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Let {Xi; i ≥ 1}, {Yi; i ≥ 1}, {U,Ui ; i ≥ 1} and {V,Vi; i ≥ 1} be four
i.i.d. sequences of random variables. Suppose U and V are uniformly
distributed on [0,1]3. For each realization of {Uj ; 1 ≤ j ≤ n}, {Xi,p;
1 ≤ p ≤ n} is constructed as a certain permutation of {Xp; 1 ≤ p ≤ n} for
any 1≤ i ≤ n. Also, {Yj,p; 1≤ p ≤ n},1≤ j ≤ n, are constructed the same
way, based on {Yj } and {Vj }. For a score function F, we show that

Wn := max
1≤i,j,m≤n

m∑
p=1

F(Xi,p,Yj,p)

has an asymptotic extreme distribution with the same parameters as in the
one-dimensional case. This model is constructed for a comparison of scores
of protein structures with foldings.

1. Introduction. During the last fifteen years, a number of authors studied
biomolecular problems; for example, Arratia, Gordon and Waterman [3, 4],
Arratia, Morris and Waterman [5], Karlin and Ost [16], Arratia, and Waterman [6],
Karlin and Altschul [15], Karlin [14] and Dembo, Karlin and Zeitouni [8, 9].
Based on these works, the BLAST program (see Altschul, Gish, Miller, Myers
and Lipman [1] and States, Gish and Altschul [19]) was established and is
being used widely in the area of bioinformatics. The papers are also used for
algorithms founded on information (likelihood ratio) scoring matrices as just cited
in Stormo and Hartzell [20] and Henikoff and Henikoff [12]. We next review some
bimolecular background relevant to this paper.

A protein is a polymer with a linear single chain called backbone, composed
of peptide bonds. Amino acids are the building blocks of protein. An amino acid
has three functional ends: an amino end, a carboxyl end and a side chain. There
are 20 different amino acids and they differ only in their side chain composition
in either charge, hydrophobic or chemical properties. The amino backbone of one
amino acid links to the carboxyl backbone end of another amino acid to form the
peptide bond that is the backbone of a protein chain. This single chain protein folds
into a stable complex three-dimensional structure in solution. Although certain
secondary structures (alpha helices and beta sheets) can be predicted from the
primary linear sequence, the overall three-dimensional structure is still beyond the
ability of even the best structural prediction algorithms available today.
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Suppose the letters of amino acids in a primary linear sequence are X1,X2, . . . ,

Xn. The positions of these amino acids in the three-dimensional space are
U1,U2, . . . ,Un. We usually call {Ui; i = 1,2, . . . , n} the folding of the protein
structure. The letter-position pairs of another protein chain are {(Yi,Vi); i =
1,2, . . . , n}. Biologists are interested in local similarities between the two chains;
namely, there exist two neighborhoods BU and BV such that the alphabets of those
amino acids with positions Ui in BU and Vi in BV are similar. For example, they
may be completely the same or partially matched.

Previous works mentioned so far essentially use the following paradigm. For
a given real score function F(x, y), which primarily has negative mean and an
essential positive part, they constructed statistics based only on the values of
X’s and Y ’s without considering their foldings U ’s and V ’s. For example, in [8]
and [9], the statistic is the maximum of all

∑�
l=1 F(Xi+l , Yj+l) over all possible

i, j and � running in {1,2, . . . , n}. Since U and V are ignored, statistics used
there are not accurate. People have not taken this into account because the folding
is very complicated.

Building on [13], we construct a model to compare the scores of two protein
structures with foldings {U } and {V }, and then give its asymptotic distribution.
Now let us state our main result.

Let {X,Xi, i = 1,2, . . .} be a sequence of i.i.d. random variables with values
in a metric space � (not necessarily R

d ) and let the same be true of {Y,Yi, i =
1,2, . . .}. Let {U,Ui, i = 1,2, . . .} and {V,Vi, i = 1,2, . . .} be two sequences of
i.i.d. random variables with both the law of U and that of V being the uniform
distribution on [0,1]3. Throughout this paper, we assume that the above four
sequences are independent. For any i ∈ {1,2, . . . , n}, let {ui,p, p = 1,2, . . . , n}
be a permutation of {1,2, . . . , n} such that

0= ‖Uui,1 −Ui‖< ‖Uui,2 −Ui‖< ‖Uui,3 −Ui‖< · · ·< ‖Uui,n −Ui‖,
where ‖x‖ = max{|x1|, |x2|, |x3|} for any x = (x1, x2, x3) ∈ R

3. In other words,
we list Uj ’s in a row such that their distances to Ui are in an increasing order.
Then the corresponding indices are {ui,p, 1≤ p ≤ n}. They are well defined with
probability one. By the same way, we obtain {vi,p} from {Vk, k = 1,2, . . . , n}. For
simplicity, write Ui,p = Uui,p , Vi,p = Vvi,p , Xi,p = Xui,p and Yi,p = Yvi,p for all
1≤ i,p ≤ n:

X1,1, X1,2, . . . , X1,n, Y1,1, Y1,2, . . . , Y1,n,

X2,1, X2,2, . . . , X2,n, Y2,1, Y2,2, . . . , Y2,n,

· · · · · · · · · · · · · · · · · ·
Xn,1, Xn,2, . . . , Xn,n, Yn,1, Yn,2, . . . , Yn,n.

Define

Wn := max
1≤i,j,m≤n

m∑
p=1

F(Xi,p, Yj,p),
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where F(·, ·) :�2 → R is a given real-valued function. The function F(·, ·)
is usually called a score function in terms of protein matching problems. The
following is the only theorem in this paper.

THEOREM 1. There are positive constants θ and K given in (1.3) and (1.4)
below, respectively, such that as n→∞, for any x ∈R,

P (Wn > 2 logn/θ + x)→ 1− e−Ke−θx

provided (1.2), (1.5) and (1.6) hold.

In practical problems, letters X and Y and distances ‖Ui −Uj‖ and ‖Vi − Vj‖
between amino acids described as above can be obtained by X-ray. The score
function F(·, ·) is given according to needs. Then Wn, θ and K can be calculated.
Consequently, a statistical hypothesis test can be carried out. For a given score
function F, a conclusion on certain local similarities can be made.

Now, we state conditions used in Theorem 1. Denote the logarithm of moment
generating function of F(X,Y ) and its rate function, respectively, by

!F(t)= logE exp(tF (X,Y )) and

!∗
F (x)= sup

t∈R

{tx −!F(t)}, t, x ∈R.(1.1)

If there is no confusion, we also write !F(t) =!(t). The following condition is
standard in this context:

F(X,Y ) is nonlattice, µF :=EF(X,Y ) < 0 and

!F (t) <∞ for all t ∈R.
(1.2)

It is obvious that the above condition implies that there exists an unique θ > 0 so
that

!F(θ)= 0.(1.3)

Also, under (1.2), Spitzer (E4 on page 217 from [18]; see also (5.13) in [11]
or Lemma A.2 in [13]) has shown that there is a constant K > 0 depending on
F(X,Y ) such that

lim
x→+∞ eθxP

(
max
n≥1

n∑
i=1

F(Xi,Yi) > x

)
→K.(1.4)

Define a measure α∗ on �2 by

dα∗

d(µX ×µY )
= eθF ,
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where µX and µY are the distributions of X and Y, respectively. For any two
probability measures µ,ν on �2 recall the definition of relative entropy H(ν|µ) :

H(ν|µ)=


∫
�2

(
log

dν

dµ

)
dν, if ν� µ,

+∞, otherwise.

The following Dembo–Karlin–Zeitouni condition will be used in our theorem:

H(α∗|µX ×µY ) > 2 max
(
H(α∗X|µX),H(α∗Y |µY )

)
.(1.5)

A detailed discussion about (1.5) is given in [8] and [9].
The following is the last condition we need in our theorem. Suppose {X,X1,X2}

are three i.i.d. random variables with values in � and {Y,Y1, Y2} are another three
i.i.d. random variables with values in �, which are independent of the previous
three. Assume

E
{
F(X1, Y )eθF (X2,Y )

}
< 0 and E

{
F(X,Y1)e

θF (X,Y2)
}
< 0.(1.6)

The example below is motivated by the analysis of protein sequences. See
Remark 1 in [9].

EXAMPLE. On some space � with 1 < |�| < ∞, define F(x, x) = 1 and
F(x, y) = −m

√
2 for x �= y, x, y ∈ � with m ∈ N. Then, F(·, ·) is nonlattice.

It is easy to check that conditions (1.2) and (1.6) hold for sufficiently large m.

Furthermore, condition (1.5) holds for sufficiently large m provided the following
condition ((1.7) in [9]) is true:

max

{∑
i∈�

µX(i)µY (i) logµY (i),
∑
i∈�

µX(i)µY (i) logµX(i)

}
<−1

2θe
−θ .

REMARK 1. In a real protein structure, the physical positions of amino acids,
that is, U and V , are not uniformly distributed in a cube. However, the proof of
Theorem 1 indicates that it does not depend on the specific geometry of a cube but
will apply in the case of any regular geometric shape on which {Ui; i = 1,2, . . .}
are uniformly or close to being uniformly distributed. For the of convenience
of mathematical proofs, the condition that letters X and their positions U are
independent is assumed in the above theorem. The proof indicates that this can
be relaxed too. However, it is unclear to what extent independence can be relaxed.

REMARK 2. In the theorem, we use the maximum norm ‖(x1, x2, x3)‖ =
max{|x1|, |x2|, |x3|} to order a sequence of points {U1,U2, . . . ,Un} in R

3.

According to the proof, the theorem still holds if the maximum distance is replaced
by other distances equivalent to the Euclidean distance.
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REMARK 3. As shown in Remark 3 from [9], condition (1.5) is almost
necessary in the one-dimensional setting. By contrast, (1.6) is not required in the
one-dimensional counterpart of Theorem 1. We need this condition here because
we have a more complicated structure than in the one-dimensional case as in [9].
Also, we do not consider the case of indels in this paper. So it is open whether
condition (1.6) can be dropped and how Wn can be adjusted in the indel case.

Finally, we make some remarks about the proof of the theorem. The main tool
of the proof is the Chen–Stein Poisson approximation method. Certain sharp large
deviation results are used to estimate rare events. Unlike the one-dimensional
case, the renewal phenomenon no longer occurs in our three-dimensional model.
Thus the usual declumping appearing in sequence-by-sequence matching (see,
e.g., [9]) disappears from our proof. This is because the model is constructed
in three-dimensional spaces in which some phenomena are much different from
the one-dimensional counterpart. For example, a simple random walk on one-
or two-dimensional lattice points is recurrent; but it is transient in the three-
dimensional case. One can see the fact of nondeclumping clearly from the proof
of Theorem 9 in [13], which is the motivating paper for the current one. Also,
a detailed explanation of declumping can be found in Section 2, page 543 of [3].

This paper is organized as follows: In Section 2, the proof of Theorem 1 is
given; in Section 3, some technical lemmas used in Section 2 are proved.

2. The proof of the theorem. The following Poisson approximation theorem
is a straightforward application of Theorem 1 in [2] (see also Lemma 2.2 in [13]),
which is a special case of the Chen–Stein method. The lemma is used quite often
in analyzing maxima of random variables. It is the starting point of the proof of
Theorem 1.

LEMMA 2.1. Let ( be a finite set and A is a collection of some subsets
of (. Let {Xα, α ∈(} be a collection of random variables. Write SA =∑

α∈AXα

and λ=∑
A∈AP (SA > t) for some t ∈R. Then∣∣∣∣P

(
max
A∈A

SA ≤ t

)
− e−λ

∣∣∣∣≤ (1∧ λ−1)(b1 + b2 + b3),

where

b1 =
∑
A∈A

∑
B:B∩A �=∅

P (SA > t)P (SB > t),

b2 =
∑
A∈A

∑
B:B∩A �=∅

P (SA > t, SB > t),

b3 =
∑
A∈A

E
∣∣P (SA > t|σ {SB;B ∩A=∅})− P (SA > t)

∣∣,
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where σ {SB;B ∩A=∅} is the σ -algebra generated by the collection of random
variables {SB;B ∩A=∅}. In particular, if {Xα, α ∈(} is a set of independent
random variables, then b3 = 0.

Now, let us sketch the proof. The first step is to get rid of many subcubes
appearing in the definition of Wn. Then Wn is reduced to a simple form Wn,1.

This is shown in Lemma 2.2. The second step is analyzing Wn,1 by applying the
Poisson-approximation method Lemma 2.1 through the following two substeps:
(i) show that λ in Lemma 2.1 has a limit, which is given in Lemma 2.4; (ii) prove
that b1 and b2 in Lemma 2.1 go to zero as n→∞.

For any x = (x1, x2, x3) ∈ R
3, ‖x‖ = max{|x1|, |x2|, |x3|} is the maximum

norm. A ball centered at x and with radius r under this norm is denoted by B(x, r).

Thus, the volume of such a box is 8r3. Recall θ is given in (1.3). For two numbers a
and b, by a ∧ b we mean min{a, b}. For any positive numbers ρ and λ, define

l±n =
1

2

(
2 logn

θ!′(θ)n

)1/3(
1± ρ

√
log2 n

logn

)
,

T ±i,j =
n∑

p=1

1B(Ui ,l
±
n )(Up)∧

n∑
p=1

1B(Vj ,l
±
n )(Vp),

(n = {
m≥ 1; |m− 2 logn/θ!′(θ)| ≤ λ

√
(logn) log2 n

}
,(2.1)

2i,j = {
m; T −i,j ≤m≤ T +i,j

}∩(n,

Wn,1 = max
m∈2i,j ,1≤i,j≤n

m∑
p=1

F(Xi,p, Yj,p),

where log2 n = log(logn). By l±n we mean l+n or l−n depending on the “+” sign
or the “−” sign occurring in the first assertion of (2.1). This interpretation applies
to T ±i,j too.

Suppose ξ1, ξ2, . . . , ξn are random variables. Let f (x1, x2, . . . , xn) be a real-
valued function on R

n. Define

EAf (ξ1, ξ2, . . . , ξn)=E
(
f (ξ1, ξ2, . . . , ξn)|B)

,(2.2)

the conditional expectation of f (ξ1, ξ2, . . . , ξn) given B, where B is the σ -algebra
generated by {ξk, k /∈A} if A⊂ {1,2, . . . , n} or by {ξ1, . . . , ξn} \A if A is a subset
of {ξk, 1≤ k ≤ n}. The same interpretation applies to PA too.

For convenience, throughout all this section, we set zn = 2 logn/θ + x.

Accept, for now, the following two lemmas. Together with other lemmas in this
section, they will be proved in Section 3.

LEMMA 2.2. Suppose condition (1.2) holds. Then, for any x ∈R,

P (Wn > zn)− P (Wn,1 > zn)→ 0(2.3)
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for sufficiently large λ and ρ.

Set

φX(x)= log
{
EYeθF (x,Y )

}
, hX =E

{
eθF (X,Y )φX(X)

}
,

φY (y)= log
{
EXeθF(X,y)

}
, hY = E

{
eθF (X,Y )φY (Y )

}(2.4)

and

G(i,j,m)(ε)=
{∣∣∣∣∣ 1

m

m∑
p=1

φX(Xi,p)− hX

∣∣∣∣∣< ε

}
∩
{∣∣∣∣∣ 1

m

m∑
p=1

φY (Yj,p)− hY

∣∣∣∣∣< ε

}
.

Since E exp(θF (X,Y )) = 1, hX and hY are actually mean values of φX(x) and
φY (y), respectively, under the measure induced by exp(θF (X,Y )). We need the
following lemma.

LEMMA 2.3. Suppose condition (1.2) holds. Then, for any a ∈ (0,1), ε > 0
and sequence {γn; n≥ 1} so that γn→ γ ∈R, there exists δ > 0 such that

max
an≤k≤n

P

(
1

n

n∑
i=1

F(Xi,Yi)≥ γn,

∣∣∣∣∣1k
k∑

i=1

φY (Yi)− hY

∣∣∣∣∣≥ ε

)
= o(e−(θγ+δ)n).

By Cramér’s large deviation result, the probability of the first event in the
above lemma is roughly e−θγ n. So the interpretation of Lemma 2.3 is as follows:
given that the rare event (1/n)

∑n
i=1 F(Xi,Yi) ≥ γn occurs, the second event in

Lemma 2.3 is also rare. As a consequence, as k is large, (1/k)
∑k

i=1 φY (Yi) is
around its mean hY under the measure induced by exp(θF (X,Y )) rather than the
product measure induced by X and Y. This is a key observation in the proof.

LEMMA 2.4. Suppose condition (1.2) holds. Then for any ε > 0 small
enough, there exist λ > 0 and ρ > 0 such that

b1,n :=
∑

1≤i,j≤n

PX,Y

( ⋃
m∈2i,j

{
m∑

p=1

F(Xi,p, Yj,p)≥ zn, G(i,j,m)(ε)

})
→Ke−θx

in probability (on U and V ) for any x ∈R, where K is as in (1.4).

With the explanation given before Lemma 2.4, the intersection of the two events
inside the {·} in Lemma 2.4 is roughly equal to the first one. Therefore, b1,n is close
to ∑

1≤i,j≤n

PX,Y

(
max

m∈2i,j

m∑
p=1

F(Xi,p, Yj,p)≥ zn

)

∼ n2P

(
max
m≥1

m∑
p=1

F(Xp,Yp)≥ zn

)
→Ke−θx
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by (1.4). This is exactly what happens in Lemma 2.4.
One fact we constantly use in proofs is that the law of

∑m
p=1 F(Xi,p, Yj,p)

conditioned or not on U and V , is equal to the law of
∑m

p=1 F(Xp,Yp) for any i, j

and m.

PROOF OF THEOREM 1. By Lemma 2.2, it is enough to show that

P (Wn,1 > zn)→ 1− e−Ke−θx

.(2.5)

Define

Ai,j =
⋃

m∈2i,j

{
m∑

p=1

F(Xi,p, Yj,p)≥ zn,G(i,j,m)(ε)

}
, 1≤ i, j ≤ n.(2.6)

Note that the difference between {Wn,1 > zn} and
⋃

1≤i,j≤n Ai,j is a subset of⋃
1≤i,j≤n

⋃
m∈2i,j

{∑m
p=1 F(Xi,p, Yj,p) ≥ zn,G(i,j,m)(ε)

c}. By Lemma 2.3, we
have

P (Wn,1 > zn)− P

( ⋃
1≤i,j≤n

Ai,j

)

≤ n2|(n| max
m∈(n

P

(
m∑

p=1

F(X1,p, Y1,p)≥ zn,G(1,1,m)(ε)
c

)
=O(n−δ0)

for some constant δ0 > 0. Thus, to prove (2.5), it suffices to prove that

P

( ⋃
1≤i,j≤n

Ai,j

)
→ 1− e−Ke−θx

.(2.7)

Recalling b1,n defined in Lemma 2.4, we have∣∣∣∣∣P
( ⋃

1≤i,j≤n

Ai,j

)
− e−Ke−θx

∣∣∣∣∣
≤EU,V

∣∣∣∣∣PX,Y

( ⋃
1≤i,j≤n

Ai,j

)
− e−b1,n

∣∣∣∣∣+EU,V
∣∣e−b1,n − e−Ke−θx ∣∣.

(2.8)

By Lemma 2.4, EU,V |e−b1,n − e−Ke−θx | → 0. It is enough to show the first term
in (2.8) goes to 0. Actually, by Lemma 2.1,

EU,V
∣∣PX,Y (Wn,1 ≤ zn)− e−b1,n

∣∣≤EU,V b2,n+EU,V b3,n,

where

b2,n =
n∑

i,j=1

∑
(k,l)∈?i,j

P (Ai,j )P (Ak,l), b3,n =
n∑

i,j=1

∑
(k,l)∈?i,j

P (Ai,j ∩Ak,l)
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and

?i,j = {
(k, l) ∈ {1,2, . . . , n}2\(i, j);B(Uk, l

+
n )∩B(Ui, l

+
n ) �=∅ or

B(Vl, l
+
n )∩B(Vj , l

+
n ) �=∅

}
.

In words, (k, l) belongs to ?i,j if one of the following is true: (i) two balls with
the same radius l+n and centered at Uk and Ui, respectively, intersect; (ii) two balls
with the same radius and centered at Vl and Vj , respectively, intersect.

It is easy to see by Doob’s submartingale inequality that PX,Y (A1,1) ≤
e−θxn−2 a.s. for each n≥ 1. It follows that EU,V b2,n ≤ e−2θxn−2EU,V (#?1,1)≤
2e−2θxn−1EU,V (#@), where @ = {2 ≤ k ≤ n; B(Uk, l

+
n ) ∩ B(U1, l

+
n ) �= ∅}.

But note that @ = ∑n
k=2 1{d(Uk,U1) ≤ 2l+n }, so E@ = O(logn), and thus

EU,V b2,n = O(e−2θxn−1 logn). So the remaining task is to show that
EU,V b3,n→ 0.

By using symmetry, we see that

EU,V b3,n = n2EU,V
∑

(k,l)∈?1,1

P (Ak,l ∩A1,1)

≤ n3EU,V P (A2,1 ∩A1,1)

+n3EU,V P (A1,2 ∩A1,1)

+2n4EU,V
[
P (A2,2 ∩A1,1)1{d(U1,U2)≤ 2l+n }

]
.

Lemmas 2.5 and 2.6 next show that the first and last terms on the right-hand side
of the inequality above go to zero. By symmetry and Lemma 2.6 again, the middle
term goes to zero too. The proof is complete. �

LEMMA 2.5. Under conditions of Theorem 1,

EU,V
[
P (A2,2 ∩A1,1)1{d(U1,U2)≤ 2l+n }

]= o(n−4)

for sufficiently small ε > 0, where ε is as in (2.6).

LEMMA 2.6. Under the conditions of Theorem 1,

EU,V P (A1,1 ∩A1,2)= o(n−3)

for sufficiently small ε > 0, where ε is as in (2.6).

3. Technical lemmas. In this section, we will prove the lemmas stated in
Section 2. The following four results are needed for doing that.

LEMMA 3.1. Suppose condition (1.2) holds. Then, for any ε > 0 and n≥ 1,

P

(∣∣∣∣∣1n
n∑

i=1

φX(Xi)− hX

∣∣∣∣∣≤ ε

)
≤ 2e−n(hX−ε).
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PROOF. By Lemma A.2, the above probability is at most 2e−n infx∈A J (x),

where J (x)= supt∈R{tx − logE(EYeθF (X,Y ))t } and A= {x ∈R; |x − hX| ≤ ε}.
By taking t = 1 in the definition of J (x) we have that J (x) ≥ x. The lemma is
proved. �

LEMMA 3.2. Suppose the second inequality of (1.6) holds. Let M(t) =
E exp(tF (X,Y1)+ θF (X,Y2)) and t0 = sup{t > 0; M(t) < 1}. Then:

(i) t0 ∈ (0, θ),
(ii) there exists δ ∈ (µF ,0) such that γ1 := sup0<t<t0

{δt − !F(t)} > 0 and
γ2 := sup0<t<t0

{δt − logM(t)} > 0, where µF = EF(X,Y ) and !F(t) is as
in (1.1).

PROOF. (i) Note that M(0) = 1 and M ′(0) = EF(X,Y1)e
θF (X,Y2) < 0, so

there exists some t > 0 such that M(t) < 1. Since EeθF(X,Y ) = 1, by Hölder’s
inequality, M(t) ≥M(θ)t/θ = (EX(EY eθF (X,Y ))2)t/θ > (EeθF (X,Y ))2t/θ = 1 for
all t > θ. Thus, t0 < θ.

(ii) By (i), !F (t0/2) < 0 and logM(t0/2) < 0. The conclusion follows by
taking t = t0/2 and

δ = 1
2 max

{
µF , 2t−1

0 !F(t0/2), 2t−1
0 logM(t0/2)

}
. �

The following lemma is almost immediate. We state it without proof.

LEMMA 3.3. Denote ξX = EYeθF (X,Y ) and ξY = EXeθF(X,Y ). Then, hX =
EX(ξX log ξX) and hY =EY (ξY log ξY ), and (1.5) is equivalent to

1
2θ!

′(θ) > max
{
EX(ξX log ξX),EY (ξY log ξY )

}
.

In the following proofs, one should keep in mind that the law of
∑m

p=1 F(Xi,p,

Yj,p), regardless of conditioning on U and V, is equal to that of
∑m

p=1 F(Xp,Yp)

for any i, j and m.

LEMMA 3.4. Under the conditions of Theorem 1, for any sufficiently small
ε > 0, there exists a constant γ > 0 so that

max
m1,m2∈(n

EX

{ 2∏
k=1

PY

(
mk∑
p=1

F(Xk,p, Y1,p)≥ zn,G(k,1,mk)(ε)

)}
=O(n−3−γ ),

where (n is as in (2.1).
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PROOF. Recall from (2.4) that G(k,1,mk)(ε)⊂Hk := {|(1/m)
∑m

p=1 φ(Xk,p)−
hX|< ε}. Then, by Chebyshev’s inequality,

PY

(
mk∑
p=1

F(Xk,p, Y1,p)≥ zn,G(k,1,mk)(ε)

)

≤ e−θznEY

[
exp

(
θ

mk∑
p=1

F(Xk,p,Y1,p)

)
· IHk

]

for k = 1,2. Since Hk does not depend on the Y ’s, by independence, the expecta-
tion above is equal to

∏mk

p=1[EY exp(θF (Xk,p, Y ))] ·IHk
= exp(

∑mk

p=1 φX(Xk,p)) ·
IHk

≤ emk(hX+ε) · IHk
. Therefore,

EX

{ 2∏
k=1

PY

(
mk∑
p=1

F(Xk,p,Y1,p)≥ zn,G(k,1,mk)(ε)

)}

≤ e−2θzne2(m1∨m2)(hX+ε)PX(H1 ∩H2).

By Lemma 3.1, PX(H1∩H2)≤ 2 exp(−(m1∨m2)(hX−ε)). Also, by Lemma 3.3,
there exists ε0 > 0 such that θ!′(θ)/2 > max{hX,hY }+ε0. Then the desired result
follows by noting that m1∨m2 ∼ (2 logn)/θ!′(θ) uniformly for m1,m2 ∈(n. �

PROOF OF LEMMA 2.2. Let Sm =∑m
p=1 F(Xp,Yp). Obviously, the left-hand

side of (2.3) is bounded by the expectation of

n2 max
n≥m/∈(n

P (Sm ≥ zn)+ n2 max
T +1,1<m∈(n

P (Sm ≥ zn)

+ n2 max
T−1,1>m∈(n

P (Sm ≥ zn).
(3.1)

By Lemmas A.4 and A.5, the first term above≤ 2e−θx(logn)(1/2)−Cλ2
for large n.

Here and throughout the rest of the paper, C always stands for a positive constant
depending on X, Y and F and may vary from line to line. By symmetry, we only
need to show that the second term of (3.1) goes to 0. Actually, it is no more than

n2
∑

m∈(n

P (Sm ≥ zn)P
U,V (T +1,1 ≤m).(3.2)

By Lemma A.3,

P (Sm ≥ zn) ∼
C−1e−θx

n2
√

logn
exp

(
−

In︷ ︸︸ ︷
C
(
m!′(θ)− zn

)2
/ logn

)
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uniformly for all m ∈ (n. By Bernstein’s inequality, there exist two constants
C and C′ such that

P (T +1,1 <m)≤ 2P

(
n∑

i=1

1B(U1,l
+
n ) < m

)

≤ 2 exp
(
−C′

(
m!′(θ)− zn−Cρ

√
(logn) log2 n

)2
/ logn︸ ︷︷ ︸

I ′n

)
.

Since a2 + (a− b)2 ≥ b2/2 for any a, b ∈R, we have that In+ I ′n ≥Cρ2(log2 n).

Therefore, by observing that |(n| ≤ 2λ
√
(logn) log2 n, the term in (3.2) is less

than

2C−1e−θx

√
logn

∑
m∈(n

e−In−I ′n ≤ (4C−1λe−θx)
√

log2 n/(logn)Cρ2
.

The proof is complete by choosing λ and ρ sufficiently large. �

PROOF OF LEMMA 2.3. For any sequence {kn, n≥ 1}, define

Zn =
(

1

n

n∑
i=1

F(Xi,Yi),
1

kn

kn∑
i=1

φY (Yi)

)
∈R

2.

To prove this lemma, it is enough to show that there exists δ > 0 such that

pn := P
(
Zn ∈ [γn,∞)× (hY − ε,hY + ε)c

)= o(e−(θγ+δ)n)(3.3)

for all subsequences kn ≤ n such that kn/n→ a′ ∈ [a,1]. Let Fη = [γ − η,∞)×
{y; |y−hY | ≥ ε}. Then Fη is a closed set in R

2. It is easy to see that pn ≤ P (Zn ∈
Fη) for any η > 0 and n large enough (depending on η). For any (u, v) ∈R

2,

1

n
logEen(u,v)·Zn = n− kn

n
log

{
EeuF(X,Y )}+ kn

n
log

{
EeuF(X,Y )+(nv/kn)φY (Y )}

→ (1− a′) logE
{
euF (X,Y )

}
+a′ log

{
EeuF(X,Y )(EXeθF(X,Y ))v/a′}

:= g(u, v).

Clearly, g(u, v) is finite and differentiable for any (u, v) ∈ R
2. For any η > 0, by

the Gätner–Ellis theorem (see, e.g., Theorem 2.3.6 of [10]),

lim sup
n→∞

(logpn)/n≤− inf
(x,y)∈Fη

I ((x, y)),

where I ((x, y)) = sup(u,v)∈R2{ux + vy − g(u, v)}. Note that Fη ↓ F0 as η ↓ 0.
Therefore, by letting η ↓ 0, we obtain

lim sup
n→∞

(logpn)/n≤− inf
(x,y)∈F0

I ((x, y)).(3.4)
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It is easy to see that g(θ, v) ≤ a log{EeθF(X,Y )(EXeθF (X,Y ))v/a}, since
EθF(X,Y )= 1 and a′ ∈ [a,1]. Therefore, for any x ≥ γ and y ≤ hY − ε, by taking
u= θ and v = aw in the definition of I ((x, y)), we have that

I ((x, y))≥ θγ + a sup
w≤0

{
whY −wε− log

(
EeθF(X,Y )(

ξ(w)︷ ︸︸ ︷
EXeθF(X,Y ))w

)︸ ︷︷ ︸
ψ(w)

}
.(3.5)

Obviously, ψ(0)= 0, and observe that E(eθF (X,Y )ξ ′(w))→ hY as w ↑ 0. It then
follows that

ψ ′(w)= hY − ε− (
EeθF(X,Y )ξ(w)

)−1
E
(
eθF (X,Y )ξ ′(w)

)
< 0

for w < 0 and |w| sufficiently small. Therefore, by (3.5), there exists δ > 0 such
that I ((x, y)) > θγ + 2δ for all x ≥ γ and y ≤ hY − ε. By the same arguments,
the inequality I ((x, y)) > θγ + 2δ is also valid for x ≥ γ and y ≥ hY + ε.

Thus, inf(x,y)∈F0 I ((x, y)) > θγ + 2δ for some δ > 0, which together with (3.4),
yields (3.3). �

PROOF OF LEMMA 2.4. By Lemma 2.3,

EU,V
∑

1≤i,j≤n

PX,Y

( ⋃
m∈2i,j

{
m∑

p=1

F(Xi,p, Yj,p)≥ zn, G(i,j,m)(ε)
c

})

≤ n2|(n| max
m∈(n

P

(
m∑

p=1

F(X1,p, Y1,p)≥ zn, G(1,1,m)(ε)
c

)
=O(n−δ)

for some δ = δF,ε > 0. Therefore, to prove the lemma, it is enough to prove that

b′1,n :=
∑

1≤i,j≤n

PX,Y

(
max

m∈2i,j

m∑
p=1

F(Xi,p, Yj,p)≥ zn

)
→Ke−θx(3.6)

in probability, where PX,Y is defined in (2.2). Set J±n = 2 logn/θ!′(θ) ±
λ
√
(logn) log2 n. Then

−n2PX,Y

(
max
m/∈(n

m∑
p=1

F(X1,p, Y1,p)≥ zn

)
(3.7)

≤ n2PX,Y

(
max
m∈(n

m∑
p=1

F(X1,p, Y1,p)≥ zn

)
− b′1,n

≤ ∑
1≤i,j≤n

PX,Y

(
max
m∈(n

m∑
p=1

F(Xi,p, Yj,p)≥ zn

)
(3.8)

×1(Ti,j ≥ J+n or Ti,j ≤ J−n ).
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By (1.4), we only need to show that both terms in (3.7) and (3.9) go to zero in
probability. First, by Lemmas A.4 and A.5, we have that

n2PX,Y

(
max
m/∈(n

m∑
p=1

F(X1,p, Y1,p)≥ zn

)
→ 0 a.s.(3.9)

for sufficiently large λ, which is as in (2.1). Second, since the probability given
in (3.9) is less than Ke−θxn−2, the expectation of the expression in (3.9) is less
than

Ke−θxP (T +1,1 ≥ J+n or T −1,1 ≤ J−n ).

For ρ given in the definition of l±n in (2.1), by Bernstein’s inequality, for
sufficiently large λ,

P (T +1,1 ≥ J+n or T −1,1 ≤ J−n )≤ 4 exp
{
−C

(
6ρ

θ!′(θ)
− λ

)2

log2 n

}
→ 0

as n→∞. Thus, (3.6) follows. �

PROOF OF LEMMA 2.5. Let cn = (logn)−δn−1/3, δ ∈ (1/3,2/3). Obviously,

P
(
d(U1,U2)≤ 2l+n

)≤ C(logn)/n, P
(
d(U1,U2)≤ cn

)≤ 8/n(logn)3δ.

Since P (A2,2 ∩A1,1)≤ P (A1,1)≤ n−2, the above two inequalities yield

EU,V P (A2,2 ∩A1,1)1{d(U1,U2)≤ 2l+n }
≤EU,V P (A2,2 ∩A1,1)

(
1EU,1∩EV,1 + 1EU,2∩EV,2

)
(3.10)

+O
(
n−4(logn)1−3δ),

where EU,1 = {d(U1,U2) ∈ (cn,2l+n )}, EV,1 = {d(V1,V2) ∈ (cn,2l+n )}, EU,2 =
{d(U1,U2)≤ 2l+n } and EV,2 = {d(V1,V2) > 2l+n }. On EU,2∩EV,2, B(V1, l

+
n ) and

B(V2, l
+
n ) are disjoint. By the definition of Y1,p’s, Y2,p’s, 21,1 and 22,2, we have

that

P (A2,2 ∩A1,1)= EX(PY (A2,2)P
Y (A1,1)

)
≤ (

4λ2(logn) log2 n
)

× max
m1,m2∈(n

EX

{ 2∏
k=1

PY

(
mk∑
p=1

F(Xk,p,Y1,p)≥ zn,G(k,1,mk)

)}
,

where (n is as in (2.1). Consequently, by Lemma 3.4,

n4EU,V
{
P (A2,2 ∩A1,1)1EU,2∩EV,2

}= o
(
(logn)3n−γ

)
(3.11)

for some γ > 0. Thus, it remains to show that

EU,V
(
P (A2,2 ∩A1,1)1EU,1∩EV,1

)→ 0.(3.12)
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Define

τi,j (r)=
n∑

p=1

1B(Ui,r)(Up)∧
n∑

p=1

1B(Vj ,r)(Vp).(3.13)

Then, 2i,j = {τi,j (r); l−n ≤ r ≤ l+n , τi,j (r) ∈(n}. Now

PX,Y (A1,1 ∩A2,2)

≤ λ2(logn)(log2 n)

×maxPX,Y

( τ1,1(r)∑
p=1

F(X1,p, Y1,p)≥ zn

︸ ︷︷ ︸
A1(r)

,

τ2,2(s)∑
p=1

F(X2,p, Y2,p)≥ zn

︸ ︷︷ ︸
A2(s)

)
,

(3.14)

where the maximum is taken over all r, s such that r, s ∈ (l−n , l+n ) and τ1,1(r),

τ2,2(s) ∈(n. For any such pair r, s, without loss of generality, assume r > s. Then
it is easy to check that on EU,1 ∩EV,1,

the volume of B(V1, r)\B(V2, s)≥ 4s2d(V1,V2)≥ κ(logn)2/3−δ/n(3.15)

for some constant κ > 0. Recalling the definition of τ1,1(r), by symmetry, we
assume without loss of generality that

n∑
i=1

1B(V1,r)(Vi)≤
n∑

i=1

1B(U1,r)(Ui).(3.16)

By Bernstein’s inequality,

PV3,...,Vn

(
n∑

i=1

1B(V1,r)\B(V2,s)(Vi)≤ κ

2
(logn)2/3−δ

︸ ︷︷ ︸
Hn

)
≤ exp

(−C(logn)2/3−δ).

Define

?1 = {
1≤ p ≤ n; U1,p ∈B(U1, r)\B(U2, s) and V1,p ∈B(V1, r)\B(V2, s)

}
,

?2 = {
1≤ p ≤ n; U1,p ∈B(U1, r)∩B(U2, s) and V1,p ∈ B(V1, r)\B(V2, s)

}
.

Recall (3.16). On Hc
n, there are only two possibilities; either |?1| ≥ (κ/4) ×

(logn)2/3−δ or |?2| ≥ (κ/4)(logn)2/3−δ. Now we deal with these two cases
separately.

Case 1. |?1| ≥ (κ/4)(logn)2/3−δ on Hc
n . In this case, the cardinality of the

symmetric difference between {(X1,p, Y2,p); 1 ≤ p ≤ τ1,1(r)} and {(X2,p, Y2,p);
1 ≤ p ≤ τ2,2(s)} is at least (κ/4)(logn)2/3−δ. It follows by Lemma A.6 that on
EU,1 ∩EV,1 ∩Hc

n,

maxPX,Y
(
A1(r)∩A2(s)

)=O
(
n−2e−C(logn)2/3−δ )

,
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where the maximum is taken over all r and s as in (3.14). On the other hand,
it is trivial to see that EU,V [P (A2,2 ∩ A1,1)1EU,1∩EV,1∩Hn ] = O(n−4(logn)2 ×
e−C(logn)2/3−δ

). Therefore, by (3.14),

EU,V
[
P (A2,2 ∩A1,1)1

(
EU,1 ∩EV,1 ∩ {|?1| ≥ (κ/4)(logn)2/3−δ

})]
=O

(
n−4(logn)4e−C(logn)2/3−δ )(3.17)

for some C > 0.

Case 2. |?2| ≥ (κ/4)(logn)2/3−δ on Hc
n . By (1.3) and Chebyshev’s inequality,

PX,Y (
∑

p∈D F(X1,p, Y1,p) ≥ zn − w|?2|) = O(n−2eθw|?2|) for any subset D ⊂
{1,2, . . . , n}. It follows that on EU,1 ∩EV,1 ∩Hc

n,

PX,Y
(
A1(r)∩A2(s)

)
≤ PX,Y

( ∑
p∈?2

F(X1,p, Y1,p)≥w|?2|,
τ2,2(s)∑
p=1

F(X2,p, Y2,p)≥ zn

)

×1
(
τ2,2(s) ∈(n

)+O
(
n−2eCw(logn)2/3−δ )

for any fixed w ∈ (µF ,0), where µF = EF(X,Y ). Define

AU = {
1≤ i ≤ n; Ui =U1,p = U2,q for some p ∈ ?2 and some 1≤ q ≤ τ2,2(s)

}
,

BU = {
1≤ i ≤ n; Ui =U1,p �= U2,q for some p ∈ ?2 and for all 1≤ q ≤ τ2,2(s)

}
.

Consequently, AU ∩ BU = ∅ and |AU ∪ BU | = |?2|. Then, by Chebyshev’s
inequality,

Tn := PX,Y

( ∑
p∈?2

F(X1,p, Y1,p)≥w|?2|,
τ2,2(s)∑
q=1

F(X2,q , Y2,q)≥ zn

)

×1
(
τ2,2(s) ∈(n

)
≤ n−2e−wt|?2|EX,Y

( ∏
p∈AU∪BU

etF (X1,p,Y1,p)
∏

1≤q≤τ2,2(s)

τ2,2(s)∈(n

eθF (X2,q,Y2,q )

)

= n−2e−wt|?2|N(t)|BU |M(t)|AU |

for all t > 0, where N(t) := EetF (X,Y ) and M(t) = EetF (X,Y1)+θF (X,Y2) as in
Lemma 3.2. If |BU | ≥ |?2|/2, then by Lemma 3.2, Tn ≤ n−2(e−wt

√
N(t) )|?2| for

all t ∈ (0, t0). By Lemma 3.2 again and choosing w = δ/2, Tn ≤ n−2 exp(−|?2|γ1)

for some γ1 > 0. Note that N(t) < 1 for all t ∈ (0, t0). If |AU | ≥ |?2|/2, by repeat-
ing the same arguments as above, we then obtain the same bound for Tn with an-
other constant γ2. Consequently, Tn = O(n−2 exp(−C(logn)2/3−δ)). Therefore,
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as in (3.17), we obtain

EU,V
[
PX,Y (A2,2 ∩A1,1)1

(
EU ∩EV,1 ∩ {|?2| ≥ (κ/4)(logn)2/3−δ})]

=O
(
n−4(logn)4e−C(logn)2/3−δ )

,

(3.18)

which together with (3.17) implies that

EU,V
(
PX,Y (A2,2 ∩A1,1)1(EU,1 ∩EV,1)

)=O
(
n−4(logn)4e−C(logn)2/3−δ )

.

Thus, (3.12) is justified. The proof is complete. �

PROOF OF LEMMA 2.6. Set cn = (logn)−hn−1/3, h ∈ (0,1/6). Since
P (A1,1 ∩A1,2)≤ n−2 and P (d(V1,V2)≤ cn)≤ 8/n(logn)3h,

EU,V P (A1,1 ∩A1,2)

≤EU,V
[
P (A1,1 ∩A1,2)

{
I
(
d(V1,V2)≥ 2l+n

)+ I
(
cn < d(V1,V2) < 2l+n

)}]
+8n−3(logn)−3h.

As in the case of the estimate of EU,V P (A2,2∩A1,1)IEU,2∩EV,2 in (3.11), we obtain

EU,V P (A1,1 ∩A1,2)I
(
d(V1,V2)≥ 2l+n

)= o
(
(logn)3n−γ

)
for some γ > 0. So we only need to estimate EU,V [P (A1,1 ∩ A1,2)I (cn <

d(V1,V2) < 2l+n )]. Recall the definition of τi,j (r) in (3.13). If d(V1,V2) ∈
(cn,2l+n ), then we have that

EU,V P (A1,1 ∩A1,2)

≤ λ2(logn)(log2 n)E
U,V

×
[

maxPX,Y

( τ1,1(r)∑
p=1

F(X1,p, Y1,p)≥ zn,

τ1,2(s)∑
p=1

F(X1,p, Y2,p)≥ zn

)]
,

where the maximum is taken over all r, s such that r, s ∈ (l−n , l+n ) and τ1,1(r),

τ1,2(s) ∈(n. Assume, without loss of generality, r > s. As in (3.15), the volume of
B(V1, r)\B(V2, s)≥ C(logn)2/3−h/n. It is easy to check by Bernstein’s inequality
that with probability at least 1− 2 exp(−√logn),

#
{
3≤ p ≤ n; Vp ∈B(V1, r)\B(V2, s)

}≥ C(logn)2/3−h

and

#
{
3≤ p ≤ n; Up ∈ B(U1, r)\B(U1, s)

}≤ C
√
(logn) log2 n,

which implies that there exists a set ?3 ⊂ {1,2, . . . , n} such that |?3| ≥
C(logn)2/3−h, U1,p ∈ B(U1, s) and V1,p ∈ B(V1, r)\B(V2, s) for all p ∈ ?3.
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Then by using the same argument as was used for obtaining (3.17) and (3.18),
we have that

P

( τ1,1(r)∑
p=1

F(X1,p, Y1,p)≥ zn,

τ1,2(s)∑
p=1

F(X1,p, Y2,p)≥ zn

)

= o
(
n−2 exp

{−C(logn)2/3−h
})
.

Combining all the above arguments, we have

EU,V P (A1,1 ∩A1,2)=O
(
n−3e−C

√
logn

)
.

The proof is complete. �

APPENDIX

The following inequality provides us with bounds for tails of sums of
independent and bounded random variables; see Exercise 14 in [7] or page 193
in [17].

LEMMA A.1 (Bernstein’s inequality). Let {εi; 1 ≤ i ≤ n} be a sequence
of independent random variables with Eεi = 0, Eε2

i = σ 2
i and |εi | ≤ 1. Let

Sn =∑n
i=1 εi, s2

n =
∑n

i=1 σ
2
i . Then

P (Sn > x)≤ exp{−x2/2(s2
n + x)}, x > 0.

In the following lemmas, we assume that {ξ, ξi, i ≥ 1} is a sequence of i.i.d.
random variables. Let Sn = ∑n

i=1 ξi. The next inequality is called Chernoff’s
bound (see, e.g., page 31 in [10]).

LEMMA A.2 (Chernoff’s bound). Let !∗
ξ (x) = supt∈R{tx − logE exp(tξ)}.

Then,

P (Sn/n≥ x)≤ exp
(− n!∗

ξ (x)
)
, n≥ 1, x ≥Eξ.

The lemma below is a refinement of a large deviation result from Corollary 2.1
in [13].

LEMMA A.3. Suppose ξ is nonlattice and Eetξ <∞ for all t ∈R. Then

sup
a≤η≤b

sup
|x|≤δ

√
n logn

∣∣Cn(x, η)P
(
Sn ≥ n!′(η)+ x

)− 1
∣∣→ 0 as n→∞,

for any positive constants a, b and δ, where

Cn(x, η)= η

√
2πn!′′(η) exp

{
n!∗(!′(η))+ ηx + (

x2/2!′′(η)n
)}
.
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Next, we need a condition on ξ as follows:

ξ is nonlattice, E(ξ) < 0, P (ξ > 0) > 0 and

E exp(tξ) <∞ ∀ t ∈R.
(A.1)

Under this condition, there is a unique constant θ > 0 so that E exp(θξ)= 1. Set
!(t)= log(E exp(tξ)) for t ∈R. The following two facts are Lemmas 2.5 and 2.6,
respectively, from [13].

LEMMA A.4. Assume ξ satisfies condition (A.1), then there exist constants
r > 1 and t0 > θ such that∑

k≥rz

P (Sk ≥ z)+ ∑
k≤r−1z

P (Sk ≥ z)= o(e−t0z) as z→∞.

LEMMA A.5. Suppose condition (A.1) holds. For any two positive functions
a(z) and b(z) such that (a(z)+ b(z))/z→ 0, and any two positive numbers s and
r satisfying s < !′(θ) < r, we have that

(eθz/
√
z)

∑
k∈?z

P (Sk ≥ z)=O
(
e−c(z)2/z

)
as z→∞,

where ?z = {k ∈ N; sz ≤ k ≤ !′(θ)z − b(z) or !′(θ)z + a(z) ≤ k ≤ rz} and
c(z)= a(z)∧ b(z), z > 0.

LEMMA A.6. SupposeA,B and C are disjoint sets of indices and {X,Xα;α ∈
A ∪ B ∪ C} are i.i.d. random variables with X satisfying condition (A.1) and
µ := EX. For any subset D ⊂ A ∪ B ∪ C, we use the notation SD :=∑

α∈D Xα.

Then,

P (SA∪B ≥ z, SB∪C ≥ z)≤ 2e−θz−m1ζ ≤ 2e−θz−m2ζ ,

where ζ = supµ<x<0{!∗(x)∧ θ |x|}> 0, m1 = |A| ∨ |C| and m2 = |A ∪C|/2.
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