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POISSON APPROXIMATION FOR EXPECTATIONS
OF UNBOUNDED FUNCTIONS OF INDEPENDENT

RANDOM VARIABLES1

BY I. S. BORISOV AND P. S. RUZANKIN

Sobolev Institute of Mathematics of the Russian Academy of Sciences

Under minimal moment conditions complete asymptotic expansions
are obtained for expectations of unbounded functions of a finite family of
independent random variables in the Poissonian setting when the distributions
of the random variables have large atoms at zero.

1. Introduction and the main results. Accuracy of Poisson approximation
for sums of independent random variables (r.v.s) has already been investigated for
about half a century. One of the first results was obtained by Prohorov (1953),
who estimated the total variation distance between a binomial distribution and
the corresponding Poisson law. His upper bound is close to being unimprovable.
Le Cam (1960) considerably generalized and strengthened the Prohorov estimate.
He used the so-called operator technique to extend the estimate to the case of
approximating distributions of sums of independent arbitrarily distributed r.v.s by
corresponding generalized (accompanying) Poisson laws. Take note also of the
remarkable result due to Barbour and Hall (1984) which, in particular, proved
unimprovability of the Prohorov–Le Cam estimate for the total variation distance
between a binomial distribution and the corresponding Poisson law.

Approximation of the next orders in the Poisson limit theorem, called an
asymptotic expansion, originates from Chen (1975). Note also the paper by
Deheuvels and Pfeifer (1986), where the first term of the expansion was explicitly
written out. Kruopis (1986a, b) simultaneously obtained a similar result. However,
he represented the first term of the expansion implicitly as the Fourier transform
of some signed measure. Borovkov (1988) proposed a new approach to derive
terms of the expansion in a form similar to that of Kruopis (1986a, b). He
used a combination of the operator technique and a coupling to derive complete
asymptotic expansion in the Poisson theorem. As in Kruopis (1986a, b) the
expansion was presented via the Fourier transforms and, moreover, a scheme to
invert the transforms was discussed. However, in our opinion, the resulting explicit
representation of the terms of the asymptotic expansion is resistant to analysis [in
contrast, say, to Deheuvels and Pfeifer (1986)].
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It is worth noting that in all of the above-mentioned papers remainders of the
expansions are estimated in terms of the total variation distance. Thus, it is clear
that these results can be reformulated in terms of moments of bounded functions
with the corresponding upper bounds of remainders taken uniformly over all
bounded (say, by 1) functions. There are also more publications where Poisson
approximation of the moments is considered uniformly over special subclasses of
bounded functions [e.g., see Roos (1995, 1998)].

However, the total variation distance, the point metric and some related dis-
tances become unsuitable for approximation of moments of unbounded functions
of a binomial r.v. In this connection, investigations of the Poisson approximation
for expectations of unbounded functions of sums of r.v.s are to be distinguished.
The papers which are to be particularly noted are those by Barbour (1987) and
Barbour, Chen and Choi (1995). Barbour (1987) used the so-called Stein–Chen
method to obtain complete asymptotic expansions in the Poisson approximation
of at most polynomially growing functions of sums of independent arbitrarily dis-
tributed integer nonnegative r.v.s. In the latter paper, a similar approach is used to
obtain the first term of the expansion for expectation of some functions of a bino-
mial r.v. under minimal moment restrictions on the functions under consideration.
In particular, these restrictions allow the functions growing faster than exponen-
tial. The bounds on the remainders of the expansions in these two papers are not
far from optimal.

The main goal of the present paper is to obtain complete asymptotic expansions
of moments of unbounded functions of n independent r.v.s in the case when each
of these r.v.s is equal to zero with high probability. The probabilities for these r.v.s
to be unequal to zero are considered as natural small parameters, sums of which
powers are used to represent the asymptotic expansions. In the case of asymptotic
expansions for bounded functions a similar formulation of the problem was given
by Borovkov (1988). The particular case, wherein the functions depend only on
the sum of the r.v.s, is separately studied. In this case the estimate of the remainder
of the expansion is unimprovable in some sense and improves the corresponding
results of Barbour (1987) and Barbour, Chen and Choi (1995) in a broad range of
change of the expansion parameters.

The approach used to derive the main results is based on the so-called Lindeberg
method. This method was successfully employed in a great number of papers to
study rates of convergence in the central limit theorem (the Gaussian case) under
various settings including studying remainders in different asymptotic expansions.
However, the method was rarely used in the Poisson approximation. One can
find certain versions of the Lindeberg method in the Poisson approximation, for
example, in the papers by Le Cam (1960), Deheuvels, Karr, Pfeifer and Serfling
(1988) and Novak (1998).

In Section 5 it is shown that the problem of the Poisson approximation for
expectation of a function of independent arbitrarily distributed r.v.s can be reduced
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to the case of independent Bernoulli r.v.s. Thus, in the present paper, this case is
particularly studied.

Let ζ1, . . . , ζn be independent Bernoulli r.v.s with the success probabilities
pj = P(ζj = 1), j = 1, . . . , n. Let η1, . . . , ηn be independent Poisson r.v.s with
parameters p1, . . . , pn, respectively. Denote λk = p1 + · · · + pk , λ = λn, and
ζ̄ = (ζ1, . . . , ζn), η̄ = (η1, . . . , ηn). Finally, let F be an arbitrary real function of
n nonnegative integer variables.

Denote by ēk the n-dimensional vector which has the kth coordinate 1 and all
the other coordinates 0. For any function G of n arguments, define the difference
operator �k :

�kG(ā) = G(ā + ēk)−G(ā).

In the sequel we denote by �r
k the corresponding operator power. In the one-

dimensional case the subscript will be omitted.
The following theorem is the key result for deriving most of the subsequent

statements.

THEOREM 1. Suppose E|F(η̄)| < ∞. Then

EF(η̄)− EF(ζ̄ ) =
n∑

k=1

∞∑
r=2

pr
k

r! E�r
kF (φ̄k),(1)

where φ̄k = (ζ1, . . . , ζk−1,0, ηk+1, . . . , ηn), and, for each k, the corresponding
series in (1) absolutely converges.

Moreover, if Eηk
s+1|F(η̄)| < ∞ for all k and some s ≥ 1, then, first, the

remainder of series in (1) can be estimated as follows:∣∣∣∣∣
∞∑

r=s+1

pr
k

r! E�rF (φ̄k)

∣∣∣∣∣≤ epk
ps+1
k

(s + 1)!E|�s+1
k F (ψ̄k)|,(2)

where ψ̄k = φ̄k + ηkēk = (ζ1, . . . , ζk−1, ηk, . . . , ηn) and, second, another expan-
sion of the difference EF(η̄)− EF(ζ̄ ) holds:∣∣∣∣∣EF(η̄)− EF(ζ̄ )−

s∑
r=2

(−1)r (r − 1)
n∑

k=1

pr
k

r! E�r
kF (ψ̄k)

∣∣∣∣∣
(3)

≤ s

(s + 1)!
n∑

k=1

epkps+1
k E|�s+1

k F (ψ̄k)|.

REMARK 1. Under the moment restrictions considered above expansion (3)
cannot be represented as a converging series with an upper bound for its remainder
like in (1) and (2), because this representation would require considerably stronger
moment restrictions.
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REMARK 2. The right-hand sides of the inequalities (2) and (3) can be
bounded through expectations of functions of η̄ using the obvious unimprovable
upper bound for the Radon–Nikodym derivative of the distribution of ψ̄ with
respect to the distribution of η̄:

E|�s+1
k F (ψ̄k)| ≤ eλkE|�s+1

k F (η̄)|.
The right-hand side of the inequality is finite if Eηs+1

k |F(η̄)| < ∞ for all k, since
the following proposition is true:

PROPOSITION 1. Let τ be an arbitrary Poisson r.v. and g be an arbitrary
real function. Then, for each l = 1,2, . . . , the following three conditions are
equivalent:

(a) Eτ l|g(τ )| < ∞.
(b) E|g(τ + l)| < ∞.
(c) E|�lg(τ )| < ∞.

COROLLARY 1. If, for all k, Eηk
2|F(η̄)| < ∞, then

|EF(ζ̄ )− EF(η̄)| ≤ 1
2

n∑
k=1

epkp2
kE|�2

kF (ψ̄k)|

≤ 1
2

n∑
k=1

eλkp2
kE|�2

kF (η̄)|.

COROLLARY 2. If Eηk
3|F(η̄)| < ∞, Eηj

2ηk
2|F(η̄)| < ∞ for all j , k : j �= k,

then ∣∣∣∣∣EF(ζ̄ )− EF(η̄)+ 1
2

n∑
j=1

p2
jE�2

jF (η̄)

∣∣∣∣∣
≤ 1

4

n∑
k=1

p2
k

k−1∑
j=1

epj p2
jE|�2

j�
2
kF (ψ̄j )| + 1

3

n∑
j=1

epj p3
jE|�3

jF (ψ̄j )|.

Theorem 1 also allows us to obtain complete asymptotic expansions of
EF(ζ̄ )− EF(η̄), since the expectations E�r

kF (ψ̄k) in (3) can be subsequently
approximated with expectations E�r

kF (η̄k) using (3).

COROLLARY 3. Let l ≥ 1. Suppose

Eη
r1
k1

· · ·ηrs−1
ks−1

η
l+s−r1−···−rs−1
ks

|F(η̄)| < ∞
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for all 1 ≤ s ≤ l, n ≥ k1 > k2 > · · · > ks ≥ 1, 2 ≤ r1 ≤ l, 2 ≤ r2 ≤ l + 1 −
r1, . . . ,2 ≤ rs−1 ≤ l + s − 2 − r1 − · · · − rs−2. Then∣∣∣∣EF(ζ̄ )− EF(η̄)

−∑′
(−1)s+r1+···+rs (r1 − 1) · · · (rs − 1)

p
r1
k1

· · ·prs
ks

r1! · · · rs ! E�
r1
k1

· · ·�rs
ks
F (η̄)

∣∣∣∣
≤∑′′ epks

(1 − p̃ks )
2 (r1 − 1) · · · (rs−1 − 1)(l + s − r1 − · · · − rs−1 − 1)

× p
r1
k1

· · ·prs−1
ks−1

p
l+s−r1−···−rs−1
ks

r1! · · · rs−1!(l + s − r1 − · · · − rs−1)!
× E

∣∣�r1
k1

· · ·�rs−1
ks−1

�
l+s−r1−···−rs−1
ks

F (ψ̄ks )
∣∣,

where
∑′ and

∑′′ denote the following sums:
∑′ =

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′ =
l∑

s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we assume k0 = n+ 1 if s = 1.

Now we consider the Poisson approximation for moments of functions of sums
of independent Bernoulli r.v.s. Put S = ζ1 + · · · + ζn, Z = η1 + · · · + ηn and let h
be an arbitrary function of nonnegative integer. Introduce the following notation:
λ = p1 + · · · + pn, p̃k = max{p1, . . . , pk}, p̃0 = 0, p̃ = p̃n.

THEOREM 2. Let E|h(Z)| < ∞. Then

Eh(Z)− Eh(S) =
n∑

k=1

∞∑
r=2

pr
k

r! E�rh(Tk),(4)

where Tk = ζ1 + · · · + ζk−1 + ηk+1 + · · · + ηn, and, for each k, corresponding
series in (4) absolutely converges.

Moreover, if EZs+1|h(Z)| < ∞ then, first,∣∣∣∣∣
∞∑

r=s+1

pr
k

r! E�rh(Tk)

∣∣∣∣∣≤ epk

(1 − p̃k−1)
2

ps+1
k

(s + 1)!E|�s+1h(Z)|, s ≥ 1(5)
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and, second, another expansion of the difference Eh(Z)− Eh(S) holds:∣∣∣∣∣Eh(Z)− Eh(S)−
s∑

r=2

(−1)r(r − 1)
n∑

k=1

pr
k

r! E�rh(Yk)

∣∣∣∣∣
(6)

≤ s

(s + 1)!
n∑

k=1

epk

(1 − p̃k−1)
2p

s+1
k E|�s+1h(Z)|,

where Yk = ζ1 + · · · + ζk−1 + ηk + · · · + ηn.

REMARK 3. The principal distinction between Theorem 1 and Theorem 2 is
the appreciably sharper upper bound for the remainder in Theorem 2 which is
obtained by the corresponding upper bound for the Radon–Nikodym derivative in
Lemma 2 (see Section 2). Formal application of Theorem 1 to functions of sums
of the arguments yields an upper bound for the remainder which is substantially
rougher than that in Theorem 2 as λ → ∞.

REMARK 4. As noted in Proposition 1, the finiteness of E|�s+1h(Z)| is
equivalent to finiteness of E|Zs+1h(Z)|. Nevertheless, the series (4) absolutely
converges under weaker (s = −1) moment restrictions.

COROLLARY 4. If EZ2|h(Z)| < ∞, then

|Eh(S)− Eh(Z)| ≤ 1

2

ep̃

(1 − p̃)2

n∑
j=1

p2
jE|�2h(Z)|.

COROLLARY 5. If EZ4|h(Z)| < ∞, then∣∣∣∣∣Eh(S)− Eh(Z)+ 1

2

n∑
j=1

p2
jE�2h(Z)

∣∣∣∣∣

≤ ep̃

(1 − p̃)2

{
1

3

n∑
j=1

p3
jE|�3h(Z)| + 1

8

(
n∑

j=1

p2
j

)2

E|�4h(Z)|
}
.

COROLLARY 6. If EZ6|h(Z)| < ∞, then∣∣∣∣∣Eh(S)− Eh(Z)+ 1

2

n∑
j=1

p2
jE�2h(Z)

− 1

3

n∑
j=1

p3
jE�3h(Z)− 1

8

(
n∑

j=1

p2
j

)2

E�4h(Z)

∣∣∣∣∣
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≤ ep̃

(1 − p̃)2

{
1

4

n∑
j=1

p4
jE|�4h(Z)| + 1

6

n∑
j=1

p2
j

n∑
k=1

p3
kE|�5h(Z)|

+ 1

48

(
n∑

j=1

p2
j

)3

E|�6h(Z)|
}
.

The complete asymptotic expansion for the sums can be written as follows:

COROLLARY 7. If E|�2lh(Z)| < ∞, then∣∣∣∣Eh(S) − Eh(Z)

−∑′
(−1)s+r1+···+rs (r1 − 1) · · · (rs − 1)

p
r1
k1

· · ·prs
ks

r1! · · · rs ! E�r1+···+rs h(Z)

∣∣∣∣
≤∑′′ epks

(1 − p̃ks )
2 (r1 − 1) · · · (rs−1 − 1)(l + s − r1 − · · · − rs−1 − 1)

× p
r1
k1

· · ·prs−1
ks−1

p
l+s−r1−···−rs−1
ks

r1! · · · rs−1!(l + s − r1 − · · · − rs−1)!E|�l+sh(Z)|,

where
∑′ and

∑′′ denote the following sums:
∑′ =

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′ =
l∑

s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we suppose k0 = n+ 1 if s = 1.

2. Preliminary results. In this section we prove the following three lemmas,
which are also of independent interest.

LEMMA 1. Let p1 = · · · = pn = p. Then

sup
j

P(S = j)

P(Z = j)
≤ 1

1 − p
(7)

and, moreover,

P(S = j)

P(Z = j)
≤ 1

if j ≤ max{0, λ− √
2n(− log(1 − p))+ 1} or j ≥ λ+ min{λ,√2λ} + 1.



1664 I. S. BORISOV AND P. S. RUZANKIN

PROOF. For j ≤ n,
P(S = j)

P(Z = j)
= n(n− 1) · · · (n− j + 1)

nj (1 − p)j
(1 − p)nenp

= exp

{
n
(
p + log(1 − p)

)− j log(1 − p)+
j−1∑
i=0

log
(

1 − i

n

)}

≤ exp
{
− log(1 − p)+ n

(
p + log(1 − p)

)− (j − 1) log(1 − p)

+ n

∫ (j−1)/n

0
log(1 − x)dx

}

≤ exp
{
− log(1 − p)− nHp

(
j − 1

n

)}

where Hp(x) = −p+x+(1−x) log((1−x)/(1−p)). The following properties of
Hp are obvious: Hp(x) ≥ 0 if x ≤ 1 [hence (7) is true], Hp(1) = 1−p, Hp(p) = 0,
d
dx

Hp(p) = 0, d2

dx2Hp(x) = 1/(1 − x), that implies

Hp(x) ≥ (x − p)2

2(1 − p)
if p ≤ x ≤ 1.

Hence, for j ≥ λ+ 1,

P(S = j)

P(Z = j)
≤ exp

{
− log(1 − p)− (j − 1 − np)2

2n(1 − p)

}
≤ 1 if j ≥ λ+ √

2λ+ 1.

Analogously,

Hp(x) ≥ (x − p)2

2
if x ≤ p.

And hence, for j ≤ λ+ 1,

P(S = j)

P(Z = j)
≤ exp

{
− log(1 − p)− (j − 1 − np)2

2n

}
≤ 1

if j ≤ λ−
√

2n
(− log(1 − p)

)+ 1.

We also have
P(S = j)

P(Z = j)

= exp

{
n
(
p + log(1 − p)

)− j log(1 − p)+
j−1∑
i=0

log
(

1 − i

n

)}

≤ exp
{
n
(
p + log(1 − p)

)− j log(1 − p)− 1/n− 2/n− · · · − (j − 1)/n
}

≤ exp
{
jn−1(np − (j − 1)/2

)}≤ 1 if j ≥ 2λ+ 1.

The lemma is proved. �
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LEMMA 2. In the case of arbitrary pj , the following inequality holds:

sup
j

P(S = j)

P(Z = j)
≤ 1

(1 − p̃)2
.

PROOF. Denote by S(a1, . . . , am) the sum of m independent Bernoulli r.v.s the
j th of which is equal to 1 with probability aj . Denote also by Z(b) a Poisson r.v.
with parameter b. Let g be an arbitrary real function. The proof of Corollary 2.1
in Hoeffding (1956) does not have to be changed when it is applied to the similar
statement concerning

sup
{
Eg
(
S(a1, . . . , an)

)
: 0 ≤ a1 ≤ p̃, . . . ,0 ≤ an ≤ p̃, a1 + · · · + an = λ

}
.

This sumpremum is attained with such a1, . . . , an that a1 = a2 = · · · = am = a,
am+1 = · · · = ak = p̃, ak+1 = · · · = an = 0 for some a,m, k, 0 < a ≤ p̃, 1 ≤ m ≤
k ≤ n.

Now, for each j = 0,1, . . . , n, we set g(y) = I (y = j) and find the correspond-
ing values a = a(j), m = m(j), k = k(j). Let a1(j) = · · · = am(j)(j) = a(j),
am(j)+1(j) = · · · = ak(j)(j) = p̃, ak(j)+1(j) = · · · = an(j) = 0.

In the case m(j) < k(j) we have

P(S = j)

P(Z = j)
≤ P(S(a1(j), . . . , an(j)) = j)

P(Z = j)

= P(S1(a1(j), . . . , am(j)(j))+ S2(am(j)+1(j), . . . , ak(j)(j)) = j)

P(Z1(m(j)a(j)) +Z2((k(j)−m(j))p̃) = j)

≤ sup
i≥0

P(S(a1(j), . . . , am(j)(j)) = i)

P(Z(m(j)a(j)) = i)

× sup
i≥0

P(S(am(j)+1(j), . . . , ak(j)(j)) = i)

P(Z((k(j) −m(j))p̃) = i)

≤ 1

(1 − p̃)2 ,

where S1(·), S2(·) and Z1(·), Z2(·) denote pairs of independent r.v.s with the
corresponding distributions; the last inequality follows from Lemma 1.

In the case k(j) = m(j) the inequality

P(S = j)

P(Z = j)
≤ 1

(1 − p̃)2

is also true. The lemma is proved. �
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LEMMA 3. Let Z′ be a Poisson r.v. with parameter λ − δ, where 0 < δ < λ.

Then ∣∣∣∣∣Eg(Z′)− eδ
m∑

j=0

(−δ)j

j ! Eg(Z + j)

∣∣∣∣∣≤ eδδm+1

(m+ 1)!E|g(Z +m+ 1)|,

if E|g(Z +m + 1)|< ∞.

PROOF. We have

Eg(Z′) = eδEg(Z)(1 − δ/λ)Z

= eδEg(Z)(1 − δ/λ)ZI (Z ≤ m)+ eδEg(Z)(1 − δ/λ)ZI (Z >m).

We assume binomial coefficient Cj
l to be zero if j > l. Consider the first term on

the right-hand side of the last relation. We have

Eg(Z)(1 − δ/λ)ZI (Z ≤ m) = Eg(Z)

m∑
j=0

C
j
Z(−δ/λ)j I (Z ≤ m)

=
m∑

j=0

(−δ/λ)jEC
j
Zg(Z)I (Z ≤ m)(8)

=
m∑

j=0

(−δ)j

j ! Eg(Z + j)I (Z ≤ m),

where the last equality is true because of the identity

EZ(Z − 1) · · · (Z − j)g(Z) = λjEg(Z + j).

On the subset of elementary events {Z >m}, using Taylor’s formula we have

(1 − δ/λ)Z =
m∑

j=0

C
j
Z(−δ/λ)j +Cm+1

Z (δ/λ)m+1θm+1,

where θ is a function of δ, λ, Z and m, such that |θ | ≤ 1. Hence

Eg(Z)(1 − δ/λ)ZI (Z >m) =
m∑

j=0

(−δ)j

j ! Eg(Z + j)I (Z > m)

+ ECm+1
Z (δ/λ)m+1θm+1g(Z)I (Z >m),

(9)

where the last summand can be easily estimated:

|ECm+1
Z (δ/λ)m+1θm+1g(Z)I (Z >m)|
≤ ECm+1

Z (δ/λ)m+1|g(Z)I (Z >m)|r

= δm+1

(m+ 1)!E|g(Z +m + 1)|.
(10)

Combining relations (8)–(10) we complete the proof. �
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3. Proofs of the main results.

PROOF OF PROPOSITION 1. First show that (a) implies (b):

E|g(τ + l)| =
∞∑
j=l

e−µ µk−l

(k − l)! |g(k)|

≤ µ−le−µ
∞∑
k=l

µkkl

k! |g(k)| ≤µ−le−µEτ l|g(τ )|.

Analogously, (b) implies (a). It is also clear that (b) implies (c), since E|g(τ + l)|
< ∞ implies E|g(τ + k)| < ∞ for all k ≤ l, and hence

E|�lg(τ )| = E

∣∣∣∣∣
l∑

k=0

(−1)l−kCk
l g(τ + k)

∣∣∣∣∣≤ E
l∑

k=0

Ck
l |g(τ + k)| < ∞.

Now we show that (c) implies (b) if l = 1. We have

E|g(τ + 1)| = E

∣∣∣∣∣g(0)+
τ∑

j=0

�g(j)

∣∣∣∣∣≤ |g(0)| + E
τ∑

j=0

|�g(j)|

= |g(0)| +
∞∑
k=0

e−µµ
k

k!
k∑

j=0

|�g(j)| = |g(0)| + e−µ
∞∑
j=0

∞∑
k=j

µk

k! |�g(j)|

≤ |g(0)| + eµE|�g(τ)|.
Finally, it is easy to prove equivalence of (b) and (c) using induction on l. �

PROOF OF THEOREM 1. The proof is substantially based on the Lindeberg
method which is contained in the following identity:

EF(η̄)− EF(ζ̄ ) =
n∑

k=1

(
EF(φ̄k + ηkēk)− EF(φ̄k + ζkēk)

)
.(11)

We have

EF(φ̄k + ζkēk) = EF(φ̄k)+ pkE�kF(φ̄k).

For any function g, the following equality is well known:

�rg(y) =
r∑

j=0

(−1)r−j r!
(r − j)!j !g(y + j).
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Thus

EF(φ̄k + ηkēk) =
∞∑
j=0

e−pk
p
j
k

j ! EF(φ̄k + j ēk)

=
∞∑
j=0

∞∑
t=0

(−1)tpj+t
k

t !j ! EF(φ̄k + j ēk)

(12)

=
∞∑
r=0

r∑
j=0

pr
k

(−1)r−j

j !(r − j)!EF(φ̄k + j ēk)

=
∞∑
r=0

pr
k

r! E�r
kF (φ̄k),

where the order of summing was changed by Fubini’s theorem.
Therefore,

EF(φ̄k + ηkēk)− EF(φ̄k + ζkēk) =
∞∑
r=2

pr
k

r! E�r
kF (φ̄k).(13)

The last equality together with (11) proves relation (1).
Now we prove (2). Let E|�s+1

k F (η̄)| < ∞ and hence E|�s+1
k F (φ̄k)| < ∞.

Thus we have∣∣∣∣∣
∞∑

r=s+1

pr
k

r! E�r
kF (φ̄k + j ēk)

∣∣∣∣∣
=
∣∣∣∣∣ps+1

k

∞∑
r=0

r∑
j=0

pr
k

(r + s + 1)!
(−1)r−j r!
j !(r − j)! E�s+1

k F (φ̄k + j ēk)

∣∣∣∣∣
=
∣∣∣∣∣ps+1

k

∞∑
j=0

∞∑
t=0

p
j+t
k

(−1)t (j + t)!
(j + t + s + 1)!j !t !E�s+1

k F (φ̄k + j ēk)

∣∣∣∣∣
≤ ps+1

k

(s + 1)!
∞∑
j=0

p
j
k

j !
∣∣∣∣∣

∞∑
t=0

(s + 1)!(j + t)!
(j + t + s + 1)!

(−pk)
t

t !
∣∣∣∣∣
∣∣E�s+1

k F (φ̄k + j ēk)
∣∣

≤ ps+1
k

(s + 1)!
∞∑
j=0

p
j
k

j ! E|�s+1
k F (φ̄k + j ēk)|

= epk
ps+1
k

(s + 1)!E|�s+1
k F (φ̄k + ηkēk)|.

So, (2) is true.



POISSON APPROXIMATION 1669

Now we proceed to the proof of (3). If s = 1 then, by (1) and (2), the relation is
true. Consider the case s ≥ 2. Set

f (j) = fk(j) = EF(φ̄k + j ēk).

To prove (3) it suffices to show that, for each k,∣∣∣∣∣Ef (ηk)− Ef (ζk)−
s∑

r=2

(−1)r (r − 1)
pr
k

r! E�rf (ηk)

∣∣∣∣∣
(14)

≤ s

(s + 1)!e
pkps+1

k E|�s+1f (ηk)|.
In order to prove the last relation we need the expression

1 −
m∑

j=2

(−1)j (j − 1)Cj
r , m ≥ 2,

to be calculated. In order to do it we use the identity
t∑

j=0

(−1)jCj
i = (−1)tCt

i−1

and derive that
m∑

j=2

(−1)jCj
r = (−1)mCm

r−1 − 1 + r,

−
m∑

j=2

(−1)j jCj
r = r

m−1∑
j=1

(−1)jCj
r−1 = −(−1)mmCm−1

r−2 − r.

Thus, for m ≥ 2,

1 −
m∑

j=2

(−1)j (j − 1)Cj
r

= (−1)m
(
Cm
r−1 −mCm−1

r−2

)
= −(−1)m

(
(m− 1)(r − 1)!
m!(r − 1 −m)! + (r − 2)!

(m− 1)!(r − 1 −m)!
)
.

(15)

To prove (14) we show by induction on m that, for all m = 2,3, . . . , s, the
following relation holds:

Ef (ηk)− Ef (ζk)−
m∑

r=2

(−1)r (r − 1)
pr
k

r! E�rf (ηk)

(16)

=
∞∑

r=m+1

(
1 −

m∑
j=2

(−1)j (j − 1)Cj
r

)
pr
k

r! �
rf (0).
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For m = 2, by (12) and (13), the equality is true. Now suppose that (16) is valid
for some m ≥ 2. Then, by (12) and (15),

∞∑
r=m+1

(
1 −

m∑
j=2

(−1)j (j − 1)Cj
r

)
pr
k

r! �
rf (0)

= (−1)mm
pm+1
k

(m + 1)!�
m+1f (0)

+
∞∑

r=m+2

(
1 −

m∑
j=2

(−1)j (j − 1)Cj
r

)
pr
k

r! �
rf (0)

= (−1)mm
pm+1
k

(m + 1)!E�m+1f (ηk)

+
∞∑

r=m+2

(
1 −

m+1∑
j=2

(−1)j (j − 1)Cj
r

)
pr
k

r! �
rf (0),

and hence (16) is true for m+ 1. Thus (16) is valid for m = s.
Finally, for (14) to be proved, it remains only to estimate the right-hand side of

the equality (16) for m = s. Because of (15) we have∣∣∣∣∣
∞∑

r=s+1

(
1 −

s∑
j=2

(−1)j (j − 1)Cj
r

)
pr
k

r! �
rf (0)

∣∣∣∣∣
=
∣∣∣∣∣

∞∑
r=s+1

(
(s − 1)(r − 1)!
s!(r − 1 − s)! + (r − 2)!

(s − 1)!(r − 1 − s)!
)
pr
k

r! �
rf (0)

∣∣∣∣∣
=
∣∣∣∣∣ps+1

k

∞∑
r=0

pr
k

(r + s + 1)!
(
(s − 1)(r + s)!

s!r! + (r + s − 1)!
(s − 1)!r!

)
(17)

×
r∑

j=0

(−1)r−j r!
j !(r − j)!�

s+1f (j)

∣∣∣∣∣
=
∣∣∣∣∣ps+1

k

∞∑
j=0

∞∑
t=0

p
j
k

j ! (−1)tpt
k

(
(s − 1)(t + j + s)!
s!(t + j + s + 1)!t !

+ (t + j + s − 1)!
(s − 1)!(t + j + s + 1)!t !

)
�s+1f (j)

∣∣∣∣∣,
where the last expression was derived by changing the order of summing and
substituting the variable t = r − j . To estimate the expression (17) it suffices to
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note that∣∣∣∣∣
∞∑
t=0

(−1)tpt
k

(
(s − 1)(t + j + s)!
s!(t + j + s + 1)!t ! + (t + j + s − 1)!

(s − 1)!(t + j + s + 1)!t !
)∣∣∣∣∣≤ s

(s + 1)! ,

and hence the expression (17) is not greater than

s

(s + 1)!p
s+1
k

∞∑
j=0

p
j
k

j ! |�s+1f (j)| = s

(s + 1)!e
pkps+1

k E|�s+1f (ηk)|.

Therefore, (14) is true and hence (3) holds for s ≥ 2. The theorem is
proved. �

PROOF OF COROLLARY 2. The assertion follows from the two inequalities
below which are easy consequences of Theorem 1:∣∣∣∣∣EF(ζ̄ )− EF(η̄)+ 1

2

n∑
j=1

p2
jE�2

jF (ψ̄j )

∣∣∣∣∣≤
n∑

j=1

epj
p3
j

3
E|�3

jF (ψ̄j )|,
∣∣∣∣∣

n∑
k=1

p2
kE�2

kF (ψ̄k)−
n∑

k=1

p2
kE�2

kF (η̄)

∣∣∣∣∣≤
n∑

k=1

p2
k

1

2

k−1∑
j=1

p2
jE|�2

j�
2
kF (ψ̄j )|.

Corollary 3 is proven by repeated application of relation (3). Theorem 2 is the
immediate consequence of Theorem 1 and Lemma 2. The proof of Corollary 5 is
analogous to that of Corollary 2. Corollary 7 is proven by repeated application of
relation (6). Corollary 6 follows from Corollary 7 for l = 3. �

4. Comparison with predecessors’s results. We compare the results of the
present paper with the corresponding results of Barbour (1987) and Barbour, Chen
and Choi (1995). Corollary 4 will be compared with the following theorem due to
Barbour, Chen and Choi (1995):

THEOREM A. Let EZ2|h(Z)| < ∞. Then

|Eh(S)− Eh(Z)| ≤ 1
2C

(
n∑

j=1

p2
j

)(
4 min{1, λ−1}E|h(Z + 1)| + E�2|h(Z)|),

where C = maxk supj≥0
P(S−ζk=j)

P(Z=j)
.

Barbour, Chen and Choi (1995) obtained an upper bound for C which implies,
in particular, that C ≤ 2e13/12√π for p̃ ≤ 1/2.

Corollary 5 will be compared with the following theorem in the same paper.
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THEOREM B. Let EZ4|h(Z)| < ∞. Then∣∣∣∣∣Eh(S)− Eh(Z)+ 1
2

n∑
j=1

p2
jE�2h(Z)

∣∣∣∣∣≤ C

{(
n∑

j=1

p2
j

)2

R1 +
(

n∑
j=1

p3
j

)
R2

}
,

where

R1 = 12 min{1, λ−2}E|h(Z + 2)|
+ 1

3 min{1, λ−1}(5E�2|h(Z + 1)| + E�2|h(Z)|)
+ 1

8E�4|h(Z)|,
R2 = 2 min{1, λ−1}(E|h(Z + 2)| + E|h(Z + 1)|)

+ 1
3

(
E�2|h(Z + 1)| + 2E�2|h(Z)|),

and the constant C is defined in Theorem A.

For functions of at most polynomial growth complete asymptotic expansions
were obtained by Barbour (1987). The following statement follows from Theo-
rem 2, Remark 3 on it and equality (2.13) in Barbour (1987):

THEOREM C. Let l ≥ 1, H ≥ 0 and t ≥ 0. Let h be a real function of integer
argument. Suppose that λ ≥ 1 and, for all y, |�lh(y)| ≤ H(1 + λ−t/2|y − [λ]|t ).
Then∣∣∣∣∣Eh(S)− Eh(Z)+

l−1∑
s=1

∑
[s]

s∏
j=1

1

rj !
(
(−1)j

∑n
i=1 p

j+1
i

j + 1

)rj
E�r1+···+rs+sh(Z)

∣∣∣∣∣
(18)

≤ KH max
(s)

{
λ−k/2

k∏
j=1

(
n∑

i=1

p
sj+1
i

)}
≤ KHλl/2−1

n∑
i=1

pl+1
i ,

where
∑

[s] denotes the sum over all (r1, . . . , rs) ∈ (Z+)s such that
∑s

j=1 jrj = s;
max(s) is taken over{

k ≥ 1; sj ≥ 1, 1 ≤ j ≤ k;
k∑

j=1

sj = l

}
;

K is some constant depending only on l and t .
But if λ ≤ 1 and |�lh(y)| ≤H(1 + yt ), then∣∣∣∣∣Eh(S)− Eh(Z)+

l−1∑
s=1

∑
[s]

s∏
j=1

1

rj !
(
(−1)j

∑n
i=1 p

j+1
i

j + 1

)rj
E�r1+···+rs+sh(Z)

∣∣∣∣∣
≤KH max

(s)

{
k∏

j=1

(
n∑

i=1

p
sj+1
i

)}
.
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We shall compare the above-mentioned results in the case λ → ∞, p̃ → 0, h(y)
being an arbitrary polynomial of order m ≥ 3.

Define coefficients Kj
h by the relation

h(y) =
m∑

j=0

K
j
hy[j ],(19)

where y[j ] denotes the so-called j th factorial power of y: y[j ] = y(y − 1) · · · (y −
j + 1). From this we can obtain the simple representation for �kh:

�kh(y) =
m∑

j=k

j (j − 1) · · · (j − k + 1)Kj
hy[j−k].(20)

In particular,

E�2h(Z) = E
m∑

j=2

j (j − 1)Kj
hZ[j−2] =

m∑
j=2

j (j − 1)Kj
hλ

j−2.

It is easy to see that

E|h(Z + 1)| ∼ |Km
h |λm,

(21)
E|�2h(Z)| ∼ E�2|h(Z)| ∼ |E�2h(Z)| ∼ |Km

h |m(m − 1)λm−2

as λ → ∞. Now we compare the following resulting estimates for |Eh(S) −
Eh(Z)| given by the above-listed results:

Corollary 4: K1λ
m−2∑n

j=1 p
2
j ;

Theorem A: K2λ
m−1∑n

j=1 p
2
j ;

Theorem C: K3λ
m−3/2∑n

j=1 p
2
j ;

where K1, K2, K3 are some positive constants which depend only on h. Note that,
in the case under consideration, the constant H in Theorem C must be of order
λm−1. We see that in this case the upper bound in Theorem A is rougher than that
in Theorem C and that in Corollary 4.

Comparison of Corollary 5, Theorem B and Theorem C can be done analo-
gously. We get the following bounds for |Eh(S)− Eh(Z)− 1

2
∑n

j=1 p
2
jE�2h(Z)|:

Corollary 5: K4λ
m−3∑n

j=1 p
3
j ;

Theorem B: K5λ
m−1∑n

j=1 p
3
j ;

Theorem C: K6(λ
m−3(

∑n
j=1 p

2
j )

2 + λm−5/2∑n
j=1 p

3
j );

where K4, K5, K6 are constants depending only on h. To derive the first two of
these three estimates the following inequality was used:(

n∑
j=1

p2
j

)2

≤ λ

n∑
j=1

p3
j .
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PROPOSITION 2. Let p1 = · · · = pn = p and h(y) be a polynomial of order
m ≥ 2. Suppose λ → ∞ and p → 0. Then

|Eh(S)− Eh(Z)| ∼ 1
2np

2E|�2h(Z)|,∣∣Eh(S)− Eh(Z)+ 1
2np

2E�2h(Z)
∣∣∼ 1

3np
3E|�3h(Z)| + 1

8n
2p4E|�4h(Z)|,

∣∣Eh(S)− Eh(Z)+ 1
2np

2E�2h(Z)− 1
3np

3E�3h(Z)− 1
8n

2p4E�4h(Z)
∣∣

∼ 1
4np

4E|�4h(Z)| + 1
6n

2p5E|�5h(Z)| + 1
48n

3p6E|�6h(Z)|.
Thus the bounds in Corollaries 4, 5 and 6 are asymptotically precise.

PROOF OF PROPOSITION 2. Calculating Eh(S) and Eh(Z) is very simple:

Eh(Z) =
m∑

j=0

K
j
hλ

j , ESm =
m∑

j=0

K
j
hn[j ]pj ,

where coefficients Kj
h are defined by (19). Thus

Eh(Z)− Eh(S) ∼ Km
h

m(m− 1)

2
λm−1p.

At the same time the following relation was already noted in (21):

E|�2h(Z)| ∼ |Km
h |m(m − 1)λm−2.

Hence the estimate of Corollary 4 is asymptotically precise.
Now we proceed to proving the exactness of Corollary 5. First, consider the

case h(y) = y[m]. We have

Eh(Z) = λm,

Eh(S) = n[m]p

= λm − m(m− 1)

2
λm−1p +

(
m−2∑
i=1

m−1∑
j=i+1

ij

)
λm−2p2 +O(λm−3p3),

1

2
np2E�2h(Z) = m(m − 1)

2
λm−1p.

Hence

∣∣Eh(Z)− Eh(S)− 1
2np

2E�2h(Z)
∣∣∼

(
m−2∑
i=1

m−1∑
j=i+1

ij

)
λm−2p2

= 1
24m(m − 1)(m− 2)(3m− 1)λm−2p2.
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On the other hand, by (20) we have
1
8n

2p4E|�4h(Z)| + 1
3np

3E|�3h(Z)|
= (1

8m(m− 1)(m− 2)(m− 3)+ 1
3m(m − 1)(m− 2)

)
λm−2p2

= 1
24m(m− 1)(m− 2)(3m− 1)λm−2p2.

So, the assertion is asymptotically precise for h(y) = y[m]. It is easy to understand
that, because of (19), this assertion is also asymptotically precise for any
polynomial of order m.

The proof of the exactness of Corollary 6 can be conducted analogously using
the following identity:
m−3∑
i=1

m−2∑
j=i+1

m−1∑
k=j+1

ijk = 1
48m

2(m− 1)2(m− 2)(m− 3)= 1
4m[4] + 1

6m[5] + 1
48m[6].

�
5. The approximation for arbitrary distributions. The content of this sec-

tion is based on and to a considerable extent repeats the idea of Kchinchine (1933)
[cf. Borovkov (1988), Borisov (1993, 1996)]. We apply the results of Section 1
to approximation of vectors of r.v.s with arbitrary, not necessarily Bernoulli, dis-
tributions. Let ξ1, . . . , ξn be independent r.v.s in an arbitrary measurable Abelian
group A with distributions Q1, . . . ,Qn, respectively. The “+” operation in A is
assumed to be measurable. Let P1, . . . ,Pn be the accompanying Poisson distrib-
utions for Q1, . . . ,Qn, respectively, and let β1, . . . , βn be independent r.v.s with
distributions P1, . . . ,Pn, respectively. Finally, let G(y1, . . . , yn) be an arbitrary
measurable function of n arguments in A. We evaluate the difference

EG(ξ1, . . . , ξn)− EG(β1, . . . , βn)

when both of the expectations exist.
Denote by F the following expectation:

F(k1, . . . , kn) = EG(τ
∗k1
1 , . . . , τ ∗kn

n ),

where τ ∗k
j = τ

(1)
j + · · · + τ

(k)
j is the sum of k independent r.v.s such that each

of them has the distribution equal to the conditional distribution of ξj under the

condition ξj �= 0. All the r.v.s τ
(1)
1 , τ

(2)
1 , . . . , τ

(1)
n , τ

(2)
n , . . . are supposed to be in-

dependent. Let pj = P(ξj �= 0), j = 1, . . . , n. As in Section 1, ζ1, . . . , ζn denote
independent Bernoulli r.v.s with the success probabilities pj = P(ζj = 1), and
η1, . . . , ηn denote independent Poisson r.v.s with parameters p1, . . . , pn, respec-
tively. We have

EG(ξ1, . . . , ξn) = EF(ζ1, . . . , ζn), EG(β1, . . . , βn) = EF(η1, . . . , ηn).(22)

Actually, these identities can be easily deduced from the corresponding results
in Khintchine (1933) [cf. Borovkov (1988)]. These relations allow us to apply
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Theorem 1 and its corollaries to the approximation for vectors of independent
arbitrarily distributed r.v.s in a measurable Abelian group.

In the case when, for each j , the conditional distribution of ξj under the
condition ξj �= 0 coincides with some distribution Q independent of j , and

G(y1, . . . , yn) = g(y1 + · · · + yn),

Theorem 2 and its corollaries can be used. Denote by τ1, τ2, . . . i.i.d. r.v.s with
distribution Q. For

h(k) = Eg(τ1 + · · · + τk)

then the equalities

EG(ξ1, . . . , ξn) = Eh(S), EG(β1, . . . , βn) = Eh(Z)

hold where S = ζ1 + · · · + ζn, Z = η1 + · · · + ηn. In fact, these relations
were obtained by Khintchine (1933) [cf. Borisov (1993, 1996)]. It is clear that
these representations are equivalent to (22). They reduce the problem of Poisson
approximation in an abstract sample space to investigation of closeness of a
binomial and the corresponding accompanying Poisson distributions.

EXAMPLE. Let ξ1, . . . , ξn be arbitrary r.v.s on the real line. Suppose that, for
all j , the conditional distributions of ξj under the condition ξj �= 0 coincide, and

G(y1, . . . , yn) = (y1 + · · · + yn)
l.

Also suppose that E(τ1)
l < ∞. We have

h(k) = E(τ1 + · · · + τk)
l = (Eτ1)

lk[l] +Bl−1(k)+ Eτ l1k,

where Bj−1(k) is a polynomial of k of order ≤ j − 1 whose coefficients depend
only on expectations Eτ1, . . . ,Eτ l−1

1 . Hence

�2h(k) = (Eτ1)
lk[l−2] +B ′

l−3(k),

where B ′
l−3(k) is a polynomial of k of order ≤ l − 3 whose coefficients depend

only on Eτ1, . . . ,Eτ l−1
1 . Therefore, because of Corollary 4,

|E(ξ1 + · · · + ξn)
l − E(β1 + · · · + βn)

l|

≤ 1

2

ep̃

(1 − p̃)2

n∑
j=1

p2
j

(
(Eτ1)

l−2λl−2 +B ′′
l−3(λ)

)
,

(23)

where B ′′
l−3(λ) is a polynomial of λ of order ≤ l − 3 with coefficients depending

only on Eτ1, . . . ,Eτ l−1
1 .

Barbour (1987) obtained complete asymptotic expansions for Eg(ξ1 + · · ·
+ ξn) − Eg(β1 + · · · + βn) in the case when ξ1, . . . , ξn are nonnegative integer
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r.v.s and the function g is of at most polynomial growth. But in the case under
consideration, when g(k) = kl and, for all j , the conditional distributions of ξj
under the condition ξj �= 0 coincide, these expansions, in general, don’t allow us
to separate the parameters p1, . . . , pn and moments of τ1 as it is done in (23).
Such separation in Barbour (1987) is possible only for some simplest classes of
distributions but not for arbitrary.

6. Expansions under lesser moment restrictions. In this section, under
lesser moment restrictions than those in the theorems and corollaries in Section 1,
the asymptotic expansions are studied. However, these expansions may appear
inconvenient in case of nonidentically distributed r.v.s. We use the notations pk ,
λk , λ, ζ̄ , η̄, ēk, �k that were defined in Section 1. In this section, for the sake of
convenience, we also suppose that pk �= 0 for all k.

At first we give complete asymptotic expansions for EF(ζ̄ )− EF(η̄).

COROLLARY 8. Let Eηk
l+1|F(η̄)| < ∞ for all k and some l ≥ 1. Then∣∣∣∣EF(ζ̄ )− EF(η̄)+∑′
(−1)s

p
r1
k1

· · ·prs
ks

r1! · · · rs ! E�
r1
k1

· · ·�rs
ks
F (η̄(k1,...,ks ))

∣∣∣∣
≤∑′′

epks
p
r1
k1

· · ·prs−1
ks−1

p
l+s−r1−···−rs−1
ks

r1! · · · rs−1!(l + s − r1 − · · · − rs−1)!
× E

∣∣�r1
k1

· · ·�rs−1
ks−1

�
l+s−r1−···−rs−1
ks

F (φ̄
(k1,...,ks−1)

ks
+ ηks ¯eks )

∣∣,
where the right-hand side of the inequality is finite, and η̄(k1,...,ks ) = η̄ − ηk1 ¯ek1 −
· · · − ηks ¯eks , φ̄

(k1,...,ks)
ks

= φ̄ks − ηk1 ¯ek1 − · · · − ηks ¯eks ;
∑′ and

∑′′ denote the
following sums:

∑′ =
l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′ =
l∑

s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we put k0 = n+ 1 if s = 1.

This corollary is proven through subsequent application of relations (1) and (2)
of Theorem 1.

Further we consider the sums S = ζ1 + · · · + ζn and Z = η1 + · · · + ηn. As in
Section 1, put p̃k = max{p1, . . . , pk}, p̃ = p̃n and let h be an arbitrary real function
of integer nonnegative argument. For the sake of convenience we put p̃0 = 0. The
following corollaries are proved by using relations (4) and (5) of Theorem 2:
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COROLLARY 9. Let E|�3h(Z)| < ∞. Then∣∣∣∣∣Eh(S)− Eh(Z)+ 1

2

n∑
j=1

p2
jE�2h(Z)

∣∣∣∣∣
≤ ep̃

(1 − p̃)2

{
1

4

n∑
k=1

p2
k

k−1∑
j=1

p2
jE|�4h(Z(k))| + 2

3

(
n∑

k=1

p3
k

)
E|�3h(Z)|

}
,

where Z(k) is a Poisson r.v. with parameter λ− pk .

REMARK 5. Because of the obvious upper bound for the corresponding
Radon–Nykodim derivative the inequality

E|�4h(Z(k))| ≤ epkE|�4h(Z)|
holds. The right-hand side of the inequality may be infinite while the left-hand side
is finite if E|h(Z)| < ∞ and pk �= 0.

PROOF OF COROLLARY 9. Because of relations (4) and (5) of Theorem 2, the
following inequalities hold:∣∣∣∣∣Eh(Z)− Eh(S) − 1

2

n∑
k=1

p2
kE�2h(Tk)

∣∣∣∣∣ ≤ ep̃

(1 − p̃)2

n∑
k=1

p3
k

6
E|�3h(Z)|,

∣∣∣∣∣
n∑

k=1

p2
kE�2h(Tk)−

n∑
k=1

p2
kE�2h(Z(k))

∣∣∣∣∣ ≤
n∑

k=1

p2
k

1

2

ep̃

(1 − p̃)2

k−1∑
j=1

p2
jE|�4h(Z(k))|,

∣∣∣∣∣
n∑

k=1

p2
kE�2h(Z)−

n∑
k=1

p2
kE�2h(Z(k))

∣∣∣∣∣=
∣∣∣∣∣

n∑
k=1

p2
k

∞∑
r=1

pr
k

r! E�r+2h(Z(k))

∣∣∣∣∣
≤

n∑
k=1

p2
ke

pkpkE|�3h(Z)|,

where the proof of the last inequality is analogous to that of inequality (2) in
Theorem 1. The above three inequalities immediately imply the assertion. �

We see that the corollary contains lesser restrictions on moments than those in
Corollary 5 or Theorem B.

COROLLARY 10. Let E|�l+1h(Z)| < ∞ for some l ≥ 1. Then∣∣∣∣∣Eh(S)− Eh(Z)+∑′
(−1)s

p
r1
k1

· · ·prs
ks

r1! · · · rs ! E�r1+···+rs h(Z(k1,...,ks ))

∣∣∣∣∣
≤∑′′ ep̃ks

(1 − p̃ks )
2

p
r1
k1

· · ·prs−1
ks−1

p
l+s−r1−···−rs−1
ks

r1! · · · rs−1!(l + s − r1 − · · · − rs−1)!
× E

∣∣�l+sh(Z(k1,...,ks−1))
∣∣,
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where Z(k1,...,ks ) = Z − ηk1 − · · · − ηks ,
∑′ and

∑′′ denote the following sums:
∑′ =

l−1∑
s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−1−1∑
ks=1

l+s−1−r1−···−rs−1∑
rs=2

,

∑′′ =
l∑

s=1

n∑
k1=1

l∑
r1=2

k1−1∑
k2=1

l+1−r1∑
r2=2

· · ·
ks−2−1∑
ks−1=1

l+s−2−r1−···−rs−2∑
rs−1=2

ks−1−1∑
ks=1

.

In the last sum we suppose k0 = n+ 1 if s = 1.

This corollary is proven by subsequent application of relations (4) and (5).
It was already noted that the right-hand side of the above inequality is finite

since, for any s ≥ 1,

E
∣∣�l+sh(Z(k1,...,ks−1))

∣∣< ∞
if E|�l+1h(Z)| < ∞.

By Lemma 3, the expectations of functions of Z(k1,...,ks ) can be expressed
through expectations of functions of Z. However, application of Lemma 3 leads to
necessity for enforcing restrictions on the moments.
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