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We consider a model of interface growth in two dimensions, given by a
height function on the sites of the one-dimensional integer lattice. According
to the discrete time update rule, the height above the site x increases to
the height above x − 1, if the latter height is larger; otherwise the height
above x increases by 1 with probability px . We assume that px are chosen
independently at random with a common distribution F and that the initial
state is such that the origin is far above the other sites. We explicitly identify
the asymptotic shape and prove that, in the pure regime, the fluctuations about
that shape, normalized by the square root of time, are asymptotically normal.
This contrasts with the quenched version: conditioned on the environment,
and normalized by the cube root of time, the fluctuations almost surely
approach a distribution known from random matrix theory.

1. Introduction. Processes of random growth and deposition have a long
history in the physics literature, typically as models of systems far from
equilibrium (e.g., [18] and the more than 1300 references listed therein). They
made their appearance in probabilistic research about 35 years ago, with arguably
the most basic growth rule, first passage percolation [13]. The fundamental
asymptotic result is an ergodic theorem: scaled by time t , the growing set of sites
approaches a deterministic limiting shape. As these early successes were based
on nonconstructive subadditivity arguments, they posed two natural questions:
(1) can the asymptotic shape be identified analytically and (2) how large are
fluctuations about the limit? While there has been no resolution of the first issue,
ingenious probabilistic and geometric arguments have yielded much progress on
the second [1], although the matter is still far from settled. It is therefore of some
importance to be able to provide a complete answer on some other simple, but
nontrivial, interacting growth process. It turns out that several two-dimensional
oriented models with a last passage property [3, 10, 16, 17, 21, 24, 25] are most
convenient, as they can be represented, on the one hand, as particle systems related
to asymmetric exclusion and, on the other hand, as increasing paths in random
matrices and associated Young diagrams. This allows explicit answers to both
questions (1) and (2) above.
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In this paper we continue to study oriented digital boiling (ODB) (see [12],
Feb. 12, 1996, Recipe; see also [9, 10]), perhaps one of the simplest models for
a coherent growing interface in the two-dimensional lattice Z2. The occupied set,
which changes in discrete time t = 0,1,2, . . . , is given by At = {(x, y) :x ∈ Z,
y ≤ ht (x)}, and the height function ht evolves according to the following rule:

ht+1(x)=max{ht (x − 1), ht (x)+ εx,t }.
Here εx,t are independent Bernoulli random variables, with P (εx,t = 1) = px .
Thus the probability of a random increase depends on the spatial location. It
remains to specify the initial state, which will be

h0(x)=
{

0, if x = 0,

−∞, otherwise.
(1.1)

In [10] we analyzed the homogeneous case px ≡ p, identifying the following
four asymptotic regimes:

1. Finite x GUE regime—if x is fixed and t→∞, then (ht (x)− pt)/√p(1− p)t
d→Mx, a Brownian functional whose law can be computed explicitly as the

largest eigenvalue of an (x + 1)× (x + 1) Hermitian matrix from the Gaussian
unitary ensemble (GUE).

2. GUE universal regime—if x is a positive multiple of t , and if x/t < 1−p, then
there exist constants c1 and c2 so that (ht (x)− c1t)/(c2t

1/3) converges weakly
to a distribution F2 known from random matrix theory [14].

3. Critical regime—if x = (1 − p)t + o(√t), then P (ht(x) − (t − x) ≤ −k)
converges to a k× k determinant.

4. Deterministic regime—if x is a positive multiple of t , and if x/t > 1 − p,
P (ht(x)= t − x)→ 1 exponentially fast.

The focus of this paper is ODB in a random environment, in which px are
initially chosen at random, with common distribution given by P (px ≤ s) =
F(s). We also assume that px are independent, although in several instances
this assumption can be considerably weakened. In statistical physics, processes
in a random environment are often called disordered systems, or, especially in the
Ising-type models, spin glasses. In this context, the random environment (choice
of px ) is referred to as quenched randomness, as opposed to the dynamic (thermal)
fluctuations induced by the coin flips εx,t . In general, rigorous research in this area
has been a notoriously difficult enterprise; for some recent breakthroughs (as well
as reviews of the literature) we refer the reader to [19, 20, 26, 27].

We now state our main results. Throughout, we denote by 〈 · 〉 integration with
respect to dF and by p a generic random variable with distribution F .

Construct a random m × n matrix A = A(F ), with independent Bernoulli

entries εi,j and such that P (εi,j = 1) = pj , where, again, pj
d= p are i.i.d.

Label columns as usual, but with rows started at the bottom. We call a sequence
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of 1’s in A whose positions have column index nondecreasing and row index
strictly increasing an increasing path in A. Let H = H(m,n) be the length of
the longest increasing path. [Sometimes, to emphasize dependence on F , we write
H =H(F)=H(m,n,F ).] The following lemma is then easy to prove [10].

LEMMA 1.1. Under a simple coupling, ht (x)=H(t − x, x + 1).

We therefore concentrate our attention on the random matrix A from now on,
switching to the height function only occasionally to interpret the results. We also
note that Lemma 1.1 demonstrates that ODB is equivalent to the Seppäläinen–
Johansson model [17, 25].

Our first theorem identifies the time constant. In the sequel, we present two
completely different methods for proving these limits, a variational approach and
a determinantal approach. The first method (which is similar to the one in [7])
is based on the crucial symmetry property of H (Lemma 2.2) and provides some
information on the longest increasing path itself; the second one is deeper and more
precise and thus able also to determine fluctuations. Seppäläinen and Krug [26]
study a related model, present yet another technique, based on an exclusion process
representation, and observe similar phase transitions. Throughout this paper, we let

b= b(F )=min{s :F(s)= 1}
be the right edge of the support of dF and assume that n = αm for some
0 < α <∞. (Actually, n = �αm�, but we drop the integer part as it is obvious
where it should be used and to avoid complicating expressions.) We also define
the critical values

αc =
〈
p

1− p
〉−1

,

(1.2)

α′c =
〈
p(1− p)
(b− p)2

〉−1

and define c= c(α,F ) to be the time constant

c = c(α,F )= lim
m→∞

H

m
.(1.3)

Note that c determines the limiting shape of At , namely limAt /t , as t→∞ for
the corner initialization given by (1.1). By virtue of the Wulff transform, it then
also gives the speeds of some half-planes, that is, lim At /t when A0 comprises
points below a fixed line. See [26] for much more on this issue.
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THEOREM 1. The limit in (1.3) exists almost surely. If b= 1, then c(α,F )= 1
for all α, while if b < 1, then

c(α,F )=




b+ α(1− b)
〈
p

b− p
〉
, if α ≤ α′c,

a+ α(1− a)
〈
p

a− p
〉
, if α′c ≤ α ≤ αc,

1, if αc ≤ α.
Here a = a(α,F ) ∈ [b,1] is the unique solution to

α

〈
p(1− p)
(a − p)2

〉
= 1.

Note that that 〈(b− p)−2〉 =∞ iff α′c = 0 iff there is only one critical value.
Next we turn our attention to fluctuations. In this paper we present complete

results for the pure regime α′c < α < αc and for the (easy) deterministic regime
αc < α. The composite regime α < α′c is addressed in [11], while both critical
cases when α equals either critical value currently remain unresolved. To explain
the results, and to connect with the spin-glass terminology we have just used, we
turn to a simulation. For an example, we use F(s)= 1− (1−2s)3 so that b= 1/2,
αc ≈ 6.3 and α′c ≈ 0.5 and run the simulation until time t = 40,000 (with a single
realization of the environment and the coin flips). When x is close to the origin, it
is clear from the picture that the interface mostly consists of sheer walls followed
by flat pieces. The walls correspond to the rare sites with update probability px
close to 1/2. Those are much faster than the other sites so they pull ahead of their
left neighbors, creating walls, and dominate their right neighbors by “feeding”
them at nearly the largest possible rate. In fact, this state of affairs persists up
to about x = t/3 although close to x = t/3 these effects are less pronounced. In
the pure regime, when x/t ranges approximately from 0.333 to approximately
0.863, the fluctuations are much more regular, and in fact, as we will demonstrate,
asymptotically normal. For larger x/t the shape has slope −1 and no fluctuations.

For comparison, consider the case when p is uniform on [0,1/2], the case
that has αc = 1/(ln 4− 1) ≈ 2.59 and α′c = 0. The fluctuations are normal up to
x/t ≈ 0.72. Figure 1 depicts the results of simulations, first complete boundaries
of two occupied sets (the top curve is the uniform case), then two details (the right
curve is the uniform case) for x ∈ [1000,5000].

THEOREM 2. Assume that b < 1 and α′c < α < αc. Let a be as in Theorem 1
and let

τ 2 =Var
(
(1− a)p
a − p

)
.
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FIG. 1. Two ODB simulations, as explained in the text.

Then, as m→∞,

H − cm
τ
√
αm1/2

d→N(0,1).

Assume that p is uniform [0,1/2] to illustrate Theorems 1 and 2. Together

they imply that there exist c1 and c2 so that (ht(x) − c1t)/(c2t)
1/2 d→ N(0,1),

where c1 determines the limiting shape and c2 is the variance. These two quantities
are presented in Figure 2; c1 is the top curve and c2 is the bottom curve. For
comparison, the shape of homogeneous ODB with px ≡ 〈p〉 = 1/4 is also drawn
(middle curve). Note that c1 and c2 approach 1/2 and 1/4, respectively, as α→ 0,
indicating that for small x/t the interface growth is governed by the largest update
probability, which is close to 1/2. Finally, we do the same computation for the
other example in Figure 1. The variance is now drawn only on [α′c,1].

We note that both a.s. convergence to the limiting shape [which is equivalent
to a.s. convergence in (1.3)] and its convexity follow from subadditivity, which
in turn is a consequence of the fact that this is an oriented model in which
influences only travel in one direction. To be more precise, fix integer sites
(x1, y1), (x2, y2) ∈ Z+ × Z+ and define times T(x1,y1),(x2,y2) as follows. First
wait until time T(0,0),(x1,y1) when the dynamics reaches (x1, y1). Then restart the
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FIG. 2. c1 (top), c2 (bottom) and the shape for px ≡ 〈p〉 (middle) versus x/t . The two distributions
are uniform [0,1/2] (left) and F(s)= 1− (1− 2s)3 .

dynamics from the initial state

h0(x)=
{
y1, if x = x1,

−∞, otherwise,

and let T(x1,y1),(x2,y2) be the time at which the occupied set reaches (x2, y2).
This random variable is independent of px for x ≤ x1 − 1 and T(0,0),(x2,y2) ≤
T(0,0),(x1,y1) + T(x1,y1),(x2,y2). Therefore, the subadditive ergodic theorem can be
applied as in the first chapter of [8].

The main step in the proof of Theorem 2 establishes a limit law for fluctuations
conditioned on the state of the environment. In many ways, such a result is more
pertinent to understanding physical processes modeled by simple growth models
such as ODB.

THEOREM 3. Assume that b < 1 and α′c < α < αc. Then there exists a
sequence of random variables Gn ∈ σ {p1, . . . , pn} and a constant g0 �= 0 (both
depending on α) such that, as m→∞,

P

(
H −Gn
g−1

0 m1/3
≤ s

∣∣∣p1, . . . , pn

)
→ F2(s),

almost surely, for any fixed s.

The random variables Gn = cnm are given in terms of the solution of an
algebraic equation in which p1, . . . , pn appear as parameters [see (3.4) and (3.5)],
while the deterministic constant g0 is specified before the statement of Lemma 3.5.
The limiting distribution function F2 first arose in connection with eigenvalues of
random matrices ([28]; see [29] for a review). Since then it has been observed
in many other contexts, including growth processes [2, 10, 16, 17, 21, 22]. Most
suitable for computations is the identity

F2(s)= exp
(
−
∫ ∞
s
(x − s)q(x)2 dx

)
,



1346 J. GRAVNER, C. A. TRACY AND H. WIDOM

where q is the unique solution of the Painlevé II equation

q ′′ = sq + 2q3,

which is asymptotic to the Airy function, q(s)∼Ai(s) as s→∞. When proving
limit laws, it is more useful that F2 can be represented as a Fredholm determinant
(see, e.g., [10] and Section 3 below).

In Theorem 3 the environment is assumed as given, H is approximated
by the quenched shape Gn, with the fluctuations about this shape of the
order m1/3 and given by the F2 distribution. As we prove in Section 3,
(αm)−1/2(Gn − cm) converges to the standard normal, making it clear why
Theorem 2 holds: the environmental noise eventually drowns out the more
interesting quenched fluctuations of Theorem 3. An illustration is provided in
Figure 3, in which p is again uniform on [0,1/2] and ht (solid curve), a
deterministic approximation based on Theorem 2 (dotted curve) and the much
better random approximation based on Theorem 3 (dashed curve) are all depicted
at times t = 100,200, . . . ,1000.

In conclusion, we note that the connection between random matrix theory
and random combinatorial objects, which has become the key to rigorous
understanding of random interface fluctuations, made its initial appearance in [3],
while an inhomogeneous model of ODB type was first studied in [14]. This last
paper, together with its companion [15], extends the study of random words from
the homogeneous case in [30] in a somewhat analogous way as the present paper
builds on the work in [10]. In particular, connections with operator determinants
(from the beginning of Section 3) are very similar (see also [23], which features

FIG. 3. Approximations to ht (solid curve) based on Theorems 2 (dotted curve) and 3 (dashed
curve).
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a general inhomogeneous setup). However, randomness of the environment, which
seems to be a new feature in rigorous analysis of explicitly solvable models, then
forces our techniques to take a novel turn.

2. A variational characterization of the time constant. We start with a
remark on constructing the random matrix A. The most convenient design uses as
the probability space (&,P ) a countably infinite product of unit intervals [0,1]
with Lebesgue measure. A copy of the unit interval (and thus a factor in the
product) is associated with each point in N×N and, in addition, with each positive
integer in N. (The former factors correspond to matrix entries, and the latter to its
columns.) If ω = (mij , cj ) ∈ & is a generic realization, we define the following
random variables: pj = F−1(cj ) [where F−1(x) = sup{y :F(y) < x} as usual]
and εij = 1{mij<pj }. By restricting to the m× n rectangle at the lower right corner
of N×N, this constructs the random matrices A for all m and n simultaneously.
The following useful lemma also follows immediately.

LEMMA 2.1. If F1 ≤ F2 are two distribution functions, the two corresponding
random matrices A(F1) and A(F2) can be coupled so that H(F2)≤H(F1).

Next we state the crucial property for the variational approach to work:
conditioned on the environment, H is a symmetric function of flip probabilities.

LEMMA 2.2. A regular conditional distribution

P (H ≤ h|p1, . . . , pn)

is a symmetric function of p1, . . . , pn.

See [10], Section 2.2, for the proof of Lemma 2.2.
Somewhat loosely, we denote by Hn the random variable H obtained by fixing

p1, . . . , pn. In fact this is nothing more than a shorthand notation, for example,
E(ϕ(Hn))= E(ϕ(H) | p1, . . . , pn) for any bounded measurable function ϕ.

The time constant c(α, x) = c(α, δx) for the case pj ≡ x is given in [9]. The
next lemma summarizes the relevant conclusions.

LEMMA 2.3. Assume that dF = δx . Then

c= c(α, x)=
{

2
√
α
√
x(1− x)+ (1− α)x, (1− x)/x > α,

1, (1− x)/x ≤ α.
Moreover, for every ε > 0 there exists a constant γ = γ (ε) > 0 so that

P (|H/m− c|> ε) < e−γm(2.1)

for m≥m0(ε,α, x).
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PROOF. The formula for c follows from (3.1) of [10], while the large deviation
estimate can be proved by the method of bounded differences as in Lemma 5.4
of [9]. �

It turns out the following function is more convenient than c:

ζ(y, x)= yc(1/y, x)=
{

2
√
y
√
x(1− x)+ (y − 1)x, x/(1− x) < y,

y, x/(1− x)≥ y.
Note that the partial derivative

ζy(y, x)=
{
y−1/2√x(1− x)+ x, x/(1− x) < y,
1, x/(1− x)≥ y,

is decreasing in y (obviously) and increasing in x (easily checked). In particular,
ζ(·, x) is a convex function.

We now derive a variational problem for c, initially without paying attention to
rigor. Start by a nice distribution function F and approximate it by the discrete
distribution function given by

P

(
pj = i

k

)
=.Fk(i)= F

(
i

k

)
− F

(
i − 1

k

)
, i = 1, . . . , k.

Let ψ : [0, α] → [0,1], ψ(0) = 0, ψ(α) = 1 be a nondecreasing function, with
.ψk(i)=ψ(αF (i/k))−ψ(αF ((i − 1)/k)). Define the functionals

F (ψ)=
∫ 1

0
ζ
(
ψ ′(αF (x)), x

)
α dF (x)

and

Fk(ψ)=
k∑
i=1

ζ

(
.ψk(i)

α.Fk(i)
,
i

k

)
α.Fk(i).

Generate the pj ’s and denote by Ni the number of pj equal to i/k. By
Lemma 2.2, we can assume flip probability 1/k in the first N1 columns, 2/k
in the next N2 columns etc. Moreover, the strong law suggests that the identity
Ni =.Fk(i)n nearly holds. As we know the asymptotics for the longest increasing
paths in the slivers of widths Ni in which the probabilities are constant, the longest
increasing path in A is determined by the most advantageous choice of transition
points between the slivers. These transition points are specified by a function ψ as
described above. If we approximate the differences with derivatives, we obtain

c(α,F )= lim
k→∞ c(α,Fk)

= lim
k→∞max

ψ

k∑
i=1

c

(
α.Fk(i)

.ψk(i)
,
i

k

)
.ψk(i)
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= lim
k→∞max

ψ
Fk(ψ)

= lim
k→∞max

ψ

k∑
i=1

ζ

(
ψ ′
(
αF

(
i

k

))
,
i

k

)
αF ′

(
i

k

)
1

k

=max
ψ

F (ψ).

At this point, we remark that a connection between longest increasing paths
and variational problems has appeared before in the literature. The result closest
to ours is by Deuschel and Zeitouni [7], who used a variational approach to
study a variant of Ulam’s problem. In their case, a number of points in the unit
square is chosen independently according to some distribution with a density,
then a longest sequence, increasing in both coordinates, is extracted from this
sample. The Deuschel–Zeitouni functional is different from ours as the length of
the longest increasing path has a nontrivial dependence on α (i.e., through c) in
our case.

The (integrated) Euler functional for the variational problem is

ζy
(
ψ ′(x),F−1(x/α)

)= a
or, writing g(x)=ψ ′(αF (x)),

ζy(g(x), x)= a.(2.2)

Since ζy ≤ 1 and equal to 1 if and only if x/(1− x) ≥ y, the integration constant
a ∈ [0,1]. If a = 1, then g(x)≤ x/(1− x), ζ(g(x), x)= g(x) and

c(α,F )=
∫ 1

0
ψ ′(αF (x))α dF (x)= 1.

Assume now that b < 1. In this case, it is necessary to specify g only on [0, b).
However, (2.2) gives

g(x)= x(1− x)
(a − x)2 .(2.3)

The constant a is given by the boundary conditions. Assuming that (2.3) holds on
[0, b],

1= α
∫ b

0
g(x) dF (x)= α

∫ b

0

x(1− x)
(a − x)2 dF (x).(2.4)

The smallest the last integral can be is when a = 1, which yields the condition

1> α
∫ b

0

x

1− x dF (x)=
α

αc
.
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On the other hand, the largest that the integral in (2.4) can be is when a = b.
Therefore, if α ∈ (α′c, αc), we have found the minimizer and

c(α,F )=
∫ b

0
ζ(g(x), x)α dF (x)= α

〈−p2 − a2p+ 2ap

(a − p)2
〉
,

which reduces, upon using the defining equation for a, to the formula in
Theorem 1.

If α < α′c, the minimizerψ has to make a jump of size 1−α/α′c at α. The natural
interpretation for this is that the minimizer given by (2.3) is used in the lower left
part of A with dimensions (α/α′c)m× (n− 1). To the resulting increasing path in
this submatrix one needs to add the number of 1’s in the upper segment of length
(1− α/α′c)m in the last column, in which nearly the largest probability b is used.
Therefore,

c(α,F )= c(α′c,F )
α

α′c
+ b

(
1− α

α′c

)
,

which again reduces to the appropriate formula in Theorem 1.
We now proceed to give a proof Theorem 1, the heart of which is a somewhat

involved multistage approximation scheme.

PROOF OF THEOREM 1 WHEN b= 1. This follows simply by observing that,
for any ε > 0, maxj pj → b a.s. asm→∞. Since a trivial lower bound is obtained
by using only the column with the largest pj , one concludes that lim infH/m≥ b
a.s. �

PROOF OF THEOREM 1 WHEN α ∈ (α′c, αc). We begin with the following
lemma.

LEMMA 2.4. Assume that a sequence of distribution functions FN converges
to F in the usual sense (i.e., the induced measures converge weakly). Assume also
that b(FN)→ b(F ) and that αN → α. Then c(αN,FN)→ c(α,F ) (as given in
Theorem 1).

PROOF. If a′ > b(F ) and

α

∫
x(1− x)(a′ − x)−2 dF (x) > 1,

then, for a large N , a′ > b(FN) and, since the integrand is bounded,

αN

∫
x(1− x)(a′ − x)−2 dFN(x) > 1.

Hence aN = a(αN,FN) > a′. If aN → a0, then x(1− x)(aN − x)−2 converges to
x(1− x)(a0 − x)−2 uniformly for x ∈ [0, a′] and so

1= αN
∫
x(1− x)(aN − x)−2 dFN(x)→ α

∫
x(1− x)(a0 − x)−2 dF (x).
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Therefore a0 = a(α,F ) and consequently aN → a(α,F ). As x(aN − x)−1 also
converges uniformly on [0, a′],

c(αN,FN) = aN + αN(1− aN)
∫
x(aN − x)−1 dFN

→ a+ α(1− a)
∫
x(a − x)−1 dF = c(α,F ). �

First we assume that F is nice, that is, a one-to-one function on [β,b] ⊂ (0,1),
with F(β)= 0 and F(b)= 1, and continuously differentiable on (0,1). We also
assume that 1 is the class of nondecreasing convex functions ψ ∈ C2[0, α], with
ψ(0) = 0, ψ(α) = 1, ψ ′(0) ≥ β/2. This last assumption is necessary because
ζ(y, x) is not Lipshitz near y = 0.

LEMMA 2.5. Assume that α ∈ (α′c, αc). Among all ψ ∈ 1 , the functional
F (ψ) is uniquely maximized by

ψ(x)=
∫ x

0
g
(
F−1(u/α)

)2
du,

where g is given by (2.3).

PROOF. This follows from standard calculus of variations. Both ψ ′(0)≥ β/2
and convexity of ψ are easily checked. �

We now justify the approximation steps in the heuristic argument, using the
same notation. First, if ε > 0 is fixed, then with probability exponentially (in n)
close to 1,

(1− ε).Fk(i)n≤Ni ≤ (1+ ε).Fk(i)n
for every i = 1, . . . , k. By obvious monotonicity, the longest increasing path
in A is then bounded above by the longest increasing path in A′ in which all
Ni = (1+ ε).Fk(i)n, and therefore we can get an upper bound by increasing α
to α(1+ 2ε) and assuming Ni = .Fk(i)n. A lower bound is obtained similarly.
As our final characterization of c is continuous with respect to α (Lemma 2.4), we
can, and will, assume that Ni =.Fk(i)n from now on.

The above paragraph eliminates randomness of pj ’s; we now proceed to replace
the coin flips with deterministic quantities. Again, fix an ε > 0 and let M = εm.
For j1 ≤ j2 and i = 1, . . . , n, consider the longest increasing paths πj1,j2,i between
(Fk(i−1)n, j1) (noninclusive) and (Fk(i)n, j2) (inclusive). Then, with probability
exponentially close to 1, the length of any πj1,j2,i is at most

(1+ ε)c
(

.Fk(i)n

M�(j2 − j1)/M� ,
i

k

)
M�(j2 − j1)/M�

= (1+ ε)ζ
(
M�(j2 − j1)/M�

.Fk(i)n

)
.Fk(i)n.
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(This uses Lemma 2.3 when j2 − j1 is divisible by M and fills the rest by
monotonicity. Note that Lemma 2.3 is therefore only applied finitely many times
for fixed ε and k.) The lower bound is obtained by rounding down instead of up. It
follows that the length of any πj1,j2,i is bounded above (resp. below) by

ζ

(
j2 − j1

.Fk(i)n

)
.Fk(i)n(2.5)

computed on the matrix of size (m+M)× n [resp. (m−M)× n]. Once again we
can use continuity to assume that the length of any πj1,j2,i is given by (2.5).

It remains to show that the discrete deterministic optimization problem
maxψ Fk(ψ) is for large k close to its continuous counterpart maxψ F (ψ). To
this end, we first prove that we can indeed restrict the set of function ψ to
those in 1 , that is, those that are convex and have a large enough derivative.
Let .x1 = α.Fk(i), .x2 = α.Fk(i + 1), .y1 = .ψk(i), .y2 = .ψk(i + 1),
.y =.y1 +.y2, p1 = i/n, p2 = (i + 1)/n. Then

ζ

(
.y1

.x1
,p1

)
.x1 + ζ

(
.y −.y1

.x2
,p2

)
.x2(2.6)

is nondecreasing with decreasing .y1 as soon as p1 ≤ p2 and .y1/.x1 ≥
.y2/.x2. This means that the maximum is achieved at a convex ψ . Similarly, the
expression (2.6) is nondecreasing with increasing .y1 if p1 ≥ β and .y1/.x1 <

δ/(1− δ), and therefore the maximum is achieved at a ψ ∈1 .
Next we note that

Fk(ψ)≤
k∑
i=1

ζ
(
ψ ′(αF (i/k)), i/k

)
α.Fk(i),

while

F (ψ)≥
k∑
i=1

ζ
(
ψ ′(αF (i/k)), i/k

)
α.Fk+1(i).

Therefore, maxψ Fk(ψ) ≤ maxψ F (ψ)+ O(1/k). As a lower bound is obtained
similarly, this concludes the proof for nice distribution functions F .

To prove the general case, we again use Lemmas 2.1 and 2.4. For an arbitrary
distribution function, choose nice F±N so that F−N ≤ F and F · 1(1/N,1] ≤ F+N
and F±N → F and b(F±N )→ b(F ). Then c(α,F±N )→ c(α,F ). By Lemma 2.1,
it immediately follows that lim supH/m≤ c(α,F ) a.s.

The lower bound, however, does not immediately follow as F is not below F+N .
The remedy for this is to assume that F(1/N) < 1/2, replace α with α′ < α and
observe that the distribution F will induce, with probability exponentially close
to 1, at least (α − α′)m/4 probabilities pj ≥ 1/N . Therefore the length of the
longest increasing path in anm×αmmatrix using F is eventually above the length
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of the longest increasing path in an m × α′m matrix using F+N . By Lemma 2.4,
lim infH/m≥ c(α,F ) a.s. �

PROOF OF THEOREM 1 WHEN α ≤ α′c . Applying the same strategy as before
we construct sequences {F±N } of distribution functions which satisfy F−N ≤ F ≤
F+N and for which Theorem 1 already holds, and such that c(F−N ) and c(F+N )
approach the same limit as N →∞. Lemma 2.1 will then complete the proof.
(We suppress α from the notation, since it is the same throughout this proof.)

Take a sequence ηN ↘ 0 such that b − ηN are points of continuity of F . Let
F±N agree with F outside [b − ηN,b), while on [b − ηN,b) the two functions
are constant: F−N ≡ F(b − ηN) and F+N ≡ 1. Let εN = 1− F(b− ηN); note that
εN → 0 and dF−N = 1(0, b−ηN) dF + εN δb and dF+N = 1(0, b−ηN) dF + εN δb−ηN .
Clearly the already proved part of Theorem 1 applies to both F+N and F−N .

We proceed to show that a(F−N )→ b. If this does not hold, the fact that
a(F−N ) > b(F

−
N ) = b implies that there exists an η > 0 so that a(F−N ) ≥ b + η

along a subsequence. Then δ = 〈p(1− p)[(b− p)−2 − (b+ η− p)−2]〉> 0 and

1= α
∫ b−ηN

0

x(1− x)
(a(F−N )− x)2

dF + αεN b(1− b)
(a(F−N )− b)2

≤ α
∫ b

0

x(1− x)
(b+ η− x)2 dF + αεN

b(1− b)
η2(2.7)

≤ −δ + α

α′c
+ αεN b(1− b)

η2 ,

along the same subsequence. As N→∞, this yields a contradiction with α ≤ α′c.
Now

c(F−N )= a(F−N )+ α
(
1− a(F−N )

)
×
(∫ b−ηN

0

x

a(F−N )− x
dF + εN b

a(F−N )− b
)
.

(2.8)

By (2.7),

εN
b

a(F−N )− b
≤ a(F

−
N )− b

α(1− b) → 0.

To show that 〈
1{p≤b−ηN }p/

(
a(F−N )− p

)〉→〈p/(b− p)〉(2.9)

we note that the integrand on the left-hand side of (2.9) is uniformly integrable
[as it is bounded by p/(b − p), which is square-integrable] and converges to the
integrand on the right-hand side a.s. By (2.8) and (2.9),

c(F−N )→ b+ α(1− b)〈p/(1− p)〉.
The argument for c(F+N ) is very similar and hence omitted. �
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PROOF OF THEOREM 1 WHEN α ≥ αc . If α ↗ αc, then a(α,F )↗ 1 and
hence c(α,F )↗ 1. �

We note that the above proof of Theorem 1 actually shows exponential
convergence to c, that is, (2.1) in Lemma 2.3 holds in a random environment as
well. Also, once probabilities are ordered using Lemma 2.1, one could investigate
convergence, in the sense of [7] and [24], of the longest increasing path in A to
the maximizer of F (ψ). This is easy to prove if F is nice (cf. Lemma 2.5), but it
actually holds whenever the maximizer is unique.

We conclude this section by showing that the deterministic case indeed has no
fluctuations.

PROPOSITION 2.6. Assume that b < 1 and α > αc. Then P (H = m)

converges to 1 exponentially fast [and therefore P (H =m eventually)= 1].

PROOF. We begin by modifying the construction from Section 3.3.1 of [9].
Recall that a random m× n matrix is the lower left corner of an infinite random
matrix. For an (i, j) ∈ N× N, let η(i,j ) = inf{k ≥ 1 : ε(i+k,j) = 0} be the relative
position of the first 0 above (i, j) and let ξ(i,j ) = inf{k ≥ 1 : ε(i,j+k) = 1} be the
relative position of the first 1 to the right of (i, j).

Now define i.i.d. two-dimensional random vectors X1 = (ξ1, η1), X2 =
(ξ2, η2), . . . as follows:

ξ1 = ξ(0,1), η1 = η(ξ1,1),
ξ2 = ξ(ξ1,1+η1), η2 = η(ξ1+ξ2,1+η1),

ξ3 = ξ(ξ1+ξ2,1+η1+η2), η2 = η(ξ1+ξ2+ξ3,1+η1+η2),

· · · .
Let Sk = (0,1)+ X1 + · · · +Xk be the corresponding random walk, and let Tm
(resp. T ′n) be the first time Sk is in {(x, y) :x > n} [resp. {(x, y) :y > m}]. If
T ′m < Tn, then there is an increasing path of 1’s inside the m× n rectangle which
goes through its “roof” without skipping a row; thus

{H <m} ⊂ {Tn ≤ T ′m}.
Therefore, we need to show that P (Tn ≤ T ′m) goes to 0 exponentially fast. To this
end, note that, for any ε > 0,

P (Tn ≤ T ′m)≤ P (Tn ∧ T ′m ≤ εm)

+
∞∑

k=εm
P
(
ξ1 + · · · + ξk ≥ α(η1 + · · · + ηk)).(2.10)

If we show that ξ1 and η1 have exponential tails, and that E(ξ1) − αE(η1) < 0,
then we can choose a small enough ε > 0 so that the upper bound in (2.10) decays
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exponentially. First, P (ξ1 ≥ k)= 〈1−p〉k−1 and so E(ξ1)= 1/〈p〉. Moreover, the
conditional distribution of p given that a single coin flip gives 1 is

dF1(x)= 1

〈p〉x dF (x);

therefore

P (η1 ≥ k)=
∫ 1

0
xk−1 dF1(x)= 〈pk〉

〈p〉 ,

and so E(η1)= 〈p/(1− p)〉/〈p〉. �

3. The saddle-point method and fluctuations. Throughout this section, we
assume that b < 1 and that α = n/m is fixed (but see Remark 3 at the end). In
addition, our standing assumption is that

α′c < α < αc.

We investigate the limiting behavior of P (H ≤ h) without using results proved
in Section 2. An asymptotic analysis of this quantity when α < α′c is carried out
in [11].

We begin with deterministic inhomogeneous ODB, in which the j th column
is assigned a fixed deterministic probability pj . At first, our derivation will use
a fixed n and no particular properties of the eventual random choice of the
environment. For notational convenience, we therefore drop the subscript n, which
practically every quantity would otherwise have. See the discussion preceding the
key formula (3.6), where the random environment is reintroduced.

As explained in [10, Section 2.2], we have

P (H ≤ h)=∏
(1− pj )mDh(ϕ),

where Dh is the h× h Toeplitz determinant with symbol

(1− z−1)−m
n∏
j=1

(1+ rj z)

and rj = pj/(1 − pj ). Applying an identity of Borodin and Okounkov [6] (see
also [4]) this becomes

P (H ≤ h)= det(I −Kh),
where Kh is the infinite matrix acting on =2(Z+) with j, k entry

Kh(j, k)=
∞∑
==0

(ϕ−/ϕ+)h+j+=+1(ϕ+/ϕ−)−h−k−=−1.



1356 J. GRAVNER, C. A. TRACY AND H. WIDOM

The subscripts here denote Fourier coefficients and the functions ϕ± are the
Wiener–Hopf factors of ϕ, so

ϕ+(z)=
n∏
j=1

(1+ rj z), ϕ−(z)= (1− z−1)−m.

The matrix Kh is the product of two matrices, with j, k entries given by(
ϕ+
ϕ−

)
−h−j−k−1

= 1

2πi

∫ ∏
(1+ rj z) (z− 1)m z−m+h+j+k dz

and (
ϕ−
ϕ+

)
h+j+k+1

= 1

2πi

∫ ∏
(1+ rj z)−1(z− 1)−m zm−h−j−k−2 dz.

The contours for both integrals go around the origin once counterclockwise; in the
second integral 1 is on the inside and all the −r−1

j are on the outside.

Eventually we let m, n→∞ and take h = cm+ sm1/3, where c, as yet to be
determined, gives the transition between the limiting probability being 0 and the
limiting probability being 1. In [10] we considered the case where all the pj were
the same. We found that with c chosen as in Lemma 2.3 we could do a steepest
descent analysis. The conclusion was that the product of the two matrices scaled,
by means of the scaling j → m1/3x, k→ m1/3y, to the square of the integral
operator on (0,∞) with kernel Ai(gs + x + y), where g is another explicitly
determined constant. This gave the limiting result

lim
n→∞ P (H ≤ cm+ sm1/3)= F2(gs),

where F2(s) is the Fredholm determinant of the Airy kernel on (s,∞). We can do
very much the same here. If h= cm+ sm1/3 and we set

ψ(z)=∏
(1+ rj z) (z− 1)m z−(1−c)m,

then (
ϕ+
ϕ−

)
−h−j−k−1

= 1

2πi

∫
ψ(z) zsm

1/3+j+k dz,(3.1)

(
ϕ−
ϕ+

)
h+j+k+1

= 1

2πi

∫
ψ(z)−1 z−sm1/3−j−k−2 dz.(3.2)

To do an eventual steepest descent we define

σ(z)= 1

m
logψ(z)= α

n

n∑
j=1

log(1+ rj z)+ log(z− 1)+ (c− 1) log z,
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and look for zeros of

σ ′(z)= α
n

n∑
j=1

rj

1+ rj z +
1

z− 1
+ c− 1

z
.(3.3)

The number of zeros equals 1 plus the number of distinct rj . There is a zero
between two consecutive 1/rj and, in general, two other zeros which are either
unequal reals or a pair of complex conjugates. In the exceptional case there is a
single real zero of multiplicity 2. We choose c so that we are in this exceptional
case. If the double zero is at z= u, then u and c must satisfy the pair of equations

α

n

n∑
j=1

rj

1+ rju +
1

u− 1
+ c− 1

u
= 0,

α

n

n∑
j=1

(
rj

1+ rju
)2

+ 1

(u− 1)2
+ c− 1

u2
= 0.

If we multiply the second equation by u and subtract, we get

α

n

n∑
j=1

rj

(1+ rju)2 =
1

(u− 1)2
.(3.4)

The first equation gives

c= 1

1− u −
α

n

n∑
j=1

rju

1+ rju.(3.5)

Conversely, if the second pair of equations is satisfied, then so is the first.

LEMMA 3.1. Assume that αn−1∑ rj < 1 and set ū = max{−1/rj }. Then
(3.4) has a unique solution u ∈ (ū, 0) and if c is then defined by (3.5), we have
c ∈ (0, 1).

PROOF. The left-hand side of (3.4) decreases from ∞ to αn−1∑ rj as u runs
over the interval (ū, 0) whereas the right-hand side increases and has the value 1
at u = 0. Our assumption implies the first statement of the lemma. As for the
second, c > 0 since u < 0 and each 1+ rju > 0. Moreover, Schwarz’s inequality,
our assumption and (3.4) give

α

n

∑ rj

1+ rju ≤
{
α

n

∑
rj

}1/2 {
α

n

∑ rj

(1+ rju)2
}1/2

<
1

1− u.

Hence

c <
1

1− u −
u

1− u = 1. �
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To derive the asymptotics using steepest descent we have to compute σ ′′′(u)
and understand the steepest descent curves. For the first we multiply (3.3) by z,
differentiate twice and use the fact that σ ′(u)= σ ′′(u)= 0 to obtain

uσ ′′′(u)=−2α

n

n∑
j=1

r2
j

(1+ rju)3 +
2

(u− 1)3
.

Note that σ ′′′(u) > 0 since u < 0.
There are three curves emanating from z= u on each of which #σ is constant.

One is # z= 0, which is of no interest. The other two come into u at angles ±π/3
and ±2π/3. Call the former C+ and the latter C−. Approximate shapes of these
curves are illustrated in Figure 4. For the integral involving ψ(z) we want |ψ(z)| to
have a maximum at the point u on the curve and for the integral involving ψ(z)−1

we want |ψ(z)| to have a minimum at u. Since σ ′′′(u) > 0 the curve for ψ(z)must
be C+ and the curve for ψ(z)−1 must be C−.

As for the global natures of the curves, C± can only end at a zero of ψ(z)±1,
at a zero of σ ′(z) or at infinity. The two curves are simple and cannot intersect
since |ψ(z)| is decreasing on C+ as we move away from z = u while |ψ(z)| is
increasing on C−. It follows that C+ closes at z = 1, while the two branches of
C− go to infinity. From the fact that

#σ(z)= α
n

n∑
j=1

arg(1+ rj z)+ arg(z− 1)+ (c− 1) arg z

is constant on C− we can see that the two branches go to infinity in the directions
arg z = ±cπ/(c + α(1 − ν)), where ν is the fraction of rj equal to zero (which
is the same as the fraction of the pj equal to zero). Observe that in the integral

FIG. 4. The steepest descent curves C± as described in the text.
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in (3.1) the path can be deformed into C+ and in the integral in (3.2) the path can
be deformed into C−. Both contours will be described downward near u.

To see formally what steepest descent gives, we replace our matrices M(j, k)
depending on the parameter m and acting on =2(Z+) by kernels m1/3M(m1/3x,

m1/3y) acting on L2(0,∞). Thus (3.1) becomes the operator with kernel

1

2πi
m1/3

∫
emσ(z) zm

1/3(s+x+y) dz.

If steepest descent worked, the main contribution would come from the
immediate neighborhood of z= u. We would set z= u+ζ , make the replacements

σ(z)→ σ(u)+ 1
6σ

′′′(u)ζ 3 and z→ ueζ/u

in the integral and integrate (downward) on the rays arg ζ = ±π/3. The above
integral becomes

emσ(u) um
1/3(s+x+y) 1

2πi
m1/3

∫
e(m/6)σ

′′′(u)ζ 3+m1/3(s+x+y)ζ/u dζ,

and we can then replace the rays by the imaginary axis (downward). The variable
change ζ →−iζ/m1/3 replaces this by (recall that the Airy function is defined by
Ai(x)= 1

2π

∫∞
−∞ eiζ

3/3+ixζ dζ )

−emσ(u) um1/3x 1

2π

∫ ∞
−∞

e(i/6)σ
′′′(u)ζ 3−i(s+x+y)ζ/u dζ

=−emσ(u) um1/3(s+x+y) |u|gAi(g(s + x + y)),
where we have set

g = |u|−1{1
2σ

′′′(u)
}−1/3

.

Thus, if we multiply the matrix entries on the left-hand side of (3.1) by

−e−mσ(u) u−m1/3s−j−k,

then the result has as scaling limit the operator on L2(0,∞) with kernel

|u|gAi(g(s + x + y)).
Similarly if we multiply the matrix entries on the left-hand side of (3.2) by

−emσ(u) um1/3s+j+k,

then the result has as scaling limit the operator on L2(0,∞) with kernel

|u|−1gAi(g(s + x + y)).
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It follows that the product of the two matrices has in the limit the same Fredholm
determinant as the operator with kernel

g2
∫ ∞

0
Ai(g(s + x + z))Ai(g(s + z+ y)) dz

= g
∫ ∞

0
Ai(g(s + x)+ z)Ai(g(s + y)) dz,

which in turn has the same Fredholm determinant as the kernel∫ ∞
0

Ai(gs + x + z)Ai(gs + z+ y) dz.
This Fredholm determinant equals F2(gs).

Assuming the argument we sketched above goes through we will have shown
that, in some sense,

lim
n→∞ P (H ≤ cm+ sm1/3)= F2(gs),

where c and g are as above and are determined once we know the pj and α.
We begin the rigorous justification by introducing some notation. Recall that

we consider a random environment in which the probabilities pj are chosen
independently with distribution function F . We explained the notation Hn after
Lemma 2.2; in addition, we give the subscript n to the quantities σn(z), un, gn and
curves C±n to emphasize that they are functions of p1, . . . , pn. Therefore

P (H ≤ h)= 〈P (Hn ≤ h)〉,
where 〈 · 〉 is the expected value with respect to p1, . . . , pn.

Our object is to show that with probability 1, for each fixed s,

P (Hn ≤ cnm+ sm1/3)= F2(gn s)+ o(1)(3.6)

as n→∞. We will demonstrate these asymptotics by pointing out the necessary
modifications to the argument in [10].

All the −1/rj in our previous discussion are contained in the interval (−∞, ξ ],
where ξ = 1− 1/b. (Recall that b is the maximum of the support of dF .) Let Fn
be the empirical distribution function given by

dFn = n−1
∑
δpj

and let 〈 · 〉Fn denote the integration with respect to dFn. Recall the Glivenko–
Cantelli theorem, which says that, with probability 1, Fn converges uniformly to F
as n→∞.

We first show that, under our standing assumptions, the quantities cn and un
of Lemma 3.1 converge almost surely as n→∞ to the corresponding quantities
associated with the distribution function F . Recall that we set r = p/(1−p), p =
r/(1+ r). We remark that c0 in the following lemma is the same as c in Theorem 1,
and u0 = (a−1)/a. The notation has changed to conform to (3.4) and (3.5), which
are in turn chosen to connect with the saddle-point approach in [10].
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LEMMA 3.2. The equation

α

〈
r

(1+ ru0)2

〉
= 1

(u0 − 1)2

has a unique solution u0 ∈ (ξ, 0) and if c0 is then defined by

c0 = 1

1− u0
− α

〈
ru0

1+ ru0

〉
,

we have c0 ∈ (0, 1).

PROOF. The argument goes almost exactly as for Lemma 3.1. The assumption
α < αc is equivalent to α〈r/(1+ ru)2〉 > 1/(u− 1)2 when u = ξ , while α > α′c
yields the opposite inequality when u= 0. �

Note that one obtains un as u0, except that the expectation 〈 · 〉 is replaced by
the expectation 〈 · 〉Fn .

LEMMA 3.3. Almost surely, un→ u0 and cn→ c0 as n→∞.

PROOF. Integration by parts gives〈
r

(1+ rz)2
〉
=
∫ b/(1−b)

0
(1− F(p)) d

dr

r

(1+ rz)2 dr.

The derivative in the integrand is uniformly bounded for z in any compact subset
of the complement of (−∞, ξ ]. Hence the expected value is continuous in F and
differentiable for z /∈ (−∞, ξ ]. Moreover,

∂

∂z

(
α

〈
r

(1+ rz)2
〉
− 1

(z− 1)2

)

is negative, hence nonzero, at z = u0. The statement concerning un therefore
follows from the fact that Fn→ F uniformly and the implicit function theorem.
The assertion for cn then follows by a similar integration by parts. �

LEMMA 3.4. There exists a (deterministic) wedge W with vertex v > ξ ,
bisected by the real axis to the left of v, such that, almost surely, the curves C±n lie
outsideW for sufficiently large n.

PROOF. First we show that, if ε is small enough, C−n is disjoint from the disc

D(ξ, ε)= {z : |z− ξ | ≤ ε}.
From the facts that σ ′n(un) = σ ′′n (un) = 0, σ ′′′n (un) > 0 and σ ′n(z) �= 0 for z ∈
(ξ, un), it follows that σn is strictly increasing in the interval (ξ, un). Therefore,
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FIG. 5. Wedge W , angle ε1 and disk D(ξ, ε) as described in the proof of Lemma 3.4.

we can choose small enough ε > 0 and δ > 0 so that σn(ξ + ε) < σn(un)− 2δ for
all sufficiently large n. In addition, if ε is small enough,

log |z− 1| + (cn− 1) log |z|< log |ξ + ε− 1| + (cn− 1) log |ξ + ε| + δ
for all z ∈D(ξ, ε). Now each |1+rj z|, and so its logarithm, achieves its maximum
on D(ξ, ε) at the point z = ξ + ε. By combining the last three observations, we
see that everywhere on D(ξ, ε) we have

$σn(z) < σn(ξ + ε)+ δ < σn(un)− δ.
Since $σ achieves its minimum on C−n at z= un, the curve must be disjoint from
D(ξ, ε).

For a small ε1 > 0 (possibly much smaller than ε), denote by W ′ the wedge
with vertex ξ − ε/2 bounded by the real axis to the left of ξ − ε/2 and the ray
arg(z− ξ + ε/2)= π − ε1. Our next step is to show that C−n is disjoint from W ′
if ε1 is small enough. As #σn(z) is constant on the portion of C−n in the upper
half-plane,

α

n

n∑
j=1

arg(1+ rj z)+ arg(z− 1)+ (cn − 1) arg z= cnπ,

where all arguments lie in [0, π ]. For z ∈W ′,
arg(z− 1)+ (cn− 1) arg z≥ cn arg z≥ cn(π − ε1).

Since b is in the support of dF , the strong law implies that, almost surely, at least
a positive fraction η of the −1/rj lie in the interval [ξ − ε/2, ξ ] for sufficiently
large n. The contribution of these terms (and nonnegativity of the others) in the
following sum provides a lower bound valid for z ∈W ′:

α

n

n∑
j=1

arg(1+ rj z)≥ αη(π − ε1).

Hence, for z ∈W ′,
#σn(z)≥ αη(π − ε1)+ cn(π − ε1)= (αη+ cn) (π − ε1) > cnπ,
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if ε1 is chosen to be small enough. Therefore,C−n is disjoint from the wedgeW ′ for
sufficiently small ε1. By symmetry, C−n is disjoint from the reflection of W ′ over
the imaginary axis. We have shown that the curve is also disjoint fromD(ξ, ε) and
the union of the disc and the two wedges contains a wedge of the form described
in the statement of the lemma.

This establishes the statement of the lemma concerning C−n . Since C+n is to the
“right” of C−n (it begins to the right and they cannot cross), the statement for C+n
follows automatically. �

In the following lemma σ0 denotes the function σ associated with the
distribution F ,

σ0(z)= α〈log(1+ rz)〉 + log(z− 1)+ (c0 − 1) log z

and

g0 = |u0|−1{1
2σ

′′′
0 (u0)

}−1/3
.

LEMMA 3.5. Almost surely, zσ ′n(z)→ zσ ′0(z) uniformly outside the wedgeW
of Lemma 3.4.

PROOF. We have

zσ ′n(z)− zσ ′0(z)= α
∫

rz

1+ rz d(Fn(p)− F(p))+ cn − c0

= α
∫ b/(1−b)

0
(Fn(p)− F(p)) z

(1+ rz)2 dr + cn− c0.

The last term goes to 0 by Lemma 3.3. The last factor in the integrand is uniformly
bounded for r ∈ (0, b/(1 − b)), z /∈ W and z bounded. Thus zσ ′n(z)→ zσ ′0(z)
uniformly on bounded subsets of the complement of W . If z is sufficiently large
and outsideW , then it is outside some wedge with vertex 0 bisected by the negative
real axis, and on the complement of any such wedge∫ b/(1−b)

0

|z|
|1+ rz|2 dr

is uniformly bounded. Thus zσ ′n(z)→ zσ ′0(z) uniformly throughout the comple-
ment of W . �

The preceding lemmas show that the curves C±n are uniformly smooth, as we
now argue. The function σ ′0(z) can have no other zero in the complement of
(−∞, ξ) than at z = u0. This follows from uniform convergence and the fact
that the corresponding statement holds for the σn(z). Thus the functions σ ′n(z) are
uniformly bounded away from zero on compact subsets not containing u0. As we
move outward (i.e., away from un) along C±n , #σ is constant and$σ is increasing
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on C−n and decreasing on C+n . It follows that if s measures arc length on the curves,
then, for z ∈C±n ,

dz

ds
=∓|σ

′
n(z)|
σ ′n(z)

.(3.7)

This shows that the C±n are uniformly smooth on compact sets (to be more
precise, the portions in the upper and lower half-planes are). Moreover, they
are uniformly close on compact sets to the corresponding curves C±0 for the
distribution function F . In particular, the length of C+n is O(1).

To see what happens for large z on C−n observe that

lim
z→∞ zσ

′
n(z)= α+ cn > 0

uniformly in n. This and (3.7) show that |z| is increasing as we move far enough
out along C−n . If E is an arc of C−n going from a to b, then∫

E
|σ ′n(z)|ds =

∫
E
σ ′n(z) dz= σn(b)− σn(a).

Hence the length of E is at most |b− a| times

maxz∈[a,b] |σ ′n(z)|
minz∈E |σ ′n(z)|

,

where [a, b] is the line segment joining a and b, as long as this segment does not
meet (−∞, ξ). It follows from the above, for example, that the L1 norm of the
function (1+ |z|2)−1 on C−n is O(1).

In [10] we needed asymptotics with error bounds for all j, k ≤ h and this
required a more careful analysis of the integrals in (3.1) and (3.2) than we
indicated; instead of the steepest descent curves passing through the same point
they pass through different, but nearby, points. With what we now know we can
show that these curves are uniformly smooth with uniformly regular behavior near
infinity, and this is what is needed to see that in our case the asymptotics hold
uniformly in n.

LEMMA 3.6. Almost surely, gn→ g0 �= 0 and (3.6) holds.

PROOF. The first statement follows from Lemmas 3.3 and 3.5 and the fact
that the σ ′n(z) have only two zeros outside (−∞, ξ ] counting multiplicity, and
therefore σ ′′′(u0) �= 0.

To establish (3.6), one now has to go through the steepest descent argument
in [10], Section 3.1.2, and make some obvious changes, justified by the results of
this section. For the analogue of Lemma 3.1 there, for example, we would add the
phrase “and all sufficiently large n” to the end of the statement. At the end of the
second sentence of the proof we would add the phrase “since σ ′′′n (un) is uniformly
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bounded away from zero the length of C+n is O(1).” After the last sentence we
would add “again since the length of C+n is O(1).” Analogous changes need to be
made throughout the argument and we skip further details. �

PROOF OF THEOREM 3. By Lemma 3.6, we can take Gn = cnm. �

PROOF OF THEOREM 2. Note first that

τ 2 =Var
(

ru0

1+ ru0

)
,

where u0 is as in Lemma 3.2 (and, as we remarked earlier, c0 = c).
The proof rests on the crucial property (3.6) and the fact that n1/2(Fn− F)

converges in distribution to a Brownian bridge B with an appropriate covariance
structure; in particular B is a Gaussian random element in D[0,1] ([5], Theo-
rem 14.3). By the Skorohod representation theorem, we can couple Fn and B on
some probability space &0 so that

n1/2(Fn − F)→ B(3.8)

in fact converges for every ω ∈&0 ([5], Theorem 6.7). We now prove that, under
this coupling, the solution un of (3.4) satisfies

un = u0 + n−1/2U + o(n−1/2),(3.9)

for every ω and for some Gaussian random variable U .
To establish (3.9), define

θn(u)= α
〈

r

(1+ ru)2
〉
Fn

− 1

(u− 1)2
,

θ0(u)= α
〈

r

(1+ ru)2
〉
− 1

(u− 1)2
.

By Lemma 3.6 and its proof, there exists a (deterministic) neighborhood U ⊂ C
of u0 in which, with probability 1, un (resp. u0) is for large n the unique solution
to θn(u)= 0 [resp. θ0(u)= 0]. Therefore we can choose a fixed contour C in U
such that un and u0 are given by

un = 1

2πi

∫
C

θ ′n(u)
θn(u)

udu, u0 = 1

2πi

∫
C

θ ′0(u)
θ0(u)

udu.

By (3.8), we have, uniformly for u ∈C,

θn(u)= θ0(u)+ n−1/2α

〈
r

(1+ ru)2
〉
B

+ o(n−1/2).

Here 〈 · 〉B is the expectation with respect to dB , but by integration by parts (as in
the proof of Lemma 3.3) we can make B appear in the integrand. Therefore

θ ′n(u)
θn(u)

= θ
′
0(u)

θ0(u)
+ n−1/2α

d

du

〈r/(1+ ru)2〉B
θ0(u)

+ o(n−1/2).



1366 J. GRAVNER, C. A. TRACY AND H. WIDOM

If we multiply this identity by u/2πi and integrate over C the left-hand side
becomes un; the first term on the right-hand side becomes u0 while the second
term becomes n−1/2U , where

U =−α 〈r/(1+ ru0)
2〉B

θ ′0(u0)

is a Gaussian random variable. This proves (3.9).
Let

ϕn(u)= 1

1− u − α
〈

r

1+ ru
〉
Fn

,

so that cn = ϕn(un). We claim that

cn = ϕn(u0)+O(n−1).(3.10)

To see this, we use the fact that ϕ′n(un)= 0 to write

cn = ϕn(un)= ϕn(u0)+ (un− u0)
2
∫ 1

0
tϕ′′n

(
tun + (1− t)u0

)
dt.

Thus, (3.10) follows from (3.9) and the uniform boundedness of the φ′′n(u) near
u= u0.

Now, by the central limit theorem,

√
n

(
1

n

n∑
j=1

rju0

1+ rju0
−
〈
ru0

1+ ru0

〉)

converges in distribution to a Gaussian random variable X with mean 0 and
variance τ 2. Therefore,

√
n(cn− c0)

d→ αX.(3.11)

Finally, (3.6) implies that, for any δ > 0,

P (−δm1/2 ≤H − cnm≤ δm1/2)→ 1.(3.12)

[In fact, (3.6) implies that the above statement holds with probability 1 before the
expectation with respect to p1, . . . , pn is taken, that is, if H is replaced by Hn.] It
follows from (3.11) and (3.12) that

(H − c0m)/
√
m

d→√
αX,

which concludes the proof. �

REMARK 1. We did not need the full force of (3.6) for the above proof to go
through. Instead, a much weaker property (3.12) suffices.
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REMARK 2. As mentioned in the Introduction, independence of pn is not
necessary for the results of this section to hold. Indeed, one only needs the
Glivenko–Cantelli theorem for convergence in probability of H/m to the time
constant; hence ergodicity of p1,p2, . . . is enough. Furthermore, a strong enough
mixing property of this sequence is sufficient for a normal fluctuation result. This
follows from Billingsley’s results in Section 22 of the first (1968) edition of [5].

REMARK 3. We assumed that α = n/m is fixed, but the proof of Theorem 2
remains valid with n= αm+ o(√m).
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