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RATE OF CONVERGENCE OF A PARTICLE METHOD
FOR THE SOLUTION OF A 1D VISCOUS SCALAR
CONSERVATION LAW IN A BOUNDED INTERVAL

BY MIREILLE BOSSY AND BENJAMIN JOURDAIN

INRIA and ENPC-CERMICS

In this paper, we give a probabilistic interpretation of a viscous scalar
conservation law in a bounded interval thanks to a nonlinear martingale
problem. The underlying nonlinear stochastic process is reflected at the
boundary to take into account the Dirichlet conditions. After proving
uniqueness for the martingale problem, we show existence thanks to
a propagation of chaos result. Indeed we exhibit a system of N interacting
particles, the empirical measure of which converges to the unique solution
of the martingale problem as N → +∞. As a consequence, the solution
of the viscous conservation law can be approximated thanks to a numerical
algorithm based on the simulation of the particle system. When this system
is discretized in time thanks to the Euler–Lépingle scheme [D. Lépingle,
Math. Comput. Simulation 38 (1995) 119–126], we show that the rate of
convergence of the error is in O(�t + 1/

√
N), where �t denotes the time

step. Finally, we give numerical results which confirm this theoretical rate.

1. Introduction. We are interested in the following viscous scalar conser-
vation law with nonhomogeneous Dirichlet boundary conditions on the inter-
val [0,1]:

∂

∂t
v(t, x)= σ 2

2

∂2

∂x2
v(t, x)− ∂

∂x
A(v(t, x)) ∀ (t, x) ∈ (0,+∞)× (0,1),

v(0, x)= v0(x) ∀x ∈ [0,1],
v(t,0)= 0 and v(t,1)= 1, ∀ t > 0.

(1)

We suppose that A : R → R is a C1 function and that the initial data v0 is the
cumulative distribution function of a probability measure U0 on [0,1], which
is written, ∀x ∈ [0,1], v0(x) = U0([0, x]) = H ∗ U0(x), where H(y) = 1{y≥0}
denotes the Heaviside function.

After giving a probabilistic interpretation of the solution of this equation
thanks to a nonlinear martingale problem, we want to derive and study a particle
approximation of this solution. Our main motivation is that the spatial domain
in (1) is bounded. To our knowledge, the only paper about a probabilistic particle
interpretation for the solution of a partial differential equation posed in a bounded
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spatial domain is [1], which is dedicated to the two-dimensional incompressible
Navier–Stokes equation. In [1], the authors do not prove the convergence of the
proposed particle method. By considering the much simpler equation (1), we are
able not only to prove the convergence but also to bound the associated rate.

When the viscous scalar conservation law is posed in the spatial domain R

instead of [0,1], one can show that its unique weak solution is equal to H ∗ Pt(x),
where (Pt)t≥0 denote the time-marginals of the probability measure P on
C([0,+∞),R) characterized the following martingale problem nonlinear in the
sense of McKean [4, 8]:

(i) P0 = U0,
(ii) ∀ϕ ∈ C2

b(R),

ϕ(Xt)− ϕ(X0)−
∫ t

0

[
σ 2

2
ϕ′′(Xs)+A′(H ∗ Ps(Xs))ϕ

′(Xs)

]
ds

is a P -martingale, where X denotes the canonical process on C([0,∞),R).

Here, we follow a similar approach. To take into account the Dirichlet
boundary conditions, we work with a diffusion process with reflection. That
is why we introduce (X,K), the canonical process on the sample path space
C =C([0,+∞), [0,1])×C([0,+∞),R) (endowed with the topology of uniform
convergence on compact sets). For P in P (C) the set of probability measures
on C, (P̄t )t≥0 is the set of time-marginals of the probability measure P̄ on
C([0,+∞), [0,1]) defined by P̄ = P ◦X−1. We associate the following nonlinear
problem with (1).

DEFINITION 1.1. A probability measure P ∈ P (C) solves the martingale
problem (MP) starting at U0 ⊗ δ0 ∈P ([0,1] ×R), if the following hold:

(i) P ◦ (X0,K0)
−1 =U0 ⊗ δ0;

(ii) ∀ϕ ∈C2
b(R),

ϕ(Xt −Kt)− ϕ(X0 −K0)

−
∫ t

0

(
σ 2

2
ϕ′′(Xs −Ks)+A′(H ∗ P̄s(Xs)

)
ϕ′(Xs −Ks)

)
ds

is a P -martingale;
(iii) P -a.s., ∀ t ≥ 0,

∫ t
0 d|K|s < +∞, |K|t = ∫ t

0 1{0,1}(Xs) d|K|s and Kt =∫ t
0 (1 − 2Xs)d|K|s .

The finite variation process Kt which increases when Xt = 0 and decreases
when Xt = 1 accounts for reflection and prevents Xt from leaving the inter-
val [0,1].

In Section 2, we prove that if P solves problem (MP), then (t, x)→H ∗ P̄t (x) is
the unique weak solution of (1). We deduce uniqueness for the martingale problem.
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Existence is obtained thanks to a propagation of chaos result for a system of weakly
interacting diffusion processes.

In Section 3, we discretize this system in time thanks to the version of the Euler
scheme introduced by Lépingle [10]. This way, we derive a numerical method
to approximate the solution of (1). We prove a theoretical rate of convergence
in O(�t + 1/

√
N), where �t and N denote respectively the time step and the

number of particles. This rate is the same as the one obtained by Bossy [3] when
the spatial domain is R. As an important step in the proof, we show that, when
applied to a one-dimensional diffusion reflected at the boundary of [0,1] with
nondegenerate constant diffusion coefficient, the weak error of the Euler–Lépingle
scheme is in O(�t). To our knowledge, this is the first result concerning the weak
error of this scheme.

The last section is devoted to numerical experiments which confirm the
theoretical rate of convergence of our particle method. The treatment of the
reflection by the Euler–Lépingle scheme does not alter the convergence whereas
we exhibit a sublinear numerical dependence on the time step�t when the particle
system is discretized thanks to the cruder Euler projection scheme.

To conclude the Introduction, we should mention that, using signed weights as
in [8] and [3], we could extend our approach to deal with the following more
general boundary conditions in (1): ∀ t > 0, v(t,0) = a and v(t,1) = b, and
∀x ∈ [0,1], v0(x) = U0([0, x]), where U0 is a bounded signed measure on [0,1]
satisfying the compatibility condition U0([0,1]) = b − a. However, we restrict
ourselves to a simple case without weights to avoid further complication of the
already technical developments.

2. Probabilistic interpretation of the viscous scalar conservation law
equation. For T > 0 let QT = (0, T ) × (0,1) and let W 0,1

2 (QT ), W
1,1
2 (QT )

denote the Hilbert spaces with respective scalar products (cf. [9])

(u, v)
W

0,1
2 (QT )

=
∫
QT

(uv + ∂xu ∂xv) dx dt,

(u, v)
W

1,1
2 (QT )

=
∫
QT

(uv + ∂xu ∂xv + ∂tu ∂tv) dx dt.

We introduce the Banach space V 0,1
2 (QT )= {u ∈W 0,1

2 (QT )∩C((0, T ),L2(0,1))
such that ‖u‖

V
0,1

2 (QT )
= sup0≤t≤T ‖u(t, x)‖L2(0,1) + ‖∂xu‖L2(QT )

< +∞}. The

corresponding subspaces consisting in elements which vanish on [0, T ] × {0,1}
are respectively denoted by

◦
W

0,1
2 (QT ),

◦
W

1,1
2 (QT ),

◦
V

0,1
2 (QT ).

We first prove uniqueness of weak solutions of problem (1) defined in the
following way:

DEFINITION 2.1. A weak solution of (1) is a function v : [0,+∞) ×
[0,1] → R satisfying the boundary conditions and such that, for any T > 0,
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v ∈ V 0,1
2 (QT )∩L∞(QT ) and, for all φ in

◦
W

1,1
2 (QT ) and all t ∈ [0, T ],∫ 1

0
v(t, x)φ(t, x) dx =

∫ 1

0
v0(x)φ(0, x) dx +

∫ t

0

∫ 1

0

∂

∂s
φ(s, x)v(s, x) dx ds

+
∫ t

0

∫ 1

0

∂

∂x
φ(s, x)A(v(s, x)) dx ds(2)

−
∫ t

0

∫ 1

0

σ 2

2

∂

∂x
φ(s, x)

∂

∂x
v(s, x) dx ds.

Then we check that, when P solves the martingale problem (MP), V (t, x) =
H ∗ P̄t (x) is a weak solution of (1). Uniqueness for the martingale problem
is derived from uniqueness for this equation. The probabilistic interpretation
is completed by a propagation of chaos result which ensures existence for
problem (MP).

2.1. Uniqueness result for equation (1).

LEMMA 2.2. Equation (1) has no more than one weak solution in the sense
of Definition 2.1.

PROOF. Let v1 and v2 be two weak solutions of (1) and let T > 0. We set

w = v1 − v2. Then w is in
◦
V

0,1
2 (QT ) and w(0, x)= 0 for all x ∈ [0,1]. Moreover,

for all φ ∈ ◦
W

1,1
2 (QT ),∫ 1

0
w(t, x)φ(t, x) dx =

∫ t

0

∫ 1

0

∂

∂s
φ(s, x)w(s, x) dx ds

+
∫ t

0

∫ 1

0

∂

∂x
φ(s, x)

{
A(v1(s, x))−A(v2(s, x))

}
dx ds(3)

−
∫ t

0

∫ 1

0

σ 2

2

∂

∂x
φ(s, x)

∂

∂x
w(s, x) dx ds.

Thus, w is a generalized solution in the sense of Ladyzenskaja, Solonnikov and
Ural’ceva (cf. [9]) of a linear equation with uniformly bounded coefficients. We
can apply results of Chapter 3 of [9]. In particular the identity ([9], 2.13) of
Section 2 used to establish the energy inequality holds and becomes in our case

1

2

∫ 1

0
w2(x, t) dx +

∫ t

0

∫ 1

0

σ 2

2

(
∂w

∂x

)2

(s, x) dx ds

=
∫ t

0

∫ 1

0

∂w

∂x
(s, x)

{
A(v1(s, x))−A(v2(s, x))

}
dx ds.

(4)

Formally, this identity is obtained by taking φ =w in (3) and integrating by parts
the first term of the right-hand side. As w is not sufficiently smooth to do so,
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the proof of (4) relies on two steps. The first consists in working with Steklov
averagings in time of functions φ and showing that is it possible to integrate by
parts the first term of the right-hand side of (3). The second consists in proving
that it is possible to replace φ by w in the obtained identity.

Following techniques from Chapter 3 of [9], we deduce from (4) that

min
(

1

2
,
σ 2

2

)[
‖w(t)‖2

L2([0,1])+
∫
Qt

(
∂w

∂x

)2

(s, x) dx ds

]

≤
∫
Qt

∂w

∂x
(s, x)

{
A(v1(s, x))−A(v2(s, x))

}
dx ds.

Now we observe that, for M = ‖v1‖L∞(QT ) ∨ ‖v2‖L∞(QT ),∫
Qt

∂w

∂x
(s, x)

{
A(v1(s, x))−A(v2(s, x))

}
dx ds

≤ sup
|x|≤M

|A′(x)|
∫
Qt

|w|(s, x)
∣∣∣∣∂w∂x

∣∣∣∣(s, x) dx ds
≤ sup

|x|≤M
|A′(x)| sup

s≤t
‖w(s)‖L2[0,1]

∫ t

0

∥∥∥∥∂w∂x (s)
∥∥∥∥
L2[0,1]

ds

≤ sup
|x|≤M

|A′(x)|
√
t

2

[
sup
s≤t

‖w(s)‖2
L2(0,1)+

∥∥∥∥∂w∂x
∥∥∥∥2

L2(Qt )

]
by using the Cauchy–Schwarz inequality and the upper bound 2ab≤ a2+b2. Thus

min(1, σ 2)

[
sup
s≤t

‖w(s)‖2
L2(0,1)+

∫
Qt

(
∂w

∂x

)2

(s, x) dx ds

]
≤ C

√
t‖w‖2

V
0,1

2 (Qt )

and hence

min(1, σ 2)‖w‖2
V

0,1
2 (Qt )

≤ C
√
t‖w‖2

V
0,1

2 (Qt )
.

Choose t1 such that

t1 <
min(1, σ 4)

C2
∧ T .

Then ‖w‖
V

0,1
2 (Qt1)

= 0. Now, for t ≥ t1, (4) gives

1

2

∫ 1

0
w2(x, t) dx +

∫ t

t1

∫ 1

0

σ 2

2

(
∂w

∂x

)2

(s, x) dx ds

=
∫ t

t1

∫ 1

0

∂w

∂x
(s, x)

{
A(v1(s, x))−A(v2(s, x))

}
dx ds
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and the previous computation shows that, for any t2 ≤ T , such that

t2 − t1 <
min(1, σ 4)

C2
,

‖w‖
V

0,1
2 (Qt1,t2 )

= 0. Finally, we can iterate this procedure to obtain that

‖w‖
V

0,1
2 (QT )

= 0. Since T is arbitrary v1 = v2. �

2.2. Uniqueness for the martingale problem (MP) and link with (1).

PROPOSITION 2.3. If P solves the martingale problem (MP) starting at
U0 ⊗ δ0, then V (t, x)=H ∗ P̄t (x) is a weak solution of (1). Moreover, uniqueness
holds for the martingale problem (MP).

PROOF. Clearly the function V (t, x) = H ∗ P̄t (x) is bounded by 1. Let
T > 0. We check that the function V belongs to V

0,1
2 (QT ) and satisfies the

nonhomogeneous Dirichlet boundary conditions in (1) thanks to the following
lemma, the proof of which is postponed.

LEMMA 2.4. If P solves the martingale problem (MP), then, for any t > 0,
P̄t has a density p̄t which belongs to L2([0,1]) and it holds that

‖p̄t‖L2([0,1]) ≤ C(1 + t−1/4) exp(Ct).

We still have to check that V satisfies the identity (2). Let φ be a C∞ function
on [0, T ] × [0,1] with φ(t,0) = φ(t,1) = 0 for all t ∈ [0, T ]. We set ψ(t, x) =∫ x

0 φ(t, y) dy. According to Definition 1.1(ii), under the probability measure P ,
1
σ
(Xt −Kt − ∫ t0 A′(V (s,Xs)) ds) is a local martingale with quadratic variation t ,

that is, a Brownian motion. By Definition 1.1(iii) and the choice of the boundary
conditions for φ, P -a.s.,∫ t

0

∂ψ

∂x
(s,Xs) dKs =

∫ t

0
φ(s,Xs)1{0,1}(Xs) dKs = 0.

Thus, by Itô’s formula

Eψ(t,Xt )= Eψ(0,X0)+E

∫ t

0

[
∂ψ

∂s
+ σ 2

2

∂2ψ

∂x2

]
(s,Xs) ds

+E

∫ t

0

∂ψ

∂x
(s,Xs)A

′(V (s,Xs)) ds.
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As p̄s = ∂V
∂x
(s, · ), we deduce that∫ 1

0
ψ(t, x)

∂V

∂x
(t, x) dx =

∫ 1

0
ψ(0, x)

∂V0

∂x
(x) dx

+
∫ t

0

∫ 1

0

∂ψ

∂s
(s, x)

∂V

∂x
(s, x) dx ds

+
∫ t

0

∫ 1

0

σ 2

2

∂φ

∂x
(s, x)

∂V

∂x
(s, x) dx ds

+
∫ t

0

∫ 1

0
φ(s, x)A′(V (s, x))∂V

∂x
(s, x) dx ds.

Applying the Stieltjes integration by parts formula in the spatial integrals in the
first and last lines of the previous equality, we get identity (2) for φ a C∞ function
vanishing for x = 0 and x = 1. As V is in V

0,1
2 (QT ) we can extend the identity

easily by density for any function φ in
◦
W

1,1
2 (QT ).

Hence V (t, x)=H ∗ P̄t (x) is a weak solution in the sense of Definition 2.1.
Uniqueness for the martingale problem (MP) is derived from the uniqueness

result for the problem (1): if P andQ solve (MP), then, for any (t, x) ∈ [0,+∞)×
R, H ∗ P̄t (x)=H ∗Q̄t (x). Hence P andQ solve a linear martingale problem with
bounded drift term A′(H ∗ P̄t (x)) and by the Girsanov theorem P =Q. �

PROOF OF LEMMA 2.4. We just have to adapt to the case of reflected diffu-
sion processes the proof of Proposition 1.1 of [12]. According to Definition 1.1(ii),
under the probability measure P , 1

σ
(Xt −Kt − ∫ t0 A′(V (s,Xs)) ds) is a Brownian

motion. As sup[0,1] |A′(x)|<+∞, by the Girsanov theorem, under the probability

measure Q ∈ P (C) such that dQ
dP

∣∣
Ft

= 1
Zt

, where

Zt = exp
(∫ t

0

1

σ 2
A′(H ∗ P̄s(Xs)

)
d(Xs −Ks)− 1

2σ 2
A′2(H ∗ P̄s(Xs)

)
ds

)
,

βt = 1
σ
(Xt −Kt) is a Brownian motion starting at 1

σ
X0 and (Xt )t≥0 is the doubly

reflected process associated with (σβt )t≥0.
For ψ bounded and measurable, since EP (ψ(Xt )) = EQ(ψ(Xt)Zt ), by the

Cauchy–Schwarz inequality,

EP (ψ(Xt ))≤
(∫ 1

0
ψ2(x)ut (x) dx

)1/2

exp
(

t

2σ 2 sup
[0,1]

|A′2(x)|
)
,

where ut(x)= ∫ 1
0 pσ 2t (z, x)U0(dz) and

pt(z, x)= 1√
2πt

∑
n∈Z

(
e−(x−z−2n)2/2t + e−(x+z+2n)2/2t)
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denotes the transition density of the doubly reflected Brownian motion in [0,1].
For any (z, x) ∈ R2 we easily check that pt(z, x)≤ 2√

2πt
+ 1. Thus,

EP (ψ(Xt ))≤ C(1 + t−1/4) exp(Ct)‖ψ‖L2([0,1]),

which gives the lemma. �

2.3. The propagation of chaos result. The system of weakly interacting
diffusion processes with normal reflecting boundary conditions is given by the
N -dimensional stochastic differential equation

X
i,N
t =X

i,N
0 + σWi

t +
∫ t

0
A′(H ∗ µ̄Ns (Xi,N

s )
)
ds +K

i,N
t ,

|Ki,N |t =
∫ t

0
1{0,1}(Xi,N

s ) d|Ki,N |s,(5)

K
i,N
t =

∫ t

0
(1 − 2Xi,N

s ) d|Ki,N |s , i ≤N,

where µ̄Ns = 1
N

∑N
j=1 δXj,N

s
and (W 1, . . . ,WN) is an N -dimensional Brownian

motion independent of the initial variables (X1,N
0 , . . . ,X

N,N
0 ), which are i.i.d. with

law U0. As sup[0,1] |A′(x)| is bounded, by the Girsanov theorem, this equation
admits a unique weak solution. Existence for problem (MP) is ensured by the
following propagation of chaos result:

THEOREM 2.5. The particle systems ((X1,N ,K1,N ), . . . , (XN,N ,KN,N)) are
P -chaotic, where P denotes the unique solution of the martingale problem (MP)
starting at U0 ⊗ δ0; that is, for fixed j ∈ N∗ the law of ((X1,N ,K1,N), . . . ,

(Xj,N ,Kj,N)) converges weakly to P⊗j as N →+∞.

PROOF. Except in the treatment of the discontinuity of the Heaviside function,
we follow the proof given by Sznitman [13], Theorem 1.4. When possible, we take
advantage of the particular form of our diffusion domain (the interval [0,1]) to
simplify the arguments.

By Proposition 2.3, uniqueness holds for problem (MP). As the particles
(Xi,N ,Ki,N )i≤N are exchangeable, the propagation of chaos result is equivalent
to the weak convergence of the law πN of the empirical measure µN =
1
N

∑N
i=1 δ(Xi,N ,Ki,N ) to a probability measure concentrated on solutions of prob-

lem (MP) when N →+∞ (see [14] and the references cited therein).
Again by exchangeability the tightness of the sequence (πN)N is equivalent to

the tightness of the laws of the couples (X1,N ,K1,N ). As sup[0,1] |A′(x)|<+∞,
the laws of the processes Y 1,N =X1,N−K1,N are tight. Since the map sending y ∈
C([0,+∞),R) to the solution (x, k) ∈ C of the Skorokhod problem is continuous
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(see [11]), we deduce that the laws of the couples (X1,N ,K1,N ) are tight. Hence
(πN)N is a tight sequence.

Let π∞ be the limit of a converging subsequence that we still index by N for
simplicity and let Q denote the canonical variable on P (C). We are going to
prove that, π∞-a.s., Q solves problem (MP). Clearly, π∞-a.s., Q ◦ (X0,K0)

−1 =
U0(dx) ⊗ δ0; that is, π∞-a.s., condition (i) in Definition 1.1 is satisfied. To
deal with condition (ii), we set ϕ ∈ C2

b(R), p ≥ 1, t ≥ s ≥ s1 ≥ · · · ≥ sp ≥ 0,
g ∈ Cb(R

2p) and define a mapping F on the set P (C) of probability measures
on C by

F(Q)=
〈
Q,g(Xs1 , Ks1, . . . ,Xsp ,Ksp)

×
(
ϕ(Xt −Kt)− ϕ(Xs −Ks)

−
∫ t

s

σ 2

2
ϕ′′(Xr −Kr)+A′(H ∗ Q̄r(Xr)

)
ϕ′(Xr −Kr)dr

)〉
.

The mapping Fk defined like F with the Heaviside function H replaced by the
Lipschitz continuous approximation Hk(x) = k(x + 1

k
)1{−1/k<x<0} + 1{x≥0} is

continuous and bounded. Hence the weak convergence of πN to π∞ implies

Eπ∞|F(Q)| ≤ lim sup
k

Eπ∞|F − Fk(Q)|

+ lim sup
k

lim sup
N

EπN |F − Fk(Q)| + lim sup
N

EπN |F(Q)|.
(6)

As the mappings Fk converge pointwise to F and are bounded uniformly in k, the
first term of the right-hand side is equal to 0. Applying Itô’s formula, we check
that the third term is also nil. By the Lipschitz continuity of A′ on [0,1],

EπN |F − Fk(Q)| ≤ CE

(〈
µ̄N ,

∫ t

s
(Hk −H) ∗ µ̄Nr (Xr) dr

〉)
.

Using the exchangeability of the particles Xi,N , i ≤N , we deduce that

lim sup
N

EπN |F − Fk(Q)| ≤ C lim sup
N

E

(∫ t

s
(Hk −H)(X1,N

r −X2,N
r ) dr

)
.(7)

Using the Girsanov theorem as in the proof of Lemma 2.4, we obtain that, ∀N ≥ 2,
the couple (X1,N

r ,X2,N
r ) has a density that belongs to L2([0,1] × [0,1]) with

a norm smaller than C(1 + r−1/2) exp(Ct). Hence

∀ r ∈ [0, t], E
(
(Hk −H)(X1,N

r −X2,N
r )

)≤ C(t)(1 + r−1/2)k−1/4.

By (7), we deduce that lim supk lim supN EπN |F − Fk(Q)| = 0. Hence each term
of the right-hand side of (6) is nil and Eπ∞|F(Q)| = 0. As a consequence,π∞-a.s.,
Q satisfies condition (ii) in Definition 1.1.
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Let us check condition (iii). Since the following subset of C,

FT,M =
{
(x, k) : |k|T ≤M, |k|T =

∫ T

0
1{0,1}(xs) d|k|s,

∀ t ≤ T, kt =
∫ t

0
(1 − 2xs) d|k|s

}
,

is closed as stated in Lemma 2.6, {Q ∈ P (C) :Q(FT,M) ≥ 1 − ε} is also closed.
By the weak convergence of πN to π∞, we deduce

π∞({Q :Q(FT,M)≥ 1 − ε}) ≥ lim sup
N

πN
({Q :Q(FT,M)≥ 1 − ε})

= 1 − lim inf
N

πN
({
Q :Q({|k|T >M}) > ε

})
≥ 1 − lim inf

N
EπN

( 〈Q, |k|T 〉
Mε

)
= 1 − lim infN E(|K1,N |T )

Mε
.

(8)

As |K1,N |T = ∫ T0 (1 − 2X1,N
s ) dK1,N

s , by Itô’s formula, we obtain

|K1,N |T =
(
X

1,N
0 − 1

2

)2

−
(
X

1,N
T − 1

2

)2

+
∫ T

0
(2X1,N

s − 1)A′(H ∗ µ̄Ns (X1,N
s )

)
ds

+
∫ T

0
σ(2X1,N

s − 1) dW 1
s + σ 2T .

Hence supN E(|K1,N |T ) <+∞.
With (8), we deduce that π∞({Q :Q(

⋃
M>0F

M,T ) ≥ 1 − ε}) = 1. As ε is
arbitrary, we conclude that

π∞
({

Q :Q

(⋂
T>0

⋃
M>0

FM,T

)
= 1

})
= 1,

that is, π∞-a.s., Q satisfies Definition 1.1(iii), which completes the proof. �

LEMMA 2.6. The subset FT,M of C which consists in the couples (x, k) such
that |k|T ≤ M , |k|T = ∫ T

0 1{0,1}(xs) d|k|s and ∀ t ≤ T, kt = ∫ t
0 (1 − 2xs) d|k|s is

closed.

PROOF. Let (xn, kn) ∈ FT,M converge to (x, k) in C. As ∀n≥ 0, |kn|T ≤M ,
by extraction of a subsequence, we can suppose that the measures d|k|n (resp. dkn)
on the compact set [0, T ] converge weakly to da, a positive measure with
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mass smaller than M (resp. db a signed measure). As kn converges uniformly
to k on [0, T ], t ∈ [0, T ] → kt is the cumulative distribution function of the
measure db.

If f : [0, T ]→ R is continuous, as xn converges uniformly to x on [0, T ],∫ T

0
f (s) dbs = lim

n

∫ T

0
f (s) dkns

= lim
n

∫ T

0
f (s)(1 − 2xns ) d|kn|s =

∫ T

0
f (s)(1 − 2xs) das.

Hence (1 − 2xs) is a density of db w.r.t. da and

∀ t ∈ [0, T ], kt =
∫ t

0
(1 − 2xs) das.(9)

As (xn, kn) ∈ FT,M ,
∫ T

0 xns (1 − xns ) d|kn|s = 0.
Letting n→+∞, we get

∫ T
0 xs(1− xs) das = 0, that is, das a.e. xs ∈ {0,1} and

|1−2xs| = 1. With (9), we deduce that da is the total variation of dk and conclude
that (x, k) ∈ FT,M . �

COROLLARY 2.7. It is possible to approximate the weak solution V (t, x) =
H ∗ P̄t (x) of (1) thanks to the empirical cumulative distribution function
H ∗ µ̄Nt (x) of the particle system. More precisely

∀ (t, x) ∈ [0,+∞)× [0,1], lim
N→+∞E

∣∣V (t, x)−H ∗ µ̄Nt (x)
∣∣= 0.

PROOF. For t > 0 and x ∈ [0,1], according to Lemma 2.4, the function Q ∈
P (C)→|H ∗ P̄t (x)−H ∗ Q̄t (x)| ∈ R is continuous at P . The weak convergence
of the sequence (πN)N to π∞ = δP implies

lim
N→+∞E

∣∣H ∗ P̄t (x)−H ∗ µ̄Nt (x)
∣∣= Eπ∞ ∣∣H ∗ P̄t (x)−H ∗ Q̄t (x)

∣∣= 0.

In the case t = 0, we conclude with the strong law of large numbers. �

3. Particle method. In this section we describe a numerical particle method
to approximate the solution V of (1) on [0, T ] × [0,1] (where T is a positive
constant) and analyze its rate of convergence. According to Corollary 2.7, it is
possible to approximate V (t, x) by the empirical cumulative distribution function
H ∗ µ̄Nt (x) = 1

N

∑N
j=1H(x − X

j,N
t ) of the particle system (5). To transform

this convergence result into a numerical approximation procedure, we need to
discretize in time the N -dimensional stochastic differential equation (5). To do
so we use the version of the Euler scheme introduced by Lépingle [10] which
mimics the reflection at the boundary. We choose �t > 0 and L ∈ N such that
T = L�t and denote by Y itl the position of the ith particle (1 ≤ i ≤ N) at the
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discretization time tl = l �t (0 ≤ l ≤ L). The Euler–Lépingle scheme consists in
setting 0 < α0 < α1 < 1 and in generating exact reflection on the lower boundary
on [tl, tl+1] when Y itl ≤ α0 and exact reflection on the upper boundary on [tl , tl+1]
when Y itl ≥ α1. When at the end of the time step the computed position is smaller
than 0 or greater than 1, then Y itl+1

is respectively chosen equal to 0 or equal to 1.
We will actually let α0 and α1 depend on�t to reduce the computational effort, but
to simplify notation we do not emphasize this dependence unless necessary. Taking
advantage of the one-dimensional space domain, we invert the initial cumulative
distribution function V0(x)=H ∗U0(x) to construct the set of initial positions of
the numerical particles:

yi0 = inf
{
z :H ∗U0(z)≥ i

N

}
for 1 ≤ i ≤N.(10)

At time tl , the function V (tl, x) is approximated thanks to the empirical cumulative
distribution function

V (tl, x)= 1

N

N∑
i=1

H(x − Y itl )

and the positions of the ith particle are given inductively by

Y it0 = yi0 and ∀0 ≤ l ≤ L− 1, ∀ t ∈ [tl, tl+1],
Y it = 0 ∨ (Y itl + σ(Wi

t −Wi
tl
)+ (t − tl)A

′(V (tl, Y itl ))+Ci
t

)∧ 1,

Ci
t = 1{Y itl≤α0} sup

s∈[tl ,t]
(
Y itl + σ(Wi

s −Wi
tl
)+ (s − tl)A

′(V (tl, Y itl )))−
−1{Y itl≥α1} sup

s∈[tl ,t]
(
Y itl − 1 + σ(Wi

s −Wi
tl
)+ (s − tl)A

′(V (tl, Y itl )))+.
(11)

Since it is possible to simulate jointly the Brownian increment (Wi
tl+1

−Wi
tl
) and

the corresponding sups∈[tl ,tl+1](W
i
s −Wi

tl
+ (s − tl)α), this discretization scheme

is feasible.
To obtain the optimal rate of convergence O(1/

√
N+�t) we are going to make

rather strong assumptions on the initial condition v0(x) = H ∗ U0(x) ensuring
that the weak solution of (1) is in fact a classical solution. These hypotheses
are possibly too restrictive but they avoid further complications of the already
technical proof. For the solution of (1) to be classical, that is, C1,2 (C1 in the
time variable t and C2 in the space variable x), it is necessary that v0 is C2.
Moreover, since the Dirichlet boundary conditions are constant in time, for x = 0

or x = 1, σ 2

2 ∂xxv(t, x) − A′(v(t, x)) ∂xv(t, x) = ∂tv(t, x) = 0. At time t = 0,
we obtain the necessary compatibility conditions σ 2v′′0 (0) = 2A′(0)v′0(0) and
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σ 2v′′0 (1)= 2A′(1)v′0(1). Our hypothesis

v0 ∈ C2+β([0,1])
(v′′0 Hölder continuous with exponent β), where β ∈]0,1[,

σ 2v′′0 (0)= 2A′(0)v′0(0) and σ 2v′′0 (1)= 2A′(1)v′0(1), A is a C3 function,

(H)

is slightly stronger than these necessary conditions. Combining Theorem 6.1 of
[9, pages 452–453], which gives existence of a classical solution on [0, T ]× [0,1]
for (1), and the proof of Lemma 2.2, which gives uniqueness of weak solutions on
[0, T ] × [0,1], we obtain the following lemma.

LEMMA 3.1. Under hypothesis (H), the solution V (t, x) =H ∗ P̄t (x) of (1)
belongs to C1,2([0, T ]× [0,1]) and ∂xV (t, x) is Hölder continuous with exponent
(1 + β)/2 in the time variable t on [0, T ] × [0,1].

To reduce the effort needed to compute the correction terms Ci
t in (11), it is

interesting to let α0 and α1 depend on the time step �t and converge respectively
to 0 and 1 as �t → 0. Supposing that these convergences are not too quick, we
obtain the following estimate for the convergence rate of the particle method.

THEOREM 3.2. Under hypothesis (H), if we assume that 0 < α0(�t) ≤
α1(�t) < 1 satisfy α0(�t) ∧ (1 − α1(�t)) ≥ a�tγ for 0 ≤ γ < 1/2 and a > 0,
then there exists a strictly positive constant C depending on A, U0, T , σ , a and γ
such that

∀0 ≤ l ≤ L, sup
x∈[0,1]

E|V (tl, x)− V (tl , x)| ≤ C

(
1√
N

+�t

)
.

The proof follows the main ideas of Bossy [3], who deals with the convergence
rate of a particle approximation for the solution of the scalar conservation law
with spatial domain R similar to (1) even if some new difficulties arise in the
present framework because of the reflection. Let Wt denote a standard Brownian
motion. To analyze the convergence rate, for y ∈ [0,1], we introduce the stochastic
differential equation with normal reflection, constant diffusion coefficient and drift
coefficient A′(V (s, x)):

X
y
t = y + σWt +

∫ t

0
A′(V (s,Xy

s )
)
ds +K

y
t ,

|Ky |t =
∫ t

0
1{0,1}(Xy

s ) d|Ky|s , K
y
t =

∫ t

0
(1 − 2Xy

s ) d|Ky |s .
(12)

Under hypothesis (H), according to Lemma 3.1, the function b(s, x) def= A′(V (s, x))
is Lipschitz continuous in the space variable x uniformly for s ∈ [0, T ] and is
bounded. As a consequence, for any y ∈ [0,1] the above stochastic differential
equation has a unique solution (see, e.g., [11], Remark 3.3, page 525).
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We are interested in the upper bound of

Error(tl)= sup
x∈[0,1]

E|V (tl, x)− V (tl , x)|

≤ sup
x∈[0,1]

∣∣∣∣∣V (tl, x)− 1

N

N∑
i=1

E
(
H
(
x −X

yi0
tl

))∣∣∣∣∣(13)

+ sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

E
(
H
(
x −X

yi0
tl

))− V (tl , x)

∣∣∣∣∣.
The first term of the right-hand side is an initialization error, which we upper-
bound in the next paragraph. Since the dynamics of the particle system (11) on
[tl , tl+1] depends on the approximate solution V (tl , · ) of (1) at time tl , the analysis
of the second term of the right-hand side is more complicated than the analysis of
the weak error of the discretization by the Euler–Lépingle scheme of the stochastic
differential equation (12), where the drift coefficient b(s, x) = A′(V (s, x)) is
supposed to be known. We are going to deal with the latter problem as a model
problem: the results obtained are useful in solving the former problem. They are
also interesting by themselves because, although limited to the case of a constant
diffusion coefficient, they form the first study of the weak rate of the Euler–
Lépingle scheme to our knowledge.

3.1. Initialization error.

LEMMA 3.3. Under hypothesis (H), the solution (Xy
t ) of (12) can be chosen

continuous in (t, y) ∈ [0, T ] × [0,1] and nondecreasing in y for fixed t ∈ [0, T ].
Moreover, ∀ (t, x) ∈ [0, T ] × [0,1], V (t, x)= E(

∫ 1
0 H(x −X

y
t )U0(dy)).

PROOF. As (Xx
t −X

y
t )t∈[0,T ] is a continuous process with bounded variation,

(Xx
t −X

y
t )

+ is equal to

(x − y)+ +
∫ t

0
1{Xx

s >X
y
s }
(
b(s,Xx

s )− b(s,Xy
s )
)
ds +

∫ t

0
1{Xx

s >X
y
s }(dK

x
s − dKy

s ).

The third term of the right-hand side is nonpositive. By the Lipschitz continuity of
x→ b(s, x) and Gronwall’s lemma, we deduce that, for some real constant CT ,

a.s., sup
t∈[0,T ]

(Xx
t −X

y
t )

+ ≤ CT (x − y)+.(14)

Using the symmetric inequality for (X
y
t − Xx

t )
+, we obtain that a.s.

supt∈[0,T ] |Xx
t −X

y
t | ≤ CT |x − y|. According to the Kolmogorov continuity the-

orem, the C([0, T ], [0,1])-valued process (t →X
y
t ) indexed by y ∈ [0,1] admits

a continuous version that we still denote by X
y
t to simplify notation. By (14),

a.s., ∀q ≤ q ′ ∈ [0,1] ∩ Q, ∀ t ∈ [0, T ], Xq
t ≤ X

q ′
t . With the a.s. continuity of
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y ∈ [0,1] → X
y
t in the variable y, we conclude that this function is a.s. nonde-

creasing.
Now let X0 be an initial variable with law U0 independent of the Brownian

motion W . We easily check that the law of (X
X0
t ,K

X0
t )t∈[0,T ] on C([0, T ],

[0,1] ×R) solves the following martingale problem:

(i) Q0 = U0 ⊗ δ0;
(ii) ϕ(Xt −Kt)− ϕ(X0 −K0)− ∫ t0 σ 2

2 ϕ
′′(Xs −Ks)+ A′(V (s,Xs))ϕ

′(Xs −
Ks)ds is a Q martingale for any function ϕ ∈C2

b(R);
(iii) Q a.s., ∀ t ≥ 0,

∫ t
0 d|K|s < +∞, |K|t = ∫ t

0 1{0,1}(Xs) d|K|s and Kt =∫ t
0 (1 − 2Xs)d|K|s .

By the Girsanov theorem, uniqueness holds for this martingale problem. Since
the image of the solution P of problem (MP) starting at U0 ⊗ δ0 by the
canonical restriction from C([0,+∞), [0,1] × R) to C([0, T ], [0,1] × R) solves
this martingale problem, we deduce that ∀ (t, x) ∈ [0, T ] × [0,1], V (t, x) =
H ∗ P̄t (x) = E(H(x −X

X0
t )). By independence of X0 and W , we conclude that

V (t, x)= E(
∫ 1

0 H(x −X
y
t )U0(dy)). �

We easily deduce that the initialization error is smaller than 1/N .

LEMMA 3.4. For all t ≥ 0,

sup
x∈[0,1]

∣∣∣∣∣V (t, x)− 1

N

N∑
i=1

E
(
H
(
x −X

yi0
t

))∣∣∣∣∣≤ 1

N
.

PROOF. Let U0 = 1
N

∑N
i=1 δyi0

. Clearly,

a.s.,
∫
[0,1]

H(x −X
y
t )U0(dy)− 1

N

N∑
i=1

H
(
x −X

yi0
t

)
= (U0 −U0)

({y ∈ [0,1] :Xy
t ≤ x}).

Since, by Lemma 3.3, y →X
y
t is a.s. continuous and increasing, if nonempty, the

set {y :Xy
t ≤ x} is equal to [0, φt (x)], where φt(x)= inf{y :Xy

t > x}. By definition
of the initial positions yi0 [see (10)], ∀y ∈ [0,1], 0 ≤ (U0 − U0)([0, y]) ≤ 1/N .
Hence

0 ≤
∫
[0,1]

H(x −X
y
t )U0(dy)− 1

N

N∑
i=1

H
(
x −X

yi0
t

)
≤ 1

N
.

We conclude by taking expectations. �
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3.2. Weak error of the Euler–Lépingle scheme. We recall that T = L�t

(�t > 0, L ∈ N) and tl = l �t for 0 ≤ l ≤ L. The Euler–Lépingle discretization
of the stochastic differential equation

X
y
t = y + σWt +

∫ t

0
b(s,Xy

s ) ds +K
y
t ,

|Ky |t =
∫ t

0
1{0,1}(Xy

s ) d|Ky|s, K
y
t =

∫ t

0
(1 − 2Xy

s ) d|Ky |s
(15)

is given by

X̃
y
t0
= y,

X̃
y
t = 0 ∨ (X̃y

tl
+ σ(Wt −Wtl )+ b(tl, X̃

y
tl
)(t − tl)+Ct

)∧ 1,

Ct = 1{X̃y
tl
≤α0} sup

s∈[tl ,t]
(
X̃
y
tl
+ σ(Ws −Wtl )+ b(tl, X̃

y
tl
)(s − tl)

)−
−1{X̃y

tl
≥α1} sup

s∈[tl ,t]
(
X̃
y
tl
− 1 + σ(Ws −Wtl )+ b(tl, X̃

y
tl
)(s − tl )

)+
∀ t ∈ [tl, tl+1].

In the next proposition, assuming a regularity condition on the drift coefficient
b(s, x) which is satisfied by A′(V (s, x)) under hypothesis (H) (see Lemma 3.1),
we upper-bound the weak convergence rate of this scheme:

PROPOSITION 3.5. Assume that b is C1,2 on [0, T ] × [0,1], that for some
α > 0, ∂xb(t, x) is Hölder continuous with exponent α in t and that 0< α0(�t)≤
α1(�t) < 1 satisfy α0(�t) ∧ (1 − α1(�t)) ≥ a�tγ for γ ∈ [0,1/2) and a > 0.
Then there is a constant C depending on σ,T , b, a, γ but not on y and �t such
that, when f : [0,1] → R is a function with bounded variation and m denotes its
distribution derivative,

∀ l ≤ L,
∣∣E(f (Xy

tl
)− f (X̃

y
tl
)
)∣∣≤ C�t

∫ 1

0
|m|(dx).

The error proceeds from two sources. The first one is the usual Euler
discretization of the drift coefficient. The second contribution is the inexact
treatment of the reflection on the lower boundary (resp. the upper boundary, resp.
both boundaries) between tl and tl+1 when X̃y

tl
≥ α1 [resp. X̃y

tl
≤ α0, resp. X̃y

tl
∈

(α0, α1)], which will turn out to be negligible. To get rid of it, we introduce
the Euler–Peano discretization of (15). The Euler–Peano scheme is a theoretical
discretization scheme which consists in freezing the drift coefficient on each
interval [tl, tl+1] whereas the normal reflection remains exact:

X̂
y
t = y + σWt +

∫ t

0
b(τs, X̂

y
τs
) ds + K̂

y
t ,

|K̂y |t =
∫ t

0
1{0,1}(X̂y

s ) d|K̂y |s, K̂
y
t =

∫ t

0
(1 − 2X̂y

s ) d|K̂y|s ,
(16)

where τs =�t[ s
�t

] and [x] denotes the integral part of x.
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LEMMA 3.6. Assume that b(·, ·) is bounded and that 0 < α0(�t) ≤
α1(�t) < 1 satisfy α0(�t) ∧ (1 − α1(�t)) ≥ a�tγ for γ ∈ [0,1/2) and a > 0.
Then, for some positive constants c and C independent of �t and y,

∀ l ≤L, P
(∃k ≤ l, X̂

y
tk
�= X̃

y
tk

)≤ C�t−γ−1/2e−c�t2γ−1
.(17)

PROOF. The proof follows the ideas of [10] even if this upper bound is not
stated. To simplify notation, we do not emphasize the dependence of α0 and α1
on �t ,

P
(∃k ≤ l, X̂

y
tk
�= X̃

y
tk

)≤ l−1∑
k=0

P
(
X̂
y
tk
= X̃

y
tk
, X̂

y
tk+1

�= X̃
y
tk+1

)
.(18)

When α0 < X̂
y
tk
= X̃

y
tk
< α1, we remark that ∀ t ∈ [tk, tk+1], X̂y

t = X̃
y
t unless

both processes reach 0 or 1 before tk+1. As a consequence,

P
(
α0 < X̂

y
tk
= X̃

y
tk
< α1, X̂

y
tk+1

�= X̃
y
tk+1

)
≤ P

(
sup

t∈[tk,tk+1]
|Wt −Wtk |>

(
a�tγ − sup |b(· , · )|�t)/σ).

Since γ < 1, for �t small enough, a�tγ − sup |b(· , · )|�t ≥ a�tγ /2. Then

P
(
α0 < X̂

y
tk
= X̃

y
tk
< α1, X̂

y
tk+1

�= X̃
y
tk+1

)
≤ P

(
sup

s∈[tk,tk+1]
|Ws −Wtk | ≥

a�tγ

2σ

)

≤ 2

√
2

π �t

∫ +∞
a�tγ /(2σ)

e−z2/2�t dz≤ 4σ

a

√
2

π
�t1/2−γ e−a2�t2γ−1/8σ 2

.

Since α0 ≤ α1, α1 ∧ (1 − α0) ≥ a�tγ and remarking that ∀ t ∈ [tk, tk+1], Ct ≤
σ sups∈[tk,tk+1] |Ws −Wtk | + sup |b(· , · )|�t , we easily obtain similar bounds for

P(X̂
y
tk
= X̃

y
tk
≥ α1, X̂y

tk+1
�= X̃

y
tk+1

) and P(X̂
y
tk
= X̃

y
tk
≤ α0, X̂y

tk+1
�= X̃

y
tk+1

) and we
conclude with (18) since l ≤ L= T/�t . �

Let l ≥ 1, let f : [0,1] → R be a function with bounded variation and let m
denote its distribution derivative. According to the previous lemma,∣∣E(f (Xy

tl
)− f (X̃

y
tl
)
)∣∣

≤ ∣∣E(f (Xy
tl
)− f (X̂

y
tl
)
)∣∣

+ sup
z,z′∈[0,1]

|f (z)− f (z′)|C�t−γ−1/2e−c�t2γ−1

≤ ∣∣E(f (Xy
tl
)− f (X̂

y
tl
)
)∣∣+C�t−γ−1/2e−c�t2γ−1

∫ 1

0
|m|(dy).
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The set Df of discontinuity points of f is countable. For y ≤ z ∈ [0,1] \ Df ,
f (z) = f (y) + ∫ z

y m(dx) = f (y) + ∫ 1
0 H(x − y) − H(x − z)m(dx). As the

function b(· , · ) is bounded, by the Girsanov theorem both variables Xy
tl

and X̂
y
tl

have densities w.r.t. Lebesgue measure. Hence P(X
y
tl
∈ Df ) + P(X̂

y
tl
∈ Df ) = 0

and ∣∣E(f (Xy
tl
)− f (X̂

y
tl
)
)∣∣= ∣∣∣∣∫ 1

0
E
(
H(x −X

y
tl
)−H(x − X̂

y
tl
)
)
m(dx)

∣∣∣∣.
Therefore the proof of Proposition 3.5 will complete as soon as we obtain the
following weak convergence rate for the Euler–Peano scheme:

PROPOSITION 3.7. Under the assumptions of Proposition 3.5, there is
a constant C depending on σ,T , b but not on x, y and �t such that

∀ l ≤ L, ∀x, y ∈ [0,1], ∣∣E(H(x −X
y
tl
)−H(x − X̂

y
tl
)
)∣∣≤ C�t.

In the case l = 0, the conclusion is clear. As for all other values of l the proof is
the same; we only deal with the case l =L, that is, tl = T . By the Girsanov theorem
both variables Xy

T and X̂
y
T admit densities with respect to Lebesgue measure.

Hence

E
(
H(0 −X

y
T )−H(0 − X̂

y
T )
)= P(X

y
T = 0)− P(X̂

y
T = 0)= 0 − 0 = 0,

E
(
H(1 −X

y
T )−H(1 − X̂

y
T )
)= P(X

y
T ≤ 1)− P(X̂

y
T ≤ 1)= 1 − 1 = 0

and the conclusion holds for x ∈ {0,1}.
From now on, we assume that x ∈ (0,1). We follow the idea first introduced by

Talay and Tubaro: if the function v solves the parabolic problem

∂tv + σ 2

2
∂2
z v+ b(t, z) ∂zv = 0, (t, z) ∈ [0, T )× [0,1],

v(T , z)=H(x − z) ∀ z ∈ [0,1],(19)

∂zv(t,0)= ∂zv(t,1)= 0 ∀ t ∈ [0, T ],
then formally computing H(x − X̂

y
T ) −H(x −X

y
T ) = v(T , X̂

y
T ) − v(T ,X

y
T ) by

Itô’s formula and taking expectations we obtain

E
(
H(x− X̂

y
T )−H(x−X

y
T )
)= E

(∫ T

0

(
b(s, X̂y

s )−b(τs, X̂
y
τs
)
)(−∂zv(s, X̂y

s )
)
ds

)
.

The function v appears only through the opposite of its spatial derivative, which
justifies our interest in the parabolic problem satisfied by w =−∂zv,

∂tw+ σ 2

2
∂2
z w+ b(t, z) ∂zw+ ∂zb(t, z)w = 0, (t, z) ∈ [0, T )× [0,1],

w(T , · )= δx(· ), w(t,0)=w(t,1)= 0 ∀ t ∈ [0, T ).
(20)
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According to [9], Section IV.16, and [7], Section 3.7, which are dedicated to
Green’s functions, the following holds:

LEMMA 3.8. Under the assumptions of Proposition 3.5, there is a continuous
function (x, t, z) ∈ (0,1)×[0, T )×[0,1]→w(x, t, z) ∈ R such that the following
hold:

(i) For fixed x ∈ (0,1), (t, z)→w(x, t, z) ∈C1,2([0, T )× [0,1]) solves

∂tw+ σ 2

2
∂2
z w+ b(t, z) ∂zw+ ∂zb(t, z)w= 0, (t, z) ∈ [0, T )× [0,1],

w(x, t,0)=w(x, t,1)= 0 ∀ t ∈ [0, T )
(21)

and takes the terminal value w(x,T , · )= δx(· ) in the distribution sense.
(ii) For any integers r and s such that 2r + s ≤ 2,

∀ t ∈ [0, T ), ∀x, z,

|∂rt ∂szw(x, t, z)| ≤ C(T − t)−(1+2r+s)/2 exp
(
−c (z− x)2

T − t

)
.

(iii) For any function ϕ continuous on [0,1], the function

wϕ(t, z)=

∫ 1

0
w(x′, t, z)ϕ(x′) dx′, if t < T,

ϕ(z), if t = T,

is continuous on [0, T ] × [0,1] and satisfies (21).

Thanks to these results, we rigorously express E(H(x − X̂
y
T )−H(x−X

y
T )) in

terms of w:

LEMMA 3.9.

E
(
H(x − X̂

y
T )−H(x −X

y
T )
)= E

(∫ T

0

(
b(s, X̂y

s )− b(τs, X̂
y
τs
)
)
w(x, s, X̂y

s ) ds

)
.

PROOF. For ε > 0, we set ϕε(x′) = e−(x′−x)2/(2ε)/
√

2πε and vε(t, z) =∫ 1
z w

ϕε(t, z′) dz′. By Lemma 3.8, the function vε is continuous on [0, T ] × [0,1]
and satisfies

∀ (t, z) ∈ [0, T )× [0,1], ∂tv
ε + σ 2

2
∂2
z v

ε + b(t, z)∂zv
ε + σ 2

2
∂zw

ϕε(t,1)= 0,

∀ t ∈ [0, T ), ∂zv
ε(t,0)= ∂zv

ε(t,1)= 0.
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Hence for t < T , by Itô’s formula,

vε(t, X̂
y
t )− vε(t,X

y
t )=

∫ t

0
σ
(
∂zv

ε(s, X̂y
s )− ∂zv

ε(s,Xy
s )
)
dWs

+
∫ t

0

(
b(s, X̂y

s )− b(τs, X̂
y
τs
)
)(−∂zvε(s, X̂y

s )
)
ds.

This equation still holds for t = T by continuity of both sides, since for s < T ,
by the upper bound of w given in Lemma 3.8 and the convolution property of
Gaussian kernels,

|∂zvε(s, z)| ≤
∫ 1

0
ϕε(x′)|w(x′, s, z)|dx′ ≤ C/

√
ε+ (T − s).(22)

Taking expectations, we deduce that

E
(
vε(T , X̂

y
T )− vε(T ,X

y
T )
)

= E

(∫ T

0

(
b(s, X̂y

s )− b(τs, X̂
y
τs
)
)(−∂zvε(s, X̂y

s )
)
ds

)
.

(23)

The function z → vε(T , z) = ∫ 1
z ϕ

ε(z′) dz′ is bounded by 1 uniformly in ε and
converges pointwise to 1{z=x}/2+1{z<x} as ε→ 0. By the Lebesgue theorem, the
left-hand side of (23) converges to

E
(
H(x − X̂

y
T )−H(x −X

y
T )
)+ 1

2

(
P(X

y
T = x)− P(X̂

y
T = x)

)
= E

(
H(x − X̂

y
T )−H(x −X

y
T )
)

since by the Girsanov theorem both variables Xy
T and X̂

y
T admit densities w.r.t.

Lebesgue measure.
By continuity of the function w, ∀ (s, z) ∈ [0, T ) × [0,1], −∂zvε(s, z) =∫ 1

0 w(x
′, s, z)ϕε(x′) dx′ converges to w(x, s, z) as ε → 0. Using (22), we ob-

tain by the Lebesgue theorem that the right-hand side of (23) converges to
E(
∫ T

0 (b(s, X̂
y
s )− b(τs, X̂

y
τs ))w(x, s, X̂

y
s ) ds). Hence Lemma 3.9 holds. �

In the sequel x ∈ (0,1) is fixed and we write w(t, z) instead of w(x, t, z).
Applying Itô’s formula to the function gl(t, z)= (b(t, z)− b(tl, X̂

x
tl
))w(t, z) we

get that, for l ≤ L− 1 and s ∈ [tt , tl+1),(
b(s, X̂

y
s )− b(tl, X̂

y
tl
)
)
w(s, X̂

y
s )

=
∫ s

tl

(
∂t + σ 2

2
∂2
z + b(tl, X̂

y
tl
) ∂z

)
gl(θ, X̂

y
θ ) dθ

+
∫ s

tl

∂zgl(θ, X̂
y
θ ) dK̂

y
θ + σ

∫ s

tl

∂zgl(θ, X̂
y
θ ) dWθ

def≡ T 1
s + T 2

s + T 3
s .

(24)
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We divide the integral on [0, T ] in the right-hand side of the equality given by
Lemma 3.9 into integrals on [tl, tl+1], 0 ≤ l ≤ L− 1, and treat separately the first
and last terms,∣∣E(H(x − X̂

y
T )−H(x −X

y
T )
)∣∣

≤
∣∣∣∣E(∫ t1

0

(
b(s, X̂y

s )− b(0, y)
)
w(s,Xy

s ) ds

)∣∣∣∣
+
∣∣∣∣∣E
(
L−2∑
l=1

∫ tl+1

tl

T 1
s + T 2

s + T 3
s ds

)∣∣∣∣∣
+
∣∣∣∣E(∫ T

tL−1

(
b(s, X̂y

s )− b(tL−1, X̂
y
tL−1

)
)
w(s,Xy

s ) ds

)∣∣∣∣.
(25)

To upper-bound the last term we need the following lemma, the proof of which is
postponed.

LEMMA 3.10. For all 0 ≤ t ≤ s ≤ T ,

E

(
sup
θ∈[t,s]

(X̂
y
θ − X̂y

s )
2 + (|K̂y |s − |K̂y |t )2

)
≤C(s − t).

Combining this result, the regularity assumptions on b and the upper bound
|w(s, · )| ≤ C(T − s)−1/2 given in Lemma 3.8, we get∣∣∣∣E(∫ T

tL−1

(
b(s, X̂y

s )− b(tL−1, X̂
y
TL−1

)
)
w(s, X̂y

s ) ds

)∣∣∣∣
≤ E sup

[tL−1,T ]
∣∣b(s, X̂y

s )− b
(
tL−1, X̂

y
TL−1

)∣∣ ∫ T

tL−1

C(T − s)−1/2 ds ≤ C�t.

The same bound is valid for |E(∫ t10 (b(s, X̂
y
s )− b(0, y))w(s, X̂y

s ) ds)|.

LEMMA 3.11.

∀ s ∈ [0, T ], E|T 1
s | ≤ C

∫ s

τs

(
(T − θ)−1/2 + (T − θ)−2/3θ−1/3)dθ;(26)

∀η ∈ (0,1/2), ∀1 ≤ l ≤ L− 1, ∀ s ∈ [tl , tl+1[,
E|T 2

s | ≤Ct
−(1−2η)/4(1−η)
l �t(5−4η)/4(T − s)−1;(27)

E

(∫ tL−1

t1

T 3
s ds

)
= 0.(28)
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Once we check that Lemma 3.11 holds, we deduce from (25) that∣∣E(H(x − X̂
y
T )−H(x −X

y
T )
)∣∣

≤C�T +C

∫ tL−1

t1

∫ s

τs

(
(T − θ)−1/2 + (T − θ)−2/3θ−1/3)dθ ds

+C�t(5−4η)/4
L−2∑
l=1

t
−(1−2η)/4(1−η)
l (T − tl+1)

−1�t

≤C
(
�t +�t(5−4η)/4| ln�t|)≤ C�t by choosing η < 1/4;

that is, Proposition 3.7 holds.

PROOF OF LEMMA 3.10. Let φ :x ∈ R → 1 − |1 − x + 2[x/2]| ∈ [0,1] and
0 ≤ t ≤ T . By the Girsanov theorem, since b is bounded, the stochastic differential
equation

Yθ = X̂
y
t + σ(Wθ −Wt)+

∫ θ

t
(−1)[Yr ]b(τr, φ(Yτr )) dr

has a unique weak solution. Moreover the processes (φ(Yθ))θ≥t and (X̂y
θ )θ≥t have

the same law. Since φ is Lipschitz continuous with constant 1, we deduce that

E

(
sup
θ∈[t,s]

(X̂
y
θ − X̂

y
t )

2
)
≤ E

(
sup
θ∈[t,s]

(Yθ − X̂
y
t )

2
)
≤ C(s − t).

Now applying Itô’s formula to compute (X̂y
s − 1

2 )
2 − (X̂

y
t − 1

2 )
2, we get

|K̂y |s − |K̂y |t =
∫ s

t
(2X̂y

r − 1)
(
σdWr + b(τr, X̂

y
τr
) dr

)
+ (s − t)+ (X̂

y
t − X̂y

s )(X̂
y
t + X̂y

s − 1).

Using the previous upper bound, we conclude that E((|K̂y |s−|K̂y |t )2)≤ C(s− t).
�

PROOF OF LEMMA 3.11. Using (20) we check that ∀0 ≤ l ≤ L − 1, ∀ s ∈
[tl , tl+1),

T 1
s =

∫ s

tl

w(θ, X̂
y
θ )

(
∂t + σ 2

2
∂2
z +

(
2b(tl, X̂

y
tl
)− b(θ, X̂

y
θ )
)
∂z

)
b(θ, X̂

y
θ ) dθ

+
∫ s

tl

(
σ 2∂zb(θ, X̂

y
θ )−

(
b(θ, X̂

y
θ )− b(tl, X̂

y
tl
)
)2)

∂zw(θ, X̂
y
θ ) dθ.

By the regularity assumptions on the function b(· , · ) and the upper bound
|w(θ, · )| ≤ C(T − θ)−1/2 given in Lemma 3.8, we deduce that E|T 1

s | ≤
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C
∫ s
tl
(T − θ)−1/2 + E|∂zw(θ, X̂y

θ )|dθ . Since the rough upper bound C/(T − θ)

of ∂zw(θ, · ) is not integrable for θ ∈ [0, T ] we make use of the Girsanov theorem:
for a well-chosen exponential martingale Ẑt , if βyt denotes the doubly reflected
process associated with the Brownian motion y + σWt , we have

E|∂zw(θ, X̂y
θ )| = E

(|∂zw(θ,βyθ )|ẐT )≤ (E(Ẑ3
T )
)1/3(

E|∂zw(θ,βyθ )|3/2)2/3
.

Since ∀ θ ∈]0, T ], ∀y ∈ [0,1], the density of βyθ is smaller than Cθ−1/2, by
Lemma 3.8,

E|∂zw(θ,βyθ )|3/2 ≤ C

∫ 1

0
(T − θ)−3/2 exp

(
−c (z− x)2

T − θ

)
θ−1/2 dz

≤ C(T − θ)−1θ−1/2

and we deduce that E|∂zw(θ, X̂y
θ )| ≤ C(T − θ)−2/3θ−1/3. Hence (26) holds.

We turn to the proof of (27). Let 0 ≤ l ≤ L− 1 and s ∈ [tl , tl+1).
As d|K̂y|θ = 1{0,1}(X̂y

θ ) d|K̂y |θ and w(t,0)=w(t,1)= 0,

T 2
s =

∫ s

tl

(
b(θ, X̂

y
θ )− b(tl, X̂

y
tl
)
)
∂zw(θ, X̂

y
θ )1{0,1}(X̂y

θ ) dK̂
y
θ .

We deduce that

E|T 2
s | ≤ sup

[tl ,s]
(∣∣∂zw(θ,0)| ∨ |∂zw(θ,1)|)× (E(|K̂y |tl+1 − |K̂y |tl

)2)1/2

×
(
E

(
sup

[tl ,tl+1]
((
b(θ, X̂

y
θ )− b(tl, X̂

y
tl
)
)21{0,1}(X̂y

θ )
)))1/2

.

(29)

Let us upper-bound the three terms of the right-hand side. By Lemma 3.8,
sup[tl ,s] |∂zw(θ,0)| ∨ |∂zw(θ,1)| ≤ C(T − s)−1. For η ∈ (0,1/2),

E

(
sup

[tl ,tl+1]
((
b(θ, X̂

y
θ )− b(tl, X̂

y
tl
)
)2

1{X̂y
θ=0}

))

≤ 4 sup |b(· , · )|2P

(
X̂
y
tl
≥�t(1−η)/2, inf[tl ,tl+1]

X̂
y
θ = 0

)

+E

(
1{X̂y

tl
≤�t(1−η)/2} sup

[tl ,tl+1]
(
b(θ,0)− b(tl, X̂

y
tl
)
)2)

.

Following the same approach as in the proof of (17), we upper-bound the first
term of the right-hand side by C�tη/2e−c/�t2η . The second term is smaller than
C�t1−ηP(X̂y

tl
≤�t(1−η)/2) and by using the Girsanov theorem as in the derivation

of (26), when l ≥ 1, we get

P(X̂
y
tl
≤�t(1−η)/2)≤ E(Ẑ

(1−η)/η
T )η/1−ηP(βytl ≤�t(1−η)/2)(1−2η)/(1−η)

≤ Ct
−(1−2η)/2(1−η)
l �t(1−2η)/2.
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Treating in a symmetric way E(sup[tl ,tl+1]((b(θ, X̂
y
θ ) − b(tl, X̂

y
tl
))2)1{X̂y

θ=1}), we
deduce that, when l ≥ 1,

E

(
sup

[tl ,tl+1]
(
1{0,1}(X̂y

θ )
(
b(θ, X̂

y
θ )− b(tl, X̂

y
tl
)
)2))≤Ct

−(1−2η)/2(1−η)
l �t(3−4η)/2.

Since, according to Lemma 3.10, the second term of the right-hand side of (29) is
smaller than C�t1/2 we conclude that (27) holds.

Finally, let us check (28). By the integration-by-parts formula, for l ≤ L − 2,∫ tl+1
tl

T 3
s ds is equal to

σ

∫ tl+1

tl

(tl+1 − θ)
((
b(θ, X̂

y
θ )−b(tl, X̂

y
tl
)
)
∂zw(θ, X̂

y
θ )+ ∂zb(θ, X̂

y
θ )w(θ, X̂

y
θ )
)
dWθ.

Since, according to Lemma 3.8, |w(θ, · )| ≤ C(T − θ)−1/2, |∂zw(θ, · )| ≤
C(T − θ)−1 and the functions b and ∂zb are bounded, we deduce that ∀0 ≤ l ≤
L− 2, E(

∫ tl+1
tl

T 3
s ds)= 0. Hence (28) holds. �

REMARK 3.12. Our proof only works in the case that the diffusion coefficient
is constant because otherwise the analysis of the error would involve higher order
derivatives of the Green’s function w.

3.3. Proof of Theorem 3.2. We come back to the analysis of the stochastic
particle method and the estimation of supx∈[0,1] E|V (tl , x)− V (tl , x)| = Error(tl),
for 0 ≤ l ≤ L. Now, we set

b(t, x)=A′(V (t, x)).

By Lemma 3.1, this drift function satisfies the regularity assumptions made in the
study of the weak error of the Euler–Lépingle scheme. By (13) and Lemma 3.4,

Error(tl)≤ 1

N
+ sup

x∈[0,1]
E

∣∣∣∣∣ 1

N

N∑
i=1

E
(
H(x −X

yi0
tl
)
)
− V (tl , x)

∣∣∣∣∣.
To deal with the inexact treatment of reflection by the Euler–Lépingle scheme, we
introduce the system of processes (Zi, i = 1, . . . ,N) evolving according to the
Euler–Peano scheme on [tl , tl+1) and reinitialized at the positions (Y itl+1

, 1 ≤ i ≤
N) at time tl+1 (for 0 ≤ l ≤ L− 1):

∀0 ≤ l ≤ L− 1, ∀ t ∈ [tl , tl+1),

Zi
t = Y itl + σ(Wi

t −Wi
tl
)+ (t − tl)A

′(V (tl, Y itl ))+ K̂i
t − K̂i

tl
,

|K̂i|t =
∫ t

0
1{0,1}(Zi

s) d|K̂i|s and K̂i
t =

∫ t

0
(1 − 2Zi

t ) d|K̂i|s .
(30)
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Since we assume that γ < 1/2, according to Lemma 3.6, ∀1 ≤ i ≤N , P(∃k ≤ l :
Zi
t−k �= Y itk )≤ C�t . Hence

Error(tl)≤ 1

N
+C�t

+ sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

1{∀1≤k≤l, Zit−
k
=Y itk }

×
(
E
(
H(x −X

yi0
tl
)
)−H

(
x −Zi

t−l
))∣∣∣∣∣.

(31)

We introduce the solution w(x, t, z) of the parabolic problem

∂tw+ σ 2

2
∂2
z w+ b(t, z) ∂zw+ ∂zb(t, z)w = 0, (t, z) ∈ [0, tl)× [0,1],

w(tl, · )= δx(· ), w(t,0)=w(t,1)= 0 ∀ t ∈ [0, tl).
Lemma 3.8 remains valid with tl replacing T .

LEMMA 3.13.

E

∣∣∣∣∣ 1

N

N∑
i=1

1{∀1≤k≤l, Zit−
k
=Y itk }

(
E
(
H(x −X

yi0
tl
)
)−H

(
x −Zi

t−l
)

−
l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
A′(V (tk, Y itk ))− b(s,Zi

s)
)
ds

)∣∣∣∣∣≤ C

(
1√
N

+�t

)
,

where the constant C ≥ 0 does not depend on x ∈ [0,1].

PROOF. For ε > 0, we set ϕε(x′)= e−(x′−x)2/(2ε)/
√

2πε and

vε(t, z)=
∫ 1

z
wϕε(t, z′) dz′ =

∫ 1

z

∫ 1

0
w(x′, t, z′)ϕε(x′) dx′ dz′.

Applying Itô’s formula as in the proof of Lemma 3.9, we obtain that if ∀1 ≤ k ≤ l,
Zi
t−k = Y itk ,

Evε(tl,X
yi0
tl
)− vε(tl,Z

i
tl
)

−
l−1∑
k=0

∫ tk+1

tk

(
b(s,Zi

s)−A′(V (tk, Y itk )))∂zvε(s,Zi
s) ds(32)

=−σ
∫ tl

0
∂zv

ε(s,Zi
s) dW

i
s =−σ

∫ tl

0
∂zv

ε(s, Ẑi
s) dW

i
s ,
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where Ẑi is the continuous process satisfying

Ẑi
0 = yi0,

∀ t ∈ [tk, tk+1], Ẑi
t = Ẑi

tk
+ σ(Wi

t −Wi
tk
)+ (t − tk)A

′(V (tk, Y itk ))+ K̂i
t ,

|K̂i |t =
∫ t

0
1{0,1}(Ẑi

s) d|K̂i|s and K̂i
t =

∫ t

0
(1 − 2Ẑi

t ) d|K̂i|s .

Since, according to Lemma 3.8, (∂zvε(s, z))2 ≤ C
tl−s exp(−c (z−x)2

tl−s ), the inequality

E
(
∂zv

ε(s, Ẑi
s)
)2 ≤ C(tl − s)−2/3s−1/3,

where the constant C does not depend on ε and x, is obtained like the upper bound
of E|∂zw(θ, X̂y

θ )| in the proof of Lemma 3.11. Hence E(
∫ tl

0 (∂zv
ε(s, Ẑi

s))
2 ds)≤ C

and

E

∣∣∣∣∣ 1

N

N∑
i=1

1{∀1≤k≤l, Zit−
k
=Y itk }

∫ tl

0
∂zv

ε(s, Ẑi
s) dW

i
s

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

N

N∑
i=1

∫ tl

0
∂zv

ε(s, Ẑi
s) dW

i
s

∣∣∣∣∣
+ 1

N

N∑
i=1

E

∣∣∣∣1{∃1≤k≤l, Zit−
k
�=Y itk }

∫ tl

0
∂zv

ε(s, Ẑi
s) dW

i
s

∣∣∣∣
≤
(

1

N2

N∑
i=1

E

∫ tl

0

(
∂zv

ε(s, Ẑi
s)
)2
ds

)1/2

+ 1

N

N∑
i=1

(
P
(∃1 ≤ k ≤ l, Zi

t−k �= Y itk

))1/2
(

E

∫ tl

0

(
∂zv

ε(s, Ẑi
s)
)2
ds

)1/2

≤ C

(
1√
N

+�t

)
according to Lemma 3.6.

By (32), we deduce that

E

∣∣∣∣∣ 1

N

N∑
i=1

1{∀1≤k≤l, Zit−
k
=Y itk }

(
E
(
vε
(
tl ,X

yi0
tl

))− vε
(
tl,Z

i
t−l
)

−
l−1∑
k=0

∫ tk+1

tk

(
A′(V (tk, Y itk ))− b(s,Zi

s)
)(−∂zvε(s,Zi

s)
)
ds

)∣∣∣∣∣≤C

(
1√
N

+�t

)
and we conclude by taking the limit ε→ 0 as in the proof of Lemma 3.9. �
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By (31) and the previous lemma, we obtain that

Error(tl)≤ C

(
1√
N

+�t

)

+ sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

1{∀1≤k≤l, Zi
t
−
k

=Y itk }

×
l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
A′(V (tk, Y itk ))− b(s,Zi

s)
)
ds

∣∣∣∣∣.
Since, according to Lemma 3.8, w(x, s, z) ≤ C/

√
tl − s, using Lemma 3.6 once

more, we get

Error(tl)≤ C

(
1√
N

+�t

)

+ sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
A′(V (tk, Y itk ))− b(s,Zi

s)
)
ds

∣∣∣∣∣.
We now consider the last term in the upper bound of Error(tl). We split it into two
parts to introduce the difference between the drift function b(tk, · )=A′(V (tk, · ))
and its approximation A′(V (tk, · )) at the same point Y itk :

As ∀0 ≤ k ≤ L− 1, Zi
tk
= Y itk , we get

E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
A′(V (tk, Y itk ))− b(s,Zi

s)
)
ds

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
b(s,Zi

s)− b(tk,Z
i
tk
)
)
ds

∣∣∣∣∣(33)

+E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
b(tk, Y

i
tk
)−A′(V (tk, Y itk )))ds

∣∣∣∣∣.
The first term in the right-hand side of (33) is a time discretization error. To
obtain an error bound of order O(�t), we need an expectation inside the absolute

value. If for k ∈ {0, . . . ,L} we write Ftk
def= σ(Wi

s ; 0 ≤ s ≤ tk, i = 1, . . . ,N),

then for all s ∈ [tk, tk+1) the variables (Ri
tk ,s

def= w(x, s,Zi
s)[b(s,Zi

s)− b(tk,Z
i
tk
)],
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i = 1, . . . ,N), are Ftk -independent. Hence

E

∣∣∣∣∣ 1

N

N∑
i=1

Ri
tk,s

−EFtk
(
Ri
tk,s

)∣∣∣∣∣≤ 1√
N

√√√√ 1

N

N∑
i=1

E
(
Ri
tk,s

)2

≤ C√
N

√√√√ 1

N

N∑
i=1

E
(
w(x, s,Zi

s)
)2
.

Using once more that w(x, s, z)≤ C/
√
tl − s, we easily obtain that

E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
b(s,Zi

s)− b(tk,Z
i
tk
)
)
ds

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

EFtk
{
w(x, s,Zi

s)
[
b(s,Zi

s)− b(tk,Z
i
tk
)
]}
ds

∣∣∣∣∣+ C√
N
.

To obtain an upper bound of order O(�t) for the first term in the right-hand side
of the previous inequality, we just have to remark that we are now in the same
context as in the proof of Proposition 3.7: equality (24) and Lemma 3.11 are valid
replacing X̂ by Zi and T by tl . Following the proof of Proposition 3.7 we conclude
that

sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
b(s,Zi

s)− b(tk,Z
i
tk
)
)
ds

∣∣∣∣∣
≤ C�t + C√

N
.

(34)

For the second term in (33), by the upper bound C/
√
tl − s for w(x, s, z) and

since by definition b(t, · )=A′(V (t, · )), we get

sup
x∈[0,1]

E

∣∣∣∣∣ 1

N

N∑
i=1

l−1∑
k=0

∫ tk+1

tk

w(x, s,Zi
s)
(
b(tk, Y

i
tk
)−A′(V (tk, Y itk )))ds

∣∣∣∣∣
≤ C sup

v∈[0,1]
|A′(v)|

l−1∑
k=0

(∫ tk+1

tk

1√
tl − s

ds

)

× 1

N

N∑
i=1

E
∣∣V (tk, Y itk )− V (tk, Y

i
tk
)
∣∣.

(35)
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LEMMA 3.14. For all 0 ≤ l ≤ L,

1

N

N∑
i=1

E
∣∣V (tl , Y itl )− V (tl, Y

i
tl
)
∣∣≤C

(
1√
N

+�t

)
.

Using Lemma 3.14 in (35), with (34) we come back to (33) and deduce that

Error(tl)≤ C

(
1√
N

+�t

)
,

which ends the proof of Theorem 3.2.
We now concentrate on the upper bound of

1

N

N∑
i=1

E
∣∣V (tl , Y itl )− V (tl, Y

i
tl
)
∣∣

given in Lemma 3.14. Because of the complex form of V (tl, Y itl ), we need to

introduce another auxiliary family of discretezed time processes: let (X
i

t , t ∈[0, T ], i = 1, . . . ,N) denote the solution of the following Euler–Peano equations:

X
i

0 = yi0,

∀ t ∈ [tl , tl+1], X
i

t =X
i

tl
+ σ(Wi

t −Wi
tl
)+ (t − tl)b(tl,X

i

tl
)+K

i

t ,∣∣Ki∣∣
t =

∫ t

0
1{0,1}(X

i

s) d|Ki|s and

K
i

t =
∫ t

0
(1 − 2X

i

t) d|Ki|s .

(36)

We will compare V (tl, Y
i
tl
) = 1

N

∑N
j=1H(Y

i
tl
− Y

j
tl
) with the same expression

written with the system of independent particles 1
N

∑N
j=1H(X

i

tl
−X

j

tl
).

First, we note that

E
∣∣V (tl, Y itl )− V (tl,X

i
tl
)
∣∣= E

∣∣V (tl ,Zi
tl
)− V (tl,X

i
tl
)
∣∣

≤ E
∣∣V (tl,Zi

t−l
)− V (tl,X

i

tl
)
∣∣+C�t2

≤ C
∣∣Zi

t−l −X
i

tl

∣∣+C�t2.

The first inequality is obtained thanks to Lemma 3.6, which compares the Peano
and Lépingle schemes. The second one uses the Lipschitz property of V stated in
Lemma 3.1. Now, using arguments similar to those given at the beginning of the
proof of Lemma 3.3, one can easily check that∣∣Zi

t−l −X
i
tl

∣∣≤ ∣∣Y itl−1
−X

i
tl−1

∣∣+�t C
∣∣V (tl−1, Y

i
tl−1

)− V (tl−1,X
i
tl−1

)
∣∣

≤ ∣∣Zi
t−l−1

−X
i

tl−1

∣∣+C�t2 +�t C
∣∣V (tl−1, Y

i
tl−1

)− V (tl−1,X
i

tl−1
)
∣∣.
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By induction, we deduce that

1

N

N∑
i=1

E
∣∣V (tl , Y itl )− V (tl,X

i

tl
)
∣∣

≤ C�t

l−1∑
m=0

1

N

N∑
i=1

E
∣∣V (tm,Y itm)− V (tm,X

i

tm
)
∣∣+C�t.

(37)

For all k ∈ {0, . . . ,L} we set

Ē(tk)
def= 1

N

N∑
i=1

E
∣∣V (tk, Y itk )− V (tk,X

i

tk
)
∣∣,

so that, by (37),

1

N

N∑
i=1

E
∣∣V (tl, Y itl )− V (tl, Y

i
tl
)
∣∣≤ Ē(tl)+C�t

l−1∑
m=0

Ē(tm)+C�t.(38)

We have transformed the estimation of 1
N

∑N
i=1 E|V (tl, Y itl ) − V (tl, Y

i
tl
)| into the

estimation of each Ē(tm) for 0 ≤m≤ L.
For m = 0, Ē(0) = 1

N

∑N
i=1 |V (0, yi0) − V (0, yi0)| ≤ 1

N
, by Lemma 3.4. For

m ≥ 1, we insert the term 1
N

∑N
j=1H(X

i

tl
− X

j

tl
) in the expression of Ē(tm) to

split it into two parts:

Ē(tm)≤ 1

N

N∑
i=1

E

∣∣∣∣∣V (tm,Y itm)− 1

N

N∑
j=1

H(X
i
tm
−X

j
tm
)

∣∣∣∣∣
+ 1

N

N∑
i=1

E

∣∣∣∣∣ 1

N

N∑
j=1

H(X
i

tm
−X

j

tm
)− V (tm,X

i

tm
)

∣∣∣∣∣
≤ 1

N2

N∑
i,j=1

E
∣∣H(Y itm − Y

j
tm)−H(X

i
tm
−X

j
tm
)
∣∣

+ 1

N

N∑
i=1

E

∣∣∣∣∣ 1

N

N∑
j=1

H(X
i

tm
−X

j

tm
)− V (tm,X

i

tm
)

∣∣∣∣∣.

(39)

To deal with the first term in the right-hand side, we introduce the errors Ē(tk) for
k ≤m− 1. The second term is very similar to error terms we have already treated.
The upper bounds of these terms are respectively given in the following lemmas,
the proofs of which are postponed.

LEMMA 3.15.

1

N2

N∑
i,j=1

E
∣∣H(Y itm−Y jtm)−H(X

i
tm
−Xj

tm
)
∣∣≤C�t+C�t

m−1∑
k=0

max
l≤k Ē(tl)/

√
tm− tk.
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LEMMA 3.16.

1

N

N∑
i=1

E

∣∣∣∣∣ 1

N

N∑
j=1

H(X
i

tm
−X

j

tm
)− V (tm,X

i

tm
)

∣∣∣∣∣≤ C√
N

+C�t.

Coming back to (39), we have obtained that

max
l≤m Ē(tl)≤ C�t + C√

N
+C�t

m−1∑
k=0

max
l≤k Ē(tl)/

√
tm − tk.

Using a discrete time version of Gronwall’s lemma, we obtain that

max
m≤L Ē(tm)≤ C�t + C√

N
.

By (38), we conclude that Lemma 3.14 holds.

PROOF OF LEMMA 3.15. The main difficulty is to deal with the non-
Lipschitz Heaviside function H . To overcome this difficulty, the idea consists
in smoothing H thanks to the probability transition density of the Euler–Peano
scheme. First, we note that

H(Y itm − Y
j
tm)−H(X

i

tm
−X

j

tm
)

=
m−1∑
k=0

(
H
(
X
i,tm−k,Y itm−k
tm

−X
j,tm−k,Y jtm−k
tm

)
−H

(
X
i,tm−k−1,Y

i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

))
,

where, for 0 ≤ k ≤ L, y ∈ [0,1] and 1 ≤ i ≤N , (X
i,tk ,y

t )t∈[tk ,T ] denotes the Euler–

Peano process starting from X
i,tk,y

tk
= y at time tk and with posterior evolution

given by (36). By Lemma 3.6, replacing Y itm−k by Zi
t−m−k in the expression above

has a cost of order O(�t2). Hence, using the inequality

E|H(A)−H(B)| = P(A≥ 0,B < 0)+ P(A < 0,B ≥ 0)≤ P(|B| ≤ |B −A|),

E

∣∣∣∣H(Xi,tm−k ,Y itm−k
tm

−X
j,tm−k,Y jtm−k
tm

)
−H

(
X
i,tm−k−1,Y

i
tm−k−1

tm
−X

j,tl−m−1,Y
j
tl−m−1

tl

)∣∣∣∣
≤C�t2 +E

∣∣∣∣H(Xi,tm−k,Zi
t
−
m−ktm

−X
j,tm−k,Zj

t
−
m−ktm

)
−H

(
X
i,tm−k−1,Y

i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

)∣∣∣∣
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≤ P

[∣∣∣Xi,tm−k−1,Y
i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

∣∣∣
≤
∣∣∣∣Xi,tm−k−1,Y

i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

−Xi,tm−k,Zi
t
−
m−ktm

+X
j,tm−k,Zj

t
−
m−ktm

∣∣∣∣]+C�t2

≤ P
[∣∣∣Xi,tm−k−1,Y

i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

∣∣∣≤C�t
(|V − V |(tm−k−1, Y

i
tm−k−1

)

+ |V − V |(tm−k−1, Y
j
tm−k−1

)
)]+C�t2

as for i = 1, . . . ,N ,∣∣∣Xi,tm−k−1,Y
i
tm−k−1

tm
−X

i,tm−k,Zi
t
−
m−ktm

∣∣∣≤ C
∣∣∣Xi,tm−k−1,Y

i
tm−k−1

tm−k −Zi
t−m−k

∣∣∣
≤ C�t|V − V |(tm−k−1, Y

i
tm−k−1

).

The variable |V − V |(tm−k−1, Y
i
tm−k−1

) + |V − V |(tm−k−1, Y
j
tm−k−1

) is
Ftm−k−1 -measurable. Moreover, for i �= j , conditionally on Ftm−k−1 , the variables

X
i,tm−k−1,Y

i
tm−k−1

tm
and X

j,tm−k−1,Y
j
tm−k−1

tm
are independent and admit densities with

respect to Lebesgue measure with an L2 norm smaller than C/(tk+1)
1/4 (by the

Girsanov theorem, as in the proof of Lemma 2.4). Hence, conditionally on Ftm−k−1 ,

the variable X
i,tm−k−1,Y

i
tm−k−1

tm
− X

j,tm−k−1,Y
j
tm−k−1

tm
admits a density with respect

to Lebesgue measure with an L∞ norm smaller than C/
√
tk+1 and we deduce

that

P

[∣∣∣Xi,tm−k−1,Y
i
tm−k−1

tm
−X

j,tm−k−1,Y
j
tm−k−1

tm

∣∣∣≤ C�t
(|V − V |(tm−k−1, Y

i
tm−k−1

)

+ |V − V |(tm−k−1, Y
j
tm−k−1

)
)]

≤ C
�t√
tk+1

E
(|V − V |(tm−k−1, Y

i
tm−k−1

)+ |V − V |(tm−k−1, Y
j
tm−k−1

)
)
.

We conclude by (28) that

1

N2

N∑
i,j=1

E
∣∣H(Y itm − Y

j
tm)−H(X

i

tm
−X

j

tm
)
∣∣

≤ C�t +C�t

m−1∑
k=0

max
l≤m−k−1

Ē(tl)/
√
tk+1. �
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PROOF OF LEMMA 3.16. We decompose the expression of interest in order
to introduce error terms that we have already bounded:

1

N

N∑
i=1

E

∣∣∣∣∣V (tm,Xi

tm
)− 1

N

N∑
j=1

H(X
i

tm
−X

j

tm
)

∣∣∣∣∣
≤ 1

N

N∑
i=1

E

(∣∣∣∣∣V (tm, x)− 1

N

N∑
j=1

EH(x −X
y
j
0
tm
)

∣∣∣∣∣
∣∣∣∣
x=Xi

tm

)

+ 1

N

N∑
i=1

E

(
1

N

N∑
j=1

∣∣∣EH(x −X
y
j
0
tm )−EH(x −X

j
tm
)
∣∣∣∣∣
x=Xi

tm

)

+ 1

N

N∑
i=1

E

(∣∣∣∣∣ 1

N

N∑
j=1

(
EH(x −X

j

tm
)|
x=Xi

tm

−H(X
i

tm
−X

j

tm
)
)∣∣∣∣∣
)

≤ sup
x∈[0,1]

∣∣∣∣∣V (tm, x)− 1

N

N∑
j=1

EH(x −X
y
j
0
tm )

∣∣∣∣∣
+ sup

x∈[0,1],j≤N

∣∣∣EH(x −X
y
j
0
tm )−EH(x −X

j

tm
)
∣∣∣

+ 1

N

N∑
i=1

(
E

(
1

N2

N∑
j,k=1

(
EH(x −X

j

tm
)|
x=Xi

tm

−H(X
i

tm
−X

j

tm
)
)

×
(
EH(x −X

k

tm
)|
x=Xi

tm

−H(X
i

tm
−X

k

tm
)
)))1/2

.

The first term in the right-hand side is the initialization error bounded in
Lemma 3.4 by 1

N
. The second term is the weak time discretization error for

the Euler–Peano scheme bounded in Proposition 3.7 by C�t . The last term is
a statistical error: it is smaller than 1/

√
N since, by independence of the variables

(X
j

tm
,1 ≤ j ≤N), each term of the summation

∑N
j,k=1 with j �= k is nil. �

4. Numerical experiments. As a numerical benchmark, we consider the
following Dirichlet problem for the viscous Burgers equation which corresponds
to the choice A(x)= x2/2:

∂

∂t
v(t, x)= ∂2v

∂x2 (t, x)− v(t, x)
∂v

∂x
(t, x), t > 0, x ∈ [0,2π ],

v(0, x)= 2 sin(x)

cos(x)+ e
, x ∈ [0,2π ],(40)

v(t,0)= 0, v(t,2π)= 0 ∀ t ≥ 0.
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The exact solution is (see [2]) V (t, x)= 2 sin(x)/(cos(x)+ e(1+t)).
The spatial domain [0,2π ] is different from the one considered so far but

our results remain true for any bounded interval replacing [0,1]. The fact that
the distribution derivative m0(x) dx of the initial data v(0, x) given by m0(x) =
(2 + 2e cos(x))/(cos(x)+ e)2 is not a probability measure but a bounded signed
measure represents a more significant modification. In fact, we could not find
any explicit solution when v(0, · ) is the cumulative distribution function of
a probability measure.

To take this modification into account, we use weighted particles (Y itl ,w
i)1≤i≤N

(see, e.g., [8], which deals with a spatial domain equal to R). The N ini-
tial locations yi0 = inf{y; H ∗ |m0|/‖m0‖L1([0,2π ])(y) = i/N}) are chosen in
order to approximate the cumulative distribution function of the probability
measure |m0|(x) dx/‖m0‖L1([0,2π ]) and the corresponding weights are wi =
‖m0‖L1([0,2π ]) sign(m0(y

i
0)). The approximate solution is given by the weighted

cumulative distribution function of the particle system V (tl, x) = 1
N

∑N
i=1w

i ×
H(x − Y itl ), where the successive positions are defined inductively by (11) but
with ∧1 (resp. −1) replaced by ∧2π (resp. −2π ) in the second (resp. last) line.

The parameters of the Lépingle scheme are α0 = 0.25 and α1 = 2π − 0.25. In
Figure 1 we have plotted the numerical solution at time t = 1. As the dependence
of the error on the number of particles is standard and corresponds to the usual
central limit theorem rate (see [4, 5, 8] for numerical results in the case where the
spatial domain is R), we concentrate our numerical study on the dependence on
the time step. That is why we take a large number of particles N = 106. According
to Theorem 3.2, E‖V (1, · ) − V (1, · )‖L1([0,2π ]) ≤ 2π supx∈[0,2π ] E|V (1, x) −
V (1, x)| ≤ C(�t + N−1/2). Since it is not possible to compute the last quantity,

FIG. 1. Exact and numerical solutions of (40) obtained at time t = 1, for 104 particles and
�t = 10−2 with the Lépingle scheme.
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TABLE 1
Expectation of L1 norm of error at t = 1 for N = 106 particles (‖V (· ,1)‖L1([0,2π]) = 1.09)

Lépingle Confidence Projection Confidence
�t scheme interval at 95% scheme interval at 95%

2−1 0.0940 [0.0933, 0.0946] 0.2510 [0.2501, 0.2519]
2−2 0.0585 [0.0579, 0.0591] 0.2320 [0.2309, 0.2329]
2−3 0.0329 [0.0322, 0.0336] 0.1964 [0.1953, 0.1975]
2−4 0.0173 [0.0166, 0.0180 0.1568 [0.1557, 0.1578]
2−5 0.0083 [0.0076, 0.0090] 0.1241 [0.1227, 0.1254]
2−6 0.0053 [0.0045, 0.0060] 0.0982 [0.0969, 0.0995]
2−7 0.0049 [0.0043, 0.0055] 0.0779 [0.0765, 0.0793]
2−8 0.0050 [0.0042, 0.0058] 0.0635 [0.0627, 0.0643]

we compute the first one by averaging ‖V (1, · )− V (1, · )‖L1([0,2π ]) over 20 runs
of the particle method and give the dependence of the result on �t in Table 1 and
Figure 2.

We need to check that our test case (40) produces a significant rate of effective
reflections. If this rate is too small, we only observe the effect of the classical
Euler scheme (without reflection) with weak convergence also in �t , and we
cannot conclude on the convergence of the Lépingle scheme. The rate of effective
reflections is around 10% for this test case: more precisely there are about 10% of
the particles in [0, α0]∪ [α1,2π ] at each time step. For these particles, we compute
the correction term C in (11). When we discretize the particle system according
to the projected Euler scheme, which treats the reflection simply by projection
onto [0,1], we clearly observe a sublinear convergence in �t (see Table 1 and
Figure 2). The projected Euler scheme does not use the correction term C whatever

FIG. 2. E‖V (· ,1)− V (· ,1)‖L1(R) in terms of �t (N = 106).
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the position of the particle and its weak convergence rate is in O(�t1/2) (see [6]).
Therefore we can conclude that the quasilinear decreasing of the error for the
Lépingle scheme confirms our theoretical analysis.
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