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CONCENTRATION OF THE BROWNIAN BRIDGE
ON THE HYPERBOLIC PLANE

BY THOMAS SIMON

Évry University

We consider a Brownian bridge on the hyperbolic plane with one extrem-
ity tending to infinity, in finite time. We show that the exact exponential rate
according to which this process concentrates around the geodesical segment
joining the origin o to the moving extremity z is −ρ(o, z), where ρ stands for
the hyperbolic distance. This improves a result of A. Eberle.

1. Introduction. Consider a Brownian bridge {Xt , 0 ≤ t ≤ 1} between x and
y �= x in R

n, n≥ 2. It can be written

Xt = Bxt + t (y −Bx1 )
for every 0 ≤ t ≤ 1, where {Bxt , t ≥ 0} is a Brownian motion starting from x. In
particular, the probability that it stays uniformly close to the line (x, y) does not
depend on the distance |y−x|. One can expect that this property will not hold on a
manifold of negative curvature anymore, because on such manifolds the Brownian
motion conditioned to be very far away in finite time should remain nearer and
nearer the geodesics. In a recent paper [7] whose main purpose was to build a
counterexample to the Poincaré inequality on certain loop spaces, Eberle proved
that on the hyperbolic spaces H

n, n≥ 2, the sample paths of the Brownian bridge
actually concentrate according to some exponential rate around the geodesics,
when one of the extremities tends to infinity in finite time.

The aim of this paper is to find the exact exponential rate of concentration,
in the case of the hyperbolic plane H = H

2. This rate appears to be −ρz, where
ρz := ρ(o, z) stands for the Riemannian distance between the origin o and the
moving extremity z. More precisely, we prove that for every a > 0,

lim
ρz↑+∞−ρ−1

z log P

[
sup

0≤t≤1
doz(Zt ) > a

]
= 2 log cosha,

where Z is the hyperbolic Brownian bridge from o to z in time 1, and doz the
distance function to the unique geodesical segment joining o to z.

Our method is very different from that of Eberle, and hinges mainly upon
a comparison between the law of the Bridge and that of the Brownian motion
conditioned to tend toward ∞ in the direction of z, with a certain speed. We show
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that if this speed is chosen to be ρz itself, then roughly the ratio of harmonic
functions connecting the two path measures remains bounded. Thanks to the
explicit representation for the coordinates of the speed conditioned Brownian
motion and the generalized Bougerol’s identity [1], the problem is then reduced to
an asymptotic study of the small deviations of a family of linear diffusions of the
Ornstein–Uhlenbeck type, when the drift parameter tends to infinity. This study
is carried out with the help of Feller’s classical theory [8] on the first passage
time problem for diffusions. Fortunately, the involved second order differential
equation can be solved explicitly in terms of Legendre functions and after an
asymptotic expansion of the latter, the convergence rate −ρz as well as the constant
2 log cosha easily appear.

It should be noted that the same constant 2 log cosha is obtained when one
replaces the geodesical segment by the whole geodesical line passing through
o and z in the family of events under consideration. In other words, the critical
times where the Brownian bridge might move away from the geodesics are most
likely to be near the initial and terminal times.

To conclude this introduction, it may be interesting to mention that the study
of Brownian bridges on symmetric spaces seems to be motivated by Theoretical
Physics [9]. In a different (and more demanding) direction, when the extremities
are fixed and the time goes to infinity, the asymptotic behaviour of the Brownian
bridge on general noncompact symmetric spaces was recently studied by Anker,
Bougerol and Jeulin [3] and Bougerol and Jeulin [5].

2. Preliminaries. We will consider the upper-half plane model for the hyper-
bolic plane H:

H = {z= (x, y), x ∈ R and y > 0}
equipped with the Riemannian metric

ds2 = dx2 + dy2

y2 ,

so that the distance ρ(z1, z2) between z1 and z2 in H is given by

ρ(z1, z2)= arg cosh
(
(x1 − x2)

2 + y2
1 + y2

2

2y1y2

)
.

The Brownian motion {Zt, t ≥ 0} on H is the diffusion process whose infinitesimal
generator is �H/2, where

�H = y2
(
∂2

∂x2 + ∂2

∂y2

)

is the hyperbolic Laplacian. It is well known (see, e.g., the Appendix in [1])
that the coordinates {(Xt , Yt ), t ≥ 0} of the hyperbolic Brownian motion can
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be constructed explicitly in terms of the so-called geometric Brownian motion.
Indeed, if the starting point is (0,1), then there exist two independent linear
Brownian motions {αt , t ≥ 0} and {βt, t ≥ 0}, starting from 0, such that, for every
t ≥ 0,

Xt =
∫ t

0
exp[αs − s/2]dβs and Yt = exp[αt − t/2].

In the following, every process on H shall implicitly start from o= (0,1). We will
denote by P the law of the Brownian motion on H.

As a Markov process, it is also well known that the hyperbolic Brownian motion
has smooth transition densities pt(z1, z2), which only depend on ρ = ρ(z1, z2):

pt(z1, z2)= k(t, ρ)= 21/2(2πt)3/2 exp(−t/8)
∫ ∞
ρ

s exp[−s2/2t]
(cosh s − coshρ)1/2

ds

for every ρ ≥ 0, t > 0. This formula is, however, not appropriately informative,
and we will need the following estimate:

k(t, ρ)� (1 + ρ)
2πt(1 + ρ + t/2)1/2 exp

(−[ρ2/2t + ρ/2 + t/8]),(1)

where � stands for a uniform estimate in (t, ρ). We refer to Davies ([6], pages
178–179) for the above facts concerning the transition densities.

For every µ > 0, we will denote by P
µ the law of the Brownian motion

conditioned to go to i∞ when t ↑ ∞, with speed µ. P
µ is obtained from P

via some Doob’s h-transformation with respect to (t, z) �→ yµ+1/2 exp(−t[(µ2 −
1/4)/2]), which is harmonic for the space–time operator

1

2
�H + ∂

∂t
.

More precisely, if {Ft , t ≥ 0} stands for the completed filtration generated by the
coordinate process, then, for every t ≥ 0 and �t ∈ Ft ,

P
µ[�t ] = P

[
�t;Yµ+1/2

t exp
(−t[(µ2 − 1/4)/2])].

It is easy to see that under P
µ, the coordinate process can be written

Xt =
∫ t

0
exp[αs +µs]dβs and Yt = exp[αt +µt],

where again {αt , t ≥ 0} and {βt , t ≥ 0} are two independent linear Brownian
motions starting from 0.

In this paper, the process we are interested in is the Brownian bridge from o to z
in time 1, namely, the Brownian motion starting from o conditioned to be in z at
time 1. We will denote its law by P

z, which can also be obtained from P through
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a space–time harmonic transformation, involving this time the heat kernel: with
the same notations as above, for every 0 ≤ t < 1 and �t ∈ Ft ,

P
z[�t ] = P

[
�t; p1−t (Zt , z)

p1(o, z)

]
.

However, under P
z there does not seem to exist a simple representation for the

coordinate process anymore.

3. The theorem. For any z ∈ H, let �oz be the unique geodesical segment
joining o to z. Define the following function on H:

doz(·)= dist(·,�oz)= inf
{
ρ(·, u), u ∈�oz

}
.

For any z ∈ H we will also write ρz = ρ(o, z) for simplicity. The aim of this paper
is to prove the following.

THEOREM. For every a > 0,

lim
ρz↑+∞−ρ−1

z log P
z

[
sup

0≤t≤1
doz(Zt ) > a

]
= 2 logcosha.

REMARKS. (a) The same result holds when �oz is replaced by Doz , the whole
geodesic line passing through o and z, and if we take for doz the corresponding
distance.

(b) In [7] Eberle had proved that the concentration rate of the Brownian bridge
around �oz should be at most of order exp(−ρβz ), for every β < 1/4. His proof,
which is quite technical, also works for more general hyperpolic spaces H

n, n≥ 2.
In this paper, we focus on the case n= 2 because of the simplicity of the model.

(c) However, we do believe that an analogous estimate should also hold for more
general noncompact symmetric spaces. Indeed, the main ingredients in our proof
are the uniform heat kernel estimate, which was recently studied in this general
framework by Anker and Ji [4] and, roughly, the behavior at infinity of the Iwasawa
coordinates of the Brownian motion on the hyperbolic plane, a behavior which has
been known for a long time on general symmetric spaces [11]. Nevertheless, this
general estimate would probably demand much more conceptual arguments than
ours.

Before proceeding to the proof, we first make the general remark that thanks to
the isotropy of the Brownian motion on H, it is enough to consider the case when
z moves to infinity along the y-axis. We will first prove the estimates when �oz is
replaced by Doz , that is, we will first prove the above Remark (a). If z belongs to
the y-axis, then Doz is this axis itself, and it is not difficult to see that the distance
between Doz and a generic point (x, y) in H is given by

arg sinh
∣∣∣∣xy

∣∣∣∣.
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Hence, since sinh is an increasing function, we are reduced to an estimate on

P
z

[
sup

0≤t≤1

∣∣∣∣XtYt
∣∣∣∣> sinha

]

as z → i∞ along the y-axis. In the following, for every a > 0 and 0 < t < 1,
independently of the path measure under consideration, we will set

�at =
{

sup
0≤s≤t

∣∣∣∣XsYs
∣∣∣∣> sinha

}
,

where {(Xs,Ys), s ≥ 0} is the coordinate process. Thanks again to the isotropy of
Brownian motion and a straightforward time-reversal argument, it is clear that for
every z on the y-axis and every 0< t < 1,

P
z[�at ] ≤ P

z[�a1 ] ≤ 2P
z[�a1/2],

so that we are finally reduced to an estimate on the P
z[�at ] for 0< t < 1.

The main idea to obtain this estimate, which was communicated to us by Terry
Lyons, consists in comparing P

z[�at ] and P
µ[�at ] with a, t fixed and for some

suitably chosen µ > 0 depending on z, as z tends to infinity along the y-axis.
Before making this more precise, we would first like to study the asymptotic
behaviour of P

µ[�at ] as µ ↑ +∞.

PROPOSITION. For every a > 0 and 0< t < 1,

lim
µ↑+∞−µ−1 logP

µ[�at ] = 2 log cosha.

PROOF. We first appeal to the generalized Bougerol’s identity (see Proposi-
tion 1 in [1]), which states that, under P

µ,
{
Xs

Ys
, s ≥ 0

}
d= {

sinhXµs , s ≥ 0
}

where {Xµs , s ≥ 0} is the unique strong solution to the SDE

Xµs = Bs −µ
∫ s

0
tanhXµr dr

driven by {Bs , s ≥ 0}, a linear Brownian motion starting from 0. Hence, since sinh
is an odd function,

�at = {T µa < t}
under P

µ, where T µa is the first passage time of the diffusion Xµ accross the
double-sided barrier x = ±a:

T µa = inf
{
s > 0,Xµs /∈ [−a, a]}.
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We now proceed to the asymptotic study of P
µ[T µa < t] when µ tends to +∞.

For every λ > 0 we introduce

Fµa (λ)=
∫ +∞

0
P
µ[T µa < t] exp[−λt]dt.

By symmetry, it is clear that

Fµa (λ)= 2
∫ +∞

0
P
µ
[
T µa < t;XµT µa = a

]
exp[−λt]dt.

Hence, thanks to Feller’s classical theory (see [8], Theorem 2, page 11), Fµa (λ) is
given by the value at x = 0 of the unique solution over [−a, a] to the second order
differential equation

f ′′(x)− 2µ(tanhx)f ′(x)− 2λf (x)= 0,(2)

verifying f (−a)= 0 and f (a)= 2/λ.
We are now concerned with the resolution of (2), and we write f (x) =

(coshx)µg(tanhx) for some unknown function g : (−1,1)→ R. A straightforward
computation yields the following equation for g:

(1 − z2)g′′(z)− 2zg′(z)+
(
µ(µ+ 1)− µ2 + 2λ

1 − z2

)
g(z)= 0.

We recognize Legendre’s well-known differential equation on the cut, and this
entails

f (x)= (coshx)µ
[
AP νµ(tanhx)+BP νµ(− tanhx)

]

for two unknown constants A and B , where ν =
√
µ2 + 2λ and P νµ stands for the

Legendre function of the first kind. The conditions f (−a) = 0 and f (a) = 2/λ
yield

f (x)= 2(coshx)µ[P νµ(tanha)P νµ(tanhx)− P νµ(− tanha)P νµ(− tanhx)]
λ(cosha)µ[P νµ(tanha)2 − P νµ(− tanha)2] ,

and we finally get

Fµa (λ)=
(
λ(cosha)µ

2

[
P νµ(tanha)

P νµ(0)
+ P νµ(− tanha)

P νµ(0)

])−1

.

We now appeal to the tables of formulae concerning Legendre functions, which
can be found, for example, in [10], Chapter IV. The third formula on page 167, the
first formula on page 171 in [10], and the fact that

,

(
1

2
− z

)
,

(
1

2
+ z

)
= π

cosπz
,



CONCENTRATION OF THE BROWNIAN BRIDGE 1983

where , is the gamma function, yield

Fµa (λ)=
(
λ(cosha)ν+µ

2
F

(−µ− ν
2

,
1 +µ− ν

2
; 1

2
; (tanha)2

))−1

,

where in the denominator F stands for the standard hypergeometric function. We
can now use the asymptotic expansion of the latter, when its first parameter is large
(see again [10], page 56). Since

ν −µ∼ λ

µ
and µ+ ν ∼ 2µ+ λ

µ

as µ ↑ +∞, we find

Fµa (λ)=
4
√
πµ3/2 tanha

λ2(cosha)2µ
(
1 + O(λµ−1)

)

= 4
√
πµ3/2 tanha

(cosha)2µ
(
λ−2 + λ−1O(µ−1)

)
.

Inverting the Laplace transform we get, for every t > 0,

P
µ[T µa < t] = 4

√
πµ3/2 tanha

(cosha)2µ
(
t + O(µ−1)

)
.

This clearly entails

lim
µ↑+∞−µ−1 logP

µ[T µa < t] = 2 log cosha,

which is the desired result. �

For every b > 0 and 0< t < 1 we now introduce the event

,bt =
{∣∣∣∣XtYt

∣∣∣∣> sinhb
}
.

Since ,bt ⊂ �bt for every 0 < t < 1, and since 2 logcoshb ↑ +∞ as b ↑ +∞,
the following corollary is a direct consequence of Proposition, but we will give
a different proof, since it is fairly easy and uses different arguments.

COROLLARY. For every c > 0 and 0< t < 1, there exists b > 0 such that

lim −µ−1 logP
µ[,bt ] ≥ c

as µ ↑ ∞.

PROOF. Thanks to Proposition 3 in [2], under P
µ,

Xt

Yt

d= (2Z− 1)φ
(
B
µ
t ,

√
R2
t + (Bµt )2

)
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where Z is an arcsine distributed random variable, {Bµs , s ≥ 0} a linear Brownian
motion with drift −µ starting from 0, {Rs , s ≥ 0} a two-dimensional Bessel
process starting from 0, and φ is the function defined by

φ(x, z)=
√

2 expx coshz− exp2x − 1

for z≥ |x|. In particular, since coshz≤ exp z for z≥ 0,
∣∣∣∣XtYt

∣∣∣∣ ≤ √
2 exp

1

2

(
B
µ
t +

√
R2
t + (Bµt )2

)
a.s.

It is clear, with the obvious definition for P that, for every µ≥ 0 and 0< γ < 1,

P[Bµt >−γ tµ] ≤ exp(−kµ2)

for some k > 0 independent of µ. Besides, since the law of R2
t is exponential with

parameter 1/2t (see, e.g., [12], Corollary XI.1.4) and writing δ = 2c for simplicity,

P[R2
t > δtµ] = exp(−cµ)

for every µ≥ 0. In particular,

lim −
(

1

µ
log P

[{Bµt >−γ tµ} ∪ {R2
t > δtµ}]

)
≥ c

as µ ↑ ∞. However, on the event

{Bµt ≤ −γ tµ} ∩ {R2
t ≤ δtµ},

it is easy to see that

B
µ
t +

√
R2
t + (Bµt )2 ≤ δ/γ.

This completes the proof by taking, for example, b= arg sinh(
√

2 exp2c). �

We now proceed to the proof of the theorem. As we said at the beginning,
we first wish to study the concentration of the bridge around the whole geodesic
line Doz . Fix a > 0. By definition

P
z[�at ] = P

µ

[
�at ;

p1−t (Zt , z)
p1(o, z)

Y
−(µ+1/2)
t exp t[(µ2 − 1/4)/2]

]
(3)

for every 0< t < 1, z ∈ H and µ> 0. Recall that under P
µ,

Yt = exp(Rt + tµ)
where Rt is a centered Gaussian random variable with variance t . Notice that since
we decided to let z lie on the y-axis above o,

z= (0, expρz).
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In particular,

ρ(Zt , z)= arg cosh
(
X2
t + Y 2

t + exp2ρz
2Yt expρz

)
.

To prove the theorem we will show that when ρz ↑ ∞,

2 logcosha ≤ lim −ρ−1
z logP

z[�a1] ≤ lim −ρ−1
z log P

z[�a1] ≤ 2 log cosha.

PROOF OF THE UPPER BOUND. By the remarks made before the proposition,
it suffices actually to prove

lim −ρ−1
z log P

z
[
�a1/2

] ≥ 2 logcosha

as ρz ↑ ∞. In the following we will set t = 1/2, and write R1/2 = R for simplicity.
We first notice that

ρ(Z1/2, z)≥ arg cosh
(Y 2

1/2 + exp2ρz

2Y1/2 expρz

)
= |ρz − (R +µ/2)|

and we introduce the following notation:

ρω = ρ(Z1/2, z),µω = ρω − |ρz − (R+µ/2)| ≥ 0

and

F(µ, z;ω)= p1/2(Z1/2, z)

p1(o, z)
Y

−(µ+1/2)
1/2 exp[(µ2 − 1/4)/4].

We can now appeal to the uniform estimate (1) on the heat kernel, which yields

F(µ, z;ω)≤A(µ, z;ω) exp[f (µ, z;ω)/2]
where

A(µ, z;ω)≤K(1 + ρω) exp(−[µω/2])
for some deterministic constant K independent of µ and ρz, and

f (µ, z;ω)= ρ2
z + ρz − 2(ρz −R−µ/2)2 − |ρz −R−µ/2|

−2µR−µ2/2 − (R +µ/2)
= −(ρz − 2R−µ)2 + 2R2 + (ρz −R −µ/2)− |ρz −R−µ/2|
≤ −(ρz − 2R−µ)2 + 2R2.

Hence, if we take µ= ρz, we get

f (µ, z;ω)≤ −2R2.

It is then not difficult to prove the existence of another deterministic constant K
independent of ρz such that

F(µ, z;ω)≤K(1 + ρz).
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Finally, applying (3) and the proposition, we get

lim −ρ−1
z log P

z[�a1/2] ≥ 2 log cosha

as ρz ↑ ∞. �

PROOF OF THE LOWER BOUND. We now wish to prove

lim −ρ−1
z logP

z[�a1] ≤ 2 log cosha

as ρz ↑ ∞, which is actually a bit messier than the upper bound. Fix 0< t < 1 and,
for every b > 0, introduce

,abt =�at ∩ (,bt )c

where Ac denotes the complementary of A for any set A. If we take b sufficiently
large, it follows easily from Proposition and Corollary that when µ ↑ ∞,

lim −µ−1 logP
µ[,abt ] ≤ 2 log cosha.

Besides, if we fix c sufficiently large and set

�
aµ
t = ,abt ∩ {|Rt | ≤ c√tµ}

,

then, since under P
µ, Rt is a Gaussian random variable with variance t , we see

that again

lim −µ−1 log P
µ[�aµt ] ≤ 2 log cosha(4)

when µ ↑ ∞. As for the upper bound, we will choose µ= ρz. We also introduce
the following notation:

�azt =�aρzt , ρtω = ρ(Zt , z)
and

Ft(z;ω)= p1−t (Zt , z)
p1(o, z)

Y
−(ρz+1/2)
t exp t[(ρ2

z − 1/4)/2].

Since |Xt | ≤ sinhb|Yt | on �azt we get, after some computations,

ρtω ≤ |(1 − t)ρz −Rt | +K exp
(−2

[|(1 − t)ρz −Rt |])
on �azt , for some constant K depending on b only. In particular,

(ρtω)
2 ≤ (

(1 − t)ρz −Rt )2 +K
on �azt , for another constant K depending on b only. Appealing again to the
uniform estimate (2.1), and making analogous computations to the case t = 1/2,
we find

Ft(z;ω)≥ K√
1 + ρz exp[ft (z;ω)/2]
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on �azt , where K is a constant only depending on b and

ft(z;ω)= − R2
t

1 − t − ((
Rt − (1 − t)ρz) + |Rt − (1 − t)ρz|).

Hence, for ρz large enough,

ft(z;ω)= − R2
t

1 − t ≥ − c2t

1 − t ρz
on �azt . Applying (3) and (4) yields then

lim −ρ−1
z log P

z[�azt ] ≤ 2 log cosha + c2t

2(1 − t)
when ρz ↑ ∞. But since �azt ⊂�a1 for every ρz > 0 and 0< t < 1 we finally get,
letting t tend to 0,

lim −ρ−1
z log P

z[�a1] ≤ 2 logcosha

as ρz ↑ ∞. This completes the proof of the lower bound. �

REMARK. Since {�at ,0 ≤ t ≤ 1} is an increasing family of events, it may
seem surprising that we let t tend to 0 and not to 1 to get the lower bound. This
comes indeed from the logarithmic scale, where the dependence of P

µ[�at ] on t
disappears, whereas Ft(z;ω) tends pointwise to 1 as t ↓ 0.

END OF THE PROOF. We now wish to get the estimates on the concentration of
the Brownian bridge around the geodesical segment�oz itself, which will complete
the proof of Theorem. For every a > 0 and 0 ≤ t ≤ 1 we will write

5at =
{

sup
0≤s≤t

doz(Zs) > a
}

independently of the probability measure under consideration. First, since
�a1 ⊂5a1, we see from the above lower bound that

lim −ρ−1
z log P

z[5a1] ≤ 2 log cosha

as ρz ↑ ∞. The proof of the upper bound is slightly messier. If h denotes a generic
point in H with coordinates (x, y) we first remark, thanks to a little hyperbolic
geometry, that for ρz large enough

{
1

cosha
≤ y ≤ exp[3ρz/4]

}
∩

{∣∣∣∣xy
∣∣∣∣ ≤ sinha

}
⊂ {

doz(h)≤ a
}
.

This clearly entails, for µ= ρz large enough,

P
µ
[
5a1/2 ∩ (�a1/2)c

] ≤ P
[
,
aµ
1/2

]
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where {Ws , s ≥ 0} is some linear Brownian motion starting from 0 with law P and

,
aµ
1/2 =

{
inf
s≤1/2

(Ws +µs)≤ − log(cosha)
}

∪
{

sup
s≤1/2

(Ws +µs)≥ 3µ/4
}
.

Now it follows easily from Désiré André’s reflection principle (see, e.g.,
Ex. III.3.14 in [12]) and the Cameron–Martin formula, that

lim
µ↑∞−µ−1 logP

[
,
aµ
1/2

] = 2 log cosha.

This obviously yields, writing

5a1/2 =�a1/2 ∪ (
5a1/2 ∩ (�a1/2)c

)
and using the proposition, that

lim −ρ−1
z log P

z[5a1/2] ≥ 2 log cosha

as ρz ↑ ∞. Since clearly

P
z[5a1] ≤ 2P

z[5a1/2],
this completes the proof of the upper bound, hence of the theorem. �
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