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The aim of the present paper is to construct a stochastic process,
whose law is the solution of the Smoluchowski’s coagulation equation. We
introduce first a modified equation, dealing with the evolution of the distribu-
tion Qy(dx) of the mass in the system. The advantage we take on this is that
we can perform an unified study for both continuous and discrete models.

The integro-partial-differential equation satisfied by {Q:};>0 can be
interpreted as the evolution equation of the time marginals of a Markov pure
jump process. At this end we introduce a nonlinear Poisson driven stochastic
differential equation related to the Smoluchowski equation in the following
way: if X; satisfies this stochastic equation, then the law of X, satisfies
the modified Smoluchowski equation. The nonlinear process is richer than
the Smoluchowski equation, since it provides historical information on the
particles.

Existence, uniqueness and pathwise behavior for the solution of this SDE
are studied. Finally, we prove that the nonlinear process X can be obtained as
the limit of a Marcus—Lushnikov procedure.

1. Introduction. The coagulation model governs various phenomena as for
example: polymerization, aggregation of colloidal particles, formation of stars and
planets, behavior of fuel mixtures in engines, etc.

Smoluchowski’s coagulation equation models the dynamic of such phenomena
and describes the evolution of a system of clusters which coalesce in order to
form bigger clusters. Each cluster is identified by its size. The only mechanism
taken into account is the coalescence of two clusters, other effects as multiple
coagulation are neglected. We assume also that the rate of these reactions
depends on the sizes of clusters involved in the coagulation. Denoting by n(k, t)
the (nonnegative) concentration of clusters of size k at time ¢, the discrete
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Smoluchowski coagulation equation reads, for k € N*:

d lk—l
—n(k, 1) =5 K(j, k= jn(j,nHntk — j,1)
dt 2

(SD) i
—n(k,1) Y K(j.kn(j. 0,

j=1

n(k,0) =ng(k).

The coagulation kernel K is naturally supposed to be nonnegative [i.e., K :
(N*)?2 — R, ] and symmetric [i.e., K (i, j) = K (j, )].

This system describes a nonlinear evolution equation of infinite dimension, with
initial condition (ng(k))>1. In the first line of (SD), the terms on the right-hand
side describes the creation of clusters of mass k by coagulation of clusters of
mass j and k — j. This is the gain term. The coefficient 1/2 is due to the fact
that K is symmetric. The second term corresponds to the depletion of clusters of
mass k after coalescence with other clusters. It represents the loss term.

The continuous analog of the equation (SD) can be written naturally:

0 1 rx
—n(x,t)=—f K(.x — im0y, On@ — y, 1) dy
ot 2 Jo

(SC) —n(x,t)/o K(x. y)n(y,1)dy,

n(x,0) =np(x)

for all x € R. As above, the coagulation kernel K is nonnegative and symmetric.
Existence and uniqueness results for these equations can be found, for example,
in Ball and Carr [2] and Heilmann [10] (for the discrete subadditive case),
Jeon [12] (for the discrete coagulation—fragmentation equation approached by
Markov chains), Aldous [1] (for the continuous case) and Norris [16], [17] (for
results generalizing to the continuous coagulation equation those of Jeon). We
refer also to Deaconu and Tanré [4] for a probabilistic interpretation of the
additive, multiplicative and constant kernels and for renormalization properties of
the solution.

Our approach to (SC) or (SD) is new and purely stochastic. We construct a pure
jump stochastic process (X;);>0 whose law is the solution of the Smoluchowski
coagulation equation in the following sense: in the discrete case, P[X; = k] =
kn(k,t) for all + > 0 and all £ € N*, while in the continuous case, P[X; € dx] =
xn(x,t)dx for all t > 0. For each w, X;(w) has to be understood as the evolution
of the size of a sort of a “typical” particle in the system.

The jump process satisfies a nonlinear Poisson driven stochastic differential
equation. This nonlinear process is a richer structure than the solution of the
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Smoluchowski equation, because it provides an historical information on the
particle behavior.

This approach is strongly inspired by probabilistic works on Boltzmann
equation. The Boltzmann equation deals with the distribution of the speeds in
a gas, and can be related to the Smoluchowski equation for two reasons: first, it
concerns the evolution of the “density of particles of speed v at time ¢,” while the
Smoluchowski equation deals with the “density of particles of mass x at time ¢.”
Second, the phenomena are discontinuous: in each case, a particle moves instantly
from a mass x (or a speed v) to a new mass x’ (or a speed v’) after a coagulation
(or a collision).

We refer to Tanaka [19], who introduced first a nonlinear jump process in order
to study the Boltzmann equation of Maxwell molecules. Other results on this
topic, based on probabilistic approach, were obtained by Desvillettes, Graham and
Meéléard [5], [9] or Fournier and Méléard [7], [6]. We follow essentially here the
approach of [7] in which Tanaka’s approach has been extended to the case of non-
Maxwell molecules. The main fact that makes the Maxwell molecules easy to treat
is that the rate of collision of a particle does not depend on its speed, which is not
the case for non-Maxwell molecules. In the Smoluchowski’s equation, the “rate of
coagulation” of a typical particle depends on its size.

We get rid of this problem by using a sort of “reject” procedure: as in [7], there
is, in our stochastic equation, an indicator function which allows to control the rate
of coagulation.

Let us finally describe the plan of the present paper.

In Section 2, we introduce our notation and the modified Smoluchowski
equation (MS), which allows us to study together equations (SC) and (SD). The
equation (MS) describes the evolution of the distribution Q;(dx) (either discrete or
continuous) of the sizes: for each 7, Q; is a probability measure on R . Afterwards
we relate (MS) to a nonlinear martingale problem (MP): for Q a solution to (MP),
its time marginals Q; satisfy the equation (MS). We finally exhibit a nonlinear
Poisson driven stochastic differential equation (SDE), which gives a pathwise
representation of (MP). If X, satisfies (SDE), then its law is a solution to (MP).
Notice that X; can be seen as the evolution of a particle chosen randomly in
the system, which coagulates randomly with other particles who are also chosen
randomly. In other words, X; is the evolution of the mass of a “typical” particle.
In Section 3, we state and prove an existence result for (SDE), under quite general
assumptions. The pathwise properties of the solution to (SDE) are briefly discussed
in Section 4. Section 5 deals with uniqueness results for (SDE). In Section 6 we
present the link of our process with the classical Marcus—Lushnikov process. The
last section is the Appendix which includes some useful classical results.

A forthcoming paper will present a stochastic particle system associated with
the process constructed in the present paper.

In the sequel A and B stand for constants whose values may change from line
to line.
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2. Framework. Our probabilistic approach is based on the following a priori
remark: there is conservation of mass in (SC) and (SD). We expect in the discrete
case that a solution (n(k, t));>0.xen* of (SD) should satisfy until a time 7y < oo,

2.1) forallz €[0,Tp), > kn(k,t)=1
k>1

and in the continuous one that a solution (n(x, t));>0, xeR% of (SC) should satisfy
until a time Ty < 00,

o0
2.2) forall t € [0, Tp), / xn(x,t)ydx =1.
0

Thus, either in the discrete or continuous case, the quantity
(2.3) 0:(dx) = Z kn(k,t)o;(dx) or Q:(dx)=xn(x,t)dx
k>1

(where &; denotes the Dirac mass at k) is a probability measure on R for all
t €0, Tp).

For any ¢, Q;(dx) can be interpreted as the distribution of the mass of the
particles at time ¢. We will rewrite equations (SD) and (SC) in terms of Q;.

We begin with some notation.

NOTATION 2.1.

1. We denote by Cg (R4) the set of bounded functions with a bounded and
continuous derivative on R .
2. We denote by #; the set of probability measures Q on R* such that

2.4) ./R xQ0(dx) < 0.

3. For Qg € &1, we denote by

R
Ry

n
(2.5 Ho, = {in; x; € Supp Qo, n € N*

i=1

Notice that #, is a closed subset of R containing the support of Qg. Since
Q is the distribution of the sizes of the particles in the initial system, #p, simply
represents the smallest closed subset of R in which the sizes of the particles will
always take their values.

Also, the assumption Qg € &1 simply means that the initial condition of the
Smoluchowski equation admits a moment of order 2: in the discrete case this writes
Yok k%no(k) < oo, while in the continuous case we have, fR+ x2ng(x) dx < oo.

DEFINITION 2.2. Let Qg be a probability measure on R belonging to &
and let 7o < oo. We will say that a family (Q; (dx)):<[0,1;) of probability measures
on R} is a weak solution to (MS) on [0, Tp) with initial condition Qg if:
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(a) forall ¢ € [0, Tp), Supp Q; C Hg,,
(b) forall 7 € [0, To), supsejo,r Jr, Jr, K(x,¥)Qs(dx)Qs(dy) < oo,
(c) and for all ¢ € C{(R) and all ¢ € [0, Tp),

[ vwoi@n
Ry
06 = /R () Qo(dx)

l K(x,y)
+/0/R+/R+[‘”(x+y)_¢(x)] . Q;(dy) Qs (dx) ds.

This definition allows us to treat together discrete and continuous cases. To
make this assertion clear, let us state the following result:

PROPOSITION 2.3. Let (Q:(dx))iel0,1,) be a weak solution to (MS), with
initial condition Qg € Py, for some Ty < 00.

(i) If Supp Qo C N*, then clearly g, C N*. Thus for all t € [0, Tp),
Supp Q; C N*, and we can write Q; as:

(2.7) Q:(dx) =) a(t)8i(dx) where oy (t) = Q;({k}).

k>1
Then, the function n(k,t) = ar(t)/k is a solution to (SD) on [0, Ty) with initial
condition no(k) = ar(0)/ k, in the following weak sense; for all t € [0, Ty):

(@) Yps1kn(k, 1) =1,
(b) Supsefo. 2k=12j=1 ki K(j, k)n(j, s)n(k, s) < oo,
(c) andforallk > 1,

k—1
n(k, 1) = no(k) + /Ot[% > nli,s)ntk —i, )K i,k —i)

i=1

(2.8)
= n(k, s)n(j, K (k, j)} ds.
j=1

(ii) Assume now that, for all t € [0, Ty), the probability measure Q; is ab-
solutely continuous with respect to the Lebesgue measure on Ry (see Proposi-
tion 5.3 below). We can then write Qo(dx) = fo(x)dx and, for any t € (0, Tp),
0:dx) = f(x,t)dx. Then n(x,t) = f(x,t)/x is a solution to (SC) on [0, Tp)
with initial condition no(x) = fo(x)/x, in the following weak sense; for all
t €0, Tp):

(a) fR+ xn(x,)dx =1,
(b) supseio Jr, Jr, XK (X, y)n(x, s)n(x —y,s)dxdy < oo,
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(¢) and for all test function ¢ such that ¢(x)/x belongs to C g (R%),
[ enends= [ wmod
Ry Ry

t
(29) + %/ f / [p(x +y) — p(x) — 9(»)]
0o Jr, JR,
x K(x,y)n(x,s)n(y,s)dxdyds

(for a similar definition, see Norris [16]).

(ii1) Other cases, as mixed cases, are contained in (MS).

PROOF. First notice that in both cases, the integrability estimates on n are
straightforward consequences of the integrability estimates on Q.

Step 1. Since Q;(dx) = ) > ar()8i(dx), with ay(t) = kn(k, 1), is a weak

solution to (MS), we may apply (2.6) with ¢(x) € C g (R%) such that for some
k>1

1 1
0, if k——k+—|.
1x¢[ 2 +2}

(2.10) r(x) =
%, ifxzk.
‘We obtain
ar(t) o (0) 1 K@, j)
@11 L +/ =3 i) Y @)Lt joky — Limig] == dis
k k 0 kizl = Jj
and thus
k=1 K@, k—i)

nik, 1) = no(k) + /0 ’ {Z i)tk —i,s)
i=1

= > n(k,)n(j,)K (k, j)} ds

2.12) izl

i1 k=1
:no(k)+/0 |:§ Zn(i,s)n(k—i,s)K(i,k—i)
i=1

= > nk,)n(j, ) Kk, j)} ds

j=1

where the last equality comes from the fact that «;(s) = in(i,s) and K(i, j) is
a symmetric kernel.

Step 2. We now assume that Q,(dx) = f(x,t)dx for all t € [0, Tp); let ¢ be
a test function such that ¥ (x) = ¢(x)/x belongs to C g (R4). Applying (2.6) to r,
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we obtain, since K is symmetric,

/ pX)n(x,t)dx
Ry

:A; p(x)no(x)dx
’ P +y) (p(x)} K(x.y)
+./0 /J;h./ﬂh[ x+y X y Jx, ) f(y,s)dxdyds
= [ @()np(x)dx
2.13) IR

Lt px+y) o)  ex+y) @)
shL L e - e 5
X xyK (x, y)n(x,s)n(y,s)dxdyds

1 t
-/ PO+ 5 [ ) A ) =) (]
x K(x, y)n(x,s)n(y,s)dxdyds.

Notice that all the integrals above are convergent, since for example our test

function ¢ satisfies that |o(x + y) — ¢(x) — ¢(y)| < Axy for some constant A.
This completes the proof. [

Equation (MS) can be interpreted as the evolution equation of the time
marginals of a pure jump Markov process. In order to exploit this remark, we
will associate to (MS) a martingale problem. We begin with some notation.

NOTATION 2.4. Let Ty < oo and Qg € P be fixed. Denote by D' ([0, Tp),
Ho,) the set of positive nondecreasing cadlag functions from [0, Tp) into Hg,,.

We denote by ﬂ’lT([O, To), #g,) the set of probability measures Q on D' ([0, Tp),
Ho,) such that

(2.14) O({x e D'([0, Tp), #g,); x(0) > 0}) =1

and, for all t < Ty,

(2.15) x(@)Q(dx) =/

xeD1([0.Tp), H#g,) xeD1([0.T), #g,)

< sup x(s))Q(dx) < 0.

s€[0,1]

The last equality comes naturally from the fact that x(#) is nondecreasing.

DEFINITION 2.5. Let Tp < oo, and Qp € £, be fixed. Consider Q €
JDIT ([0, To), #g,), and denote by Qj its time marginal at 5. Let Z be the canonical
process of DT ([0, Ty), Ho,). We say that Q is a solution to the martingale problem
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(MP) on [0, Tp) if for all 7 € [0, To), supsejo. fR+ fR+ K(x,y)Qs(dx)Qs(dy)
< 00, and for all ¢ € Cé (R) the process,

216)  @(Z) — p(Zo) f/ [0(Zs +y) — 9(Z))] (s’y)Qs(dy)ds,

defined for ¢ € [0, Tp), is a Q—Ll—martingale.

By taking expectations in (2.16), we obtain, using the fact that the expectation
of a martingale starting from O is 0, the following remark:

REMARK 2.6. Let Q be a solution to the martingale problem (MP) on [0, Tp).
For t € [0, Tp), let Q; be its time marginal. Then (Q;)s¢[0,7,) 15 @ weak solution
of (MS) with initial condition Qy.

We are now seeking for a pathwise representation of the martingale prob-
lem (MP). To this aim, let us introduce some more notation. The main ideas of
the following notation and definitions come from Tanaka [19].

NOTATION 2.7.

1. We consider two probability spaces: (2, ¥,PP) is an abstract space and
([0, 1], B[0, 1], da) is an auxiliary space (here, do denotes the Lebesgue
measure). In order to avoid confusion, the expectation on [0, 1] will be
denoted E, the laws L, the processes will be called a-processes, etc.

2. Let Tp < oo and Qg € &1 be fixed. A nondecreasing positive cadlag adapted
process (X;(w))se[0,7,) 18 said to belong to LIT‘”T(J(’QO) if its law belongs

2110, To), Ho,).
In the same way, a nondecreasing positive cadlag o- process ()~( (@) re[0,7y)
is said to belong to L To, T(e}l(’QO) -a if its a-law belongs to & ([0 To), Ho,)-

_ DEFINITION 2.8. Let Tp < oo and Qg € &, be fixed. We say that (Xg, X,
X, N) is a solution to the problem (SDE) on [0, Tp) if:

(a) Xo:Q — R, is arandom variable whose law is Qg;

(b) X;(@):[0, To) x @ — Ry is a L1 T (F#p,)-process;

(¢) X;(e):[0,Tp) x [0,1] - R, isa L{O’T(%Q())—a—process;

(d) N(w,dt,da,dz) is a Poisson measure on [0, Tp) x [0, 1] x Ry with
intensity measure d7 do dz and is independent of Xo;

(e) X and X have the same law on their respective probability spaces: £L£(X) =
Lo (f( ) (this equality holds in ﬂ’lT([O, To), #0,))s

() forall t € [0, Tp), supepo, EEa (K (Xy, X)) < 00;
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(g) finally, the following SDE is satisfied on [0, Tp):

- Xs_ (@)

2.17) X, =Xo+ / / / (a)ll s (a))]N(ds da, dz).

The motivation of this definition is the following:

PROPOSITION 2.9. Let (Xo, X, X, N) be a solution to (SDE) on [0, Ty). Then
the law L(X) = Ly (5() satisfies the martingale problem (MP) on [0, To) with
initial condition Qo = £L(X(). Hence {L(X;)}i¢[0,1,) is a solution to the modified
Smoluchowski equation (MS) with initial condition Qy.

Before proving rigorously this result, we explain its main intuition: why is it
natural to choose {X;};>0 satisfying (SDE), in order to obtain a stochastic process
whose law is solution to the modified Smoluchowski equation (MS)?

We wish the law Q; of X; to describe the evolution of the distribution of
particles’s masses in the system. A natural way to do this is to choose one particle
randomly, and to use a random (but natural) coagulation dynamic. Thus, X; should
be understood as the evolution of the size of a sort of “typical” particle. Of course,
X must follow the initial distribution Q. Afterwards, at some random instants,
which are typically Poissonian instants (for Markovian reasons), coalescence
phenomena occur. Let T be one of these instants. At this instant, we choose another
particle, randomly in the system, and we denote by X (c) its size. Then we
describe the coagulation as X; = X,_ + X, (). The indicator function in (2.17)
allows to control the frequency of the coagulations.

Thus, from a time-evolution point of view, X, mimics randomly the evolution
of the size of one particle, its law is given by the (deterministic) “true” distribution
of the sizes in the system at time ¢, which is exactly the solution of (MS).

PROOF OF PROPOSITION 2.9. Let ¢ be a Cg (R4) function. Then for all
t €10, Tp),

9(X1) =(Xo) + Y _[o(Xy) — o(X; )]

= 0(Xo) +S/j/01 /Ooo[rp<Xs + X, (a)ﬂ{ziw])

Xs_ (@)

— go(Xs):|N(ds, da,dz)

= p(Xo) + / / / o(Xs + X, @) — p(Xs )]
Il{ K(Xs_ X5 (a))]N(ds da,dz).

Xc ()
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Hence
M{ = o(X;) — p(Xo)
2.18) I/I/oo ~
_/0 o Jo [‘P(Xs+Xs(0‘))—SD(Xs)]]l[ZSW}dzdads

can be written as a stochastic integral with respect to the compensated Poisson
measure, and thus is a martingale. But

MY = p(X;) — p(Xo)

t . K (X, X;())
(2.19) - '/0 Eal:(ﬁa(xs + Xs(a)) - (p(Xs))W} ds
! K XSa
o) —px0 - [ [ o+ - w(y)]% 0,(dy) ds

where O, = L, (f(s) = JL(X;). We have proved that L(X) satisfies (MP) on
[0, Tp). O

Let us now state a hypothesis which will allow to prove existence results for
(SDE).

(Hp): The initial condition Qo belongs to ;. The symmetric kernel K':
R4+ x Ry +— Ry is locally Lipschitz continuous on (J(’QO)Z, and satisfies,
for some constant Cx < oo and some 8 € [0, 1],

(2.20) K(x,y) <Cx(1+x+y+xPyP).

Two different situations will appear according to 8 = 1/2 or 8 = 1. We will always
prove the results for the case f = 1 the other one being similar and easier to treat.
Let us also remark that all results for 8§ = 1/2 apply also for 0 < 8 < 1/2 and
similarly the ones for 8 =1 are true for 1/2 < § < 1.

Notice also that in the discrete case, #,, is contained in N*, so that we don’t
need the local Lipschitz continuity condition.

3. Existence results for (SDE). The aim of this section is to prove the
following result.

THEOREM 3.1.  Let Qq satisfy [p, x> Qo(dx) < 00. Assume (Hg).

(1) If B = 1/2 then there exists a solution (Xg, X, X, N) to (SDE), on [0, Tp),
where Ty = o0.

(i) If B =1 then there exists a solution (Xg, X, X, N) to (SDE), on [0, Tp),
where To =1/Cg (1 + E(Xp)).
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REMARK 3.2. Assume (Hg). From now on for g =1/2 let Tp = oo and for
B=1letTy=1/Cg(1+E(Xp)).

We obtain the following corollary, which states a new existence result for the
continuous Smoluchowski equation, enabling some initial conditions n¢(x) which
are not integrable at x = 0. We express this in terms of measures; see Norris [16].

COROLLARY 3.3.  Consider a nonnegative measure 1o on RY_ satisfying that
fR+ xuo(dx) =1, fR+ x3uo(dx) < o0 and consider the associated probability
measure Qo(dx) = xuo(dx). Assume (Hg), and consider the associated Ty (see
Remark 3.2).

Then there exists a weak solution {{i:};>0 to the Smoluchowski equation, in the
sense that:

(i) for all t < Ty, fR+ xp (x)dx =1 and sups g fR+ fR+ xyK(x,y) x
s (dx) s (dy) < 00,
(ii) for all test function ¢ on Ry such that ¢(x)/x belongs to C }1 R3),

/R (0 1 (d)
Gl = /R () 0(dx)

+ t
+1 /0 /R ) /R ) = () = O (e, y)s @) ) ds.

The proof is straightforward: using Theorem 3.1, Proposition 2.9 and Re-
mark 2.6, we obtain the existence of a solution {Q;};¢[0,7) to (MS), which can
be rewritten in terms of w;(dx) = Q;(dx)/x exactly as in the corollary.

This result is new since we do not need to suppose that fR+ Ho(dx) is finite.

From Theorem 3.1 we see that for § = 1/2 we obtain an existence result on
[0, 00). This is not the case if 8 = 1. Indeed, it is classical that for 8 =1 there is
gelation in finite time. More precisely, Jeon [12] proved for the discrete case that if
K@, j)=> iﬁj‘8 for some 1/2 < B < 1, if we denote by n(k, t) a solution to (SD),
we have that the gelation time Ty defined by

(3.2) Toer =inf}t > 0; > k?n(k,1) :oo}
k>1

is finite. With our notation this becomes
3.3) Tgel = inf{z > 0; E(X;) = oo} < o0.

It is thus clear that an existence result on [0, co) cannot be proved under the
assumption (Hg) for g =1.

Finally, notice that for 8 =1, To = 1/Cg (1 + E(Xp)) is not the exact gelation
time, except if K(x,y) = Cg(1 +x + y + xy): since we only assume an upper
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bound on K, we are only able to prove an existence result for (SDE) on [0, Tp),
for some Ty < Tge). We however will give exact gelation times corresponding to
a class of coagulation kernels for which explicit computations are easy. In such
cases, our existence result will easily extend to [0, Tge)).

Because the coefficients of (SDE) are not globally Lipschitz continuous,
Theorem 3.1 is not easy to prove. Due to the nonlinearity, a direct construction
is difficult. Thus, in a first proposition, we prove a result, which combined with
Proposition 2.9 shows that the existence (respectively uniqueness in law) for
(SDE) is equivalent to existence (respectively uniqueness) for (MP). It will thus
be sufficient to prove an existence result for (MP).

Next, we use a cutoff procedure, which renders the coefficients of our equation
globally Lipschitz continuous: we obtain the existence of a solution X? to a cutoff
equation (SDE),. Tightness and uniform integrability results allow to prove that
the family £(X?) has limiting points, and that these limit points satisfy (MP).

As said previously, we begin with a proposition, which, combined with
Proposition 2.9, shows a sort of equivalence between (MP) and (SDE).

PROPOSITION 3.4. Let Qg belong to . Assume that Q € JPIT([O, To), #o,)
is a solution to (MP) on [0, Ty) with initial condition Qy, for some Ty < 0.

Consider any LITO’T(J(’QO)-a-process X such that Lo (5() = Q. Consider also
the canonical process Z of DT ([0, Ty), Ho,). Then there exists, on an enlarged
probability space (from the canonical one), a Poisson measure N (w, dt,da, dz),
independent of Zo (all of this under Q), such that (Zy, Z, X,N ) is a solution to
(SDE) (still under Q).

This kind of result is now standard and relies on representation Theorems for
point processes, we refer to Desvillettes, Graham and Méléard [5] or to the original
paper of Tanaka [20].

In order to prove Theorem 3.1, we first consider a simpler problem with cutoff.

For Qg in &1, we define a solution (Xg, X?, Xe, N ) to (SDE), exactly in the
same way as in Definition 2.8, but replacing (2.17) by

t pl poo/ 1
Xf:Xo—l—/// (Xf_(a)\/s/\—>
0J0 JO &

(3.4)
X ]l{ K(X§_ A(1/e),XE_ (@)A(1/€)) ]N(d57 dOl, dZ)
z=<

XS (a)ven(l/e)

under the conditions £(X?) € JDIT([O, To), Hg,) and L, (X%) = L(X?).
We begin with an important remark.

REMARK 3.5. We need that for each ¢ > 0 and for (X, X¢, X¢, N) a solution
to (SDE),, X? takes its values in F#p,. Indeed, the regularity assumption (Hg)



SMOLUCHOWSKI: A NONLINEAR PROCESS 1775

on K holds only on #¢,. Hence, in (3.4), x vV & A (1/¢) is only a notation, and its
rigorous definition is, for any x € #g, and any ¢ > 0,

inf{y € Hp,; y > ¢}, if0<x=<e,
3.5 xven(/e)=1x, if x e [e, 1/¢],
sup{y € #Hp,; y < 1/¢}, if 1/e <x.

Of course, x A (1/¢€) is defined in the same way. With these definitions, x V & A
(1/&) and x A (1/¢) belong to Hg,, for any x € Hgp,, € > 0.

We now prove an existence result for (SDE),.

PROPOSITION 3.6. Let Q¢ € P and & > 0. Assume (Hg). Let Xo be
a random variable whose law is Qo and N_be a Poisson measure independent
of Xo. Then there exists a solution (Xo, X¢, X?, N) to (SDE), on [0, 00).

PROOF. The proof mimics that of Tanaka, who proved in [19] a similar result
in the case of a nonlinear SDE related to the Boltzmann equation. We refer to the
more recent work of Desvillettes, Graham and Méléard [5] for a detailed proof in
a simpler one-dimensional case. We thus only point the main ideas of the proof.

We introduce the following nonclassical Picard approximations. First, we
consider the process x%¢ = X, and any o-process X9 such that Lo ()20’8) =
L(X%).

Once everything is built up to n, we set

ntle t pl poo /s _ 1
X; ’:X(H-/O/O/O <X§”_8(oe)\/8/\g>

(3.6) ‘1

&

[ K(XPEA/e), X8 (@)A1 /6)) }N(dS, da,dz)
z=<

X @ven(l/e)

and we consider any a-process X" !¢ such that
(3.7) Lo (XTHLE X0 XE) = L(XTTLE X0 X,

One easily checks recursively that for each n, X">¢ is an LTO’T(,%QO)—process.
Let us show now that the sequence {X"?}, is Cauchy in LTO’T(J(QO). We set
@n (1) := E[supseio. |X§’+1’8 — X?|]. A simple computation, using the fact that
the map
K(x A (1/e),yA(1/e))
xven(l/e)

(3.8) (x,y)—~

is globally Lipschitz continuous on (JH’QO)2 [thanks to (Hpg)] and the fact that

fol |X™E (@) — X"~ 18 (a)|da < pa—1(s), gives the existence of a constant A,
depending only on &, such that

t
(3.9) on(t) < A /0 1 (5) ds.
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We conclude, thanks to the usual Gronwall Lemma, that there exists an
LTO’T(J(’QO)-process X¢ such that, for any T < oo,

(3.10) E[ sup |X;° — X€|] — 0.

1€[0,T] M n—oo
By construction, the a-law of the sequence of processes X*¢, ..., X, ... is the
same as the law of the sequence X%¢, ..., X", ... We thus deduce the existence

of an LTO’T(HQO)—(x—process X¢ such that £, (X¢) = £(X*?), and such that for all
T < o0,

(3.11) Ea[ sup | X% — X;ﬂ — 0.
1€[0,T] n—o0

Letting n go to infinity in (3.6) concludes the proof. [
We now prove the tightness of the family {£(X?)}..

LEMMA 3.7. Assume (Hg). For B =1/2 or B =1 consider the correspond-
ing Ty. Consider a family (Xo, X¢, X&,N) of solutions to (SDE),. Then, for all
T < T(),

(3.12) supE[ sup |Xf|} =supEa[ sup |)~(f|} < 0.
e>0 t€l0,T] e>0 t€l0,T]

Furthermore, the family £(X?) = /L, (f(g) of probability measures on DT ([0, Ty),
Ho,) is tight, and any limiting point Q of a convergent subsequence is the law
of a quasi-left continuous process (for the definition see Jacod and Shiryaev [11],
page 22).

PROOF. Let us prove the result under (Hg) for 8 =1, the case B = 1/2 being
similar. We first check (3.12). Setting

(3.13) 7.0y =E| sup [x:1],

s€[0,1]

it is immediate, since the processes are positive and nondecreasing and since for
each g, L, (X)) = L(X?), that

(3.14) fe(t) =E[X{]=Eq[X{].

A simple computation, using (3.4), yields that

(3.15) fg(t):E(Xo)+/OZIEEa[K<X§/\§,)~(§/\§>}ds.
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Under (Hg) with B =1, it is clear that

1 - 1
IEIEO,[K(X;9 A= XEN —)]
(3.16) e T ¢
2
< Cx(1+2fe(s) + f2() = Ck (1 + fe(9))".
Lemma A.3 in the Appendix, applied to the function g = 1 + f;, which is
clearly continuous [thanks to (3.15)], allows to conclude that for any ¢ < Ty =
1/Ck (1 4+ E(Xp)),
1 +E(Xo)
3.17 Hn<———1
(3.17) f =

from which (3.12) is straightforward.

In order to obtain the tightness of the family {L£(X?)}., we use the Aldous
criterion, which is recalled in the Appendix (Theorem A.1).

We just have to check that for all 7 < Ty fixed, there exists a constant Ar
such that for all § > 0, all couple of stopping times S and S’ satisfying a.s.
0<S<8<(§+8AT,andall ¢,

(3.18) E|XS — X§| < Aré,
the constant A7 being independent of ¢, 8, S and S’. This is not hard. Indeed,
X5 — X5l

~ 1
(3-19) — / (Xli (C() \/8 /\ _)1]. K(Xﬁ_/\(l/s),f(ﬁ_ ((X)A(l/&‘)) N(du, da, dZ).
(5.5 VAR EE }

X&_ (@)ven(l/e)

Since 1 g, ¢11(u) is predictable (it is left continuous and adapted), we get
S/

E[| X%, — X5|] = EE, [/S K(XE, ;?;m))du}

<3 sup BEG[K (X}, X})].
uel0,T]

But thanks to (Hg) for 8 =1 and to (3.12) (since T < Tp),

(3.20)

sup EE,[K(X:, X5)] <Ck sup EE,[1+ X+ X + XEXE]
(3.21)  u€l0,T] uel0,T]
< Ck[1+2E[X5]+ E[X51%] < Ar,

which concludes the proof. [

To prove that any limiting point Q of L£(X?) satisfies (MP), we need also
a property of uniform integrability, which will be obtained in the next lemma.
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LEMMA 3.8. Assume that fR+ x2Q0(dx) < 00. Assume (Hp), and following

the value of B consider the associated Ty. Consider a family (Xo, X?, X&, N) of
solutions to (SDE).. Then for all T < Ty fixed,

(3.22) supE[ sup |Xf|2} < o0.
e>0 Lreg[0,T]

PROOF. For k € N*, we define

(323) gt = E[ sup IXfI"} = E[(X5)"].
t€[0,T]
For all r < Ty,
X2 = X3+ 3 (x5 +ax)’ = (x5.)?)

s<t

t pl poo » 1 . 1 2
(3.24) :X§+/0/0/0 (2X§<X§(a)\/s/\g>+<Xf(a)\/s/\g>>

X 1{ K(XE_ A(1/e).XE_ (@)A(1/e)) }N(dS, da,dz).
=

X¢  (@)ven(l/e)

Hence
t 1 -~ 1 ~
(3.25) gS(t) = IE(X(Z)) +/ EE, [K (X§ A . X§ A ;>(2X§ + (X? \% 8))] ds.
0

Let us complete the proof for (Hg) with 8 = 1, the other case being similar. Let
thus 7' < Tp be fixed. Using the fact that £(X?) = £, (X?) and (3.12), we obtain
the existence of a constant A7, not depending on &, such that forall t < T,

t ~ ~ ~
850 <BOXR) +3Ck [ BE[(X +6)(1+ X5 + X + X:X0)]ds
(3.26) D
<E(X) +Ar [ [1+85(0)]ds.

The usual Gronwall Lemma allows us to conclude the proof. [

The following lemma, associated with Proposition 3.4, will conclude the proof
of Theorem 3.1.

LEMMA 3.9. Let Qg satisfy fR+ x2Qo(dx) < 0o. Assume (Hp) and consider
the corresponding Ty. Consider a family (Xg, X¢, X, N~) of solutions to (SDE)g,
and a limiting point Q of the tight family L(X®) = L, (X?). Then Q is a solution
to (MP) on [0, Ty), with initial condition Q¢ = L(Xg).
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PROOF. We prove the result for 8 = 1. The other case is simpler. Let Q be the
limit of a sequence of QX = L(X%), &, being a sequence of positive real numbers
decreasing to 0.

We have to check that, for any ¢ € Cg Ry), any g1, ..., 8 € Cp(R;) and any
O0<s1<---<s1<s<t<Ty,

(3.27) (O® Q. F)=
where F is the map from D' ([0, Ty), #o,) x D1 ([0, Tp), #g,) defined by
F(x,y)=gi(x(sD) x - x gr(x(sp)

t
(3.28) X {¢>(X<f)) —¢(x(9) —/ [ (xw) + y(w) — ¢p(x(w))]
‘ K (xw), y(@)) }
X duy.
y(u)
It is clear from the definition of the process X% that for any k,
(3.29) (0" ® 0" Ff) =0,

where F* is defined by
FE(x, y) = g1 (x(sn)) x -+ x gi(x(s1))
! 1
(3.30) X 1p(x (@) — p(x(s)) / [ (x(u) +y(u) Ve A g) - ¢(x(u))]
K(x@) A (1/er), y(u) A (1/er)) }
X dut.
yu) Ver A (1/ek)

It thus suffices to prove that (0% ® OF, F¥) tends to (Q ® Q, F) as k tends to
infinity. We split the proof into two steps.
Step 1. Let us first check that,

(3.31) (Qk®Qk,|F—F"|)k:>>oo.

By definition,
(0" ® 0% IF — FX))

:EEQ[

x /t{[q)(xgk + X Vg A i) - (p(XS"):|
(3.32) : w T Ru £ u

K(Xg" A (1/en), Xak A (/1))
Xik Ve n(1/er)

Sk Xek
— [p(xE 4+ X6 — <x€n]—5—§g———3}duu.

g1(X%(s1)) x -+ x g1 (X (s))

&k
u
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Hence, for some constant A, (Q% ® QX, |F — F¥|) is smaller than

t
AEE, [ /

(X + Xik v e A (1/e1) — 9(Xi)
Xk Ve A (1/er)

(X + X — (X
XEk

(339 + AEE [/t (X + Xt Ve A (/1) — p(Xi)
“Ls XV er A (1/er)

K (XEk, Xek) du]

X

K (XG5, X5y — K(XZ" A i XEk A é)‘du]
= A(I&‘k + J&‘k)v

with obvious notation for 7, and Jg, . As ¢’ is bounded, we obtain, using (Hg) for

B=1,

t
Joy <200 Voo BBa| [ (. 1)+ Lz 1)
K €k “

ek

(3.34) x (1+ X5+ Xk + Xi"f(ik)du}

< A[]P’(Xf" > 1/¢ex) +E[ka]l{xf">l/sk}]]'

The uniform integrability obtained in Lemma 3.8 allows to conclude that J;, tends
to 0.

Let us now bound I, from above. Remark first that
(3.35) Iy <1I) +12

where

o(Xi + &) — o(XiF)
Ek
P(XF 4+ X)) — (X
_ i

t ~
1) = AEE, [/s gk g K (XK, XER)

(3.36)

du|

and

o(Xik + (/&) — p(Xi)
1/ex
P(XiF+ X)) — (X
_ i

l ~
IgzszEEal:/ 1{X5k>5i}K(szink)
(3.37) s k

du
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The second term is similar to J,, and thus goes to 0 as k tends to infinity. Using
(Hp) with B =1 and (3.12), we see that the first term is smaller than
t ~ ~
Iglk < 2A||(p’||oo/ EEa[l{gika}(l + XIF+ Xk 4+ XIFXER) ] du
(3.38) ; s
< A/ P(XEF < er) du < AtP(Xo < &),
0

where the last inequality comes from the fact that the process X °* is nondecreasing.
This goes to 0, because Xo > 0 a.s. Step 1 is complete.

Step 2. It remains to prove that
(3.39) (0*® 0. F) —(0®Q.F).

k—o00
This convergence would be obvious if F was continuous and bounded on
D' ([0, Tp), Ho,) x DT([0, Tp), Ho,), thanks to the definition of the convergence
in law. The map F is not continuous on D' ([0, Tp), #g,) x D' ([0, To), #p,), but
only on C x C, where

¢ = {x e D'([0, To), Hg,);
Ax(sy) == Ax(s) = Ax(s) = Ax(r) =0}.
Thanks to Lemma 3.7, Q is the law of a quasi-left continuous process, thus

Q(C) =1, and hence F is Q ® Q-a.e. continuous. This implies that for any
positive constant A,

(3.41) (O"® O , FAAV (=A)) — (Q® O, F AAV (—A))

k—o00

because F A AV (—A) is QO ® Q-a.e. continuous and bounded. Thus (3.39) will
hold if we prove that

(3.42) sup(QF ® O, |F[1Fj=4) —> 0.
X A—00

(3.40)

One can check, after many but easy computations, that
(3.43) (0" ® 0" IFI1jF24) < BE[XLix:-c(ay)]

for some constant B and some function {(A) tending to infinity with A. The
uniform integrability obtained in Lemma 3.8 allows to conclude that (3.42) holds.
Hence (3.39) is valid. This concludes the proof of Step 2 and the proof of the
lemma. [

Let us finally conclude the proof of the main result of this section.

PROOF OF THEOREM 3.1. Thanks to Lemma 3.6, there exists a solution
(Xo, X¢, X, N) to (SDE), for each ¢. From Lemma 3.7, the sequence {L(X?)}
is tight, and in particular there exists a sequence ¢, decreasing to O such that
{L(X?)} tends to some Q. Lemma 3.9 shows that Q satisfies (MP). Finally,
Proposition 3.4 allows us to build a solution (Xg, X, X,N ) of (SDE). OO
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REMARK 3.10. Let us remark that our construction procedure for proving
Proposition 3.6, gives an existence result of (SDE) without assuming that X and X
take values in ;. Our construction gives naturally a process X with values
in #g,. In particular, for an initial condition X valued in N*, X takes its values
also in N*.

4. Pathwise behavior of (SDE). In this short section, we try to give an idea
on the pathwise properties of X, for (X, X, X,N ) a solution to (SDE). We have
very few results on this topic, and the study seems to be difficult. However, we
hope that new results will be properly formulated in future works.

We first present an idea about the frequency of the jumps of X;. How often does
a particle in the system coagulate?

The following result, which says that the number of jumps is finite on every
compact interval, is not a priori obvious in the continuous case.

PROPOSITION 4.1. Let Q¢ be such that fR+ x2Q0(dx) < co. Assume (Hp)

and consider the corresponding Ty. Let (Xg, X, X, N) be a solution to the
corresponding (SDE). Assume furthermore that

@.1) L 0otdx) < 0
Ry X

which always holds in the discrete case, and which simply means, in the continuous
case, that fR+ no(x)dx < oo.

Denote by J; = -, 1{ax,+0) the number of jumps of X on [0, t]. Then for all
t<Ty, E[J;] <oco.

PROOF. Let us again prove the result for § = 1. Thanks to (2.17), we see that
4.2) Jr= / / / KO K@) N(ds,da,dz)
- T X @ ]
and hence
[quf, fm]d

N

t
4.3) E[J,] = / EE,
0
Using (Hpg) with B = 1, we obtain

E[J,] < Ck ftEEa[l/Xs + X/ X + 14 X,]ds
0
< Ckt[E[1/X0] + E[X,]E[1/X0] + 1 + E[X,]]

where the last inequality comes from the fact that X is a.s. nondecreasing. This
last upper bound is clearly finite, since t < Ty and since we have assumed that
E(1/Xp) < oo. The proof is complete. [

4.4)
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REMARK 4.2. If we do not assume (4.1), we do not know what happens.
It however seems that in the (nonexplosive) case where K (x, y) = 1 and where
E(1/Xo) = 00, then X, has infinitely many jumps immediately after 0.

Let us finally talk about the gelation time, defined in (3.3).

This quantity, which can be seen as a L!-gelation time, has been much studied
by the analysts and physicists. It is easily deduced from Theorem 3.1 that under
(Hp) with B =1/2, Tge] = 00 for any initial condition [satisfying fR+ x2Q0(dx)
< o00].

In the case 8 = 1, under the same assumptions on Qg, Theorem 3.1 yields that
Toe) > To =1/Ck (1 + fR+ xQo(dx)). Of course, we have proved the existence
for (SDE) on [0, Tp), because we have only assumed an upper bound for K. But in
any particular case where explicit computations could be done, solutions to (SDE)
may be constructed on [0, Tge1). For example, the following proposition holds.

PROPOSITION 4.3.  Consider Q¢ € 91 and suppose that fR+ x2Q0(dx) < oo.
Assume that K(x,y) =a + b(x + y) + cxy, for some nonnegative constants a
and b, and for some ¢ > 0. Denote by ag = fR+ xQo(dx). Then Theorem 3.1 holds
by replacing Ty with Tge, where:

i) if A =40b* —ac) =0, then Toel = ;5115
(i) if A =4 —ac) <0, then Tge = ZE — 2 arctan(d4c2tl),

(i) if A =4 = ac) > 0, then Toe) = 5 In(LELEVRe).

From a probabilistic point of view, the L!-gelation time is of course important,
but we want also to study the stochastic gelation time:

4.5) Tgel = inf{z > 0; X; = 00}.

Obviously, Tge] > Tgel a.s. An interesting question is the following. Under which
conditions on Qg and K do we have

(4.6) ]P)(Tgel > Tge1) € (0, 1), P(fgel > Tge) =0 or P(fgel > Tge) =17

In other words, are there particles of finite (respectively infinite) mass at time T ?
Do all particles have a finite (respectively infinite) mass at time Tgel?

We are not able to give a complete answer for the moment. Let us however state
and prove the following result.

PROPOSITION 4.4. Let Qg be such that jﬂh szo(dx) < 00, and let us
assume (Hg) with B = 1. Assume furthermore that Tge) < 00, and that there exists
a function ¢ : Supp Qo — R such that, for all x € Supp Qy,

4.7 K& y)

<¢().

YeHQ,
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Consider a solution (Xg, X, X, N) to (SDE). Then for any t € [0, 00),
4.8) P(rger > 1) > 0.

This means in particular that there are many particles which have a finite mass at
the instant Te.

Notice that (4.7) is always satisfied in the discrete case, and more generally for
any kernel satisfying (Hg) with B =1 if [0, &) N Supp Q¢ = & for some & > 0
(a sort of minimal size).

Notice also that (4.7) is satisfied with any initial condition, if K (x,y) < Cxy
for some constant C € R,

PROOF OF PROPOSITION 4.4. We will prove a much stronger result: for any
t >0, P(X; = Xp) > 0. To this end, we study the first jump time

4.9) Ty =inf{s > 0; AX; # 0}.
By remarking that thanks to (4.7) and (2.17),

t pl poo _
@10 X=X =Xo+ [ [[" % @tizca yNds.dedz)
we deduce that 77 > S; a.s., where

t prl poo
“4.11) S = inf{s >0; // / Ti<cxoyN(ds,da,dz) > 0}.

0Jo Jo

Since N is a Poisson measure independent of X, the random variable

t prl poo
(4.12) / / / ]l{zfg(xo)}N(dS,dOl, dZ)
0J0 JO

follows, conditionally to X, a Poisson distribution of parameter

t prl poo
4.13) // / Liz<cxondsdadz =t5(Xop).

0J0 JO

Hence
(4.14) P(S1 > 1) = E[P(S) > 1]X0)] = E[e "¢ > 0.

Finally, we conclude that
(4.15) P(tge1 > 1) > P(X; = Xo) =P(T1 > 1) > P(S; > 1) >0

which was our aim. [

This concludes the section.
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5. About the uniqueness for (SDE). In this section, we deal with the
uniqueness in law for (SDE), which is equivalent to the uniqueness for (MP) (see
Propositions 2.9 and 3.4). We are not able to prove such uniqueness results by
ourselves [except for K (x, y) = xy; see the end of this section]. However, we may
prove uniqueness by using the results of the analysts. In other words, we may prove
uniqueness in law for (SDE) once we know uniqueness for the Smoluchowski
equation. We consider first the discrete case.

PROPOSITION 5.1. Let Qg satisfy fR+ x2Q0(dx) < co. Assume (Hg) and
consider the corresponding Tj.

Assume that Qo(N*) =1 and write Qp as Y ;-1 xS (dx). Set no(k) = o/ k.
Assume that uniqueness of a solution to (SC) with kernel K and initial condition no
holds on [0, Ty). Then uniqueness of a solution Q to (MP), on [0, Ty) holds. Hence
uniqueness in law holds for (SDE), in the sense that any solution (X, X, X,N )
to (SDE) with L(Xo) = Qo, satisfies L(X) = Q.

Since we will prove below a similar result in the continuous case, we omit the
proof. The following corollary is immediately deduced from Proposition 5.1 and
from Heilmann [10].

COROLLARY 5.2.  Assume (Hy,2) and that Qo € &y is such that fR+ x2
X Qo(dx) < oco. Assume also that Qg is discrete, that is, that its support is

contained in N*. Then uniqueness holds for (MS), (MP) and we have uniqueness
in law for (SDE).

In order to use the results of the analysts in the continuous case, we first have
to check that for (Xg, X, X,N ) a solution to (SDE), L£(X;) is really a modified
solution to (SC): we have to prove that if Qg has a density, then for all ¢ > 0, the
law of X; admits a density.

PROPOSITION 5.3. Assume that Xo > 0 is a random variable whose law Q
is such that E(X(Z)) < 00. Assume (Hg) and consider the corresponding Ty. Assume
also that Qg is absolutely continuous w.r.t. the Lebesgue measure on R, and that
K (x,y) is nondecreasing (e.g., in x when y is fixed).

Consider a solution (X, X, X, N) to (SDE). Then for all t € [0, Ty), the law
of X; is absolutely continuous w.r.t. the Lebesgue measure on R,.. Hence the law
of X, is really a weak solution to (SC), in the sense that if f(x,t) denotes the
density of X;, then n(x,t) = f(x,t)/x is a weak solution to (SC), in the sense of
the Proposition 2.3.

PROOF. Let us denote by fo(x) the density of the law of Xg. Let ¢ € (0, Tp)
be fixed. Consider a Lebesgue-null set +A. Our aim is to check that P(X; € A) =0.



1786 M. DEACONU, N. FOURNIER AND E. TANRE

First notice that

P(X, € A) = /OOIP(X, € A X0 = x) fo(x) dx
(5.1) O
=E( [ 1ax) foo d

where X* is a solution, on [0, Tp), of the following standard SDE (here X is
known, fixed and behaves as a parameter):

(5.2) X7 —x-l—/// s_ ()1 K(X;cjs_(a))}N(ds,da,dz).

Xs_ (@)

We will prove that for almost all w, the map x — X;(w) can be written as
X{(w) = x + ¢;,,(x), for some increasing function ¢, .. This will allow us to
conclude, thanks to Lemma A.2 of the Appendix, that for almost all w,

(5.3) /0 14X dx =0

so that

(5.4) | 140 oty dx =0
0

and hence, using (5.1) that P(X; € ) = 0, which is our aim.

It remains to check that for almost all o, X} (@) = x + ¢ ,(x), for some
increasing function ¢, ,. It of course, suffices to prove that, for all x > y,
XF— X >x—y.

Let thus x > y be fixed. Consider the following stopping time:

(5.5) t=inf{s € [0, Tp) | X < X'}

Then it is clear that for all # < 7, since K is nondecreasing,

/// X (a)]l[ M}N(ds da,dz)

- Xs_ (@)
(5.6)
/ / / (a)]l K(Xg_ i @ NWs,da,dz)
- Xs_ (@ ]
from which we deduce that forall s < 7,
(5.7 X;—X)>x—y.

It remains to prove that T = Tp. Let us assume that for some w, 7(w) < Ty. We
deduce from (5.7) that

(5.8) XX —X!_>x—y.
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Hence, still using the fact that K is nondecreasing, we obtain that, for some random
ar €[0,1], z; €[0, 00),

AXY = f(,_(a,)ﬂ{

. <K<X§,,f<z_<az>>}
rT= o . -

(59) B )N(r,(ar) y
= X‘[—(Olr)l]-{ <K(X¥—vxrf(04r))} = AXT
= ;(I—(O(r)
We deduce that

(5.10) X=X +AXI>x—y+ X, +AX)>x—y+X)

which contradicts the definition of . [

Thanks to the previous proposition, we are able to state the following
uniqueness result:

PROPOSITION 5.4. Let Qg satisfy fR+ x2Q0(dx) < co. Assume (Hg) and
consider the corresponding Ty. Assume also that K is nondecreasing and satisfies
the regularity condition: there exists a locally bounded function ¢ on [0, 00)? such
that for all x,x", y e Ry,

(5.11) 1K (x, ) — K&, 9 < e = x[20c, ) (A + 37).

Assume also that Qo admits a density fo(x) and set no(x) = fo(x)/x. Assume that
uniqueness of a weak solution to (SC) with initial condition ny and kernel K holds.
Then there exists a unique solution Q to (MP) with initial condition Qq. Thus
uniqueness in law holds for (SDE), that is, any solution (Xg, X, X, N) to (SDE)
with L(Xo) = Qo satisfies L(X) = Q.

Notice that (5.11) always holds when K (x, y) is of the forma + b(x +y) +cxy,
for some nonnegative constants a, b, c.

PROOF OF PROPOSITION 5.4. Let Q be a solution to (MP). Thanks to
Propositions 5.3 and 3.4, we know that for all ¢, Q;(dx) = f(¢, x) dx, for some
function f:[0, Tp) x R4+ — R. Hence, Proposition 2.3(ii) and Remark 2.6 show
that f(x, t) = xn(x, t), where n is the unique solution of (SC). Since Q¢ € #; and
fR+ x2Qo(dx) < oo, it is easily deduced that for all T < Tp,

o0
(5.12)  sup (x+ 22+, 0)dx = sup [1+E(X,) +E(X?)] < oo.
1€[0,77170 1€[0,T]

Uniqueness of {Q;}se[0,7,) is proved, but we need more: we want to prove
uniqueness of Q € JPIT([O, To), Hg,). As Q satisfies (MP) it also satisfies the
simple (because linear) martingale problem (MPS): for all ¢ € C g Ry,

t
(5.13) ¢<zt>—¢<zo>—/0fR(¢<zs+y>—¢<zs>)K<zs,y>n<y,s)dyds
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is a Q-martingale, Z standing for the canonical process of DT ([0, Ty), Ho,). We
will prove the uniqueness for (MPS). In this way, we will deduce that Q is entirely
determined, since any solution to (MP) satisfies also (MPS). This will conclude
the proof.

But uniqueness for (MPS) is equivalent to the uniqueness in law for the
following SDE:

t o0
(5.14) Y, =Xo+ / / / Yl<k (v, ,y)y/yypds,dy,dz),
o Jr, Jo

wu(ds,dy, dz) being a Poisson measure on [0, Tp) x Ry x [0, oo) with intensity
measure ds(yn(y,s)dy)dz. Strong uniqueness (which implies the uniqueness
in law) holds for this equation, thanks to standard arguments: local Lipschitz
continuity and at most linear growth. Indeed, for all u > 0, all T < Ty, we obtain,
using (Hg) and (5.12),

o0

sup / / Yliz<k@,y)/yydzyn(y,s)dy

se[0,T]/R+ JO

(5.15) <A(+u) sup | (y+y)n(y,s)dy
sel0,T] /Ry

= Ar(l+u),

the constant A7 depending only on 7. We also have, for all u, u” in [0, c0), all
T < Ty, by using (5.11) and (5.12), that

[e.e]
o /R /0 ’yﬂ{ZEK(”’y)/y}_yﬂ{zﬂ«u’,y)/y} dzyn(y,s)dy
+

s€[0,T]

< sup |K (u,y) — K@', y)lyn(y,s)dy
(5.16) s€[0,T] /R4

<@, u)u—u'| sup [ +yHn(y,s)dy
s€[0,T]/ R+
<Ar¢(u,u’)|u—u'|.

Using these properties, the strong uniqueness is easily checked for equation (5.14).
This implies the uniqueness for (MPS) and concludes the proof. [J

We finally deduce the following corollary from Aldous [1], Principle 1.

COROLLARY 5.5. Assume that Qo belongs to Py and that fR+ x2Qo(dx)
< 00. Assume also that K(x,y) < C(1 + x + y) for some positive constant C,
that K is nondecreasing and that the regularity condition (5.11) holds.

In addition, assume that Q¢ admits a density fo(x) and that fR+ %Qo(dx) < 0.

Then uniqueness in law holds for (SDE) and so does uniqueness for (MP).
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We conclude this section by stating a remark in the explicit situation of the
multiplicative kernel: we can get rid of the condition fR+ x2Q0(dx) < oo and
obtain uniqueness by ourselves.

REMARK 5.6. Assume that K(x, y) = xy. Let Qg belong to #; and Ty =
1/ fR+ txQo(dx). Then, one may copy the ideas of Desvillettes, Graham and
Me¢léard [5] and obtain directly from a specific Picard iteration the following
existence result: for any random variable X¢ of law Qg, any independent Poisson
measure N (dt,da,dz) with intensity measure dfda dz, there exists a solution
(X0, X, X, N) to (SDE) on [0, Tp).

Still following [5], one can prove by using directly probabilistic arguments the
following uniqueness result: the law £(X) = £, (X) is unique and depends only
on Qyp.

Hence, in this very particular case, probabilistic arguments allow to obtain
existence and uniqueness for (MP).

6. The nonlinear process as a limit of a Marcus-Lushnikov procedure.
The aim of this section is to construct a connection between the Marcus—Lushnikov
process [13], [14] and our nonlinear process. For the sake of simplicity, we treat
here only the discrete case, but what follows can be extended to the general case
without difficulty. The proof is done under the hypothesis (H;2) and a third order
moment for the initial condition. We do not know if the result remains valid under
(Hyp).

For an initial condition o = {no(k)}k>1, denote by |ug|l = > =1 no(k).
Assume as usual that "~ kno(k) = 1 and that 3"~ k*no(k) < co. Under these
assumptions uniqueness for (SD) and (MP) is known (see Corollary 5.2). We
denote by M (N*) the set of finite nonnegative measures on N*. We first of all
introduce an approximation of 1tq.

DEFINITION 6.1. For each n € N* we define a deterministic element of
M (N¥), of the form ug = mi” Y (Sx(i).n with m, = Y7, x;". Moreover we
require that 1 tends to 1o as n tends to infinity, in the sense that for every function
¢ :N* > R with at most linear growth, 1 (¢) tends to j1o(¢).

This has to be thought as a system of n particles labeled by their sizes xé’”
and m,, is the total mass of the system.

We now recall the construction of a Marcus—Lushnikov process associated with
this initial condition and with the coagulation kernel K :

Each pair of particles {x;, x;} coalesce at rate K(x;,x;)/m, to form a new
particle x; + x; and so on.

Denote, for each ¢ > 0, by n(¢) the (random) number of particles at time ¢,

and by X tl R X;’(t)’n the sizes of these particles. Then consider the Markov
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process ) = mL,, Zig 8 in, wWhich belongs a.s. to ([0, 00), M4 (N*)). This is
the Marcus—Lushnikov prcgcess, we refer to Norris [16] for further details.

Since by its definition, uy goes weakly to po, it is well known (see,
e.g., Norris [16]), that {u}};>0 goes weakly, in ([0, o0), M (N¥)), to the
(deterministic) solution {u;};>¢ of the Smoluchowski equation: more precisely
n(k,t) := u,({k}) satisfies (SD).

We consider now a more precise description of this Marcus—Lushnikov
procedure.

Each initial particle xé’" can be seen as a cluster composed of monomers /;.
The aim is to follow the evolution of a fixed monomer so we are led to order these
monomers in the following way:

xé’n={h1,...,}_l

xO‘
2n _ (1 >
XO = {hxé,n_'_l, ey hx(l),n_'_xg,n },
nn __ (1 -
X0 = {hm,,—x(’}’”ﬂv R hmn}-
Then, using a random permutation ¢ of {l,...,m,} we reordinate h; =
hoys -+ > hm, = hom,)- This step is purely technical and its only interest is to

symmetrize the initial system. Our aim is to prove that in a certain sense, the
stochastic process defined as the size of the cluster containing /#; [which clearly
belongs a.s. to DT ([0, 00), N*)], goes in law, as n tends to infinity, to our nonlinear
process X, solution to (SDE).

NOTATION 6.2.
1. Foralli e {1,...,m;},allt >0, we set
6.1) F'(ty={j e{l,...,my} | h; and hj are in the same cluster}.

Notice that for each i, F;'(-) is nondecreasing in an obvious sense, that if
Fl'(t) = F;’ (t), then F'(t +h) = F}’ (t + h) for all h > 0. Moreover, for each i,
J and for each t > 0, either F}'(z) = F]’.’ (t)or F'(r)N F}‘ (t) = @. Furthermore,
Vi>0,U; F'(t) ={1,...,m,}.

2. For F C N*, we denote by | F| the cardinal of F. For F and G subsets of N*,
we denote by F + G := F U G, which will allow some Poissonian notation.

3. We denote by e = (0, ..., 1,...,0) € R"", the 1 being at the kth place.

Then we may write the evolution of the vector (F{'(2), ..., F; (¢)) of subsets
of N* in terms of Poisson measures.
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PROPOSITION 6.3. One may find a Poisson measure N"(ds,di,dj,dz) on
[0, 00) x {1, ...,m,}* x [0, 00), with intensity (1/m,)ds D 0k(di) >, dr(dj)dz
such that

F{’(t) Ff’(O)

F (1) F1 (0)
@ ]

x ]l{ K(FL 6 OLIFTG)D ] N"(ds,di,dj,d2).

<t - J
S=TART GO 6o)|

(F'(s-) + F}’(S))ek}

keFi(s )+F"( -)

The only problem is to understand that the rate of coagulation of F}'(s) with
F(s) is K(F ()1, 1F} ()
j Il FP )]
sizes x;, x; is represented 2x;x; times from the {|F}'[}xe(1,... m,) point of view.

This is clear because each pair of “true” particles of

REMARK 6.4. We can reobtain the Marcus—Lushnikov process by writing
(6.3) — Z |Fn(t)| 81k o))
ni—1

Let us finally state the main result of this section.

THEOREM 6.5. Assume (Hy,) and that the initial condition Qo(dx) =
xuo(dx) has a moment of order 3. Denote by

L
(6:4) Q" =—> 8irr0
ni=1

which belongs a.s. to P (D7 ([0, 00), N*)). Then:

(1) Q" goes in law, in P (DT([0, 00), N*)), o the unique solution Q of (MP)
with initial condition Q.

(i1) Let (Xo, X, X, N) be a solution to (SDE) with initial distribution Qq. Then
|F'| goes in law, in D ([0, 00), N*), 10 X.

PROOF. First notice that thanks to the symmetry of the particle system, the
law £L(|F}"(.)]) does not depend on i € {1,...,m,}. We now break the proof in
several steps.

Step 1. First notice that Q( can be written as Qg = mL,, "l 0 "s i Hence it

is easily checked that Qf goes weakly to Qo, in the sense that for any bounded
function ¢ :N* = R, Q¢ (¢) tends to Qo ().
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Step 2. Using Proposition 6.3, it is easily checked that for any ¢ € C g R4),
(Q7.9)=(0Q0. ¢

)
1 st 00
L e
mp Jo Ji li Jo {F' (s)#F]} (s-)}

(6.5) X {(1F s+ F} )N (LF (s-)| + | F} (s-)])
—E )N (1F (s-)1) — [F} (s-) I (1F} (s-)1)}
X1 kqrpeoirieon, N"(ds, di,dj, dz).

= ARG ONFL G

Apply (6.5) with ¢(x) = x3. By using the nondecreasing property for ||,
hypothesis (H; ) and Definition 6.1, we obtain that for all 7', there exists C7 < 00
such that forany i € {1,...,m,},

A
66) E[ sup IF0F |=ElF@)F) =E[—Z |F;‘<T>|3} <cr.
te[0,T] My j=1

Step 3. We now want to prove that Q" is tight. It suffices to prove, thanks to the
symmetry of the particle system (see Méléard [15], Lemma 4.5), that L(|F}'(-)|)
is tight in D ([0, 0o0), N*). This is easily obtained by using the Aldous criterion
[see Theorem A.1 and (6.6)].

Step 4. Under the hypothesis of the theorem, we have uniqueness for (MP) (see
Corollary 5.2). In order to conclude the proof of (i), we have to show that the weak
limit point 0 of any converging subsequence { Q"*} satisfies a.s. (MP). To this aim,
we proceed as in the proof of Lemma 3.9. We have to prove that for any g1, ..., g
in Cp(Ry),any 0 <s; <---<s;<s<tandany ¢ € CL,(R}), (0® Q,F) =0
a.s., where the map F from D' ([0, o0), N*) x D ([0, 00), N*) into R is defined
by (3.28).

For symmetrical reasons, we have only to check that (0® 0, G)=0a.s., where

G(x,y)=g1(x(s1) - gi(x(sp)
x {as(xm) —p(x(s)

t
(6.7) _ / [(e(u) + y(@0)) (x () + y())

K (x(w),
W) — yp(y )] W) }

2x(u)y(u)
Although G is not really bounded nor continuous, one can prove, using the same
kind of arguments as in the proof of Lemma 3.9, that

(6.8) E[I(Q@Q,G)|]=lilgnE[l(Q”"®Q"",G)I]-
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Hence we just need to prove that, for U, = (Q" ® Q", G), E(|U,|) goes to 0. An
easy computation using (6.5) shows that

1 mp ) ) )
(69) Us=——3 gi(IF 0+ gi(F 60 )[M]"* 1) = M (5) + P/*5.1)]
ni=1
with
M (1)
:/0 /J/O L(F )£ F) ()
(6.10) ) {(IF )1+ 1PN @ (1 F (s-)] + [F7(s-)1)

— [F'(s-)I@(IF (s-)1) — |F} (s-) I (IF} (s-)1)}

<t - J
= TRARTGOIFT 6o

x 1{ K(F s OLIF ) ] N"(ds, {i}, dj, dz)

where N"(ds, {i}, dj,dz)=N"(ds,{i},dj,dz) — m% ds ZZ’;I 0r(dj) dz and where

P (s, 1)
1 t Mn
=— [ 3 dmpa=rran (F @1+ 1F} @D @] + 1} o))
nvJvs J:1
(6.11)

— [Flp(|1F'l) — [F}wle(1F} )}

K(F @), |F} ]
2IF W F} ()]

Since for i #i’, the Poisson measures N"(ds, {i}, dj, dz) and N"(ds, {i'},dj, dz)
are independent, the martingales M l”  are orthogonal so that

(6.12) vizi, (MM M%) =o0.

One easily checks, using (Hj/2), that for any i and any 7',

t Mn

n A n n n n
6.13) (M%), < m—/o Y UF @) PIF} @) + | F @) F ) *]du

the constant A depending only on the coagulation kernel K and on the test
function ¢. Similarly, an easy computation using (Hj,2) shows that for some
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constant A,

A gt
1P (s, 1)| < m_/o > ]l{Fi”(u):F}’(u)}[lFin(u)l +1F} )] du
(6.14) =l

2A !
< —/ E )2 du.
my Jo

Indeed, the number of j’s such that F/"(u) = F ]” (u) is exactly equal to | F}" (u)|.
Using (6.12), (6.13), (6.14) and then (6.6), we obtain the existence of some
constant A;, depending only on g;, ¢, K and on the (fixed) instant ¢, such that

E[|Uy I]

§2E|P"¢@ 1]

"l 1
2, 41/2

1 mp " "
6.15) + {E<{m_281(|Fin(S1)|)---gl(lFi"(Sl)I)[Mi (1) — M, %)]} )}
ni=1

1/2
A o /
= —

Sarnien 50

ni=1
Ar/N/my,

which goes to 0 as n tends to infinity. This concludes the proof of (i).

Step 5. We finally deduce (ii). We just have to prove that, for Q a solution
to (MP) [which is the law of X, for (Xo, X, X, N) a solution to (SDE)], for all ¢
continuous and bounded from D ([0, 00), N*) into R,

(6.16) limE[¢ (| F' ()] =(Q. ).

IA

This is obvious from (i), since for symmetrical reasons,

(6.17) E[¢(IFI'()D] =E[Q", #)]1,
and since the map v — (v, ¢) is continuous and bounded from P (D71([0, 00), N*))
into R. The proof of the theorem is now complete. [

APPENDIX

First, we recall the Aldous criterion for tightness (see Jacod and Shiryaev [11],
page 320).

THEOREM A.1. Let {X[}:ic[0,1y) be a family of cadlag adapted processes
on [0, Ty), for some Ty < co. Denote by Q" € & (D([0, Tp), R)) the law of X".
Assume that:
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(i) forall T < Ty, sup, E[sup,e[O’T] |X7] < oo
(i) forall T < Ty, alln >0,

(A.]) sup  sup  P[|X§ — X§|=n]—0,
n(S,8YeUr(8) §—0

where Ut (8) denotes the set of couples (S, S") of stopping times satisfying a.s.
0<S<S<(S+8AT.

Then the family {Q"} is tight. Furthermore, any limiting point Q of this family
is the law of a quasi-left continuous process, that is, for all t € [0, Ty) fixed,

(A.2) Tiaxn20;Q(dx) =0.

A;)([O,TO),R)

We now state an easy absolute continuity result.

LEMMA A.2. Let ¢ be an increasing map from R into itself. Let A be
a Lebesgue-null subset of R.. Then

(A.3) /0 Ta(x 4+ @(x))dx =0.

We carry on with a generalized Gronwall lemma (see Beesack [3], page 6).

LEMMA A.3. Let a,b > 0. Consider a continuous function g on [0, T],
satisfying for all t € [0, T],

t
(A.4) g(z)5a+b/ g% (s)ds.
0
Then, for allt < To =1/ab,
a
A5 H<——.
(A.5) 8 =y
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