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STATIONARY BLOCKING MEASURES FOR ONE-DIMENSIONAL
NONZERO MEAN EXCLUSION PROCESSES

BY MAURY BRAMSON1 AND THOMAS MOUNTFORD2

University of Minnesota and University of California, Los Angeles

The product Bernoulli measures ρα with densities α, α ∈ [0,1], are the
extremal translation invariant stationary measures for an exclusion process
with irreducible random walk kernel p(·). In d = 1, stationary measures that
are not translation invariant are known to exist for specific p(·) satisfying∑
x xp(x) > 0. These measures are concentrated on configurations that are

completely occupied by particles far enough to the right and are completely
empty far enough to the left; that is, they are blocking measures. Here, we
show stationary blocking measures exist for all exclusion processes in d = 1,
with p(·) having finite range and

∑
x xp(x) > 0.

1. Introduction. The exclusion processes constitute one of the main families
of stochastic processes in the area of interacting particle systems. Introduced in
Spitzer (1970), these processes have been the object of much study; numerous
references are provided by Liggett (1985), Liggett (1999) and Kipnis and Landim
(1999). The exclusion process η. = (ηt )t≥0, with random walk kernel p(·), is a
continuous time Markov process on {0,1}Z

d
. A configuration η ∈ {0,1}Z

d
is said

to be occupied by a particle at x if η(x) = 1, and is empty (or vacant) at x if
η(x) = 0; we employ the convention of identifying η with the set of its occupied
sites. A particle moves from an occupied site x to an empty site y at rate p(y− x).
When the site y is already occupied, such a particle remains at x; there is always
at most one particle at a given site. The exclusion process η. is formally defined as
the Feller process on {0,1}Z

d
, with generator

f (η)= ∑
x,y∈Zd

(
f (ηxy)− f (η)

)
p(y − x)η(x)

(
1 − η(y)

)

for cylinder functions f , where

ηxy(x)= η(y), ηxy(y)= η(x) and ηxy(z)= η(z) for z 
= x, y.

A basic problem is the characterization of stationary measures for exclusion
processes. Assume that the random walk kernel p(·) is irreducible; that is, for each
x ∈ Z

d , p(n)(x) > 0 for some n ∈ Z
+. It is well known that the product Bernoulli
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measures ρα with densities α, α ∈ [0,1], at each site are the extremal translation
invariant stationary measures for the process. When the kernel p(·) is symmetric,
there are no nontranslation invariant stationary measures. In d = 1, the condition

on the mean µ
def= ∑

x xp(x) = 0 also ensures that there are no nontranslation
invariant stationary measures. [These results and those in the next paragraph are
given in Liggett (1975, 1985).]

Reversible random walk kernels provide a tool for constructing nontranslation
invariant stationary measures. When the kernel p(·) is reversible with respect to
a measure π(·), the corresponding exclusion process is reversible with respect to
the product measure ρα(·), with

α(x)= π(x)

1 + π(x)
.(1.1)

In particular, when d = 1 and p(1) > p(−1) > 0, with p(x) = 0 for |x| 
= 1, the
measures ρα(·), with π(·) in (1.1) given by π(x)= (p(1)/p(−1))x , are stationary.
By applying Borel–Cantelli, it follows that ρα(·) is supported on configurations η
with η(x)= 0 for small enough x and η(x)= 1 for large enough x. The existence
of such stationary measures is not surprising: the drift of the underlying random
walk causes particles to be typically “close” to the rightmost positions possible,
with particles scattered further to the left because of random fluctuations in their
motion.

It is easy to see that, for d = 1, the countable set of configurations

�=
{
η :
∑
x<0

η(x)=∑
x≥0

(
1 − η(x)

)
<∞

}
(1.2)

is invariant for any exclusion process with
∑
x xp(x) > −∞. Measures on the

union of � and its translates are referred to as blocking measures. Since the
evolution of η. on different translates is analogous, we consider just �. Suppose
that η0 ∈ � and p(·) is given by the example from the previous paragraph. The
existence of the stationary measure ρα(·) implies that η. is positive recurrent when
viewed as a Markov chain on�. Conversely, it is not difficult to show that when η.
is positive recurrent on � for a given p(·), then η. has a stationary blocking
measure.

The last observation provides a method for establishing the existence of
nontranslation invariant stationary measures, in d = 1, for a given exclusion
process with µ > 0. (The case µ < 0 follows by mapping x to −x.) In Ferrari,
Lebowitz and Speer (2001), it was shown that when two random walk kernels p(·)
and p(·) satisfy

p(x)≥ p(y) for all x ∈ (0, y] and p(y)≤ p(x) for all x ∈ [y,0),(1.3)

for all y ∈ Z, then the existence of a stationary blocking measure for the process η.
corresponding to p(·) implies the existence of a stationary blocking measure for
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the process η. corresponding to p(·). [The condition (1.3) enables one to couple η.
and η. so that if the particles of η0 are to the right of the corresponding particles
of η0, then the particles of ηt remain to the right of ηt for all t .] The set of
kernels p(·) known to have stationary blocking measures is, however, limited.
[Ferrari, Lebowitz and Speer (2000) mention p(x)= βxp(−x), with β > 1, which
is obtained by employing (1.1).]

For general nonreversible p(·), with µ > 0, “bad” configurations on � can
induce a temporary drift of particles to the left. This occurs, for instance, when
p(2)= p(−1) > 0 and p(x)= 0 otherwise, at the configurations where η(x) = 0
for x < −J , η(x) = 1 for x ≥ J , and η(x) = 1 at even sites and η(x) = 0 at odd
sites in [−J,J ), for J ∈ Z

+. In order to show η. is positive recurrent on � for
these p(·), one needs to control the effect of such bad configurations, presumably
without recourse to explicit calculation. A hydrodynamic limit from Rezakhanlou
(1991) will provide an important tool for such an approach.

Our goal in this paper is to demonstrate the existence of a stationary blocking
measure whenever the kernel p(·) has finite range and µ> 0.

THEOREM 1.1. Assume that η. is an exclusion process whose random walk
kernel p(·) has finite range and mean µ > 0. Then there exists a stationary
measure for η. which is supported on �.

If it is also assumed that p(·) is irreducible, then there are no other nontrans-
lation invariant stationary measures for η. besides those supported on � and its
translates. This is shown in Bramson, Liggett and Mountford (2002). Analogous
results were shown in Liggett (1976) for the nearest neighbor kernel p(·) given
after (1.1).

When η0 ∈� and p(·) is supported on Z
+, ηt has a pathwise limit as t → ∞,

which is obviously stationary. Also, the case where p(·) is supported on mZ,
m ∈ Z

+, reduces to the case where p(·) is supported on all of Z. So, to show
Theorem 1.1, it is enough to consider only irreducible p(·). The theorem follows
quickly from the following result. Here, ηN. , N ∈ Z

+, denotes the Markov chain
on � given by ηNk = ηkN for k = 0,1,2, . . . and ηN0 ∈�.

THEOREM 1.2. Assume that η. is an exclusion process for which

the random walk kernel p(·) is irreducible, with finite
range and mean µ> 0.

(1.4)

Then, for some N , the process ηN. is positive recurrent on �.

PROOF OF THEOREM 1.1 ASSUMING THEOREM 1.2. We may assume that
p(·) satisfies (1.4) because of the above discussion. Let νN be the stationary
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measure on � for ηN. , where N is chosen as in Theorem 1.2. Also, let νN be
the measure defined by

Eν
N [�(η0)] = 1

N

∫ N

0
Eν

N [�(ηt )]dt(1.5)

for bounded continuous functions �. That is, νN is the average of νN and its
translates over [0,N ] according to η.. Then, νN is supported on �, and is
stationary for η.. �

In order to demonstrate Theorem 1.2, we apply Foster’s Criterion with an
appropriate Lyapunov function h. For η ∈�, let

L(η)= min{x :η(x)= 1} and R(η)= max{x :η(x)= 0}.(1.6)

We choose h= f + g, where

f (η)= −∑
x<0

xη(x)+∑
x≥0

x
(
1 − η(x)

)
(1.7)

and

g(η)= σN
((
L(η)+ βN

)− + (R(η)− βN
)+)(1.8)

for η ∈ �. The constants β and σ , which satisfy 0 < β−1 � σ � 1, will be
specified in Section 6.

THEOREM 1.3. Assume that η. is an exclusion process which satisfies (1.4).
Then, for appropriate N ∈ Z

+, β > 0 and σ > 0, E[h(ηN)] <∞ for all η0 ∈ �.
If, in addition, η0 ∈G for an appropriate G where Gc is finite, then

E[h(ηN)] − h(η0)≤ −σµN2/12.(1.9)

[The set G is given in (6.24).]
For irreducible p(·), all states of� communicate under η., and hence under ηN. .

This is straightforward to show but is a bit tedious, so we omit the details. (The
basic idea is that, with positive probability, one can move a finite number of
particles as far to the left of 0 as desired, with the remaining particles forming
a single block of occupied sites to infinity. One by one, these particles to the left
of 0 can then be specified to move along prescribed paths until reaching their
desired positions, with all other particles in the meantime remaining immobile.)
Theorem 1.2 immediately follows from Theorem 1.3, Foster’s Criterion and this
observation. The rest of the paper will be devoted to demonstrating Theorem 1.3.

In the remainder of this section, we motivate the reasoning behind Theorem 1.3
and summarize the contents of the remaining five sections. We first note that the
function f in (1.7) is a reasonable first guess for a Lyapunov function, since it
will decrease when particles move freely. There are certain configurations in G,
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however, for which our bound on E[f (ηN)] − f (η0) will be slightly positive.
In these configurations, either the leftmost particle or rightmost hole (i.e., empty
site) will be close to only a few other particles or holes, which will imply that
E[g(ηN)] − g(η0) is negative. It will follow that the perturbation of f by g given
by h= f + g satisfies (1.9) on G.

In order to demonstrate Theorem 1.3, we partition Z, using η0, into intervals
which have length of order N , except for the semi-infinite intervals on the left and
right. These partitions include intervals of two basic types, where either

there are both of order N particles and N empty sites(1.10)

or

either particles or holes dominate.(1.11)

In Sections 2–5, we will provide the machinery for decomposing η. into different
exclusion processes ηi. , with each ηi0 corresponding to one of these intervals,
and analyzing the evolution of ηi. . In Section 6, we apply these results to obtain
Theorem 1.3.

Propositions 2.1 and 2.2 are the two main results of Section 2. Proposition 2.1
says, in essence, that one can change η0 at a relatively small number of sites
without affecting ηt very much if t is not too large. (The two processes will
typically remain the same except within a linearly increasing distance of the
changes.) In particular, this enables us to change η0 on the “boundaries” of
the intervals in (1.10) and (1.11) to all 1’s or all 0’s, without affecting ηN too
much. [These “boundaries” will be intervals of length of order N , which are,
however, comparatively short relative to the intervals in (1.10) and (1.11).] The
exclusion process η′

. thus obtained from η. can be decomposed into exclusion
processes ηi. corresponding to these different intervals, with ηi0(x) = η0(x) on
the corresponding interval and ηi0(x) constant on each side outside the interval.
It follows from Proposition 2.2 that the error introduced by doing this is small at
time N . (The “boundaries” are long enough to typically prevent the “influence”
of sites inside an interval from spreading outside the interval, and to prevent the
“influence” of sites outside the interval from spreading inside the interval.) The
results in Propositions 2.1 and 2.2 are based on elementary large deviation bounds
of random walks.

Proposition 4.1 provides the main estimates required for the exclusion pro-
cesses ηi. corresponding to the intervals in (1.10) possessing both of order N par-
ticles and N empty sites. It gives lower bounds on the average movement to the
right of particles by time N , when low density subintervals lie immediately to the
right of high density subintervals. Sections 3 and 4 are devoted to the demonstra-
tion of Proposition 4.1. The proposition relies heavily on a hydrodynamic limit
from Rezakhanlou (1991), which says that, in the scaling limit, the density of par-
ticles u(t, x) for the exclusion process evolves as an entropy solution of Burger’s
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equation

∂u

∂t
+µ

∂(u(1 − u))

∂x
= 0.(1.12)

Estimates on solutions of (1.12) under appropriate initial data therefore provide
the desired drift of particles to the right. (We will, in practice, employ a variant of
this approach.) Rezakhanlou’s result is stated for processes with initial states given
by product measure. To apply it to our setting with deterministic initial states ηi0,
we need the large deviation bounds on pathwise coupling given in Proposition 3.1,
which compare the evolution of a pair of exclusion processes 1η. and 2η. having
different initial states. Section 3 is devoted to this result.

Propositions 5.1 and 5.2 provide the main estimates required for the exclusion
processes ηi. corresponding to the intervals in (1.11) where either particles or holes
dominate. Intuitively, when there are few particles, the motions of the different
particles should not interfere much with one another, and the positive drift of the
underlying random walk kernel p(·) should be largely retained by the particles
of ηi. . (Analogous behavior will hold where there are few holes, with holes drifting
to the left.) Propositions 5.1 and 5.2 state such results, with Proposition 5.1
addressing the position of the leftmost particle at time N and Proposition 5.2
addressing the average drift of the particles.

Section 6 employs the results of Sections 2–5 to demonstrate Theorem 1.3. The
section is divided into three parts. We first introduce heterogeneous, homogeneous
and boundary intervals. The first two types of intervals correspond to the intervals
described in (1.10) and (1.11). The boundary intervals are the relatively short
intervals in between these intervals, where one changes η0 to all 1’s and all 0’s
to obtain η′

0.
We next provide upper bounds for E[f (ηN)] − f (η0). In Proposition 6.1, this

is done for the case where η0 contains at least two heterogeneous intervals, and in
Proposition 6.2, for the case where η0 contains a unique heterogeneous interval.
(Since η0 ∈ �, η0 will always contain at least one heterogeneous interval.) The
bound for the first case will be negative; that for the second case may or may not
be, depending on the location of the heterogeneous interval.

We then provide upper bounds for E[g(ηN)] − g(η0). The elementary bound in
Lemma 6.2 always holds, and suffices for our bound in (1.9) on E[h(ηN)]−h(η0),
except when the bound on E[f (ηN)] − f (η0) in Proposition 6.2 is positive.
Proposition 6.3 is instead employed in the latter case, and also produces the bound
in (1.9). These last steps are combined in Proposition 6.4, which is a more explicit
version of Theorem 1.3.

2. Bounds on
∑

x x(ηt (x) − η0(x)). Pairs of exclusion processes that have
the same initial state at “most" sites should evolve similarly. Comparisons of this
nature will be employed in Section 6, where the exclusion process is broken into
a number of “pieces,” each of which has been modified at its ends. Propositions 2.1
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and 2.2 provide the needed tools. In this section we also demonstrate elementary
inequalities in Lemmas 2.1 and 2.2. We begin with certain preliminaries.

An exclusion process can be constructed from a Harris system consisting of
a system of independent Poisson point processes N x,y , x, y ∈ Z, with rates
p(y − x) corresponding to the underlying random walk. One stipulates that if at
t ∈ N x,y , ηt−(x) = 1 and ηt−(y) = 0, then ηt (x) = 0 and ηt (y) = 1, with there
otherwise being no change in η.. That is, at t ∈ N x,y , “a particle tries to move
from site x to site y.” The filtration {Ft , t ≥ 0} for the process will be the natural
filtration associated with the whole Harris system, together with any information
about initial configurations of processes we consider.

Different priority schemes among particles can be employed when a particle
tries to move to a site already occupied by another particle. Unless specified
otherwise, particles will be assumed not to move to occupied sites (and displace
other particles). In some settings, particles will be assigned a priority, such as when
they are coupled with particles of another exclusion process (as in Section 3) or
based on their initial location (as in Sections 4 and 5). The priority scheme does
not affect η. since it involves just a reidentification of particles. In Section 3,
the labelling of particles will require a larger filtration {Gt , t ≥ 0}, where Gt is
generated by Ft and certain independent random variables. Stopping times τ will
be with respect to Ft or Gt , depending on the context.

We will need to extend the state space � considered in the introduction to
�∞ = ⋃

J �J , J ∈ Z
+, where �J consists of the configurations η ∈ {0,1}Z for

which η is constant to the left of [−J,J ] and is constant to the right of [−J,J ].
Unless stated otherwise in the paper, the initial configuration η0 will be assumed to
be nonrandom. Results in the paper will typically be phrased in terms of the motion
of particles. A standard trick is to interchange 0’s and 1’s in ηt . The process thus
obtained is an exclusion process with random walk kernel p̃(x)= p(−x). Hence,
analogous results will also hold for the motion of holes, and will be employed
when appropriate.

In this section we will employ processes X., with Xt ∈ Z, having the property
that

X. can move from x to y at time t only if t ∈ N x,y or t ∈ N y,x(2.1)

(althoughX. is not obligated to move at these times). This property will be satisfied
by certain labelled particles and holes. The following elementary lemma holds for
such processes; its proof is immediate. We set p̄(x)= p(x)+ p(−x).

LEMMA 2.1. Assume that the process X. satisfies (2.1). Then, there exists
a nondecreasing random walk Z. on Z, with Z0 = 0, which jumps from x to y,
y > x, at rate p̄(y − x), so that |Xt −X0| ≤ Zt for all t .

A similar inequality allows us to compare two exclusion processes which are
initially equal on a half line. For this, we set ν =∑

x>0(p̄(x)
∑x
y=1 y) and choose
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the integer M so that M > (2ν) ∨ 1; note that M > 2|µ|. This choice of M
will remain fixed in the paper. Also, throughout the remainder of the paper, we
will implicitly assume that the random walk kernel p(·) has finite range. We will
frequently employ c > 0 and C to denote constants that can vary from line to line.

LEMMA 2.2. Let 1η. and 2η. be two exclusion processes generated by

the same Harris system, with 1η0(x) = 2η0(x) for x ∈ (0,∞). Then, Dt
def=

sup{x : 1ηt (x) 
= 2ηt (x)} is dominated by a nondecreasing random walk Z., with
Z0 = 0, which jumps from site x to site y, y > x, at time t exactly when t ∈
N w,y or t ∈ N y,w for some w ≤ x. Moreover, there exist c > 0 and C so that
for l ≥ 0 and all t ,

P

(
sup
s≤t

Ds ≥ Mt

2
+ l

)
≤ Ce−c(t+l).(2.2)

PROOF. The first part of the lemma, that Dt ≤ Zt , is immediate. Since Z. has
bounded increments and drift ν, (2.2) follows from the first part and standard large
deviations result. �

When η0(x)= 1 for x ∈ (0,∞), one has as a special case of (2.2), that for �≥ 0
and all t ,

P

(
max
s∈[0,t]R(ηs)≥ Mt

2
+ l

)
≤ Ce−c(t+l).(2.3)

This, of course, implies that E[[R(ηt )]+] ≤Mt for such η0 and large enough t .
Analogs of Lemma 2.2 and (2.3) hold when 1η0(x) = 2η0(x) for x ∈ (−∞,0)
instead of x ∈ (0,∞), and when η0(x)= 0 for x ∈ (−∞,0) instead of η0(x)= 1
for x ∈ (0,∞). These results are obtained from Lemma 2.2 and (2.3) by
interchanging 0’s and 1’s for ηt . We also note that the same exponential estimates
as in (2.2) hold for the random walk Z. from Lemma 2.1, since this random walk
has drift at most ν.

Let S1, S2, . . . , Sm be a finite sequence of finite disjoint intervals on Z which
are ordered from left to right, let q(·) be a function with q : {1, . . . ,m} → {0,1},
and η0 ∈�∞. We define ηq0 such that

η
q
0 (x)=



η0(x), for x /∈⋃

i

Si ,

q(i), for x ∈ Si ,
(2.4)

and denote by ηq. the exclusion process with this initial state. Of course, η0 ∈�∞
implies that ηq0 ∈�∞.

In Proposition 2.1, we compare E[∑x x(ηt (x)− η0(x))] with E[∑x x(η
q
t (x)−

η
q
0 (x))]. Using Lemma 2.1, we show that the difference can only increase linearly

in time and proportionally to the cardinality of {x :η0(x) 
= η
q
0 (x)}.
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PROPOSITION 2.1. For a given η0 ∈ �∞, let ηq0 be as in (2.4). Then, the
exclusion processes η. and ηq. satisfy∣∣∣∣∣E

[∑
x

x
(
ηt (x)− η0(x)

)]−E

[∑
x

x
(
η
q
t (x)− η

q
0 (x)

)]∣∣∣∣∣
≤ Mt

2

∣∣{x : η0(x) 
= η
q
0 (x)

}∣∣
(2.5)

for all t .

PROOF. Assume that the exclusion processes η. and ηq. are generated by
the same Harris system. At time 0, we refer to those sites where η

q
0 (x) <

η0(x) as positive discrepancies and those sites where ηq0 (x) > η0(x) as negative
discrepancies. One can check that, as time evolves, a discrepancy moves from x

to y at t ∈ N x,y , if the corresponding process does not already occupy y, and
a discrepancy moves from x to y at t ∈ N y,x if both processes already occupy y.
When two discrepancies meet, they disappear. Note that at sites x where there is
no discrepancy, ηqt (x)= ηt (x).

Denote byXkt , t ≥ 0, the process corresponding to the discrepancy initially at k,
if it exists; we continueXk. after the discrepancy disappears by keeping its position
fixed. Also, let K+ and K− denote the index sets of the positive and negative
discrepancies. It is easy to check that for s ≥ 0,∑

x

x
(
ηs(x)− ηqs (x)

)= ∑
k∈K+

Xks − ∑
k∈K−

Xks .

Substituting in s = 0 and s = t , it follows that∑
x

x
(
ηt (x)− η0(x)

)−∑
x

x
(
η
q
t (x)− η

q
0 (x)

)
= ∑
k∈K+

(Xkt −Xk0)−
∑
k∈K−

(Xkt −Xk0).
(2.6)

(Since η0, η
q
0 ∈ �∞, each summand on the left-hand side has only finitely many

nonzero terms.) Each Xk. satisfies (2.1) and the random walk Z. in Lemma 2.1
has drift at most ν. The bound in (2.5) therefore follows upon taking expectations
in (2.6) and applying the lemma. �

In Proposition 2.2, we estimate E[7xx(ηt (x) − η0(x))] by the sum of the
expectations of a finite number of exclusion processes ηi. , each having an
appropriately restricted initial state. In Lemmas 2.3 and 2.4, we first handle
simpler η0, which we then combine in Proposition 2.2.

For integers x1 and x2 with x1 ≤ x2 − 2MN, N ∈ Z
+, set H = [x1, x2), and let

η0 ∈�∞. We introduce the process ζH. generated by the same Harris system as η.,
such that ζHt (x)= 1 when a particle of η., which was originally in H , is at site x
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at time t . Clearly, ζHt ⊂ ηt for all t . We index such particles by k, for k ∈ ζH0 , and

write Xζ,kt for the position of such a particle at time t . Then, ζHt (x) = 1 exactly

when Xζ,kt = x for some k ∈ ζH0 . Note that the process ζH. is not an exclusion
process, or, typically, even Markov.

We also introduce the exclusion process ηH. generated by the same Harris
system as η., with ηH0 (x) = η0(x) for x ∈ H , ηH0 (x) = v1 for x < x1 and
ηH0 (x)= v2 for x > x2, where v1 and v2 are the values taken by η0 at x1

and x2. We index the corresponding particles by k, for k ∈ ηH0 , and write Xη,kt
for their positions at time t . Note that ζH0 ⊂ ηH0 . Of course, ζH. and ηH. are
typically different processes. However, they behave similarly in the sense of (2.9)
of Lemma 2.3 below, when it is assumed that η0 is constant on each of the intervals
[x1 − MN, x1 + MN) and [x2 − MN, x2 + MN) (although η0 is not necessarily
constant on their union).

Since the proof of Lemma 2.3 is rather long, we present the basic idea first.
On [x1 − MN, x2 + MN), ηH0 (x) = η0(x). So, by Lemma 2.2, ηHt (x) = ηt (x) on
(Yt ,Zt ), where Y. and Z. are random walks which start from the boundaries of the
interval [x1 − MN, x2 + MN) and drift in. On (Yt ,Zt ), particles Xζ,k. and Xη,k. ,
k ∈ ζH0 , see the same environment, and so

X
ζ,k
N =X

η,k
N for k ∈ ζH0 ,(2.7)

if Xζ,kt ∈ (Yt ,Zt ) for t ≤N . Since ζH0 ⊂ [x1, x2), one has that |k − Y0| ≥ MN and
|k − Z0| ≥ MN , and so this holds with overwhelming probability. On the other
hand, for k /∈H , all sites of ηH0 within distance MN are either all occupied or all
vacant. Therefore, with overwhelming probability,

X
η,k
N =X

η,k
0 for k ∈ ηH0 \ζH0 .(2.8)

Employing (2.7) and (2.8) in conjunction with (2.10) below, we will obtain (2.9).

LEMMA 2.3. Let H , η0, ζH. and ηH. be chosen as above. Then,∣∣∣∣∣E
[∑
x

x
(
ζHN (x)− ζH0 (x)

)]−E

[∑
x

x
(
ηHN (x)− ηH0 (x)

)]∣∣∣∣∣≤ Ce−cN(2.9)

for some c > 0 and C not depending on N,η0 or H .

PROOF. We first verify that∣∣∣∣∣E
[∑
x

x
(
ζHN (x)− ζH0 (x)

)]−E

[∑
x

x
(
ηHN (x)− ηH0 (x)

)]∣∣∣∣∣
≤ ∑
k∈ζH0

E
[|Xζ,kN −X

η,k
N |]+ ∑

k∈ηH0 \ζH0
E
[|Xη,kN −X

η,k
0 |].(2.10)
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To see this, note that∑
x

x
(
ζHN (x)− ζH0 (x)

)= ∑
k∈ζH0

(X
ζ,k
N −X

ζ,k
0 )

and ∑
x

x
(
ηHN (x)− ηH0 (x)

)= ∑
k∈ηH0

(X
η,k
N −X

η,k
0 ).

Since ζH0 ⊂ ηH0 , it follows that∑
x

x
(
ζHN (x)− ζH0 (x)

)−∑
x

x
(
ηHN (x)− ηH0 (x)

)

= ∑
k∈ζH0

(X
ζ,k
N −X

η,k
N )− ∑

k∈ηH0 \ζH0
(X

η,k
N −X

η,k
0 ).

Taking expectations implies (2.10).
The remainder of the proof consists of bounding the summands in (2.10) by

reasoning along the lines of the above summary. For this, we introduce boundary
processes Y. and Z. as follows. Let Y. be the nondecreasing random walk, with
Y0 = x1 − MN − 1, that jumps from w to y, for y > w, at time t when t ∈ N x,y

or t ∈ N y,x for some x ≤w. Similarly, Z. is the nonincreasing random walk, with
Z0 = x2 + MN , that jumps from w to y, for y < w, at time t when t ∈ N x,y or
t ∈ N y,x for some x ≥w.

By (2.7), for any k ∈ ζH0 ,
{
X
ζ,k
t ∈ (Yt ,Zt ) for all t ∈ [0,N ]}⊂ {

X
ζ,k
N =X

η,k
N

}
.(2.11)

Suppose that k is distance r from Hc and hence distance MN + r from [x1 − MN,
x2 + MN)c . Lemma 2.2, with l = r/2, gives upper bounds on the probability of
either Y. or Z. reaching a site in [x1 −MN, x2 +MN), by time N , which is distance
greater than (M/2)N + r/2 from its initial position. But, the probability that the
displacement of the random walk Xζ,k. exceeds (M/2)N + r/2 over [0,N ] also
satisfies these bounds. It follows from this and (2.11), that for k ∈ ζH0 ,

P (X
ζ,k
N 
=X

η,k
N )≤ 4Ce−c(N+r/2)

for c > 0 and C not depending on k, r or N . Setting τk = inf{t :Xζ,kt 
=X
η,k
t }, the

above inequality may be written as

P (τk ≤N)≤ 4Ce−c(N+r/2).(2.12)

We need to bound how far apart Xζ,kN and Xη,kN on the average are on the event
τk ≤ N . For this we apply the strong Markov property to the coupled processes
(ηH. , ζ

H
. ) at time τk . After this time, eitherXζ,k. orXη,k. can only move from site x
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at time t− if t ∈ N x,y or t ∈ N y,x for some site y. So, applying Lemma 2.1 to the
motions of Xη,k. and Xζ,k. on the interval [τk,N ], we find that

E
[|Xζ,kN −X

η,k
N | ∣∣Fτk ]≤M(N − τk)+ |Xζ,kτk −Xη,kτk | ≤ MN + d ≤ 2MN

on the event {τk ≤ N}, for N ≥ d , where d is the magnitude of the largest jump
of p(·). It follows from this and (2.12), that

E
[|Xζ,kN −X

η,k
N |]≤ 8CMNe−c(N+r/2).(2.13)

Summing over k ∈ ζH0 gives

E


 ∑
k∈ζH0

|Xζ,kN −X
ζ,k
N |

≤ Ce−cN

for a new choice of c > 0 and C, which do not depend on N , η0 orH . This bounds
the first sum on the right-hand side of (2.10).

To bound the second sum on the right-hand side of (2.10), we use a similar
approach. First, supposeXη,k0 is to the right of intervalH . In this case, we consider
the nondecreasing random walk Y., with Y0 = x2 − MN − 1, that jumps from w

to y, for y >w, at time t when either t ∈ N x,y or t ∈ N y,x for some w ≥ x. Then,
as in (2.11), {

X
η,k
0 > Yt for all t ∈ [0,N ]}⊂ {

X
η,k
N =X

η,k
0

}
.

Suppose that site k is r sites to the right of H . By the comment after (2.3) on the
random walk Z.,

P (X
η,k
N 
=X

η,k
0 )≤ Ce−c(N+r)

for some c > 0 and C. Reasoning as through (2.13), one obtains from this, that for
k ≥ x2,

E
[|Xη,kN −X

η,k
0 |]≤ 2CMNe−c(N+r).

We get the same bounds for particles starting to the left of H . So, summing over
k ∈ ηH0 \ζH0 gives ∑

k∈ηH0 \ζH0
E
[|Xη,kN −X

η,k
0 |]≤ Ce−cN

for a new choice of c > 0 and C. This bounds the last sum in (2.10), which
concludes the proof of the lemma. �

In the material leading up to Lemma 2.3, we assumed that H is finite. We
now deal with semi-infinite intervals H , where H = (−∞, x1] or H = [x1,∞).
Suppose that η0 ∈�∞ is constant on [x1 − MN, x1 + MN). We define ζH. and ηH.
analogously to the case where H is finite, with ηH0 (x) = η0(x) for x ∈ H and
ηH0 (x) = η0(x1) for x /∈ H . The same arguments used to prove Lemma 2.3 can
also be used to show the following result.
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LEMMA 2.4. Let the semi-infinite interval H , η0, ζH. and ηH. be chosen as
above. Then,∣∣∣∣∣E

[∑
x

x
(
ζHN (x)− ζH0 (x)

)]−E

[∑
x

x
(
ηHN (x)− ηH0 (x)

)]∣∣∣∣∣≤ Ce−cN(2.14)

for some c > 0 and C, not depending on N , η0 or H .

Employing Lemmas 2.3 and 2.4, we estimate E[∑x x(ηN(x) − η0(x))] in
Proposition 2.2 for certain η0, by using exclusion processes ηi. with simpler initial
states. We start with a fixed sequence of disjoint intervals S1, S2, . . . , Sm on Z

which are ordered from left to right, where each Si has length 2MN. Assume
that η0 is constant on each Si , that is, for some q : {1,2, . . . ,m} → {0,1},

η0(x)= q(i) for x ∈ Si, i = 1,2, . . . ,m.(2.15)

Define intervals H2, . . . ,Hm such that Hi consists of the rightmost MN sites
of Si−1, the leftmost MN sites of Si and all sites in between these intervals; H1

and Hm+1 are the corresponding semi-infinite intervals. Along the lines of the
discussion preceding Lemma 2.3, we introduce the processes ζ i. and ηi. for the
same Harris system as η.. We set ζ it (x)= 1 whenever some particle of η., which
was originally in Hi , is at site x at time t ; ηi. denotes the exclusion process where
ηi0(x)= η0(x) for x ∈Hi , ηi0(x)= q(i−1) for x to the left ofHi and ηi0(x)= q(i)

for x to the right of Hi . The processes ζ i. are not exclusion processes, but satisfy

∑
x

x
(
ηN(x)− η0(x)

)=∑
i

(∑
x

x
(
ζ iN(x)− ζ i0(x)

))
.(2.16)

Together with Lemmas 2.3 and 2.4, (2.16) immediately implies the following
result. It will be used in conjunction with Proposition 2.1 in Section 6. [For such
applications, we note that since η0 is constant on Si−1 and on Si , an equivalent
definition for ηi0 is that ηi0(x) = η0(x) for sites in the interval Ji between Si−1

and Si , and ηi0(x) takes the values q(i − 1) and q(i) everywhere to the left and to
the right of Ji .]

PROPOSITION 2.2. Let η0 ∈ �∞ satisfy (2.15), and choose the exclusion
processes ηi. , i = 1,2, . . . ,m+ 1, as above. For some c > 0 and C not depending
on η0, N or Si ,∣∣∣∣∣E
[∑
x

x
(
ηN(x)−η0(x)

)]−
m+1∑
i=1

(
E

[∑
x

x
(
ηiN (x)−ηi0(x)

)])∣∣∣∣∣≤ C(m+1)e−cN .
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3. Bounds on
∑

x≥y(1ηt (x) − 2ηt (x)). In this section, we compare two
exclusion processes, 1η. and 2η., which are generated by the same Harris system
and have deterministic initial states. Setting φt(x) = 1ηt (x) − 2ηt (x), our main
result, Proposition 3.1, says that pathwise, supy

∑
x≥y φt(x) will not typically

increase much over time. For the exclusion processes j η. which are examined
in Section 4, this quantity will typically be small at t = 0. It will then follow
from Proposition 3.1 that this quantity will remain small over all times. Recall
that the kernel of the underlying random walk is assumed to have finite range. In
this section, we also assume it is irreducible.

PROPOSITION 3.1. Let j η., j = 1,2, be exclusion processes generated by
the same Harris system. Assume that j η0 ∈ �KN , with 1η0(x) = 2η0(x) for x /∈
[−KN,KN], and K,N ∈ Z

+. Then, for each γ > 0,

P

(
sup
y

∑
x≥y

φt(x)− sup
y

∑
x≥y

φ0(x) > γN

)
≤ Ce−cN(3.1)

for all t and N , and appropriate c > 0 and C, depending on K but not on N
or jη0.

Lemmas 3.2 and 3.3 are the main tools that are used to demonstrate Proposi-
tion 3.1. For Lemma 3.2, we use the following elementary inequality. The pro-
cesses j ηm. employed here are exclusion processes on the interval [0,m]. (That is,
the state is given by {0,1}[0,m], and particle jumps between [0,m] and [0,m]c are
suppressed.)

LEMMA 3.1. Let j ηm. , j = 1,2, be exclusion processes on [0,m] which are
generated by the same Harris system. Assume that

1ηm0 (0)= 1 − 2ηm0 (0)= 1 and 1η
m

0 (m)= 1 − 2ηm0 (m)= 0.

Then, there exists m0 so that for m≥m0,

P

(
m∑
x=0

∣∣1ηm1 (x)− 2ηm1 (x)
∣∣≤ m∑

x=0

∣∣1ηm0 (x)− 2ηm0 (x)
∣∣− 2

)
> 0.

The lemma says, in effect, that the Hamming distance between 1ηmt and 2ηmt
has a positive probability of decreasing by time 1 for corresponding realizations.
(As pointed out in the following discussion, the number of uncoupled particles will
never increase.) This result is proved in Mountford (2000). The argument relies on
the existence of a random walk path from 0 to m which lies entirely within [0,m],
if m is taken large enough. For the remainder of the section, we set m1 =m0 + d ,
where d is the magnitude of the largest jump of p(·).
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Consider exclusion processes 1η. and 2η. which are generated by the same
Harris system. We say that a particle of 1η. (2η.) is coupled at a given time if there
is an 2η. (1η.) particle currently at the same site; otherwise, we say it is uncoupled.
At each t ∈ N x,y , x, y ∈ Z, we will, when necessary, reidentify particles so that
coupled particles have priority over uncoupled particles; that is, coupled particles
can displace uncoupled particles, but not vice versa. It is easy to see that once
a particle is coupled, it remains so forever with the same companion.

For the remainder of the section, we will find the following labelling scheme
of 1η. particles useful. (We will not label 2η. particles; of course, one can reverse
the roles of the two processes if desired.) At time 0, each 1η. particle will be
assigned the label equal to its position. As time evolves, uncoupled particles will
exchange labels according to the rules given below, but coupled particles will keep
their labels. We will also talk in terms of coupled and uncoupled labels. Given
a label k, we will denote its position at time t by Y kt .

Relabelling occurs when: (a) An uncoupled 1η. particle moves from a site x to
a site y at time t , and it does not couple then. At this time, we reassign labels
for uncoupled particles on the interval [x, y] (or [y, x], if y < x), so that the
positions of these labels are in the same order at time t as at t−. (So, movement
of 1η. particles without coupling does not change the relative order of uncoupled
labels.) Note that an uncoupled 1η. particle may move because a coupled particle
jumps to its site; this may cause its label to change. (b) Coupling occurs at
a site y at time t . This can occur through the motion of either an uncoupled 1η.
particle or 2η. particle. The coupling proceeds in two stages. First, a label is
chosen uniformly from the labels of all uncoupled particles in [y −m1, y+m1] at
time t−, and is moved to y, where it is henceforth associated with the coupled 1η.
particle presently there. Second, after this choice, the remaining uncoupled labels
in [y − m1, y + m1] are reassigned to uncoupled 1η particles there, so that the
positions of these labels are in the same order at time t as at t−. [So, coupling
does not change the relative order of the remaining uncoupled labels. Together
with the corresponding comment in (a), this implies uncoupled labels are always
increasing from left to right.] In order to include the information needed for
relabelling, we will employ the filtration {Gt , t ≥ 0} generated by {Ft , t ≥ 0}
and the uniform random variables introduced in (b), when working with labelled
exclusion processes. We note that a label can only move from a site z to a site w at
time t , if, when no coupling occurs at time t ,

there are sites x and y with z,w ∈ [x, y] and t ∈ N x,y or t ∈ N y,x,(3.2)

or, when coupling occurs at time t at y,

z,w ∈ [y −m1, y +m1].(3.3)

For each label k, we will employ the following sequence of stopping times,
0 = S1 ≤ T1 ≤ S2 ≤ T2 ≤ · · · . If k is coupled at time Sn (Tn), set Tn = Sn
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(Sn+1 = Tn); that is, these times are equal from this point on. If k is uncoupled
at such a time, set

Tn = inf
{
t > Sn : at time t , a coupling occurs in [Y kt− −m1, Y

k
t− +m1]

or ∃ an uncoupled 2η. particle in [Y kt +m0, Y
k
t +m1]}

and

Sn+1 = inf
{
t > Tn : at time t, a coupling occurs in [Y k

t− −m1, Y
k
t− +m1],

or either t ∈ N x,y or t ∈ N y,x for x ∈ [Y kTn, Y kTn +m1]
and y ∈ [Y kTn, Y kTn +m1]c}.

Note that if k is uncoupled, then Sn+1 > Tn, but Tn = Sn is possible.
In Lemma 3.2, we will show that a given uncoupled label couples with at

least a certain probability over each interval [Tn,Sn+1], and in Lemma 3.3,
that

∑
x≥Y kt φt (x) cannot grow by much over [Sn,Sn+1]. The first event in the

definitions of Tn and Sn+1 is thus a “good” event, since it is connected with this
coupling. It will follow from Lemma 3.1 that the second event for Tn also allows
coupling with a certain probability, provided the second event in Sn+1 does not
occur too quickly.

LEMMA 3.2. Let j η., j = 1,2, be exclusion processes generated by the same
Harris system, and with arbitrary initial data j η0. Let Sn and Tn be defined as
above, and suppose that the label k has not coupled by time Sn, n ≥ 1. Then, for
some fixed c1 > 0 not depending on k,n or jη0,

P
(
label k couples in [Tn,Sn+1] | GSn

)≥ c1P (Tn <∞ | GSn).(3.4)

PROOF. We set D = {Tn <∞} and consider the behavior on the two events
defining Tn separately. The first event, which we denote by A, is easy to treat.
On A ∩ D, there is a first time t , t > Sn, at which coupling occurs at some
y ∈ [Y k

t− −m1, Y
k
t− +m1]. This t = Tn; the label k is uncoupled until then. Let V ,

V ≤ 2m1 + 1, denote the number of uncoupled 1η. particles in [y −m1, y +m1]
at Tn−. Since the label is chosen uniformly from uncoupled 1η. particles in the
interval,

P (k couples at Tn;A∩D | GSn)= E[1/V ;A∩D | GSn]
≥ 1

2m1 + 1
P (A∩D | GSn).

(3.5)

On Ac ∩D, there is an uncoupled 2η. particle at y ∈ [Y kTn +m0, Y
k
Tn

+m1] at
time Tn. The event B , where the second event in the definition of Sn+1 does not
occur by Tn + 1, has probability exp{−2

∑
x |x|p(x)}, and is independent of GTn .

We claim that, conditioned on Ac ∩B ∩D, the probability that a coupling occurs
within distancem1 of label k over [Tn,Tn+1] is at least c2, c2 > 0; we demonstrate
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this in the next paragraph. We also observe that, under the first event in Sn+1,
coupling automatically occurs within distance m1 of k. So, if coupling occurs
within distancem1 of k over [Tn,Tn+1], it will also occur on [Tn,Sn+1]. Together
with the above claim, a repetition of the reasoning leading to (3.5) will therefore
show that

P (k couples by Sn+1;Ac ∩B ∩D | GSn)
≥ c2

2m1 + 1
exp

{
−2
∑
x

|x|p(x)
}
P (Ac ∩D | GSn).(3.6)

Together with (3.5), this will imply (3.4).
We now show the claim. Conditional on the event B and on GTn , the pair

(1η., 2η.) restricted to the interval [Y kTn, Y kTn + m1] is a finite coupled exclusion
process on [Tn,Tn + 1]. Applying Lemma 3.1, with y = m, it follows that, for
a given configuration at time Tn, a coupling occurs by time Tn + 1 with positive
probability. Since there are only finitely many configurations on such an interval,
given GTn and B , the probability of a coupling there is at least c2, for some c2 > 0.

This coupling will be within distance m1 of label k if the label is still in
[Y kTn, Y kTn + m1] at this later time. To finish the proof, we therefore consider the
possibility that the label is outside the interval at the time of the coupling. UnderB ,
if k leaves the interval by time Tn + 1, the event in (3.2) cannot occur, and so (3.3)
must occur. However, this means that a coupling within distance m1 of k has
already occurred, which is the “good” first event of Sn+1. �

The events in Tn and Sn+1 also produce the bound in (3.7) on the growth
of
∑
x≥Y kt φt (x) over [Sn,Sn+1]. The basic idea is that the second event in the

definition of Tn restricts the number of uncoupled 2η. particles that can cross to
the left of Y k. over [Sn,Tn), whereas the second event in the definition of Sn+1
restricts the number of particles that can cross Y k. over (Tn, Sn+1). This provides
the boundsm0 andm1 on the growth of the left-hand side of (3.7) over these times;
the growth at the times Tn and Sn+1 is bounded by 2m1. Putting these bounds
together produces the bound in (3.7).

LEMMA 3.3. Let j η., j = 1,2, be exclusion processes generated by the
same Harris system. Assume that j η0 ∈ �J for some J , with 1η0(x) = 2η0(x)

for x /∈ [−J,J ], and that the label k has not coupled by time Sn. Then, for all
realizations and all t ∈ [Sn,Sn+1],∑

x≥Y kt
φt (x)−

∑
x≥Y kSn

φSn(x)≤ 6m1.(3.7)

PROOF. Checking all possibilities, it is not difficult to see that the most Y k.
can change at any point in time is m1 +d < 2m1. This will occur when the particle
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corresponding to k makes a maximal size jump d which results in coupling, and
then k moves an additional distance m1 due to relabelling. The integrand of the
first sum in (3.7) can increase (or decrease) at only one site due to a single jump.
The first sum in (3.7) can therefore increase by at most 2m1 at any point in time.

We treat the intervals [Sn,Tn] and [Tn,Sn+1] separately. We first consider the
behavior of the left-hand side of (3.7) on [Sn,Tn]. By the definition of Tn, Tn = Sn
if there is an uncoupled 2η. particle in [Y kSn +m0, Y

k
Sn

+m1]. So, we can assume
there are no such particles in this interval at time Sn. There are at most m0 − 1
uncoupled 2η. particles in [Y kSn, Y kSn +m0), and hence, under the above assumption,

at most m0 − 1 such particles in [Y kSn, Y kSn +m1] then.

One can check that, until time Tn, all uncoupled 2η. particles to the right of
Y kSn +m1 at time Sn will remain to the right of the label k until time Tn. This is
because m1 ≥m0 + d , and hence no such particles can leap over [Y kt +m0, Y

k
t +

m1], or, by (3.2), reappear on the left of the interval after the label k moves, for
t ∈ [Sn,Tn). (Since t < Tn, no coupling within distance m1 of k has occurred yet.)
It follows from this and the previous paragraph that, over [Sn,Tn), at most m0 − 1
uncoupled 2η. particles which are to the right of label k at Sn can cross to the left
over [Sn,Tn). Also, since the movement of 1η. particles without coupling does not
change the relative order of labels, uncoupled labels which are to the left of label k
at Sn will remain to the left over [Sn,Tn). Together, these last two observations
imply that for t ∈ [Sn,Tn), the left-hand side of (3.7) is at most m0 − 1. Since this
difference can increase by at most 2m1 at Tn, one gets that∑

x≥Y kt
φt (x)−

∑
x≥Y kSn

φSn(x)≤ 3m1(3.8)

for t ∈ [Sn,Tn].
We next consider t ∈ (Tn, Sn+1]. By (3.2) and the definition of Sn+1, Y kt ∈ [Y kTn ,

Y kTn +m1] for t ∈ (Tn, Sn+1). It also follows from the definition of Sn+1, that no 1η.
or 2η. particles have entered or left this interval over this time (although labels
other than k may leave, because of nearby coupling). So, at mostm1 −1 uncoupled
particles can cross Y kt over (Tn, Sn+1). This implies that∑

x≥Y kt
φt (x)−

∑
x≥Y kTn

φTn(x) <m1(3.9)

for t ∈ (Tn, Sn+1). Since this difference can increase by at most 2m at Sn+1, the
left-hand side of (3.9) is at most 3m1 for t ∈ (Tn, Sn+1]. Together with (3.8), this
implies (3.7). �

Combining Lemmas 3.2 and 3.3, we obtain the following result. Here, we let
Fk(t) denote the set where label k has not coupled by time t .
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PROPOSITION 3.2. Let j η., j = 1,2, be exclusion processes generated by the
same Harris system. Assume that jη0 ∈�J for some J , with 1η0(x)= 2η0(x) for
x /∈ [−J,J ]. Then, for each γ > 0,

P


 ∑
x≥Y kt

φt (x)−
∑
x≥Y k0

φ0(x) > γN;Fk(t)

≤ Ce−cN(3.10)

for some c > 0 and C, not depending on k, t,N or j η0.

PROOF. Suppose that the label has not coupled by time Sn. By Lemma 3.3,∑
x≥Y kt

φt (x)−
∑
x≥Y k0

φ0(x) > 6m1n

can only occur for t > Sn. But, by repeatedly applying Lemma 3.2,

P
(
Fk(t); t > Sn)≤ (1 − c1)

n−1

for each k and n, where c1 > 0. The proposition follows immediately from these
two observations. �

Proposition 3.1 follows quickly from Proposition 3.2.

PROOF OF PROPOSITION 3.1. Suppose that for some t , γ and N ,

sup
y

∑
x≥y

φt (x)− sup
y

∑
x≥y

φ0(x) > γN

for a given realization. Then, for some y,
∑
x≥y φt(x)− supz

∑
x≥z φ0(x) > γN .

If there are no uncoupled labels in an interval [y, y′) at time t for y′ > y, then
there are at least as many 2η. particles as 1η. particles there, and so

∑
x≥y′ φt(x)−

supz
∑
x≥z φ0(x) > γN as well. Let k be the first uncoupled label to the right of or

at y at a time t . Since limy→∞
∑
x≥y φt(x)= 0, such a label always exists, and∑

x≥Y kt
φt (x) > sup

z

∑
x≥z

φ0(x)+ γN ≥ ∑
x≥Y k0

φ0(x)+ γN.

There are initially at most 2KN + 1 labels. So, by Proposition 3.2, the expected
number of uncoupled labels k, with

∑
x≥Y kt φt (x) >

∑
x≥Y k0 φ0(x)+γN , is at most

C(2KN +1)e−cN , for appropriate c > 0 and C. With a new choice of c > 0 and C,
it follows from this and the previous paragraph, that for given γ > 0,

P

(
sup
y

∑
x≥y

φt(x)− sup
y

∑
x≥y

φ0(x) > γN

)
≤ Ce−cN

for any t and N , which is the same as (3.1). �
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4. Growth of
∑

x x(ηt (x) − η0(x)). As discussed in Section 1, an important
ingredient in showing Theorem 1.3 is to show that for configurations η0 with large
numbers of both particles and holes locally,

∑
x x(ηt (x)− η0(x)), on the average,

increases at least at a certain rate. This is made precise in Proposition 4.1, the main
result of this section. As in Section 3, the kernel of the underlying random walk is
assumed to have finite range and to be irreducible in this section.

PROPOSITION 4.1. Let η. be an exclusion process, with µ > 0 and η0 ∈
�KN , where K,N ∈ Z

+. Assume that [−KN,KN] includes disjoint intervals I1,
I2, . . . , I2n (ordered from left to right), each of length εN , such that I2i−1 and I2i
are adjacent, with the number of particles, under η0, being at least εδN in each
interval I2i−1, and the number of holes being at least εδN in each interval I2i ,
i = 1,2, . . . , n. Then, for givenK , ε ∈ (0,µ/8], δ ∈ (0,1/2] and ε1 > 0, and forN
sufficiently large,

E

[∑
x

x
(
ηN(x)− η0(x)

)]≥ (nε2δ2/2 − ε1)N
2(4.1)

for all n≥ 0 and all η0 as specified above.

As in Section 3, η. is employed to denote exclusion processes with deterministic
initial data. The symbol ξ. will be used for exclusion processes whose initial
data are given by some product measure. To provide the background needed
to demonstrate Proposition 4.1, our approach will be to analyze the asymptotic
behavior of ξ., and then to use Proposition 3.1 to compare it with η.. The analysis
of ξ. relies heavily on the following result from Rezakhanlou (1991).

THEOREM 4.1. Let u(0, x) : R → [0,1] be a piecewise constant function, and
let the random configurations ξN0 , N ∈ Z

+, have independent components ξN0 (x),
x ∈ Z, such that

P (ξN0 (x)= 1)= u

(
0,
x

N

)
.(4.2)

Let ξN. denote the corresponding exclusion processes. Then, for any finite interval
J ⊂ R, t ≥ 0 and ε > 0,

P

(∣∣∣∣∣ 1

N

∑
x∈NJ

ξNtN (x)−
∫
J
u(t, x) dx

∣∣∣∣∣> ε
)

→ 0(4.3)

as N → ∞, where u(t, x) is the entropy solution of

∂u

∂t
+µ

∂(u(1 − u))

∂x
= 0(4.4)

with initial data u(0, x).
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Theorem 4.1 is a restriction of Rezakhanlou’s Theorem 1.3, which holds on R
d

and allows arbitrary measurable initial data taking values in [0,1]. It also applies to
certain other conservative particle systems, such as attractive zero range processes.
General references for Burger’s equation (4.4) are Evans (1998) and Smoller
(1993).

The remainder of the section is structured as follows. In Proposition 4.2, we
give a version of Theorem 4.1 for expectations. Using Proposition 3.1, we show in
Proposition 4.3 that

E

[∣∣∣∣∣
∑
x

x
(
ηN(x)− ξN(x)

)∣∣∣∣∣
]

= o(N2)

for suitably chosen ξ0. Together, these results will show, in Proposition 4.4, that
the limiting behavior of E[|∑x x(η

N
t (x)− ηN0 (x))|] only depends on the random

walk kernel p(·) through its mean. To show Proposition 4.1, it therefore suffices to
analyze the case where p(·) is nearest neighbor with only jumps to the right. This
is done with the aid of Proposition 4.5.

PROPOSITION 4.2. Let u and ξN. be as in Theorem 4.1 with, in addition,
u(0, x) ≡ 0 or u(0, x) ≡ 1 on (−∞,−K), and u(0, x) ≡ 0 or u(0, x) ≡ 1 on
(K,∞), for some K ∈ Z

+. Then,

1

N2E

[∑
x

x
(
ξNN (x)− ξN0 (x)

)]→
∫ ∞
−∞

x
(
u(1, x)− u(0, x)

)
dx(4.5)

as N → ∞.

PROOF. The argument relies on Theorem 4.1 together with appropriate
truncations. Set

RN = max
{
x : ξNtN (x) 
= ξN0 (x) for some t ≤ 1

}
,

LN = min
{
x : ξNtN (x) 
= ξN0 (x) for some t ≤ 1

}
,

and let AN(�) be the event {RN ≥ (K + �M)N} ∪ {LN ≤ −(K + �M)N} for
� ∈ Z

+, where M is chosen as in Section 2. Note that AN(1)⊃AN(2)⊃ · · · , and
that by (2.3), P (AN(�)) ≤ Ce−c�N for appropriate c > 0 and C. One can check
that, on AN(�)c, ∣∣∣∣∣

∑
x

x
(
ξNN (x)− ξN0 (x)

)∣∣∣∣∣≤ (K + �M)2N2.(4.6)

It follows from these last two inequalities that

E

[∣∣∣∣∣
∑
x

x
(
ξNN (x)− ξN0 (x)

)∣∣∣∣∣;AN(�) \AN(�+ 1)

]
≤ C

(
K + (�+ 1)M

)2
N2e−c�N .
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Summing over �= 1,2, . . . , we conclude that

E

[∣∣∣∣∣
∑
x

x
(
ξNN (x)− ξN0 (x)

)∣∣∣∣∣;AN(1)
]

≤ Ce−cN(4.7)

for a new choice of c > 0 and C.
We partition [−(K +M),K +M] into intervals J1, J2, . . . , Jq of equal length

ε > 0. By Theorem 4.1, for each i and t ,

P

(∣∣∣∣∣ 1

N

∑
x∈NJi

ξNtN (x)−
∫
Ji

u(t, x) dx

∣∣∣∣∣> ε2

)
→ 0

as N → ∞, where u(t, x) is the entropy solution of (4.4). Using this, one can
check that

P

(∣∣∣∣∣ 1

N2

∑
x∈NJi

xξNtN (x)−
∫
Ji

xu(t, x) dx

∣∣∣∣∣>C′ε2

)
→ 0

as N → ∞, for appropriate C′. Summing over i gives

P

(∣∣∣∣∣ 1

N2

(K+M)N∑
x=−(K+M)N

xξNtN(x)−
∫ K+M
−(K+M)

xu(t, x) dx

∣∣∣∣∣>C′ε
)

→ 0,(4.8)

for a new choice of C′. On AN(1)c, [LN,RN ] ⊂ [−(K + M)N, (K + M)N ],
and so ξNtN (x) = ξN0 (x) for |x| ≥ K + M and t ≤ 1. Also, since M > |µ| and
the absolute value of the slope of the characteristics of (4.4) is at most |µ|,
u(t, x) = u(0, x) for |x| > K + M . (This follows from Theorem 4.1 as well.)
Recall from (4.6) that on AN(1)c,

1
N2

∑
x x(ξ

N
N (x) − ξN0 (x)) is bounded. The

limit (4.5) therefore follows from (4.7), (4.8) with t = 0 and t = 1, and bounded
convergence, since ε is arbitrary. �

To show Proposition 4.1, we will not require the full statement in Proposi-
tion 4.2, but rather that the limiting behavior of the left side depends only on the
mean of the underlying random walk kernel p(·). This version is given below.

COROLLARY 4.1. Let u and j ξN. , j = 1,2, be as in Theorem 4.1, with, in
addition, u(0, x)≡ 0 or u(0, x)≡ 1 on (−∞,−K), and u(0, x)≡ 0 or u(0, x)≡ 1
on (K,∞), for some K ∈ R

+. Assume that the random walk kernels jp(·)
underlying j ξN. have the same mean. Then,

1

N2E

[∑
x

x
(1ξNN (x)− 1ξN0 (x)

)]− 1

N2E

[∑
x

x
(2ξNN (x)− 2ξN0 (x)

)]→ 0(4.9)

as N → ∞.
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We will employ the analog of (4.9), but for exclusion processes η. with
deterministic initial data. To replace ξ. by η. in (4.9), we need to approximate η.
by appropriate ξ.. For K,N ∈ Z

+ and ε1 > 0, with 2K/ε1 ∈ Z
+, denote

by I1, . . . , I2K/ε1 the partition of [−KN,KN ] into 2K/ε1 intervals of equal
lengths ε1N . Given η0 ∈�KN , we choose ξ0 so that

ξ0(x)= η0(x) on [−KN,KN ]c(4.10)

and

ξ0 has product measure with constant density [ρi/ε2
1]ε2

1 on Ii,(4.11)

where ρi = 1
ε1N

∑
x∈Ii η0(x) and [z] denotes the integer part of z. Thus, at each

x ∈ Ii , we assign a density to ξ0 which is close to the average density ρi of η0
over Ii . The reason for taking the integer part of ρi/ε2

1 is that we wish to compare
different η0 ∈ �KN with only a finite number of such ξ0. This will allow us to
show (4.1) holds uniformly over such η0.

The following lemma employs Proposition 3.1 and elementary large deviation
estimates to show that ηt and the above ξt are typically close. As in Section 3, we
abbreviate by setting φt (x)= ηt (x)− ξt (x).

LEMMA 4.1. Let η. and ξ. be exclusion processes generated by the same
Harris system. For givenK , assume that η0 ∈�KN , ε1 ∈ (0,1/8K), and that ξ0 is
chosen as in (4.10) and (4.11). Then, for appropriate c > 0 and C not depending
on η0,

P

(∣∣∣∣∣
∑
x≥y

φt(x)

∣∣∣∣∣> 4ε1N for some y

)
≤ Ce−cN(4.12)

for all N ≥ 1/ε1 and t .

PROOF. Setting 1η. = η., 2η. = ξ. and γ = ε1 in Proposition 3.1, and
integrating over the initial states there, it follows that

P

(
sup
y

∑
x≥y

φt (x)− sup
y

∑
x≥y

φ0(x) > ε1N

)
≤ Ce−cN(4.13)

for appropriate c > 0 and C not depending on η0. The analog of (4.13) also holds
with the roles of η. and ξ. reversed. So, in order to demonstrate (4.12), it suffices
to show that

P

(∣∣∣∣∣
∑
x≥y

φ0(x)

∣∣∣∣∣> 3ε1N for some y

)
≤ Ce−cN .

As there are only 2KN + 1 sites y where φ0(x) 
= 0 is possible, it suffices
to show the above bound for fixed y. The interval Ij , with y ∈ Ij , has at most
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ε1N + 1 ≤ 2ε1N sites. Since there are 2K/ε1 intervals Ii , it is therefore enough to
show that for each i > j ,

P

(∣∣∣∣∣
∑
x∈Ii

φ0(x)

∣∣∣∣∣> ε2
1N/2K

)
≤ Ce−cN(4.14)

for appropriate c > 0 and C. But, the [·] in (4.11) moves the mean of
∑
x∈Ii φ0(x)

at most 2ε3
1N ≤ ε2

1N/4K away from 0. The bound in (4.14) is therefore a standard
large deviation estimate. �

In Proposition 4.3, we give a version of Lemma 4.1 for expectations. Its proof is
similar to that of Proposition 4.2, but uses the above lemma instead of Theorem 4.1.

PROPOSITION 4.3. Let η. and ξ. be exclusion processes generated by the
same Harris system. Assume that η0 ∈�KN with K,N ∈ Z

+, ε1 ∈ (0,1/8K], and
that ξ0 is chosen as in (4.10) and (4.11). Then, for large enough N not depending
on η0 and appropriate C not depending on η0 or ε1,

E

[∣∣∣∣∣
∑
x

xφN(x)

∣∣∣∣∣
]

≤ Cε1N
2.(4.15)

PROOF. As in the proof of Proposition 4.2, we truncate, this time using

RN = max
{
x :ηN(x) 
= η0(x) or ξN(x) 
= ξ0(x)

}
,

LN = min
{
x :ηN(x) 
= η0(x) or ξN(x) 
= ξ0(x)

}
.

Note that

φN(x)= 0 for x ∈ [LN ∧ (−KN),RN ∨ (KN)]c.(4.16)

As before, we set AN(�) = {RN ≥ (K + �M)N} ∪ {LN ≤ −(K + �M)N}.
Proceeding precisely as through (4.7), one obtains

E

[∣∣∣∣∣
∑
x

xφN(x)

∣∣∣∣∣;AN(1)
]

≤ CN2e−cN(4.17)

for appropriate c > 0 and C. These constants do not depend on η0.
Let B be the event that for some y, |∑x≥y φN(x)| > 4ε1N . By Lemma 4.1,

P (B) ≤ Ce−cN for appropriate c > 0 and C depending on ε1, but not on η0.
Together with (4.16), this implies that

E

[∣∣∣∣∣
∑
x

xφN(x)

∣∣∣∣∣;AN(1)c ∩B
]

≤ C(K +M)2N2e−cN .(4.18)
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To obtain (4.15), it remains to bound

E

[∣∣∣∣∣
∑
x

xφN(x)

∣∣∣∣∣;AN(1)c ∩Bc
]
.(4.19)

Abbreviating (K +M)N by H , one has, by (4.16), that on AN(1)c,

∑
x

xφN(x)=
H∑

x=−H
xφN(x).

By Abel partial summation (“summation by parts”) and then (4.16), this equals(
H∑

y=−H+1

H∑
x=y

φN(x)

)
−
(
H

H∑
x=−H

φN(x)

)

=
(

H∑
y=−H+1

∑
x≥y

φN(x)

)
−
(
H

∑
x≥−H

φN(x)

)
,

which, on Bc , is at most 12ε1HN = 12ε1(K + M)N2. This is an upper bound
on (4.19) and, together with (4.17) and (4.18), implies (4.15). �

Corollary 4.1 compares two exclusion processes j ξ., j = 1,2, with random
walk kernels having the same mean and starting from the same (product) random
configuration. Proposition 4.3 compares the exclusion process η., with a given
deterministic initial configuration, with the exclusion process ξ. having the same
random walk kernel and with the random initial configuration chosen in (4.10)
and (4.11). Putting these two results together immediately implies Proposition 4.4,
which compares two exclusion processes jη. with random walk kernels having the
same mean and deterministic initial configuration. Note that the bound in (4.20) is
uniform over η0 ∈ �KN . This does not cause difficulties when employing (4.9) to
derive the bound, since only finitely many processes ξ. are needed for a given ε1
because of the construction in (4.10) and (4.11).

PROPOSITION 4.4. Let j η., j = 1,2, be exclusion processes with 1η0 = 2η0 ∈
�KN , for givenK . Assume that the random walk kernels jp(·) underlying j η. have
the same mean. Then, for all ε1 > 0 and large enough N not depending on j η0,

E

[∣∣∣∣∣
∑
x

x
(1ηN(x)− 2ηN(x)

)∣∣∣∣∣
]

≤ ε1N
2.(4.20)

We may consider Proposition 4.4 as a sort of invariance principle—to analyze
an exclusion process η., it suffices to analyze a simpler exclusion process whose
underlying random walk has the same mean. We will apply this when showing
Proposition 4.1. An alternative approach for Proposition 4.1 would be to employ
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Propositions 4.2 and 4.3, together with lower bounds on the integral on the right-
hand side of (4.5). We prefer the present approach since it only requires the limit
of the exclusion process given in (4.26), rather than familiarity with solutions of
Burger’s equation.

Assume now that the random walk kernel of the given exclusion process has
mean µ > 0. Applying Proposition 4.4, we choose to instead work with the
exclusion process with the deterministic kernel p(·); that is, nearest neighbor with
only jumps to the right; that is,

p(1)= µ and p(x)= 0 for x 
= 1.(4.21)

Two simple consequences of this property are that

the motion of particles is not affected by particles to their left(4.22)

and

for 1η. and 2η. generated by the same Harris system and satisfying∑
x≤y(1ηt (x)− 2ηt (x))≥ 0 for all y at t = 0, this inequality persists

for all t .
(4.23)

Most of the remaining work to show Proposition 4.1 is devoted to showing
Proposition 4.5. There, we set the number of pairs of intervals n in Proposition 4.1
equal to 1, and work with the exclusion process with p(·) given by (4.21). We
will then “glue together” such solutions in the proof of Proposition 4.1. First, we
demonstrate the following lemma. It gives lower bounds on the extent to which the
particles of η., under certain specific initial data, move to the right by a given time.

LEMMA 4.2. Let ηN. be the exclusion process with p(·) satisfying (4.21) and

ηN0 (x)=
{

1, on [−2εN, (γ − 2ε)N ] ∪ [0,∞),
0, otherwise,

(4.24)

where 0 ≤ γ < 2ε ≤ µ/4. Then,

1

N

∑
x≤−γN

ηNN (x)→ 0 and
1

N

∑
x>−γN

(
1 − ηNN (x)

)→ 0(4.25)

in probability as N → ∞.

PROOF. Before analyzing ηN. , we first consider two exclusion processes with
simpler initial conditions. Let 1η. be the exclusion process with 1η0(x) = 1 on
(−∞,0] and 1η0(x) = 0 on (0,∞) [and satisfying (4.21)]. It is well known that
for |β| ≤ µ,

1

N

∑
x≥βN

1ηN(x)→ 1

4µ
(µ− β)2 in probability(4.26)
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as N → ∞ [see, e.g., Liggett (1985), page 407].
We compare 1η. with the exclusion processes 2ηN. , with 2ηN0 (x) = 1 on

[−γN,0] and 2ηN0 (x)= 0 elsewhere. By (4.22), the motion of the particles of 2ηN.
is the same as the motion of the particles of 1η. which begin in [−γN,0]. Since
these particles remain to the right of all other particles of 1η., it follows from (4.26)
that, for β ≤ µ− 2

√
γµ,

1

N

∑
x<βN

2ηNN (x)→ 0 in probability(4.27)

as N → ∞.
We now compare 2ηN. with ηN. . We classify those particles of ηN. , which begin

in [−2εN, (γ − 2ε)N ], as first class particles, and those particles on [0,∞) as
second class particles. First class particles are assumed to have priority over second
class particles; that is, they can displace second class particles, but not vice versa.
Since [−2εN , (γ − 2ε)N ] is a translate of [−γN,0], we can compare the motion
of the first class particles with that of the particles of 2ηN. . Off of the exceptional
sets given by (4.27), only o(N) of these first class particles are to the left of
((

√
µ − √

γ )2 − 2ε)N at time N , which is at least 0 under our assumptions
γ ≤ 2ε ≤ µ/4.

Reverse the role of particles and holes of ηN. . Because of (4.21), none of
the holes can ever jump to the right of any particle. This includes the second
class particles, and so holes always remain in (−∞,0). Hence, by the previous
paragraph, no hole is to the right of more than o(N) first class particles, and
therefore to the right of o(N) particles of any class.

One can also label particles in the standard manner, so that they all move without
priority. Under this scheme, particles starting in [0,∞) never move, and because
of the above behavior of holes, all except for o(N) of the particles starting in
[−2εN, (γ − 2ε)N ] have moved to (−γN,0), with no holes lying to their right.
This implies both limits in (4.25). �

As mentioned earlier, Proposition 4.5 is one of the main steps in showing
Proposition 4.1. The idea behind its proof is that, since the particles of η. start to
the right of the corresponding particles of each of the processes ηN. in Lemma 4.2,
by (4.23), they always remain to the right of these particles, and so (4.25) can be
applied to η.. This will imply that typically εδN(1+o(1)) particles will each move
at least εδN(1 + o(1)) to the right, which gives the bound in (4.30).

PROPOSITION 4.5. Let η. be an exclusion process with p(·) satisfying (4.21),
such that

η0(x)=
{

1, on [0,∞),

0, on (−∞,−2εN),
(4.28)
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and ∑
x∈I1

η0(x)≥ εδN,
∑
x∈I2

(
1 − η0(x)

)≥ εδN,(4.29)

where I1 = [−2εN,−εN) and I2 = [−εN,0), for given ε and δ, with ε ∈ (0,µ/8]
and δ ∈ (0,1/2]. Then, for large enough N not depending on η0,

E

[∑
x

x
(
ηN(x)− η0(x)

)]≥ 1
2ε

2δ2N2.(4.30)

PROOF. For a given N , we compare η. with the exclusion process ηN.
generated by the same Harris system, with initial data satisfying (4.24), and
γ chosen so that

∑
x∈I η0(x)=∑

x∈I ηN0 (x), where I = I1 ∪I2. This last condition
implies that ∑

x≤y

(
ηN0 (x)− η0(x)

)≥ 0

for all y, and hence by (4.23),∑
x≤y

(
ηNN (x)− ηN(x)

)≥ 0

for all y. Applying the first limit in (4.25) to ηN. , it follows that for given δ1 > 0
and large enough N ,

P

( ∑
x≤−γN

ηN(x) > δ1N

)
< δ1(4.31)

for all η0 satisfying (4.28) and (4.29). Analogous reasoning shows that for large
enough N ,

P

( ∑
x>−γN

(
1 − ηN(x)

)
> δ1N

)
< δ1(4.32)

for such η0. We claim that, together with (4.28) and (4.29), (4.31) and (4.32) will
imply (4.30).

We consider two cases. For γ ≤ ε, off the exceptional set A in (4.31), all except
for δ1N of the at least εδN particles starting in I1 are to the right of −εN at
time N . Since the order of these particles is preserved over time, each of these
particles must move at least (εδ − δ1)N to the right. None of the other particles
can move to the left. So, on Ac,∑

x

x
(
ηN(x)− η0(x)

)≥ (εδ − δ1)
2N2.(4.33)

Since δ1 > 0 is arbitrary, this implies (4.30) for γ ≤ ε.
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The reasoning for γ > ε is analogous, except that the role of particles and holes
is reversed. One applies (4.32) to at least εδN holes starting in I2. This implies that,
off the exceptional set in (4.32), at least (εδ− δ1)N holes have moved (εδ− δ1)N

to the left by time N . This also implies (4.33), and hence (4.30) for γ > ε as
well. �

We note that the lengths of the intervals I1 and I2 in (4.29) can easily be
modified without affecting (4.30). Smaller I1 and I2 are included by extending
them to the left or right since (4.29) will continue to hold for these larger intervals,
whereas extension of I1 or I2 by a fixed length J corresponds to a new choice of δ
in (4.29) for the original intervals, and will change the lower bound in (4.33) by at
most 2εδJN , which can be absorbed into the right side of (4.30).

We now demonstrate Proposition 4.1. Because of Proposition 4.4, we can
restrict p(·) to the kernel given in (4.21). Under this setting, we compare η. with
the process η̃. obtained by not permitting particles to move from one pair of
intervals (I2i−1, I2i) to the next. Because of our choice of p(·), the expectation on
the left-hand side of (4.1) is decreased by replacing η. by η̃.. This new expectation
can then be broken into pieces, with Proposition 4.5 being applied to each piece.

PROOF OF PROPOSITION 4.1. Assume that the exclusion process η. has the
random walk kernel p(·) given in (4.21). Let iη., i = 1, . . . , n, denote the exclusion
processes generated by the same Harris system as η., but with

iη0(x)=


η0(x), on I2i−1 ∪ I2i ,
0, to the left of I2i−1,
1, to the right of I2i .

(4.34)

Since particles can move only to the right, no particles of iη. ever enter I2i−1 from
the right or leave I2i on the left. Let η̃. denote the exclusion process generated by
the same Harris system as η., and with η̃0 = η0, but where jumps from the left of
I2i−1 into I2i−1, and from I2i to the right of I2i are suppressed. For all t ,

∑
x

x
(
η̃t (x)− η̃0(x)

)= n∑
i=1

∑
x

x
(iηt (x)− iη0(x)

)
.(4.35)

It is easy to see that, since p(·) is nearest neighbor, particles in ηt always lie to
the right of the corresponding particles in η̃t . So, for all t ,∑

x

x
(
ηt (x)− η0(x)

)≥∑
x

x
(
η̃t (x)− η̃0(x)

)
.

Together with (4.35), this implies that for all t ,

∑
x

x
(
ηt (x)− η0(x)

)≥ n∑
i=1

∑
x

x
(
iηt (x)− iη0(x)

)
.(4.36)
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We apply Proposition 4.5 to each of the processes iη. at time N . (εN is not
assumed to be an integer and so I need not be of constant length, but the comment
after the proposition compensates for this.) Together with (4.36), the proposition
implies that

E

[∑
x

x
(
ηN(x)− η0(x)

)]≥ 1
2nε

2δ2N2(4.37)

for large enough N , not depending on η0, and all n. The bound in (4.37) holds
for p(·) given by (4.21). Application of Proposition 4.4 generalizes this to all p(·)
having the same mean and gives (4.1). �

5. Drift to the right for low density configurations. In this section, we
show that particles of “low density” configurations of exclusion processes, with
µ > 0, tend to drift to the right. As always, the underlying random walk kernel
is assumed to have finite range. Proposition 5.3 is the main result in this
section. Proposition 5.1, its corollary and Proposition 5.2 follow quickly from
Proposition 5.3, and will be employed in Section 6.

Proposition 5.1 says that if there are few enough particles, then they will
all drift to the right off a set of negligible probability. We recall the notation
L(ηt )= min{x :ηt (x)= 1}.

PROPOSITION 5.1. Assume that η. is an exclusion process with µ > 0, and
that η0 has at most δN particles, with L(η0) ≥ 0. Then, for δ > 0 chosen small
enough, and appropriate c > 0 and C,

P
(
L(ηN)≤ 1

4µN
)≤ Ce−cN(5.1)

for all N and all such η0.

The following corollary of Proposition 5.1 will be employed in Section 6 to
obtain bounds on E[g(ηN)], where g(·) is given by (1.8).

COROLLARY 5.1. Assume that η. is an exclusion process with µ > 0 and
L(η0) >−∞, and that η0 has at most δN particles in the interval [L(η0),L(η0)+
MN]. Then, for δ > 0 sufficiently small and N sufficiently large,

E
[(
L(ηN)+ βN

)−]− (L(η0)+ βN
)− ≤ 1

for all β and all such η0. If, in addition, L(η0)+ βN ≤ −1
4µN , then

E
[(
L(ηN)+ βN

)−]− (L(η0)+ βN
)− ≤ −1

5µN.

Proposition 5.2 says that if the local density is always sufficiently low in
a system with a finite number of particles, then the mean position of the particles
of η. will drift to the right.
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PROPOSITION 5.2. Assume that η. is an exclusion process with µ > 0, and
that η0 has J <∞ particles, with

[(i+1)µN]∑
x=[iµN]

η0(x)≤ δN(5.2)

for each i ∈ Z. Then, for δ > 0 chosen small enough,

E

[∑
x

x
(
ηN(x)− η0(x)

)]≥ 1
4µJN(5.3)

for all such η0 and large enough N , not depending on η0.

Replacement of particles by empty sites and empty sites by particles immedi-
ately implies the analogs of Proposition 5.1, Corollary 5.1 and Proposition 5.2,
but for high density configurations instead of low density configurations. Inequal-
ity (5.3) again holds, but the lower bounds on L(ηN) in Proposition 5.1 and its
corollary are replaced by upper bounds on R(ηN). These versions of the above
results will also be employed in Section 6. We remark that the results in (5.1)
and (5.3) still hold if the coefficient 1

4 there is replaced by any coefficient strictly
less than 1, and similarly, that the second display in Corollary 5.1 holds if the
cofficients 1

4 and 1
5 are replaced by ε1 and ε2 with ε2 < ε1 < 1.

In order to show Propositions 5.1 and 5.2, we argue inductively. We first
follow the rightmost particle of η0 as time evolves, and then successively include
additional particles to its left. For this, we order the particles as X1

. , X2
. , . . . ,X

J
. ,

according to their initial positions, with a smaller index indicating an initial
position farther to the right. As η. evolves, we employ the rule that particles
with lower index always have priority; that is, a lower-indexed particle can
displace a particle with a higher index, but not vice versa. Consequently, the
evolution of (X1

. ,X
2
. , . . . ,X

k
. ) does not depend onXk

′
. for k′ > k. We set Lk(ηt )=

min{X1
t , . . . ,X

k
t }.

Propositions 5.1 and 5.2 will follow quickly from the following result. Here and
later on, we employ the function h(·) which is obtained from η0, where h(1)=X1

0,
and h(k), k ≤ J, is given inductively by h(k) = Xk0 ∧ (h(k − 1) − b) for some
fixed b, with b ≥ d . (Recall that d is the magnitude of the largest jump of the
underlying random walk.)

PROPOSITION 5.3. Assume that η. is an exclusion process with µ > 0, and
that η0 has only finitely many particles. Then, for b chosen large enough and
c > 0 small enough,

E

[∫ ∞
0

exp
{
c
(1

2µt −Lk(ηt )+ h(k)
)}
dt

]
≤C(5.4)



STATIONARY BLOCKING MEASURES 1113

for appropriate C, all k and all such η0. Equivalently,

E

[ ∞∑
n=1

exp
{
c sup
t∈[n−1,n]

{1
2µt −Lk(ηt )+ h(k)

}}]≤ C.(5.5)

The bound (5.5) implies that

E
[
exp
{
c
(1

2µt −Lk(ηt )+ h(k)
)}]≤ C(5.6)

for any t . Proposition 5.1 follows quickly from this bound.

PROOF OF PROPOSITION 5.1. By assumption,L(η0)≥ 0, and so h(k) >−bk
for all k. Since there are at most δN particles, it follows that h(k) > −bδN .
Substitution of this bound for h(k) and L for Lk , in (5.6), implies that

E
[
exp
{
c
(( 1

2µ− bδ
)
N −L(ηN)

)}]≤ C.

Together with Markov’s inequality, this implies (5.1) for small enough δ. �

Corollary 5.1 follows from Proposition 5.1 and bounds from Section 2.

PROOF OF COROLLARY 5.1. Let η′
. denote the exclusion process generated

by the same Harris system as η., and with η′
0(x)= η0(x) for x ≤ L(η0)+ MN and

η′
0(x)= 0 otherwise. Apply Proposition 5.1 to η′

N and compare ηN with η′
N , using

Lemma 2.2, to obtain

P
(
L(ηN)−L(η0)≤ 1

4µN
)≤Ce−cN

for appropriate c > 0 and C, and all N . By (2.3),

P
(
L(ηN)−L(η0)≤ −1

2 MN − �
)≤ Ce−c(N+�)

for � ∈ Z
+ and appropriate c > 0 and C. The first bound in the corollary follows

easily from these two inequalities. Suppose now that L(η0) + βN ≤ −1
4µN for

our choice of β . Then, off the exceptional set in the first inequality,(
L(ηN)+ βN

)− − (L(η0)+ βN
)− ≤ −1

4µN.

Together with the second inequality, this implies the second bound in the
corollary. �

Proposition 5.2 follows from (5.6) and the definition of h.

PROOF OF PROPOSITION 5.2. For η0 satisfying (5.2) and δ < µ/16b,

h(k)≥Xk0 − 2bδN ≥Xk0 − 1
8µN,(5.7)

for all k. To see the first inequality, we note that it is immediate for k = 1. For
1 < k ≤ J with Xk0 ∈ [[iµN ], [(i + 1)µN ]), we argue by induction, considering
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first the case where for some k′ < k with Xk
′

0 ≤ (i + 2)µN , h(k′)=Xk
′

0 . Let k1 be
the largest such k′. Then,

h(k)≥X
k1
0 − 2bδN >Xk0 − 2bδN.

On the other hand, if there is no such k′, let k2 be the largest index k′ with
Xk

′
0 ≥ (i + 2)µN . Then,

h(k)≥ h(k2)− 2bδN ≥ (i + 1)µN − 2bδN ≥Xk0 − 2bδN,

where the second inequality follows from the induction hypothesis.
Substitution into (5.6) of the bound for h(k) given in (5.7), together with

Markov’s inequality, implies that for small enough c > 0,

P
(
XkN ≤Xk0 + 1

3µN − �
)≤Ce−c(N+�)

for all k and N , � ∈ Z
+, appropriate c > 0 and C, and all η0 satisfying (5.2). So,

for large enough N ,

E[XkN ] −E[Xk0] ≥ 1
4µN

for each k. Summation over k implies (5.3). �

Inequalities (5.4) and (5.5) are equivalent (when allowing different choices of C
in the displays). Clearly, (5.5) implies (5.4). The other direction also holds since,
over [n−1, n],L(ηt )−L(ηn−1) is bounded below by the exponential bounds given
in (2.3), and is also at most 0 with at least a fixed positive probability. [The term c,
in (5.4) and (5.5), needs to be chosen smaller than that in (2.3).] For the sake
of readability, we choose to demonstrate (5.4) since the estimates are somewhat
messier for (5.5).

The basic idea behind the inductive argument we will use to show (5.4) is that, as
long as Xk. lies at least distance d+ 1 below Lk−1(η.), the higher priority particles
X1

. , . . . ,X
k−1
. will not impede its movement. Since this occurs most of the time

when the particle density is low, Xk. will move similarly to a (continuous time)
random walk with drift almost µ. We will actually show, using induction, that
Lk(η.) will have a long term drift at least µ/2.

Rather than work directly with Xk. , it is more convenient to employ Y k. , the
stochastic process on Z; that is, coupled to Xk. so that Y k. jumps together with Xk. ,
except we require that

Y kt ≤ Lk−1(ηt )− d for all t.(5.8)

[We setL0(ηt )= ∞.] To ensure this whenY k. attempts to jump aboveLk−1(η.)− d ,
we set Y kt = Lk−1(ηt ) − d . Similarly, when Lk−1(η.) decreases so as to vio-
late (5.8), we decrease Y k. so that equality again holds. Thus, Y k. is a finite range
random walk on y ≤ Lk−1(ηt )− d , with “reflection” at Lk−1(η.)− d . The initial
state Y k0 is the largest value for which Y k0 ≤Xk0 and (5.8) holds at t = 0; it follows
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from the definition of h that Y k0 ≥ h(k). Note that since the jumps of Xk. are only
suppressed when Xkt ≥ Lk−1(ηt )− d , one has Y kt ≤Xkt for all t , and hence,

Y kt ≤ Lk(ηt ) for all t.(5.9)

So, in order to obtain a lower bound on Xk. or Lk(η.), it suffices to instead
analyze Y k. .

We find it convenient to shift coordinates in order to induce an appropriate drift
on Y k. . We set

ϕkt = 1
2µt + h(k + 1)+ d −Lk(ηt )(5.10)

and

Zkt = 1
2µt + h(k)− Y kt .(5.11)

Then, by (5.8) and the discussion following it, Zk. is a finite range random walk
translated upward at rate µ/2, with net drift −µ/2 and with reflection at ϕk−1

. ; the
last property implies that

Zkt ≥ ϕk−1
t for all t.(5.12)

By (5.11), Zk0 ≤ 0. We also note that, from (5.9)–(5.11) and the definition of h(k),

Zkt ≥ ϕkt + h(k)− h(k + 1)− d ≥ ϕkt + b− d.(5.13)

This recursion relating ϕk. and Zk. will be an important ingredient in the proof of
Proposition 5.3.

It suffices to bound E[∫∞
0 exp{cZkt }dt] in order to show (5.4). If ϕk−1

. were
given by a line with a negative slope, this would be easy to do using standard
large deviation estimates. However, ϕk−1

. can, in fact, increase quickly, which can
cause Zk. to increase. To control the effect ϕk−1

. has on Zk. , we introduce stopping
times Sk(0) = 0, Sk(1), . . . , Sk(j), . . . and corresponding processes Wk

. (j). We
inductively set

Sk(j)= min
{
t > Sk(j − 1) :ϕk−1

t ≥ ϕk−1
Sk(j−1) + 1

}
∧ S̄k(j − 1),(5.14)

where S̄k(j − 1) is the smallest integer strictly greater than Sk(j − 1). In
particular, the amount ϕk−1

. can increase between these times is bounded and
Sk(j)− Sk(j − 1)≤ 1 for all j . We also set

Wk
t (j)=

{
ϕk−1
Sk(j)

, for t = Sk(j),

−∞, for t < Sk(j),
(5.15)

and on t > Sk(j), couple Wk
. (j) to Zk. so that Wk

. (j) evolves according to the
same translated random walk, except that (a) there is no boundary which reflects
Wk

. (j) and (b) on the “initial” interval [Sk(j), S̄k(j)), negative jumps of Wk
. (j)
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are suppressed. We will show in Lemma 5.3, that the processes Wk
. (j), j =

0,1,2, . . . , together provide an upper bound for Zk. .
To analyze each Wk

. (j), we consider the translated random walk W., with
W0 = 0, and which evolves according to the same transition law as each Wk

. (j),
except that negative jumps at times t ∈ [0,1), instead of at t ∈ [Sk(j), S̄k(j)),
are suppressed. Since at times t ∈ [1,∞), the kernel of W. is finite range and W.
has drift −µ/2< 0, Wt → −∞ linearly off a large deviation set as t → ∞. The
following elementary bound suffices for our purposes. We set wu =E[∫ u0 ecWt dt].

LEMMA 5.1. For c > 0 chosen small enough, w∞ <∞.

PROOF. Choose a > 1, and set W ′
t =Wt+a −Wa; this defines a random walk

with W ′
0 = 0 (and no suppression of jumps). Therefore,

wu ≤wa +E[ecWa ]wu−a ≤wa +E[ecWa ]wu(5.16)

for u ≥ a. Expanding E[exp{c(Wa −W1)}], one can check that, for small c > 0,
this expectation is less than γ a−1 for appropriate γ ∈ (0,1). So

E[ecWa ] ≤ γ a−1E[ecW1]< 1

for large enough a. Plugging this into (5.16) implies that

wu ≤wa/
(
1 −E[ecWa ]).

Letting u→ ∞ implies w∞ <∞. �

Let j0, j1, j2, . . . be the indices at which Sk(jn)= n for a given k, and set Tn =
Sk(jn − 1). Applying (5.14) and Lemma 5.1, one obtains the following bound for
the integrals of the moment generating functions of Wk

. (j) summed over j for
which Sk(j) ∈ [n− 1, n), in terms of the moment generating function for ϕk−1

T (n).

LEMMA 5.2. Let Sk(0), Sk(1), Sk(2), . . . denote the stopping times in (5.14).
Then, for c > 0 chosen small enough,

E

[ jn−1∑
j=jn−1

∫ ∞
0

exp
{
cWk

t (j)
}
dt

]
≤ CE

[
exp
{
cϕk−1
T (n)

}]
(5.17)

for all n, 1< k ≤ J and appropriate C.

PROOF. Define the process Ŵ k
. (j) by

Ŵ k
t (j)=Wk

t+Sk(j)(j)−Wk
Sk(j)

(j),
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for t ≥ 0. Then,

E

[∫ ∞
Sk(j)

exp
{
cWk

t (j)
}
dt

]

=E

[
exp
{
cWk

Sk(j)
(j)
}
E

[∫ ∞
0

exp
{
cŴ k

t (j)
}
dt
∣∣∣FSk(j)

]]
.

(5.18)

Let W. denote the translated random walk obtained from Ŵ k
. (j) by suppressing

all negative jumps on [0,1). Since Ŵ k
t (j)≤Wt for all t, andW. is independent of

FSk(j), the right-hand side of (5.18) is less than or equal to

E

[
exp
{
cWk

Sk(j)
(j)
}
E

[∫ ∞
0

exp{cWt}dt
∣∣∣FSk(j)

]]
=w∞E

[
exp
{
cWk

Sk(j)
(j)
}]
.

Also, by (5.14), ϕk−1
Sk(j+1) ≥ ϕk−1

Sk(j)
+ 1 for Sk(j), Sk(j + 1) ∈ [n− 1, n) and any n.

So, the right-hand side of the above display is less than or equal to

w∞e−c(jn−1−j)E
[
exp
{
cWk

T (n)(jn − 1)
}]

for such j . By Lemma 5.1, w∞ <∞. Summing these inequalities from j = jn−1
to j = jn − 1 implies that

E


 jn−1∑
j=jn−1

∫ ∞
Sk(j)

exp
{
cWk

t (j)
}
dt


≤ CE

[
exp
{
cWk

T (n)(jn − 1)
}];

by (5.15), this is equivalent to (5.17). �

Let U denote the first time at which Zk. hits ϕk−1
. for a given k. The following

lemma shows that for t ≥ U , Zkt is dominated by maxj Wk
t (j) + 1. Together

with Lemma 5.2, which bounds the integrals of the moment generating function
for Wk(j), this will enable us to do the same for the integrals of the moment
generating function of Zk. .

LEMMA 5.3. Let Zk. be the process defined in (5.11) and Wk
. (j), j =

0,1,2, . . . , be the processes defined in (5.15). Then, for t ≥U ,

Zkt <max
j
Wk
t (j)+ 1.(5.19)

PROOF. Suppose that ZkV = ϕk−1
V at a given time V . We claim that

ZkV <W
k
V (j)+ 1 for some j.(5.20)

If V = Sk(i) for some i, then by (5.15), ZkV = Wk
V (i). When this assumption

does not hold, then by (5.14), V is not an integer and ϕk−1
Sk(i)

+ 1> ϕk−1
V for some

Sk(i) ∈ [[V ],V ). Since Wk
. (i) cannot decrease over [Sk(i),V ], this implies that

Wk
V (i)+ 1 ≥Wk

Sk(i)
(i)+ 1 = ϕk−1

Sk(i)
+ 1> ϕk−1

V = ZkV .(5.21)
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Hence, (5.20) holds.
At times after V , the process Wk

. (j) evolves according to the same law as Zk. ,
except that it is not restricted by the boundary ϕk−1

. , and negative jumps on
[Sk(j), S̄k(j)) are suppressed. So, until the next time V ′ at which Zk. is restricted
by ϕk−1

. , Zkt < Wk
t (j) + 1. After a finite amount of time, the finite exclusion

process η. considered here has only a finite number of changes of state, and so Zk.
attempts to cross ϕk−1

. only a finite number of times. By induction, (5.19) will
therefore hold for all t ≥U . �

We now demonstrate (5.4) by using the previous lemmas.

PROOF OF (5.4). We will show by induction that for all k,

E

[∫ ∞
0
ecZ

k
t dt

]
≤ C(5.22)

for large enough b, small enough c > 0 and appropriate C, which do not depend
on k. Together with (5.9) and (5.11), this implies (5.4).

The case k = 1 is simple: Z1
. is a translated finite range random walk with drift

−µ/2 and Z1
0 ≤ 0. Comparison with W., together with Lemma 5.1, implies that

E

[∫ ∞
0
ecZ

1
t dt

]
≤C1(5.23)

for small enough c > 0 and appropriate C1. [One can also show (5.23) directly.]
Assume now that (5.22) holds for k − 1, with C = 2C1. On t < U , Zk. is

a translated random walk with the same transition law as in the previous case;
we denote the extension of this process to all time by Z̃1

. . By Lemma 5.3,

Zkt ≤
(

max
j≥0

Wk
t (j)+ 1

)
∨ Z̃1

t(5.24)

for all t . Consequently,

E

[∫ ∞
0
ecZ

k
t dt

]
≤ ecE


 ∞∑
j=0

∫ ∞
0
ecW

k
t (j ) dt


+E

[∫ ∞
0
ecZ̃

1
t dt

]
.(5.25)

The second expectation on the right-hand side of (5.25) is bounded, as in the
previous paragraph, by the constant C1 since Zk0 ≤ 0.

We need to bound the first expectation on the right-hand side of (5.25). By
Lemma 5.2,

E


 ∞∑
j=0

∫ ∞
0
ecW

k
t (j ) dt


= E


 ∞∑
n=1

jn−1∑
j=jn−1

∫ ∞
0
ecW

k
t (j ) dt




≤ C2E


 ∞∑
n=1

e
cϕk−1
T (n)




(5.26)
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for small enough c > 0 and appropriate C2 not depending on k. Since T (n) ∈
[n− 1, n) and exp{cϕkt } (as a function of t) is a multiple of the integrand in (5.4),
the equivalence of (5.4) and (5.5) implies that

E

[ ∞∑
n=1

e
cϕk−1
T (n)

]
≤ C3E

[∫ ∞
0
ecϕ

k−1
t dt

]

for appropriate C3 not depending on k. By (5.13), this is less than or equal to

C3e
c(d−b)E

[∫ ∞
0
ecZ

k−1
t dt

]
.(5.27)

The bounds (5.25)–(5.27) imply that for k > 1,

E

[∫ ∞
0
ecZ

k
t dt

]
≤ C1 +C2C3e

c(d+1−b)E
[∫ ∞

0
ecZ

k−1
t dt

]
,(5.28)

where C1, C2, C3 and c > 0 do not depend on k. Choose b large enough so
that C2C3e

c(d+1−b) ≤ 1/2. For such b, it follows from (5.28) and the induction
hypothesis, that

E

[∫ ∞
0
ecZ

k
t dt

]
≤ 2C1 = C,

as desired. �

6. Bounds on the Lyapunov function h. In this section, we demonstrate
Theorem 1.3, which implies that the function h= f + g introduced in Section 1 is
a Lyapunov function for the process ηN. off of a finite set in �. The work here is
divided into three subsections. We first decompose the initial state η0 into intervals
of three types. Using this decomposition in the next subsection, we obtain upper
bounds on the average increase from t = 0 to t = N of f in Propositions 6.1
and 6.2. We then obtain upper bounds on the average increase from t = 0 to t =N

of g in Lemma 6.2 and Proposition 6.3. These bounds provide the desired upper
bounds on h.

The function f will evolve differently over each of the three types of
intervals, which we refer to as heterogeneous, homogeneous and boundary. It
will typically decrease (or at least not increase) for each of the first two and not
increase by too much for the last. Propositions 2.1 and 2.2 will be employed to
justify the decomposition of η. into processes corresponding to the heterogenous
and homogeneous intervals, and to bound the contribution by the boundary
intervals. Propositions 4.1 and 5.2 will then bound the growth of f over the
processes corresponding to the heterogeneous and homogeneous intervals. The
analysis of the evolution of g does not require this decomposition of η.. The
demonstration of Lemma 6.2 and Proposition 6.3 is quicker; the latter result
employs Proposition 5.1. In this section, the kernel of the underlying random walk
of η. is assumed to be irreducible, with finite range and µ> 0.
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Decomposition of η0. Assume that η0 ∈ � and choose ε ∈ (0,1/2) and
N ∈ Z

+ so that 1/ε, εN ∈ Z
+. The intervals Ii = [iεN, (i + 1)εN), i ∈ Z,

partition Z. By taking unions of the Ii , we will partition Z by using three types
of intervals whose locations depend on η0: heterogeneous, homogeneous and
boundary intervals. In spirit, heterogeneous intervals will consist of sites that
are not too far from pairs {Ii, Ii+1}, where the densities of particles on Ii and
Ii+1 are either not close to each other or are not close to 0 or 1. Boundary
intervals will consist of sites within distance 2MN of these heterogeneous intervals.
Homogeneous intervals will consist of the complement of the first two types; the
density of occupied sites for all Ii , in each of these intervals, will be close to 0
or 1. In order to keep the heterogeneous intervals below a maximum length, we
will need to do some “splitting” when defining them, filling in additional boundary
intervals in between the resulting parts.

Set ρi = 1
εN

∑
x∈Ii η0(x); that is, ρi is the density of the particles of η0 in Ii . We

classify Ii as having high density if ρi ≥ 1 − ε, low density if ρi ≤ ε, and middle
density if ρi ∈ (ε,1 − ε). We say Ii has very high density if ρi ≥ 1 − δ and very
low density if ρi ≤ δ, where δ ∈ (0, ε) and 1/δ ∈ Z

+. (Later on, we will choose ε
and δ so that δ � ε.) An ε-interface occurs at {Ii, Ii+1} if Ii has high density and
Ii+1 has low density or vice versa; an ε-interface occurs at {Ii−1, Ii, Ii+1} if Ii
has middle density. An ε-interface is inert if Ii has low density and Ii+1 has high
density in the first case, and if Ii−1 has low density and Ii+1 has high density in
the latter case; otherwise, the ε-interface is live. One can check that

between any two inert ε-interfaces, there is always a live ε-interface.(6.1)

A δ-interface is defined analogously, if ε is replaced by δ, and 1 − ε by 1 − δ

for the densities. Inert and live δ-interfaces are defined in the same manner, and
the analog of (6.1) holds.

Each ε-interface is contained in a protected interval Pi . This is the smallest
interval containing the ε-interface, whose endpoints are integer multiples of εN ,
so that the intervals Ij lying outside Pi , but within distance 2MN of an endpoint
of Pi , do not contain any part of a δ-interface. (All of these 2M/ε intervals on
a given side of Pi must have very high density or all must have very low density.)
We note that distinct protected intervals are always at least distance 2MN apart.
Also, for η0 ∈ �, there are only a finite number of protected intervals, each with
finite length.

We would like to be able to apply Proposition 4.1 to the exclusion processes ηi.
with initial states ηi0(x)= η0(x) on Pi , ηi0(x)= q− to the left of Pi and ηi0(x)=
q+ to the right of i, where q−, respectively q+, is either 0 or 1 according to
the majority type on the 2M/ε very low density or very high density intervals Ij
immediately to the left, respectively, to the right, of Pi . Since Pi may be too long
to apply the proposition, we split it up as follows. If |Pi| ≤ B1N , where B1 =
70M3/ε2δ2, we do not change Pi . If |Pi|>B1N , we partition Pi into neighboring
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intervals V1, S1,V2, S2, . . . , S�−1,V�, where |Sj | = 2MN and |Vj | ∈ (B2N,B1N ]
for each j , where B2 = 34M3/ε2δ2. It is not difficult to check that one can always
do this. The particular choice is not important, but for a given η0, we assume this
choice is fixed for each Pi .

For a given η0 ∈�, we label the collection of the intervals V1, . . . , Vr obtained
from all of the protected intervals sequentially, so that Vi′ lies to the right of Vi
for i′ > i. These intervals Vi are classified as heterogeneous. A heterogeneous
interval Vi is short if |Vi| ≤ B2N ; otherwise it is long. Note that although, in
general, a heterogeneous interval need not contain an ε-interface, it must if the
interval is short. We classify as boundary intervals the intervals of length 2MN
that lie on either side of a heterogeneous interval. These include the intervals lying
on either side of the original protected intervals, as well as those obtained when
splitting the intervals. These intervals are denoted by S1, . . . , Sm, and are ordered
sequentially. If the number of particles in Si is at most J or is at least 2MN − J ,
we say that Si is within J of unanimity. We classify the intervals obtained by
removing all of the heterogeneous and boundary intervals from Z as homogeneous
intervals, which we write as G1,G2, . . . ,Gn and order sequentially. The lengths
of G1 and Gn are both infinite.

If one places these three types of intervals together, and orders them accord-
ing to their coordinates, the sequence thus obtained begins and ends with ho-
mogeneous intervals, between which it alternates between boundary, and either
heterogeneous or homogeneous intervals. Each boundary interval borders at least
one heterogeneous interval, which implies, in particular, that between any two ho-
mogeneous intervals there must be at least one heterogeneous interval. Although
a boundary interval can have any combination of occupied and vacant sites,

if a boundary interval is not within 2δMN of unanimity,
then it borders two long heterogeneous intervals,

(6.2)

since it was obtained by splitting up a protected interval. Note that

the intervals Ii contained within any given homogeneous interval and
its neighboring boundary intervals all either have high density or
all have low density.

(6.3)

Otherwise, the homogeneous interval or one of its neighbors would contain at least
part of an ε-interface. This is not possible, since all ε-interfaces are inside protected
intervals, and so are contained in heterogeneous intervals, or intersect boundary
intervals which border two long heterogeneous intervals.

In the following subsection, we will examine the behavior of f on these
three types of intervals. We will show that, under certain restrictions, f tends to
decrease (or at least not increase) on heterogeneous and homogeneous intervals,
and that the contribution to f on boundary intervals has reasonable bounds.
From our perspective, heterogeneous intervals will be “very good,” homogeneous
intervals will be “good” and boundary intervals will be “satisfactory.” Hence, the
mnemonics: “V ,” “G” and “S” for intervals of these three types.
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Behavior of E[f (ηN)] − f (η0). In this subsection we analyze the behavior of
E[f (ηN)] − f (η0) for η0 ∈�. Our two main results are Propositions 6.1 and 6.2,
which consider the cases where η0 contains at least two heterogeneous intervals
and where η0 contains just one such interval. (Each η0 ∈ � contains at least one
ε-interface, and so at least one heterogeneous interval.) For our computations, we
will need to extend the domain of E[f (ηN)]−f (η0) to η0 ∈�∞. Although f (η),
as defined in (1.7), need not make sense over this extension,

f̂N (η0)
def= −E

[∑
x

x
(
ηN(x)− η0(x)

)]

is well defined for all such η0, and satisfies f̂N (η0) = E[f (ηN)] − f (η0) for
η0 ∈�. Later on in Section 6, we also abbreviate by setting ĝN (η0)=E[g(ηN)]−
g(η0) and ĥN(η0)= f̂N (η0)+ ĝN (η0), for η0 ∈�.

The following lemma will be used in Proposition 6.1. It enables us to obtain
bounds on f̂N (η0) over long heterogeneous intervals. The basic point is that such
an interval can be divided up into many intervals of length 2(M + ε)N , each of
which contains a δ-interface. Each interval of length 4(M + ε)N will then contain
a live δ-interface, and we can apply Proposition 4.1 to each of these intervals.
Here and later on in the section, we continue to assume that εN , 1/ε and 1/δ are
all integers.

LEMMA 6.1. Assume that 0 < δ < ε < 1
16 ∧ µ

8 , and let V be a long
heterogeneous interval for a given η0 ∈ �. Set η̃0(x) = η0(x) for x ∈ V , and
assume that η̃0 is constant to the left of V and is constant to the right of V .
Let η̃. denote the corresponding exclusion process. Then, for large enough N (not
depending on η0 or V ),

E

[∑
x

x
(
η̃N (x)− η̃0(x)

)]≥ 3M2N2.(6.4)

PROOF. Choose adjacent intervals J1, J2, . . . , J16M2/ε2δ2 ⊂ V , each being the
union of 2M/ε+ 2 consecutive intervals Ii , and hence each of length 2(M + ε)N .
Since V is contained in a protected interval, each such Jj must completely contain
a δ-interface. (Otherwise, it would contain a boundary interval.) One can check
that for each j , J2j−1 ∪ J2j must contain some Ii and Ii+1 with ρi > δ and
ρi+1 < 1−δ (and hence a live δ-interface). There are 8M2/ε2δ2 such disjoint pairs
in V . The inequality (6.4) therefore follows from Proposition 4.1, with K = B1,
n= 8M2/ε2δ2 and ε1 = 1. �

In order to analyze f̂N (η0), we first compare η. with an exclusion process η′
.

obtained by modifying η0 on its boundary intervals, and then decompose η′
. into

exclusion processes corresponding to each of the heterogeneous and homogeneous
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intervals of η0. Let S1, . . . , Sm be the boundary intervals of η0 ∈ �. Define
q : {1, . . . ,m} → {0,1} so that q(j) = 1 exactly when the strict majority of sites
in Sj are occupied, and define η′

0 by

η′
0(x)=



η0(x), for x /∈

m⋃
j=1

Sj ,

q(j), for x ∈ Sj ;

(6.5)

η′
. denotes the corresponding exclusion process. Let γj be the number of sites
x ∈ Sj where η′

0(x) 
= η0(x). Note that η′
0(x) = η0(x) on all heterogeneous and

homogeneous intervals of η0.
Let V1, . . . , Vr and G1, . . . ,Gn be the heterogeneous and homogeneous

intervals of η0. We set

η
Vi
0 (x)=



η0(x), for x ∈ Vi ,
q(ji), for x to the left of Vi ,
q(ji+1), for x to the right of Vi ,

(6.6)

where Sji and Sji+1 are the boundary intervals that border Vi ; ηVi. denotes the

corresponding exclusion process. We define ηGi. and ηGi0 analogously.
In Proposition 6.1, we derive upper bounds on f̂N (η0) when η0 contains at

least two heterogeneous intervals. We will employ Proposition 2.1 to compare η.
with η′

., and Proposition 2.2 to compare η′
. with the processes ηVi. and ηGi. . By

Proposition 5.2, f̂N (η
Gi
0 ) ≤ 0 for each i. By Proposition 4.1 and Lemma 6.1,∑r

i=1 f̂N (η
Vi
0 ) will be sufficiently negative to produce (6.7).

PROPOSITION 6.1. Assume that δ ∈ (0, ε4/90M2], with ε being chosen
sufficiently small. Let η. be an exclusion process with η0 ∈ �, such that η0
contains r heterogeneous intervals, with r ≥ 2. Then, for large enough N (not
depending on η0),

f̂N (η0)≤ −rε4N2/30.(6.7)

PROOF. By Proposition 2.1,

f̂N (η0)≤ f̂N (η
′
0)+

MN

2

m∑
i=1

γi.(6.8)

Since η′
0 is constant over each Si , and |Si | = 2MN, it follows from Proposition 2.2

that

f̂N (η
′
0)≤

r∑
i=1

f̂N (η
Vi
0 )+

n∑
i=1

f̂N (η
Gi
0 )+C(r + n+ 1)e−cN(6.9)

for appropriate c > 0 and C, and large enough N not depending on η0.
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As remarked above (6.2), between any two homogeneous intervals there must
be at least one heterogeneous interval. So n ≤ 2r , and the last term in (6.9) is at
most 4Cre−cN . On the other hand, by Proposition 5.2, f̂N (η

Gi
0 ) ≤ 0 for each i

and large N , not depending on η0 or Gi . It follows from (6.8), (6.9) and these
observations that

f̂N (η0)≤
r∑
i=1

f̂N (η
Vi
0 )+

MN

2

m∑
j=1

γj + 4Cre−cN .(6.10)

It was also remarked above (6.2) that each boundary interval borders at least one
heterogeneous interval. As before, label the boundary intervals bordering Vi by Sji
and Sji+1 . It follows immediately from (6.10) that

f̂N (η0)≤
r∑
i=1

(
f̂N (η

Vi
0 )+

MN

2
(γji + γji+1)+ 4Ce−cN

)
.(6.11)

In order to bound the summands in (6.11), we consider three separate cases for Vi ,
where (a) Vi is long, (b) Vi is short and it contains a live ε-interface and (c) Vi is
short and it contains no live ε-interface.

Suppose that a given Vi satisfies (a). Always, γji and γji+1 are each at most MN.

Also, by Lemma 6.1, f̂N (η
Vi
0 )≤ −3M2N2 holds for large N , not depending on η0

or Vi . So in this case,

f̂N (η
Vi
0 )+

MN

2
(γji + γji+1)+ 4Ce−cN ≤ −M2N2.(6.12)

Suppose that Vi satisfies (b). By (6.2), each of the boundary intervals
bordering Vi is within 2δMN of unanimity, and so γji and γji+1 are each at
most 2δMN. By Proposition 4.1 (with K = B2, ε = ε, δ = ε, n = 1 and ε1 =
ε4/4), f̂N (η

Vi
0 ) ≤ −ε4N2/4 for large N , not depending on η0 or Vi . Because

δ ≤ ε4/90M2, it follows that

f̂N (η
Vi
0 )+

MN

2
(γji + γji+1)+ 4Ce−cN

≤ −ε4N2/4 + 2δM2N2 + 4Ce−cN

≤ −ε4N2/5.

(6.13)

Suppose that Vi satisfies (c). As in (b), γji and γji+1 are each at most 2δMN. In
this case, Proposition 4.1 no longer provides a negative upper bound. But, setting
n = 0 and ε1 = ε4/40 in the proposition implies that f̂N (η

Vi
0 ) ≤ ε4N2/40 for

large N , not depending on η0 or Vi . So, here one obtains

f̂N (η
Vi
0 )+

MN

2
(γji + γji+1)+ 4Ce−cN

≤ ε4N2/40 + 2δM2N2 + 4Ce−cN

≤ ε4N2/20.

(6.14)
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We claim that between two heterogeneous intervals each satisfying (c), there
must be at least one heterogeneous interval satisfying either (a) or (b). Since an
interval satisfying (c) is short and does not contain a live ε-interface, it must
contain an inert ε-interface. By (6.1), there must be a live ε-interface between the
inert ε-interfaces contained in the two intervals satisfying (c). But, by the comment
after (6.3), this live ε-interface is either contained in an interval satisfying (a)
or (b), or intersects a boundary interval between intervals satisfying (a), that also
lie between the intervals satisfying (c).

It follows that of the r heterogeneous intervals, there are at least [r/2] intervals
satisfying either (a) or (b). So, for r ≥ 2, the proportion of intervals satisfying
either (a) or (b) is at least 1/3. Together with the bounds in (6.11)–(6.14), this
implies that

f̂N (η0)≤ r

(
1

3

(−ε4N2)

5
+ 2

3

ε4N2

20

)
= −rε4N2/30,

as desired. �

In Proposition 6.2, we derive upper bounds on f̂N (η0) when η0 contains a single
heterogeneous interval V1. Although η0 need not contain a live ε-interface as
it must when there are at least two heterogeneous intervals, the structure of η0
is simpler than before. In (6.16), we derive negative upper bounds on f̂N (η0)

when V1 ⊂ [−2MN,2MN]c . The upper bound (6.15) holds in general. [When
V1 ∩ [−2MN,2MN] 
= φ, we will use (6.15), together with negative upper bounds
on ĝN (η0) in the next subsection, to obtain negative upper bounds on ĥN(η0).]
As in the proof of Proposition 6.1, we will employ Propositions 2.1, 2.2, 4.1
and 5.2. Unlike in the proof of Proposition 6.1, we employ the full strength of
Proposition 5.2 to show that

∑
i f̂N (η

Gi
0 ) is strictly negative when deriving (6.16).

For both (6.15) and (6.16), we only employ Proposition 4.1, with n= 0, to show
that f̂N (η

V1
0 ) is not too positive.

PROPOSITION 6.2. Assume that 0 < δ < ε, with ε being chosen sufficiently
small. Let η. be an exclusion process with η0 ∈ �, such that η0 contains exactly
one heterogeneous interval V1. For large N ,

f̂N (η0)≤ 4δM2N2.(6.15)

If V1 ⊂ [−2MN,2MN ]c, then, for large N ,

f̂N (η0)≤ −µMN2/4.(6.16)

(N does not depend on η0 in either case.)

PROOF. As was observed above (6.2), each boundary interval always borders
at least one heterogeneous interval. Therefore, since η0 has a unique heterogeneous
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interval, the partition of Z into heterogeneous, boundary and homogeneous
intervals takes the form G1, S1, V1, S2, G2, where the intervals are ordered
according to their coordinates. All Ii ⊂G1 must have low density and all Ii ⊂G2
must have high density. By (6.2) and (6.3), S1 has at most 2δMN particles and S2
has at most 2δMN empty sites. In particular,

all Ii to the left of V1 have low density and
all Ii to the right of V1 have high density.

(6.17)

We define η′
0 as in (6.5), where q(1)= 0 and q(2)= 1; η′

. is the corresponding

exclusion process. We define ηV1
0 , ηG1

0 and ηG2
0 as in (6.6), with ηV1. , ηG1. and ηG2.

denoting the corresponding exclusion processes. Since η′
0(x) 
= η0(x) at most at

2δMN sites in each of S1 and S2, it follows from Proposition 2.1 that

f̂N (η0)≤ f̂N (η
′
0)+ 2δM2N2.(6.18)

Application of Proposition 2.2 to η′
. implies that

f̂N (η
′
0)≤ f̂N (η

V1
0 )+ f̂N (η

G1
0 )+ f̂N (η

G2
0 )+ 4Ce−cN(6.19)

for appropriate c > 0 and C, and large enough N not depending on η0.
Consequently, by (6.18) and (6.19),

f̂N (η0)≤ f̂N (η
V1
0 )+ f̂N (η

G1
0 )+ f̂N (η

G2
0 )+ 2δM2N2 + 4Ce−cN .(6.20)

We first show (6.15). By Proposition 5.2, f̂N (η
Gi
0 )≤ 0 for i = 1,2 and large N ,

not depending on η0. By Proposition 4.1 (with n= 0 and ε1 = δ), f̂N (η
V1
0 )≤ δN2

for large N not depending on η0. Together with (6.20), these inequalities imply
that

f̂N (η0)≤ δN2 + 2δM2N2 + 4Ce−cN ≤ 4δM2N2(6.21)

for large N , which gives (6.15).
We now show (6.16). By symmetry, we may assume that V1 ⊂ (2MN,∞).

Hence, (a) S1 ⊂ (0,∞) and (b) (−∞,0] ⊂G1. By (6.17) and (a), the number of
empty sites in (0,∞) is at least 2(1−ε)MN . Since η0 ∈�, the number of particles
in (−∞,0) is also at least 2(1 − ε)MN. Together with Proposition 5.2 and (b), this
bound implies that

f̂N (η
G1
0 )≤ −(1 − ε)µMN2/2 and f̂N (η

G2
0 )≤ 0(6.22)

for small enough ε > 0 and large N not depending on η0. But, by Proposition 4.1
(with n= 0 and ε1 = µ/16), f̂N (η

V1
0 )≤ µN2/16. Together with (6.20) and (6.22),

this bound implies that

f̂N (η0)≤ µN2/16 − (1 − ε)µMN2/2 + 2δM2N2 + 4Ce−cN ≤ −µMN2/4

for large enough N , not depending on η0. This implies (6.16). �



STATIONARY BLOCKING MEASURES 1127

Behavior of E[g(ηN)] − g(η0) and conclusion. In Propositions 6.1 and 6.2,
we obtained upper bounds on f̂N (η0). These bounds are negative except when η0
contains exactly one heterogeneous interval V1 and V1 ∩ [−2MN,2MN] 
= φ;
in this case, we only have the positive bound given in (6.15) for f̂N (η0). In
Proposition 6.3, we derive a negative upper bound for ĝN (η0) in this case, and
in Lemma 6.2, we derive a simple upper bound on ĝN (η0) which includes the
other cases. Together, these bounds on f̂N (η0) and ĝN (η0) will imply that ĥN(η0)

is negative and bounded away from 0 except on a finite set of η0 ∈�. As in (1.8),
for η ∈�,

g(η)= σN
((
L(η)+ βN

)− + (R(η)− βN
)+)
,

where σ > 0 is a small number and β is a large number which will be specified
later.

LEMMA 6.2. Let η. be an exclusion process, with η0 ∈�. Then, for large N
(not depending on η0),

ĝN (η0)≤ 2σMN2.(6.23)

PROOF. By the bound on the expectation after (2.3),

E[(L(ηN)−L(η0))
−] ≤ MN and E[(R(ηN)−R(η0))

+] ≤ MN

for large N . Since (c2 − a)+ − (c1 − a)+ ≤ (c2 − c1)
+ for any a, c1, c2 ∈ R, it

follows that

ĝN (η0)≤ σN
(
E
[(
L(ηN)−L(η0)

)−]+E
[(
R(ηN)−R(η0)

)+])≤ 2σMN2. �

Proposition 6.3 states that when the unique heterogeneous interval V1 intersects
[−2MN,2MN], and either L(η0)≤ −(B1 + 5M)N or R(η0)≥ (B1 + 5M)N , then
ĝN (η0) is negative. The corollary to Proposition 5.1, together with our definition
of g, is used here. The main idea is that, under these assumptions, the density
of particles (empty sites) close to L(η0) (R(η0)) will be low, which will induce
a drift of L(ηt ) (R(ηt )) toward 0 and hence decrease ĝt (η0) over [0,N ]. From
now on, we fix the constant β in the definition of g, setting β = B1 + 4M (where
B1 = 70M3/ε2δ2). We also set

G= {
η :L(η)≤ −(B1 + 5M)N or R(η)≥ (B1 + 5M)N

}
.(6.24)

(We will specify σ before Proposition 6.4.)

PROPOSITION 6.3. Assume that 0< δ < ε, where ε is sufficiently small. Let η.
be an exclusion process with η0 ∈ � ∩ G; assume that η0 contains exactly one
heterogeneous interval V1 and that V1 ∩ [−2MN,2MN] 
= φ. Then,

ĝN (η0)≤ −σµN2/6(6.25)

for large enough N (not depending on η0).
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PROOF. By symmetry, we may assume that L(η0) ≤ −(B1 + 5M)N . How-
ever, |V1| ≤ B1N and V1 ∩ [−2MN,2MN] 
= φ, and so V1 ⊂ [−(B1 + 2M)N,
(B1 + 2M)N ]. It follows that [L(η0),L(η0)+ MN] lies to the left of V1. Since V1
is the unique heterogeneous interval in η0, for the same reason as in the proof of
Proposition 6.2, all of the intervals Ii to the left of V1 have low density. Conse-
quently, under η0, there are at most 2εMN particles in [L(η0),L(η0)+ MN].

By assumption,L(η0)+βN ≤ −MN . It follows from this, the conclusion of the
previous paragraph, and the corollary of Proposition 5.1, that

E
[(
L(ηN)+ βN

)−]− (L(η0)+ βN
)− ≤ −µN/5(6.26)

for small ε > 0 and large enough N (not depending on η0).
We also need to examine the behavior of R(ηN). We consider two cases,

depending on whether or not R(η0) ≤ (β −M)N . Suppose the inequality holds.
Then, translation of the process in (2.3) implies

E
[(
R(ηN)− βN

)+]≤ 1(6.27)

for large N . On the other hand, if the inequality fails, then the distance from R(η0)

to V1 is greater than MN . Since all Ii to the right of V1 have high density, there
are at most 2εMN empty sites in [R(η0) − MN,R(η0)]. So, by the corollary to
Proposition 5.1,

E
[(
R(ηN)− βN

)+]− (R(η0)− βN
)+ ≤ 1(6.28)

for large N . The inequalities (6.26), (6.27) and (6.28) imply that

ĝN (η0)≤ −σN(µN/5 − 1)≤ −σµN2/6

for large N , which is independent of η0. This implies (6.25). �

By applying the bounds on f̂N (η0) and ĝN (η0) in Propositions 6.1, 6.2 and 6.3,
and in Lemma 6.2, it is a simple matter to demonstrate Theorem 1.3. We state the
more explicit version Proposition 6.4, below. We will assume that ε > 0, δ > 0 and
σ > 0 satisfy

σ ≤ ε4/60M and δ ≤ σµ/48M2,(6.29)

as well as that εN , 1/ε and 1/δ are all integers.

PROPOSITION 6.4. Assume that η. is an exclusion process and that ε, δ and σ
satisfy (6.29), with ε being chosen sufficiently small. Then, E[hN(η0)]<∞ for all
η0 ∈� and N . If, in addition, η0 ∈G, then

ĥN(η0)≤ −σµN2/12(6.30)

for large enough N (not depending on η0).
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PROOF. It follows without difficulty from (2.3) that for η0 ∈ �, E[f (ηN)]
<∞ and E[g(ηN)] <∞, and consequently, E[h(ηN)]<∞. In order to demon-
strate (6.30), we consider the different cases covered in Propositions 6.1–6.3,
where (a) η0 contains at least two heterogeneous intervals, (b) η0 contains exactly
one heterogeneous interval V1 and V1 ⊂ [−2MN,2MN]c , and (c) η0 ∈G, such
that η0 contains exactly one heterogeneous interval V1 and V1 ∩ [−2MN,2MN]

= φ.

When η0 satisfies (a), it follows from Proposition 6.1 and Lemma 6.2, that for
large enough N ,

ĥN(η0)= f̂N (η0)+ ĝN (η0)

≤ −ε4N2/15 + 2σMN2.
(6.31)

When η0 satisfies (b), it follows from (6.16) of Proposition 6.2 and Lemma 6.2,
that for large N ,

ĥN(η0)≤ −µMN2/4 + 2σMN2.(6.32)

Also, when η0 satisfies (c), it follows from (6.15) of Proposition 6.2 and
Proposition 6.3 that for large N ,

ĥN(η0)≤ 4δM2N2 − σµN2/6.(6.33)

In all three cases, N does not depend on η0. For ε, δ and σ satisfying (6.29),
one has in each case that ĥN(η0) ≤ −σµN2/12 for large enough N , which
implies (6.30). �

Acknowledgments. The authors thank Ellen Saada and the referee for
carefully reading the manuscript.

REFERENCES

BRAMSON, M., LIGGETT, T. M. and MOUNTFORD, T. (2002). Characterization of stationary
measures for one-dimensional exclusion processes. Ann. Probab. To appear.

EVANS, L.C. (1998). Partial Differential Equations. Amer. Math. Soc., Providence, RI.
FERRARI, P. A., LEBOWITZ, J. L. and SPEER, E. (2001). Blocking measures for asymmetric

exclusion processes via coupling. Bernoulli 7 935–950.
KIPNIS, C. and LANDIM, C. (1999). Scaling Limits of Particle Systems. Springer, Berlin.
LIGGETT, T. M. (1975). Ergodic theorems for the asymmetric simple exclusion process. Trans.

Amer. Math. Soc. 213 237–261.
LIGGETT, T. M. (1976). Coupling the simple exclusion process. Ann. Probab. 4 339–356.
LIGGETT, T. M. (1985). Interacting Particle Systems. Springer, Berlin.
LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.

Springer, Berlin.
MOUNTFORD, T. (2001). An extension of a result of Andjel. Ann. Appl. Probab. 11 405–418.
REZAKHANLOU, F. (1991). Hydrodynamic limit for attractive particle systems on Z

d . Comm. Math.
Phys. 140 417–448.



1130 M. BRAMSON AND T. MOUNTFORD

SMOLLER, J. (1983). Shock Waves and Reaction–Diffusion Equations. Springer, Berlin.
SPITZER, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290.

UNIVERSITY OF MINNESOTA

TWIN CITIES CAMPUS

SCHOOL OF MATHEMATICS

INSTITUTE OF TECHNOLOGY

127 VINCENT HALL

206 CHURCH STREET S.E.
MINNEAPOLIS, MINNESOTA 55455
E-MAIL: bramson@math.umn.edu

DÉPARTEMENT DE MATHÉMATIQUES

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE

LAUSANNE

ECUBLENS CH 1015
SWITZERLAND

E-MAIL: thomas.mountford@epfl.ch


