]

+EN

µN

[∫ ∞
0
dt2N−1 ∑

�x�≤2l0

H

(
t;
x

N

){
�2l+1�−1 ∑

�y−x�≤l

∣∣τy9�ηt�−9y�ηt�
∣∣

+ �2l+ 1�−1 ∑

�y−x�≤l

∣∣τy9�ξt� −9y�ξt�
∣∣
}]
:

Since 9 is monotone and, for each y, 9y depends only on the value of η�0�, the
expression inside the brackets in the first expectation vanishes for each N. On
the other hand, since 9 is Lipschitz, repeating the coupling arguments used in
the second part of this proof, we show that the second expression converges to
0 as N increases to ∞ because the sum of a finite number of terms is divided
by N. 2
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The third result toward the proof of Proposition 5.1 is a one-block estimate
for the uncoupled process. To state this next lemma, we need additional nota-
tion. For a bounded cylinder function 9, we denote by 9̃�ρ� the expected value
of 9 with respect to the product translation invariant measure νti

ρ defined in
(1.6):

9̃�ρ� = νti
ρ �9�η��:(5.6)

Recall the terminology introduced just after (1.10) of a sequence of measures
associated with a profile.

Lemma 5.4 (One-block estimate). Let µN be a sequence of product mea-
sures on X associated with a bounded profile. For every positive continuous
function H: R+×R→ R with compact support and for every bounded cylinder
function 9;

lim
l→∞

lim
N→∞

EN
µN

[∫ ∞
0
dtN−1∑

x

H

(
t;
x

N

)∣∣∣∣�2l+1�−1 ∑

�y−x�≤l
τy9�η�−9̃

(
ηlt�x�

)∣∣∣∣
]
= 0:

Proof. This proof is only sketched since the arguments are by now stan-
dard. First of all, it is clear that we need to prove Lemma 5.4 only for product
measures associated with profiles that are identically equal to ρ outside some
compact set. Fix such a measure µN.

To keep the notation simple, for a bounded cylinder function 9 and a posi-
tive integer l, let

V9; l�η� =
∣∣∣∣�2l+ 1�−1 ∑

�y�≤l
τy9�η� − 9̃

(
ηlt�0�

)∣∣∣∣:

Recall that we represent by Lh the generator of the space homogeneous zero
range process. Recall also that we denoted by PN;ρh the probability measure
on the path space corresponding to the Markov process with generator Lh
accelerated by N and starting from the product measure νti

ρ .
Fix a time T such that the support of H is contained in �0;T� ×R. Denote

by PNµN�T� and P
N;ρ
h �T� the restrictions of the measures PNµN and P

N;ρ
h to

D��0;T�;X �. By the entropy inequality, for every positive γ, the expected
value appearing in the statement of the lemma is bounded above by

1
γN

H
(
PNµN�T�

∣∣PN;ρh �T�
)

+ 1
γN

logEN;ρ
h

[
exp

{∫ T
0
dtγ

∑
x

H

(
t;
x

N

)
τxV9; l�ηt�

}]
:

In this last formula H�PNµN�T� �P
N;ρ
h �T�� stands for the entropy of PNµN�T�

with respect to PN;ρh �T�. A simple computation shows that this entropy has
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the following explicit form:

∫
log

{
dµN

dνti
ρ

}
dµN

+EN

[
N
∫ T

0
g�ηs�0��

{
pN�s;0� logpN�s;0� + 1− pN�s;0�

}
ds

]
:

Since the measure µN is associated with a profile equal to ρ outside some
compact set, it is easy to show that the last expression is bounded by C0�T�N.
On the other hand, following the arguments of [3], we show that, for every
γ > 0,

lim
l→∞

lim
N→∞

1
N

logEN;ρ
h

[
exp

{∫ T
0
dtγ

∑
x

H

(
t;
x

N

)
τxV9; l�ηt�

}]
= 0:

This concludes the proof of the lemma. 2

We are now ready to prove the entropy inequality at the microscopic level.

Proof of Proposition 5.1. Let MH�t� be the martingale defined by

MH�t� =N−1∑
x

H

(
t;
x

N

)∣∣ηt�x� − ξt�x�
∣∣

−
∫ t

0

(
∂s +NLN

)
N−1∑

x

H

(
s;
x

N

)∣∣ηs�x� − ξs�x�
∣∣ds:

A computation using the results of Lemma 5.2 shows that

lim
N→∞

E
N

µN
[(
MH�t�

)2] = 0:

From Doob’s inequality we obtain that, for every t ≥ 0 and every positive ε,

lim
N→∞

P
N

µN
[∣∣MH�t�

∣∣ > ε
]
= 0:(5.7)

On the other hand, it is easily seen that, for t sufficiently large, the mar-
tingale is bounded below by

−
∫ ∞

0
N−1∑

x

{
∂sH

(
s;
x

N

)∣∣ηs�x� − ξs�x�
∣∣

+ ∂uH
(
s;
x

N

)
pN�s; x�

∣∣g�ηs�x�� − g�ξs�x��
∣∣
}
ds−O

(
1
N

)
:

Since g and ∂uH are bounded functions and since pN�s; x� is equal to 1 at all
sites x 6= 0, pN�s; x� can be removed in the last formula. Thus the martingale
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is bounded below by

−
∫ ∞

0
N−1∑

x

{
∂sH

(
s;
x

N

)∣∣ηs�x� − ξs�x�
∣∣

+ ∂uH
(
s;
x

N

)∣∣g�ηs�x�� − g�ξs�x��
∣∣
}
ds−O

(
1
N

)
:

By the assumption on the initial measure, for every continuous function G:
R+ ×R→ R with compact support,

lim
N→∞

E
N

µN

[∫ ∞
0
dtN−1∑

x

[
G

(
t;
x

N

)
− �2l+ 1�−1 ∑

�y−x�≤l
G

(
t;
y

N

)]

×
{∣∣ηt�x� − ξt�x�

∣∣+
∣∣g�ηt�x�� − g�ξt�x��

∣∣}
]
= 0:

Applying this result to the functions ∂tH and ∂uH and making a discrete
integration by parts, we obtain that, for t sufficiently large, the martingale is
bounded below by

−
∫ ∞

0
N−1∑

x

{
∂sH

(
s;
x

N

)
�2l+ 1�−1 ∑

�y−x�≤l

∣∣ηs�y� − ξs�y�
∣∣

+ ∂uH
(
s;
x

N

)
�2l+ 1�−1 ∑

�y−x�≤l

∣∣g�ηs�y�� − g�ξs�y��
∣∣
}
ds− oN�1�:

Therefore, from (5.7) and Lemma 5.3, we obtain that, for every ε > 0,

lim
N→∞

P
N

µN

[∫ ∞
0
N−1∑

x

{
∂sH

(
s;
x

N

)∣∣∣∣�2l+ 1�−1 ∑

�y−x�≤l

[
ηs�y� − ξs�y�

]∣∣∣∣

+ ∂uH
(
s;
x

N

)∣∣∣∣�2l+ 1�−1 ∑

�y−x�≤l

[
g�ηs�y�� − g�ξs�y��

]∣∣∣∣
}
ds < −ε

]
= 0:

Finally, applying the one-block estimate stated in Lemma 5.4 to the function
g�η�0�� and recalling that the expectation of this function with respect to the
product measure νti

ρ is ϕ�ρ�, we conclude the proof of the proposition. 2

Remark 5.5. In Proposition 5.1 the assumption (5.3) was necessary to con-
trol the remainder in the cutoff made in Lemma 5.3 to reduce the general case
to the case of bounded monotone functions. This hypothesis can be relaxed.
For instance, (5.4) and the existence of a density ρ1 such that

µNi S
N
t ≤ νti

ρ1

away from the origin for all t > 0 and i = 1, 2 are enough to prove Proposi-
tion 5.1.
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We conclude this section by applying Proposition 5.1 to some special cases
where the function H has compact support in �0;∞� × �0;∞�. In this case
the coupling on sites x ≤ 0 is irrelevant for the proof of Proposition 5.1. In
particular, we may couple two processes with different jump rates at the origin.

For fixed rates p1
N�t; x� and p2

N�t; x� denote by L∗N the generator of the
basic coupling of two inhomogeneous zero-range processes:

�L∗Nf��η; ξ� =
∑
x∈Z

min
{
p1
N�t; x�g�η�x��; p2

N�t; x�g�ξ�x��
}

× �f�ηx; x+1; ξx; x+1� − f�η; ξ��
+
∑
x∈Z

(
p1
N�t; x�g�η�x�� − p2

N�t; x�g�ξ�x��
)+

× �f�ηx; x+1; ξ� − f�η; ξ��
+
∑
x∈Z

(
p2
N�t; x�g�ξ�x�� − p1

N�t; x�g�η�x��
)+

× �f�η; ξx; x+1� − f�η; ξ��:

(5.8)

Repeating the proof of Proposition 5.1, we obtain the following result.

Lemma 5.6. Let µN be a measure with both marginals restricted to NN∗

bounded by a translation invariant product measure νti
ρ0

:

µNi
∣∣
NN∗ ≤ νti

ρ0

for i = 1;2 and some density ρ0. Then the conclusions of Proposition 5.1 are
valid for every smooth positive function with compact support in �0;∞�×�0;∞�
if �ηt; ξt� evolves as the Markov process with generator defined in (5.8), accel-
erated by N.

Notice that, for each 0 < α < 1, ρ ≥ 0, the measures µNm∗ × ν0
ρ; α satisfy the

assumptions of Lemma 5.6.
Fix p2

N�t; x� to be equal to α if x = 0 and 1 otherwise. Since ν0
ρ; α is an

invariant measure, �ξt� is a stationary process. Moreover, by the law of large
numbers, at a macroscopic distance from the origin ξl�x� converges in proba-
bility to ν0

ρ; α�ξ�1��. Since the range of ν0
ρ; α�ξ�1�� as �ρ; α� varies in R+×�0;1� is

R+, from Lemma 5.6 we obtain the following microscopic entropy inequality.

Corollary 5.7. For every smooth positive function H with compact sup-
port in �0;∞�× �0;∞�; for every nonnegative constant c and for every positive
ε > 0;

lim
l→∞

lim
N→∞

PN
µNm∗

[∫ ∞
0
dtN−1∑

x

{
∂tH

(
t;
x

N

)∣∣ηlt�x� − c
∣∣

+ ∂uH
(
t;
x

N

)∣∣ϕ
(
ηlt�x�

)
− ϕ

(
c
)∣∣
}
≥ −ε

]
= 1:
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6. Young measures. In this section we conclude the proof of Theorem 1.
The approach presented here to prove the hydrodynamical behavior of asym-
metric processes relies on some results on entropy measure-valued weak solu-
tions of scalar hyperbolic equations. The terminology and the results needed
in this section are discussed in the Appendix.

Recall the definition of ηl�x� given in (5.1). For each positive integer N
and l and each configuration η, define the Young measure σN; l = σN; l�η� as
the Radon measure on R2

+ that integrates a continuous function with compact
support H: R2

+→ R as

�σN; l;H� =
∫
H�u;q�σN; l�du;dq� =N−1 ∑

x>l

H

(
x

N
;ηl�x�

)
:

Notice that the sum starts from l+1 to avoid the interference of η�0�. To keep
the notation simple, we use the shorthand σN; lt to denote σN; l�ηt�. The first
marginal of σN; l is a discrete approximation of the Lebesgue measure and at
site x/N the second marginal of σN; l is a Dirac measure at ηl�x�.

The measures σN; lt and πNt are related by the following relation. For every
continuous function H: R→ R with compact support in �0;∞�:

∫
H�u�qσN; lt �du;dq� =

∫
H�u�πNt �du�(6.1)

plus error terms uniformly small in N.
The strategy of the proof of the hydrodynamical limit on the right of the

origin is simple. We first prove that σN; lt converges in law to the entropy
measure-valued solution on R+ of the hyperbolic equation

∂tρ+ ∂uϕ�ρ� = 0;

∂t

∫
R+
ρ�t; u�du = ω�t�;

ρ�0; ·� =m∗�·�

(6.2)

with boundary conditions m∗�·� and ω�·� given by

ω�t� =
{
α�t�g�∞�; if β�t� > 0;

α�t�g�∞� ∧ ϕ�λ�t;0��; otherwise.
(6.3)

We then use (6.1) to show that πNt converges to the entropy solution of the
same boundary hyperbolic equation.

Recall that we assumed m∗ to be continuous with compact support.
To state the main result, we need some notation. Denote by M+�R2

+� the
space of all positive Radon measures on R2

+ endowed with the vague topology.
For a fixed time T0 and integers N and l, let RN; l denote the probability
on D��0;T0�;M+�R�×M+�R2

+�� corresponding to the process �πNt ; σN; lt � with
generator LN; t, accelarated by N and starting from the product measure µNm∗ .
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In view of the results of Section 4, in the case where m∗ is uniformly
Lipschitz continuous, Theorem 1 follows from the following proposition.

Proposition 6.1. The sequenceRN; l converges asN ↑ ∞ and then l ↑ ∞ to
the probability measure concentrated on the deterministic path �πt; σt�; where
σt�du;dq� = σt�u;dq�du is the entropy measure-valued solution of (6.2) and
πt satisfies

∫
H�u�qσt�du;dq� =

∫
H�u�πt�du�

for every continuous function H: R→ R with compact support in �0;∞�.

A simple coupling argument permits us to prove Theorem 1 for continuous
profiles (in fact, for a much larger class) from the result for uniformly Lipschitz
profiles. Indeed, the L1 norm is contractive for entropy solutions of hyperbolic
equations. It is also contractive at a microscopic level since

EN

[
N−1∑

x

∣∣ηt�x� − ξt�x�
∣∣
]

decreases in time if �ηt; ξt� evolves according to the generator defined in (5.2).
Thus, to prove Theorem 1 for continuous profiles, we just have to approximate
the initial data by uniformly Lipschitz continuous profiles.

We now turn to the proof of Proposition 6.1. We start proving the tightness
of the sequence RN; l.

Lemma 6.2. The sequence RN; l is tight. Every limit point R∗ of this se-
quence when N ↑ ∞ and then l ↑ ∞ is concentrated on weakly continuous
paths �πt; σt� such that:

(a) πt�du� = ρ�t; u�du on �0;∞�;
(b) σ�t; du;dq� = σ�t; u;dq�du;
(c) there exists ρ1 = ρ1�m∗; α� such that σ�t; u; �0; ρ1�c� = 0 for every �t; u� ∈

�0;∞�2;
(d) ρ�t; u� =

∫
qσ�t; u;dq� for every �t; u� ∈ �0;∞�2.

The proof of this lemma relies on Lemma 4.2 and is similar to the proof of
Lemma 5.5 in [7].

In view of Theorem A2 in the Appendix, to conclude the proof of Propo-
sition 6.1, we have to prove an entropy inequality and the L1 convergence
to the boundary conditions. The entropy inequality is just a restatement of
Corollary 5.7. The convergence in L1 to m∗ is stated in the next lemma.

Lemma 6.3. Assume that m∗ is uniformly Lipschitz continuous. Every limit
point R∗ of the sequence RN; l is concentrated on paths σt such that

lim
t→0

∫
du

∫ ∣∣q−m∗�u�
∣∣σ�t; u;dq� = 0:
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This proof relies on coupling, on the assumption made on m∗ and on the fact
that µNm∗ is a product measure. The proof is identical to the proof of Lemma
5.6(a) in [7].

We now conclude the proof of Theorem 1 by considering the problem of L1

convergence to ω�·�.

Lemma 6.4. Assume that m∗ is uniformly Lipschitz continuous. Every limit
point R∗ of the sequence RN; l is concentrated on paths σt such that

lim
u→0

∫ T0

0
dt

∫ ∣∣ϕ�q� −ω�t�
∣∣σ�t; u;dq� = 0:

Proof. Fix an interval �T1;T2� where α�·� is constant, say α�t� = α0. The
proof is divided into two steps. We prove separately the L1 convergence in
intervals where b�·� is positive and in intervals where b�·� vanishes.

Consider a subinterval �t0; t1� of �T1;T2� where b�·� is strictly positive. In
this case, from (6.3) we have that

ω�t� = α0g�∞� = ϕ�ρα0
� for t ∈ �t0; t1�:

The second equality defines ρα0
. For fixed large A and ρ1, let νN = νNA;α0; ρ1

denote the product measure on NZ with marginals given by

νN�ηy η�x� = k� = ν0
ρ1; α0
�ηy η�x� = k� for x 6= 0; k ∈ N;

νN�ηy η�0� = AN� = 1:

For A and ρ1 sufficiently large it is easy to show that, if ξt evolves according
to the generator LN; t associated with �0; α0� defined in (1.2) accelerated by N
and starting from νN, then N−1ξt�0� converges in probability to

g�t� = A+ �ϕ�ρ1� − α0g�∞��t:(6.4)

At the right of the origin the measure νN looks like the invariant measure
ν0
ρ1; α0

. Since for A and ρ1 sufficiently large the probability that at some time
there are no particles at site 0 converges to 0 as N ↑ ∞, a coupling argument
shows that, for every positive continuous function H: R → R with compact
support,

lim
l→∞

lim
N→∞

PNνN

[∫ t1
t0

∑
x>l

H

(
x

N

)∣∣ξlt�x� − ρα0

∣∣dt > ε
]
= 0

for every ε > 0.
In Proposition 5.1 let µN be the measure µNSNt0 × νN; µN satisfies the

assumptions of Remark 5.5. Thus, from Proposition 5.1 and the hydrodynam-
ical behavior at the left of the origin, for sufficiently large A and ρ1, and
for every smooth positive function H: R+ × R → R with compact support
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in �t0; t1� ×R→ R,

lim
l→∞

lim
N→∞

P
N

µN

[∫ ∞
0
dtN−1 ∑

x>l

{
∂tH

(
t;
x

N

)∣∣ηlt�x� − ρα0

∣∣

+∂uH
(
t;
x

N

)∣∣ϕ
(
ηlt�x�

)
− ϕ

(
ρα0

)∣∣
}

+
∫ ∞

0
dt
∫ 0

−∞
du

{
∂tH�t; u�

[
ρ1 − λ�t; u�

]

+∂uH�t; u�
[
ϕ
(
ρ1
)
− ϕ

(
λ�t; u�

)]}

+
∫ ∞

0
dt ∂tH�t;0�

[
g�t� − b�t�

]
≥ −ε

]
= 1:

Here g�·� is the function defined in (6.4). We used that λ�·; ·� is bounded above
by ρ1 and that b�·� is bounded above by g�·� for A and ρ1 large.

Letting ε ↓ 0, we obtain that every limit point R∗ of the sequence RN; l is
concentrated on trajectories σt such that
∫ ∞

0
dt
∫ ∞

0
du

{
∂tH

∫ ∣∣q− ρα0

∣∣σ�t; u;dq� + ∂uH
∫ ∣∣ϕ

(
q
)
− ϕ

(
ρα0

)∣∣σ�t; u;dq�
}

≥ −
∫ ∞

0
dt
∫ 0

−∞
du
{
∂tH�t; u�

[
ρ1−λ�t; u�

]
+∂uH�t; u�

[
ϕ
(
ρ1
)
−ϕ

(
λ�t; u�

)]}

−
∫ ∞

0
dt ∂tH�t;0��g�t� − b�t��:

Denote by ψ: R→ R+ a smooth approximation of the identity:

ψ�u� ≥ 0;
∫
ψ�u�du = 1; supp ψ ⊂ �−1;1�:

For a positive γ, let ψγ denote a rescaling of ψ by γ:

ψγ�u� = γ−1ψ�γ−1u�:
Fix d, e > 0. Let fγ be a smooth approximation of the indicator function

1�−d; e� and gγ a smooth approximation of the indicator function 1�t0; t1�:

fγ�u� =
∫ u
−∞
�ψγ�v+ d− γ� − ψγ�v− e+ γ��dv;

gγ�u� =
∫ u
−∞
�ψγ�v− t0 − γ� − ψγ�v− t1 + γ��dv:

Notice that the support of gγ is contained in �t0; t1�.
Take H to be equal to fγ�u�gγ′�t� in the last inequality. A simple computa-

tion shows that the right-hand side converges as γ ↓ 0 and γ′ ↓ 0 to
∫ 0

−d
�ρ1 − λ�t0; u��du−

∫ 0

−d
�ρ1 − λ�t1; u��du+

∫ t1
t0

�ϕ�ρ1� − ϕ�λ�t0; u���du:

This expression is bounded below by −dC�ρ1;m
∗�.
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On the other hand, the left-hand side is bounded above by
∫ ∞

0
dtψγ�t− t0 − γ�

∫ e
0
du

∫
�q− ρα0

�σ�t; u;dq�

−
∫ ∞

0
ψγ′�u− e+ γ′�du

∫ ∞
0
dtgγ�t�

∫
�ϕ�q� − ϕ�ρα0

��σ�t; u;dq�:

The term line is bounded above by eC�m∗; ρ1; α0�. Letting γ ↓ 0, we obtain
that the left-hand side of the last inequality is bounded above by

eC�m∗; ρ1; α� −
∫ ∞

0
ψγ′�u− e+ γ′�du

∫ t1
t0

dt
∫
�ϕ�q� − ϕ�ρα0

��σ�t; u;dq�:

Since almost all points of measurable functions are Lebesgue points, letting
γ′ ↓ 0 and d ↓ 0, we obtain that, for almost all e > 0,

∫ t1
t0

dt
∫
�ϕ�q� − ϕ�ρα0

��σ�t; e; dq� ≤ eC�m∗; ρ1; α�:

Redefining σ�t; u;dq� in a set of measure 0, we obtain the inequality for every
e. This proves the L1 convergence to ω�·� in time intervals where b�·� is strictly
positive.

Consider now a subinterval �t′0; t′1� of �T1;T2� where b�·� vanishes. Since b
vanishes, ϕ�λ�s;0�� ≤ α0g�∞� for s in �t′0; t′1�. Recall from (6.3) that in this
interval

ω�t� = ϕ�λ�t;0��:

Proposition 5.1 with µN = µNSNt′0
× νρ; α0

with ρ < ρ0 together with the
behavior at the left of the origin gives that every limit pointR∗ of the sequence
RN; l is concentrated on trajectories σ�t; u;dq� such that, for every positive
smooth function H with compact support in �t′0; t′1� ×R and every c ≤ ρα0

,

∫ ∞
0
dt
∫ ∞

0
du

{
∂tH�t; u�

∫
�q− c�σ�t; u;dq�

+ ∂uH�t; u�
∫
�ϕ�q� − ϕ�c��σ�t; u;dq�

}

≥ −
∫ ∞

0
dt

∫ 0

−∞
du

{
∂tH�t; u��λ�t; u� − c�

+ ∂uH�t; u��ϕ�λ�t; u�� − ϕ�ρ1��
}
:

(6.5)

Let λ be an upper bound for m∗�·� and therefore for λ�·; ·�. Set K1 =
inf�ϕ′�u�; 0 ≤ u ≤ λ� > 0. Since λ�t;0� ≤ ρα0

in �t′0; t′1�, λ�t; u� ≤ ρα0
in

the set A = �t′0 ≤ t ≤ t′1� ∩ �K1�t− t′1� ≤ u ≤K1�t− t′0��.
For any H with compact support in the interior of A , repeating Kružkov’s

argument to prove that the L1 norm is contractive for entropy solutions of
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hyperbolic equations, we show that we may replace c by λ�t; u� in formula
(6.5) (cf. the proof of Theorem 4.2 in [2] for a similar proof). Thus

∫ ∞
0
dt
∫ ∞

0
du

{
∂tH�t; u�

∫
�q− λ�t; u��σ�t; u;dq�

+ ∂uH�t; u�
∫
�ϕ�q� − ϕ�λ�t; u���σ�t; u;dq�

}
≥ 0:

Fix ε > 0. There exists ι�ε� > 0 such that �0; ι� × �t′0 + ε; t′1� ⊂ A o for
ι < ι�ε�. We argue now as we did at the end of the first part of the proof.

Consider a sequence fγ�u�gγ′�t� of smooth approximations of the indicator
function of �0; ι� × �t′0 + ε; t′1� similar to the one considered in the first part of
this proof. Since, for every γ and γ′,

∫ ∞
0
dtg′γ′�t�

∫ ∞
0
dufγ�u�

∫
�q− c�σ�t; u;dq�

is bounded by C�m∗; α�ι, letting γ ↓ 0, we obtain that

∫ ∞
0
duψγ′�u− ι+ γ′�

∫ t′1
t′0
dt

∫
�ϕ�q� − ϕ�c��σ�t; u;dq� ≤ C�m∗; α�ι:

Thus, for almost all 0 < ι < ι�ε�,
∫ t′1
t′0
dt

∫
�ϕ�q� − ϕ�c��σ�t; ι; dq� ≤ C�m∗; α� ι:

We may change σ�t; u;dq� in a set of measure 0 in order for this equation to
be satisfied for all ι < ι�ε�. Since the sequence ϕ�λ�·; ι�� converges to ϕ�λ�·;0��
in L1��0;T0�� as ι ↓ 0, the proof is concluded. 2

APPENDIX

Terminology and results on weak solutions of hyperbolic equations.
In this section we fix the terminology on weak solutions of scalar hyperbolic
equations on the semiinfinite line used throughout this article.

Let ϕ: R+→ R+ be a smooth bounded increasing function, let ω: R+→ R+
be a continuous function and let m: R+→ R+ be a bounded function.

A bounded function ρ: R+×R+→ R+ is an entropy solution of the equation

∂tρ+ ∂uϕ�ρ� = 0;

∂t

∫
R+
ρ�t; u�du = ω�t�;

ρ�0; ·� =m�·�:

(A.1)
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if the following hold:

(a) (Entropy inequality) For every positive function H: R+ × R+ → R+ in
C

1;1
K ��0;∞�× �0;∞�� and every constant c ∈ R,

∫ ∫
R2
+
dtdu�∂tH�ρ− c� + ∂uH�ϕ�ρ� − ϕ�c��� ≥ 0:

(b) (L1
loc convergence to boundary conditions) For every A > 0,

lim
t→0

∫ A
0
du �ρ�t; u� −m�u�� = 0;

lim
u→0

∫ A
0
dt �ϕ�ρ�t; u�� −ω�t�� = 0:

A slight modification in the proof of Theorem 1 of [5] gives the following
result.

Theorem A.1. There exists a unique entropy solution of (A.1).

We now turn to entropy measure-valued solutions. Denote by P �R� the set
of probability measures on R. A measurable function σ : R+ ×R+ → P �R� is
said to be an entropy measure-valued solution of (A.1) if the following hold:

(a) (Boundedness) There exists a constant K0 such that

σ�t; u; �−K0;K0�c� = 0

for every �t; u� in R2
+.

(b) (Entropy inequality) For every positive function H: R+ × R+ → R+ in
C

1;1
K ��0;∞�× �0;∞�� and every constant c ∈ R,

∫ ∫
R2
+
dtdu

{
∂tH

∫
R
�q− c�σ�t; u;dq�

+ ∂uH
∫

R
�ϕ�q� − ϕ�c��σ�t; u;dq�

}
≥ 0:

(c) (L1
loc convergence to boundary conditions) For every A > 0,

lim
t→0

∫ A
0
du

∫
R
�q−m�u��σ�t; u;dq� = 0;

lim
u→0

∫ A
0
dt

∫
R
�ϕ�q� −ω�t��σ�t; u;dq� = 0:

If ρ�t; u� is the entropy solution of (A.1), the measure-valued function
σ�t; u;dq� defined by

σ�t; u;dq� = δρ�t; u��dq�
is an entropy measure-valued solution. The natural question is whether this
is the unique entropy measure-valued solution of (A.1). A slight modification
in the proof of Theorem 4.2 of [2] gives the following result.
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Theorem A.2. There exists a unique entropy measure-valued solution to
equation (A.1).
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