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SYMMETRIC LANGEVIN SPIN GLASS DYNAMICS

By G. BEN AROUS AND A. GUIONNET

Ecole Normale Superieure and Université de Paris Sud

We study the asymptotic behavior of symmetric spin glass dynamics in
the Sherrington—Kirkpatrick model as proposed by Sompolinsky—Zippelius.
We prove that the averaged law of the empirical measure on the path space
of these dynamics satisfies a large deviation upper bound in the high tem-
perature regime. We study the rate function which governs this large
deviation upper bound and prove that it achieves its minimum value at
a unique probability measure @ which is not Markovian. We deduce an
averaged and a quenched law of large numbers. We then study the evo-
lution of the Gibbs measure of a spin glass under Sompolinsky—Zippelius
dynamics. We also prove a large deviation upper bound for the law of the
empirical measure and describe the asymptotic behavior of a spin on path
space under this dynamic in the high temperature regime.

1. Introduction. The Sherrington—-Kirkpatrick (S—K) model is a mean
field simplification of the spin glass model of Edwards—Anderson. The behavior
of its static characteristics, such as its partition function, has been intensively
studied by physicists (see [12] for a broad survey). There are few mathematical
results available (except for [1], [6], [9] and [17]).

In [12], it is argued that studying dynamics might be simpler since it avoids
using the “replica trick” and the Parisi ansatz for symmetry breaking, which
are yet to be put on firm ground. It seems that, in the physics literature,
the first attempt to study the dynamics of S—K is due to Sompolinsky and
Zippelius (see [15]), who chose a Langevin dynamics scheme.

In [3], we followed this strategy for asymmetric dynamics (which are not
directly relevant to the study of statics for the S—K model). We obtained there
a full large deviation principle for path space empirical measure averaged on
the Gaussian couplings (for short times or large temperatures). This large
deviation principle enabled us to derive the so-called self-consistent limiting
dynamics, which proved to be non-Markovian.

Here we want to attack the real problem, that is, symmetric dynamics.
We prove only a strong large deviation upper bound with a good rate func-
tion. Minimizing this rate function gives a theorem on convergence to self-
consistent limiting dynamics, which we identify, though in a rather cryptic
form.

We can do this only in a short time or high temperature regime, and so this
prevents us from drawing any conclusion for the behavior in large time, at
fixed temperature, which would be a line of attack to study the equilibrium
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measure. Weaker results concerning these dynamics are proved in [11] for any
time and temperature.
To be more specific, let us recall that the S—-K Hamiltonian is given, for
x=(xt, ..., xV)e {-1,1}", by
HY (x) -1 g: J;xixd
g VN 7Y

where the randomness in the spin glass is here modeled by the (J/;;),;-; which
are independent centered Gaussian random variables, and where J;; = J j;.

The Gibbs probability measure one would like to study (for N large) is given
by
_pgN
Zy(J)
where a = %(8_1 + 6,) and B is the inverse of temperature.
Here Z 5(J) is the partition function

ZvI) =5y X exp(-BHY ()
xe{-1,1}¥
If one replaces the hard spins {—1, +1} by continuous spins, that is, by spins
taking values in R, or as we shall see in a bounded interval of R, and if one
replaces the measure a = 3(6_; + 8;) by a(dx) = (72U [e72V®) dx) dx,
where U is, for instance, a double well potential on R, then the Langevin
dynamics for this problem are given by

1) dx! =dB] — VU(x})dt + £ J qxidt,
Jivt

1<i<N

where B is an N-dimensional Brownian motion.

We want to understand the limiting behavior (for large N) of the law, say
Pf;V(J), of these randomly interacting diffusions given the initial law, say %@N.

As in [3], we will only study bounded spins; that is, we will assume that
U(x) is defined on a bounded interval [—A, A] and tends to infinity when
|x| — A sufficiently fast to insure our spins x/ stay in the interval [—A, A].

However, we will not assume as in [3] that the the whole matrix (J;;); ;
is made of i.i.d N(0,1) random variables but rather assume the symmetry
of couplings; that is, we will here suppose that the random matrix (J/;;); ; is
symmetric, that is, J;; = J ;. More precisely, we will suppose that under the
diagonal, the J/;;'s are i.i.d N(0, 1) and N (0, 2) on the diagonal. Such a choice
of covariance is nice from the technical point of view since it makes the law of
the J;;'s invariant by rotation. On the other hand, it does not interfere with
the limit behavior of the spin glass.

So, under this symmetry hypothesis, our dynamics (1) are reversible and
their invariant measure is given by the Gibbs measure:

N W N
w(dx) = exp{—BHy(x) -2y U(x‘)} [Tdx"

i=1 =1
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Thus the symmetry hypothesis is crucial to understanding S—K dynamics. On
the other hand, this model is much more difficult to understand than the
asymmetric one.

Our first goal is to study the empirical measure gV = (1/N)Zfi1 6, on
path space. There is no reason for this to be a simple problem, since, for
fixed interaction o/, the variables (x%, ..., x") are not exchangeable. So we
first study the law of the empirical measure 4V averaged on the interaction,
leaving for a later work the study of JJ almost sure properties of this law.

The main result of this paper is large deviation upper bounds for this aver-
aged law in a large temperature (or short time) regime, which entails a propa-
gation of chaos result, that is, a theorem on convergence to a probability mea-
sure on path space that we describe explicitly as the law of a non-Markovian,
highly nonlinear, solution of a stochastic differential equation (see Corollary
3.2). The existence and uniqueness problems for this limit law are not obvi-
ous and are the analogue here of the existence and uniqueness problem for
asymmetric spin glass dynamics as obtained in [3].

As in [3], we then deduce that the quenched law of the empirical mea-
sure converges exponentially fast to 54, which entails quenched laws of large
numbers.

We finally underline how our method can be used to study the evolution of
the Gibbs measure ,uy under Sompolinski—Zippelius dynamics and prove that,
in the high temperature or short time regime, the quenched law of the em-
pirical measure converges to the weak solution of a new nonlinear stochastic
differential equation.

The organization of the paper is as follows.

In Section 2, we state and prove the strong large deviation upper bound.
For more detail, see the following.

1. In Section 2.1, we introduce the rate function and state the strong large
deviation upper bound (see Proposition 2.2 and Theorem 2.3).

2. In Section 2.2, we prove that the law of the path space dynamics averaged
on the couplings is absolutely continuous with respect to the law of these
dynamics with no couplings and show that its Radon—Nikodym derivative
is a function of the empirical measure.

3. In Section 2.3, we study the continuity properties of this density.

4. In Section 2.4, these continuity properties enable us to prove that the rate
function is a good rate function in the short time or high temperature
regime.

5. In Section 2.5, we prove the strong large deviation upper bound in the short
time or high temperature regime by first proving an exponential tightness
result and then a weak large deviation upper bound.

In Section 3, we study the minima of the good rate function and prove
that it achieves its minimum value at a unique probability measure, say Q.
We describe @ as the unique solution of a fixed point problem in Theorem
3.14. This gives a propagation of chaos result stated in Corollary 3.3. In order
to give a hint about what kind of result this approach leads to, let us state
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here Corollary 3.3.(ii): For any bounded continuous functions (f4, ..., f,) on
C([O’ T]a [_A’ +A])a

Bim & [[ 2 o) aPY )] = T [ £ 4@,

where & is the expectation over the Gaussian couplings.

In Section 3.1, we characterize the minima of the good rate function.

In Section 3.2, we reduce the problem of finding these minima to a fixed
point problem and then we show that this fixed point problem has at most one
solution.

In Section 4, we apply our strategy to the stationary law of spin glass
dynamics starting from the Gibbs measure. To this end, we need to suppose
that B is small enough so that we are below the phase transition and that the
free energy concentrates as proved by Talagrand (see [17]). Then, the study of
the law of the empirical measure is reduced to that of the law of the empirical
measure starting from the nonnormalized Gibbs measure Z% x 1%/, which can
be studied following the above procedure. We then describe the asymptotic
behavior of the empirical measure.

2. Averaged and quenched large deviation upper bounds.

2.1. Statement of the large deviation upper bound. We first make precise
the setting of our model: let A be a strictly positive real and U be a C? func-
tion on the interval ]—A, A[ such that U tends to infinity, when |x| — A,
sufficiently fast to insure that

. x y
|3!\'TA/O exp 2U(y)</0 exp —2U(z) dz) dy = +o0.

For any number N of particles, any temperature (= 1/8) and J =
(I j<n € RN, we consider the following system ./;¥(J) of inter-
acting diffusions. For j € {1,..., N},

. . . N

dx] = -VvU(x] dt+dBJ+i J; xidt,

%N(J)z t (t) t mg J t
Law of xo = ud™,

where (Bf)lfjsN is an N-dimensional Brownian motion and u, is a probability
measure on [—A, A] which does not put mass on the boundary {—A, +A}.
Under these assumptions, we recall Proposition 2.1 of [3].

PROPOSITION 2.1.  For each J € RV®N /N (J) has a unique weak solution
and, almost surely, sup,_r supl§j§N|x§| does not reach A.

In the following pages, we will focus on the evolution of this dynamical
system until a time T and denote by PéV(J) the weak solution of /BN(J)
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restricted to the sigma algebra %, = o(xi, 1 <i < N, s < T), and by P&V
the weak solution of /4" (J) restricted to .
Let W# be the space of continuous functions from [0, T'] into [~A, A]. Then

Proposition 2.1 insures that PZBV(J) is a probability measure on (W?)N
We now suppose that the J;;'s are random and that their distribution is
given by the following.

1. For any integer numbers (i, j), J;; = J

2. Ifi < j, the J;;'s are independent centered Gaussian variables with covari-
ance 1.

3. The J;;’s are independent centered Gaussian variables with covariance 2.

They are also independent of the (J;);_ ;.

We shall denote by y the law of the J;;'s and by & expectation under y. We
have already noticed in [3] that PN(J) |s a measurable function of the J;;’s.
Further, we will be interested in the averaged law Qf;’:

Q) = [ PY(J(@) dy(w).

The aim of this section is to prove that the law of the empirical measure under
Qé\’ satisfies a large deviation upper bound, which entails a quenched large
deviation upper bound. To this end, we first define the rate function H which
governs this upper bound (see Proposition 2.2). In order to define H, we need
some notation and definitions that will also be useful later.

1. Let

M = {M c V/f(wg‘:)//(/: IVU(x,)| ds)zd,u(x) < +oo}.

2. Let u be a probability measure in .#. We denote by LZ(W ) the space of
the square integrable functions under w. Hence L2(W ) is a Hilbert space
with scalar product (f, g), fgf du.

3. Let I be the identity on LZ(WT)

4. Let 4y be an integral operator on L2(WA) with kernel

T
br(x. y) =[xyt

Then %y is a symmetrlc nonnegative Hilbert—Schmidt operator in LZ(W )
[for any u € .2, (W4)].

5. Let A; be the eigenvalues of % in LZ(W ), and (E,;);.y be an orthonormal
basis of eigenvectors of %, such that #BrE; = N\, E;. Since Ay is nonneg-
ative, the A;’s are nonnegative so that we can define a symmetric positive
Hilbert-Schmidt operator log(I + B2%y) in L2(W#) by

Vi S N, IOg(I —+ BZ%T)EL' = |Og(1 =+ BZ)\i)Ei.
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6. We define another integral operator o7 with kernel

1 T T
ar(r.3) = 430y = w030 + [ £.VUC)ds+ [ 3,90, ds ).

Then o7 is a symmetric Hilbert-Schmidt operator in LZ(W ), since
f(fo |VU (x,)| ds)? du is finite.

7. We denote by tr, the trace in L2(W ).

8. Let I( |P) be the relative entropy with respect to P:

{flog Bdp, ifu<P,

s otherwise.

PROPOSITION 2.2 (Definition). We can define a map I" from .# into R by

1
2 T(w) = ——tr L log(I + B*%r) +/ tr, (o/p exp{—A%r}) exp{ 2 }d)\
and a map H from .2, (W#) into R by

[ I(p|P) —T(p), if I(u|P) < oo,
H(p) = :
o0, otherwise.

ProoOF. We first show that I' is well defined and finite for any u in .# [see
(12) too].

Indeed, as # is a nonnegative Hilbert-Schmidt operator, tr, Iog(I + B2%r)
is well defined and is finite according to (11) for any u € .#;" (W ).

Moreover, since exp{—A%r} is a bounded operator and o is Hilbert—
Schmidt for u € .#, oy exp{—A%r} is Hilbert-Schmidt and its square is trace
class. Further, since %y is nonnegative, tr, (.27 exp{—A%r})? < tr,(o/p)?. So,
for any w in .#, the second term in the right-hand side of (2) exists and is
bounded.

Moreover we will see later (see Lemma A.8) that, when I(u|P) is finite,
f(fo |VU (x,)| ds)? du is finite so that {u € ,//l*(W )/I(n|P) < +o0} C 4.
Thus, H is well defined and finite on {u € .#;'(W%)/I(1|P) < 4+o00}. O

We shall prove the following theorem.

THEOREM 2.3. If 2B2A%T < 1, then we have the following:

(i) H is a good rate function; that is, H takes its values in [0, +oc] and, for
all M e R, {H < M} is a compact subset of .#;,"(W%).
(ii) For any closed subset F of .2, (W#),

IlmsupNIog Qp ( 1 ZSxL GF) < —me

N—o0 i=1
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From Theorem 2.3, we can deduce the following quenched large deviation
upper bound as in [3].

THEOREM 2.4. If 2B2A%T < 1, for any closed subset F of .#;"(W#) and for
almost all J,

1 1
limsup = log Pf}’(J)( Zéx, € F) < —inf H.
N—oo N i=1

We omit the proof that Theorem 2.3 implies Theorem 2.4 since it parallels
the proof given in [3], Appendix C. The strategy of the proof of Theorem 2.3
is the following.

1. First, we prove (see Section 2.2) that Qfgv is absolutely continuous with
respect to P®N and that the Radon—Nikodym derivative of Qév with respect

to P®YN is equal, in the large deviation scaling, to exp{ NT'(a")}. Hence,
according to Laplace-type methods, Theorem 2.3(ii) is not surprising (see
[2] and [7]).

2. Once we are motivated by this last result, we study H and prove that it is
a good rate function.

3. Finally, following a method very similar to the one we developed in [3],
Section 3, we prove the upper bound result.

2.2. Study of QF. We first show that @} is absolutely continuous with
respect to P®N and give the Radon—Nykodim derivative of Qf;’ with respect
to P®V,

The Girsanov theorem implies that, for almost all couplings /, PéV(J) is

absolutely continuous with respect to PN and describes its Radon—-Nikodym
derivative. Thus, it is not hard to see that, if we denote by B’ the process
defined by B} = B,(x*) = x; — x§ + fot VU (x%)ds, then

dPN(J) N T/ 1 N . ,

3)
2 T/ 1q NJ izd
- L (GE o) @)
and we have the following proposition.

PROPOSITION 2.5. We have @ « P®N and

dQs _ v
dP®N — BT

In order to study the law of the empirical measure under QN we want to
prove that MNT is a function of the empirical measure. More premsely, let T
be the identity in the tensor product space L2(W#)® L2(W#) and tr,q, the
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trace in L2(W$) ® L2(W#). We then define

= .1 I+ B°%r 1+ B?I @ Byr)
Fw) = =7 Muon '09( I+ By o (1 + Poy) )
1 1 B>T
— Ztr log(I + 2B2%y) — B2 TtrM((I+ZB Brp) " Ap)+ —— 7

Denote in short 4 for the empirical measure % Zfil )
We are going to prove the following statement.

THEOREM 2.6.
(i) We have, P®N almost surely,
M =exp{NT(a™) +T(a")}.

(ii) There exists a finite constant C = C(B, T', A) such that, for any discrete
probability measure on W%, U € y//f(W?), if dim(w) denotes the dimension of
the image of %, in L?(w),

[T(w)] < 2C(L+ dim(u)"2)(T () + 1),
so, if D =expC, P®N almost surely,
C d C
D1~ fexp{N( _ﬁ>r(AN)} dl?@ﬁv_D1+fexp{N<1+ﬁ>r(@N)}.
REMARK. It is obvious that f(foT|VU(xs)|ds)2 dP(x) is finite. Hence,
JUT VU ) ds)?di (x) = (1/N)ENL(7 [VU(xl)|ds)? is PN almost

surely finite, that is, 4"V e .#, P®N almost surely. Thus, I'(a") is well defined,
P®N almost surely.

To prove Theorem 2.6, we shall use spectral theory.
2.2.1. Spectral calculus. In the following pages, an integer N will be given.
We may regard J = (J;;);1-,; <y as an element of the space .V of the N x

N real symmetric matrices. For any (x%,..., ") such that fo VU (x%)|ds is
finite for any i € {1, ..., N}, we define two other symmetric matrices A and
B in RV*N py
L (" inis (Fiopi
Aij = T(/ xt dBt +/ xt dBt>
J J
ZJ_(xTxT x0x0+/ x.VU (x] )ds+/ xIVU(xl)ds — )
lj N/ x xt

Let A; be the eigenvalues of B and e; be the eigenvectors of B in RY such that
Be; = A;e;. We prove the following.
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PROPOSITION 2.7. We have, P®N almost surely,

N (efAe;)? 1
MNT=exp{B2 > N B 2
B. DAL BN B2 4

N
> log(1+ B2A; + B%A;)
, J=1

1 N
-2 > log(1 + 2;3%)}.

=1

PRrROOF. If tr denotes the trace in %, since J = J*, we get

1 N T . J N
— Y J; [ xidBl= ¥ A,J; =tr(Ad),
mi,j:l J/O e i, j=1 Y
1 X T
= ¥ inij/ xixk dt = tr(JBJ*) = tr(JBJ).
Ni,j,k:l 0

So, since & denotes the expectation with respect to the Gaussian variable o/,
we get that, for any x = (x,..., ") such that [] |[VU(x!)|ds is finite for
1 <i< N and so P®N almost surely,

MZXT = &[exp{Btr(JA) — %BZ tr(JBJ)}].

Using the usual rules of computation for Gaussian variables (see [13], Propo-
sition 8.4), we get

“ Mé\szé[exp{—%thr(JBJ)”

1 exp{—(1/2)B2 tr(JBJ)}
x exp{ 2" 25[(”(‘”‘))2 Fexp{—(1/2) 2 tr(JBJ)}] } }

LEMMA 2.8.
&[exp{—3B2tr(JBJ)}]

13

N N
Z log(1+ BZ()\i + 1)) — 1_11 Z log(1 + ZBZAi)}.
,j=1 i=1

:exp{—z—l1

PROOF. We have chosen the (J;;);; j<n'S S0 that their law is invariant by
rotation on RY; that is, for any orthogonal matrix O, the law of (Jij)i<i, j<n
is invariant by the action J — OJO*. Thus, if O is an orthogonal matrix such

that OBO* is a diagonal matrix D = diag(\q, ..., Ay), then
&exp{—1p2tr(JBJ)}]
= &[exp{—3p*tr(JDJ)}]

N
=exp{—% )D
&

13

N
Iog(1+52(/\,~ +)\j))_%zlog(1+232)\i)}. O
1 i=1
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LEMMA 2.9.

M=

[y exp{—(1/2)B? tr(JB)} I (cj Ae)?

&exp{—(1/2)p* tr(JBJ)}] 2 LB+ Ay

PROOF. Let A = OAO*. Since the law of J is invariant by rotation,

cf[(tr(JA))z exp —(1/2)B% tr(JBJ) }

&lexp —(1/2)B2 tr(JBJ)]
exp —(1/2)B2 tr(JDJ)
&lexp —(1/2)p? tr(JDJ)]}
exp —(1/2)B%tr(JDJ)
[exp —(1/2)p? tr(JDJ)]]'

= a”[(tr(JK))z

=) gijgklﬁo[JﬁJlkf
ikl -

However,

exp —(1/2)B2 tr(JDJ)
f[”"“f[exp—(l/zwz tr(JDJ)]]

0, if (,1) # (k, 1) and (I, k),
1 e . .
_ m, if (j,1)=(k,0)or (L, k), i #J,
2

m, |fl=J=k=l

Since A = A*, we conclude
42
ij

D2 BN A

M=

&[(tr(JA))z exp —(1/2)p* tr(JBJ) }22

&lexp —(1/2)B2 tr(JBJ)]

Finally, according to the definition of O, if e; is the eigenvector of B associated
with the eigenvalue A;, then A;; = e} Ae;, so we have proved Lemma 2.9. O

According to (4), Lemmas 2.8 and 2.9 give Proposition 2.7.

2.2.2. Proof of Theorem 2.6. We shall now use Proposition 2.7 to express
Mé\fT as a function of the empirical measure (and of N). To this end, we shall

use that LEN(W?) and RY are isomorphic whenever the x''s are distinct, and

so P®N.a.s. More precisely, we shall prove that the operator B in RY and the
integral operator %p on LﬁN(W‘%) with kernel fOT x,y,dt are identical after

the natural identification of RY and L;21N (when the x¥’s are distinct). For

convenience, we state without proof the following trivial identification.
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PROPOSITION 2.10. Let (x%,...,2Y) e (WHY and oV = (1/N)XN, 8,
(i) Let
R LI%N(W?) — RY,

Z - \/%(Z(xl),...,Z(xN)).

Then ¢ is an isomorphism from (LI?LN(W‘}‘), (, )anv) into RY endowed with the
Euclidean scalar product. Moreover,

W By = By,

As a consequence, if (Eq, E,) are eigenvectors of #p with eigenvalues (A4, A,),
then (¢ (E,), ¢y(E,)) are eigenvectors of B with eigenvalues (A4, A,) and, for
(2, J) €{L, 2}, ¢(E)"P(E ) = (E;, E ).

(i) If the x' are distinct, there exists an orthonormal basis (E;);.;-y of
eigenvectors of %y in LiN(W‘%) with eigenvalues (X;)1<;-n: 4rE; = N E;.
Then (Y(E;));<;<y is an orthonormal basis of eigenvectors of B and By/(E;) =
A (E;).

COROLLARY 2.11. Almost surely P®V the operators % on LI%N(W‘}‘) and B

on RY have the same eigenvalues and there exists a one-to-one map between
their N eigenvectors.

Corollary 2.11 is a direct consequence of Proposition 2.10(ii) since, as P is
the law of a diffusion, P does not put mass on points of W? so that the x* are
P®N almost surely distinct.

As a consequence of Proposition 2.7, Proposition 2.10 and Corollary 2.11,
we find the following.

PROPOSITION 2.12. We have, P®N almost surely,

1
log M§ ;= — > tryngw log(I+ B>%r ® I + B*1 ® Br)

4
+ BNt pvgun (14 B2 ® By + BBy @ 1) oty @ o#p 0 /)

2 2 -1 1 2 B>T?
— BT tryn (I +2B°%r) ~oty) — 7 v log(I +2B°%r) + 1

where T denotes the identity in the tensor product space LEN(W‘}‘) ® LEN(W?)
and . the symmetry operator in Lle(W‘}‘) ® LEN(Wé) such that, for any
(f. 8) € L2, (W),

S(fe®g)=80f.
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PROOF. We stated in Proposition 2.7 that

IogMBT_— ZIog(1+BA+BA)——ZIog(1+23A)
(5) i, j=1
(efAe;)?

N
2
Y T gy

i, j=1
According to Corollary 2.11, P®N-a.s, the operators B in RY and % in
LZN(W ) have the same eigenvalues (A;);-;-y, so that

N
(6) > log(1+2B%A;) = tryw log(I + 28°%y)
i=1
and
N
(7)Y log(1+ BPA; + BPA;) = trungun log(I+ 2% ® I + B*I ® #r).
i, j=1

We now focus on Zij:l (efAe;)?/1+ B%(A; + A;). It is an easy matter to
see that this term does not depend on the choice of the basis of eigenvectors
of B. Let (E;),-;.n be an orthonormal basis of eigenvectors of ;. We choose
(e; = ¥(E;))1-n as in Proposition 2.10(ii).

Then

N
efAe;=N1 Y E(x")A, E (")
k,1=1

N 5 By ([ e am + [ st )B )

k,1=1

= NY(E;, o/pE j) v — —N 125,

lj’

so that
ZXV: (efAe;)? _N % (E;, o1 E ')2
D2 BN+ A) DAl BAA+Ay)
(8)
T N EL’ MTE> oN T2
i:zl 1+2p27, 47
However,

(E;, MTEj>'lle =(E,QE;, (A @ Ao/ )E; QE;)inguv,

1

— = (E,®E (I I®% %, 1) 'E,QE; X
Tr @y Ei® p U+ BT @By + By @ 1) E; © E j) oy
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and since (E; ® E ;),; ;- is an orthonormal basis of the tensor product space
L?LN(W?) ® LiN(W‘%), we deduce that

& (B AE
9) i, j=1 1+ BZ(/\i + )\j)

= trungun ([ + B2 © By + BBy ® 1) oty ® oAy o /)

YU T T T T :

Equations (5)—(9) achieve the proof of Proposition 2.12. O

PRrROOF OF THEOREM 2.6(i). We show here that Theorem 2.6(i) is equivalent
to Proposition 2.12. In fact, we can see that

B2tringun (14 B2I @ By + B2Br @ 1) oty ® oty 0.7)
00 A
:/0 tr v (o7 exp{—A%r})? exp{—ﬁ} dA
in view of the following resolvent formula.

LEMMA 2.13.

B2 (1+ B2 ® By + BPBr 1) "
A

= /OO exp —{A %} @ exp —{)\e@T}eXp{ 2 } dA.
0 B

The proof of this lemma is trivial as soon as we notice that this equality is
true on the orthonormal basis (E; ® E )1; j<y of L3x(W7) ® L2y (W7).

Thus, by definition of T, Proposition 2.12 implies that
1 = A
log M7 ; = —ENtrﬂN log(I + p2%y) + T(AN)
N[ tron( oty exp{—AZp})? ex A dA
+ /0 ran (o/p exp{—AZBr})”exp g
= NT(a™) +T(a").
PROOF OF THEOREM 2.6(ii). We finally bound T.

LEMMA 2.14. There exists a finite constant C = C(B, A, T') such that, for
any probability measure u on W7,

T(w)| < C(dim(u)* + 1)(1 + T(w)),

where dim(u) denotes the dimension of the image of %, in L?(w).
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PRrROOF. Let A; be the eigenvalues of %7 in LZ(W ). Then

> (14 B2A; + B2A))
M) = Z ((1+B2A YA+ B, ))
(10) 22 (E;, o/ E}),
1 ad B i ¥T

Since the A;’s are nonnegative, for any i € N, 0 < log(1 + 282);) < 282);. So

(12) 0 <Y log(1l+2B%);) <2B*Y N, =2pB%tr, By < 2B*A’T
=0 =0

Moreover, for any positive real numbers (a, b), we have the elementary in-
equality

l1+a+b
exp{—ab} < Aradtb <1
So
L(BPAPTY < BNt (B0) = B Y A,
(12) h

x 1+ B2(A; + A,
- S ( LAURRY) ><O

i, j=0 (1+B/\)(1+B/\)
Finally, we observe that for any real numbers (a, ) and any positive «, we
have

2|ab| < aa® + a~1b?

so that
<Ei> ‘QZTE»

. (E;, o#pE;)%
23 d 1/2
T12p2n, | = dimx) Z 112871,

< dim(w)2(I(p) + B2 A?T) + dim(u)"2,

where we have used the bound (11) in the last line.
Lemma 2.14 is a direct consequence of (10)—(13). O

+ dim(p)Y/?

2

(13) i

2.3. Continuity properties of I'. In order to study the rate function H and
to prove the large deviations upper bound theorem, we first have to study the
map I'. Since this study is rather heavy and technical, we will only state the
results here, leaving the proofs and details in the Appendix. To this end, let us
first define linear functions A, which are given, for any probability measure v
on W4, by

T T
Aw) = 38° [ ds [ di((I+B@r) " X, X0, (VU (%), VU (x)),
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Then T" can be approximated by the sum of a continuous function and a linear
function in the following sense.

PRrROPOSITION 2.15. There exists a finite constant C,, such that, for any prob-
ability measure u in .#, for any probability measure v in .2, (W%), for any
positive real number M, there exists a bounded continuous function ' such
that

IT() = T () — A, ()] < Co( L v>)cw>

where dr is the Wasserstein distance which is defined by

1/2
(14) dr(u.) = inf] [ sup «! 3 (" )|

where the infimum is taken on the probablllty measures & on W X W‘% with
marginals w and » and C(u) = (f(fO VU (x,)dt)?>du(x))%? + s.

2.4. H is a good rate function. Let us now show that H is a good rate
function, that is, Theorem 2.3(i). We first prove that H is nonnegative. This
fact is not trivial since we cannot prove a large deviation lower bound. In order
to see that, we first derive an alternative expression for I', which will also be
useful for identifying the minima of H.

2.4.1. An alternative expression for I'.  We denote by X the evaluation at
time s, that is, the map from W# into R such that for any x € W4, X (x) = x,.

We denote by a, the function in L2(W#) ® L2(W#) defined by

¢ t
a; = %(Xt@)Xt—XO@XOJr/O XS@VU(XS)dS+/o VU(XS)®Xsd8>-

According to Itd’'s formula, a, is also given, under any probability measure

w < P, by
t t
=%<fo st®XS+/O Xs®st),

where B,(x) = x;, — %o + [y VU(x,)ds.
We then define, for any probability measure u in .#, a function F* in
LZ(W3) by
Fi(x)=2 [ 5,1+ 825, @ I + B1 ® #,) "al(x, y) du(y).

Let u satisfy I( |P) < oco. Then B is a semimartingale under u according
to Glrsanovs theorem. Moreover, F* is previsible and belongs to LZ(W ), so
that fo F{ dB, is well defined under u and belongs to L%(W#).

LEMMA 2.16. Let uw e {I( |P) < +oo}; then

M = [ (32 [ FrwaBw - & [ mry dt) du(x).
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PROOF. Let ¢p =1+ B°%Br Q1+ B?IQ Br) L.
By the definition of T',, we have
1
B?

Since ay is the kernel of o/, we get

Uo(p) =g, (€7 p @ oApo.S).

1
Erz(ﬂ) = (ar, gTaT);L

1/ /T T
:Z</o Xt®dBt+/0 dB,® X,, €7

T T
X(/ Xt®dBt+/ dBt®Xt>> ’
0 0

o

where we write (,), instead of (,)
L2(W#) for simplification.

At this point, we have not used the existence of stochastic integrals against
B since ar is pointwise defined. We shall now take into account that we sup-
pose that I(u|P) is finite, so that u « P and fOT X,; ® dB, is well defined in
L2(W4)® L2(W).

Since &7 is symmetric, we get

weu Tor the scalar product in Li(W%) ®

1
B2
We want to apply Ité's formula in (15). To this end, we study the martingale

properties of the processes contained in the bracket of the right-hand side of
(15). We first observe that

1/ ,T T T
(15) FZ(“)=§</O Xt®dBt,gT</o Xt®dBt+/o dBt®Xt>>.

“w

T T
‘”/T/o X,®dB, =1+ B*%; 1)71/0 X,®dB,
(16) .
B+ BB D)Ll ® @TA X,®dB,.

However,

T T T
10 % fo X, ®dB,(x,y) = [ du(2) /0 vz, dt /0 %, dB,(2),

so that, using the semimartingale representation of B, we see that I ®
B fOT X,®dB, has finite variations. As a consequence, (I+ B?%,; Q1) 1 ¢, I®
B fOT X,®d B, has finite variations. Moreover, (I+8°%;®1)™* foT X,®dB, =
foT(I+BZ=@T)7lXt®dBt and, for any y € W4, (Jo(I+B?PBr) X (y)QdB,)ser
is a martingale under P with martingale bracket with fos y,dB,; equal to
fos{yt(l + Bze@T)_lXt(y)} dt.
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As a conclusion, (16) implies that, for any y € W4, (¢7 Jo X, ®dB,(y, .))s<r

is a semimartingale whose martingale bracket with fos y,dB, is equal to
Jo{y (I + B*%r) X ()} dt. Hence, 1t0's formula implies that

T T
</ Xt®dBt,ng Xt®dBt>
0 0

N

T T
= /(//0 Ve dBt(x)gT/O X, ®dB,(y, x) d,u(x)) du(y)
T . r
0 0 .o
Similarly, we find

T T T t
</ X,®dB,, gT/ dBt®Xt> :2</ X,®dB,, gT/ dBS®XS>,
0 0 n 0 0

o

so that we have proved
1 T 1" 2.2 -1
A7) low) =2{[ dB® Xp.bra) + 3 [ (Ko (I+ ) X )yt

We now focus on the dependence of ¢ on the time variable T'. Let 2, be an
integr_al operator in LfL(Wé) with kernel d (x, y) = x,y,. Then we state the
following.

LEMMA 2.17. For any probability measure w in W?, for any (f, g) in
LZ(Wp)® LA(Wp),

T
(f.6r8), = (- 8),— B [ (F. 61 %+ 2, © Dég),,d1.

ProOOF. LetA,={0=¢y<t, <--- <t,.1 =T} be asubdivision of [0, T'].
Let |A,| = maXo_p, |tr1 — ;]| @and let

v@m = Z gtk,l(tk — tk_l), ,5//)‘0 =0
k=1

and
Cp=(1+p%,1+p1c%,) .
Then
(18) :82 Z gk(I ® th + th ® I)gk+1(tk+1 - tk) =I- gn+l'

k=0
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To prove Lemma 2.17, we can assume without loss of generality that f = g =
f1® f, where (fy, f,) are in L2(W#) and satisfy [ fidu = [ f3du = 1. Then

(F1@fo (Br @I +1Q@ By — Bpy1 @1 — I ® %,,1)f1® [2),|

= 3 [ (U (K= XD+ (o (X, = X, )2 d
k=0""*k

o tr
<2 [ ¥ [ - x,)? dtdp().
k=0""lk
But the canonical process is bounded and continuous under w, so that

i o ptr
lim /g)ft (x, — x,, )7 dsdu(x) = 0.

|A,|—0
Hence

lA“‘rnO“fl@fZa('%T@I"*'I@'@T_’@n+1®1_1®'@n+1)f1®f2>u‘:0'

Since €7 and ¢, ; are positive operators, we deduce

Aim [(£1® fo. (6r10 = €1)f 18 f2)u] = O

and, similarly,

‘Ali{n()(fl ®f2 2 IR T, + Dy, @ D)y 1(tyr — )1 f2),
nl= k=0

T
= [ (1012 618 9+ 2@ DS ® f2) .
So (18) gives Lemma 2.17 when |A,,| tends to zero. O

Since [, X,®dB, and J; dB,® X, (and so a,) belong to L2(W#)® L2(W#)
for any ¢t < T, we can apply Lemma 2.17 in (17). We find
1 T 1 ,T _
Erz(l’«) = 2</0 dB, ® X, gtat>,u + E/O (X, (I + BZ'@T) 1Xt>u dt
T
(19) e /0 <4(1 ® %+ 2,0 1),

x (/Ot st®Xs+foth®st>,f:dBu®Xu> dt.

“
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We can use Itd’'s formula for the last term of the right-hand side of (19) as we
did previously to prove (17). We find

t t S
<4(I®%+.@@I)4(/0 st®Xs+/0Xs®st),/o dBu®Xu>

m

t
(20) = <(I ® 9%+ 9,8 D¢, ¢, /0 dB, ® X>

y73
t
—3 [ (AU + BB X, (I + BPB) X, ds.
Moreover, since the kernel of , is d,(x, y) = x,y,, we find
(Z(I+B*B) ' X, (I +B2,) X ,), = (X, (I +B*B,) X,
and

t
<(I®-@t + 9, ®I)gtatagt/o dB, ® Xu>

I

= [du@) [y, [ 4B, ® X,(x, ) [ dul@)zidia, (. 2)
(21)

+ [ dutx) [ du()y.é: | "dB, ® X, (y, %) | dn@)26a,2, %)

= 2/d,u(x)</ du(z)z,€,a,(z, x))z,
where (21) comes from the symmetry of the function (x, z) — ¢,a,(x, ). Let
Fi(x) =2 [ du(y)yi6; alx, y).
Then (21) reads
<(I ® Y+ 2, 1)6,a,;¢; /Ot dB, ® Xu>M =1 /(Ff(x))Z du(x).
Thus, (20) becomes

t t S
<4(I®_@t+_@t®1)4(/0 st®Xs+fO Xs®st>,/o dBu®Xu>

= 1 [(Fi(x))? du(x) - HX,, (I + B22,) 7 X,)2,

and so (19) shows
T 4 T
o) = [ dus) (82 [ (PEGVAB(0) - 5 [ (i d )

22 Bz r 2 -1
(22) +5 A (X, (I+B*%r)X,),dt
4 T t
+%[0 dt/o(Xt, (I+B°3,)'X,)% ds.
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We can compute

T . t
BZ/O (X, (I+B%r) X)), dt+,84/0 dt/O (X, (I+32~@t)*1Xs)ids
(23) ,
= 324 (Xt7 (I + Bz‘%’t)_lXt>lL dt = tr,u. |Og(I 4 BZ%T)-

Equations (22) and (23) complete the proof of Lemma 2.16. O
2.4.2. H is nonnegative.

LEMMA 2.18. The rate function H maps .2, (W#%) into R; that is, for any
w satisfying I( |P) < 400,

(24) I'(u) < I(u|P).

PROOF. Let u € {I( |P) < +oc}. We can apply Lemma 2.16. Since F%(x)
is a previsible function along the canonical filtration %, = o(x,, s <t), under
P, M¥(x) = B2 Ji F¥(x)dB,(x) is a local continuous martingale along the
filtration (%,),-p, with quadratic variation (M*), = B* [ (F&(x))?ds.

Let 7 = inf{t/|M} — %(M“M > K}. Since M* is continuous, 7 is a
stopping time for the canonical filtration. As a consequence, m’}mK = M’}MK -
% < M* >p,,, is measurable. According to the definition of 7, m‘}MK is
bounded by K.

We now apply the relative entropy property,

(25) [ (%) dis(x) < I(u|P) + og [ expmf,,, (x) dP(x).

But (exp m?MK)tST is a bounded martingale with respect to the filtration
(Fenry )e<r- Hence, for any positive real number K,

/exp mi,.. (x)dP(x) = /exp mg(x)dP(x) = 1,
so that (25) becomes
(26) [ (0) di() < (1| P).
Thus, to deduce Lemma 2.18 from (26), we need to show that:
27) Nim [m, (@) dp(x) = [ mip(x) dpdo).
Since |mf,, | < |m%| and m7, . (x) converges to m7(x) when K tends to

infinity for any x such that m/.(x) is finite, the dominated convergence theo-
rem shows that (27) is satisfied as soon as m’. belongs to L(u). To establish
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this last point, we only need to prove that (M*) = fOT(F‘Q‘(x))2 dt belongs to
L*(n). However, since %y is positive,

[ [ Fry dednt)
< 4A? /0 ! / (€a,(x, y))? du®?(x, y)dt

T ¢ ¢ 2
SAZ/O [(/0 ySdBS(x)—i-fo deBs(y)> du®(x, y)dt.

Using the relative entropy property and the monotone convergence theorem,
we conclude that [see (29)], for any positive real number « small enough, there
exists a finite constant £ such that

[ [t dedn) < 2 aTiuip) + &

Thus, for any w in {I( |P) < +oc}, mY belongs to L(w) so that (26) and (27)
imply

[ mli(x) duntx) < 1(IP),
that is, Corollary 2.18. O

2.4.3. H is a good rate function. We first show that the entropy relative
to P is bounded in terms of H.

LEMMA 2.19. If 282A%T < 1, there exists a strictly positive real number «
and a finite constant C, C > 0, such that

H(u) > al(u|P) - C.

PROOF. Let u € .4, (Wh).
If I(n|P) = +oo, then H(un) = 400 so that Lemma 2.19 is true. Otherwise,
I(u|P) is finite so that H(w) = I(un|P) — I'(n). Moreover,

F(p) =T1(p) + Da(p) < Ta(w),
but
To(p) = B2tr e, (I+ B2, @ I + B*I @ B,) * oty @ oAy S)
< B tr, (o))

= %2 ( A " dB(y) + A ' ytdBt<x))2du®2<x, 7).
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Thanks to the relative entropy properties, for any x € W‘T‘ and any positive
real number «:

K'BTZ /(/OT x,dBy(y) + fOT ytdBt(x))zdlU“(y)

2

< 1P 109 ool 2 ([ xiaB 0+ [ viaB o) Jape)

and then, for any positive real number ¢ > 0,

| ( [ xaB)+ [ v dBt(x))z du(z, )

(28) <1+ &)I(u|P)

+ |ogfexp{,<s%2</: xtdBt(y)+/oT ytdBt(x)>2}dP®2(x, ¥).

Let J be a centered Gaussian variable with covariance 1.

/exp{KsB;(fOT x,dB,(y) + /OT ytdBt(x)>2} dP®2(x, y)

- f:/exp{\/gBJ(foT x,dB,(y) + /OT y, dBt(x)>} dP%(x, y)]
29 < 5([ eXp{KsBZJZ (/OT x2dt + /OT y2 dt) } dP®?(x, y)>1/2:|

— é’ / exp{xe,BZJz /O ! x2 dt} dP(x)]

< Slexp{xeB? AZTI2}] = lelw,
— LKE

where the last equality holds as soon as 2«82 AT < 1. However, we supposed
that 282A%T < 1 in order to choose ke > 1 small enough so that 2keB?A%T <
1. We then choose ¢ > 0 so that 1 + ¢ < ke. Hence, inequalities (28) and (29)
show that we can find a strictly positive real number o = (ke — 1 — ¢)/ke and
a finite constant C = 1/(xe/1 — 2keB2A2T) such that

I'(w) = (1 -a)I(u|P)+C,
so that
H(u) > al(p|P) - C. m
We now prove that H is lower semicontinuous. We assume in the follow-
ing that 282A%T < 1. Take a sequence u, of probability measures converg-

ing to a probability measure p and choose a subsequence (n,) such that
liminf, H(u) = lim;, H(uw,,).
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We distinguish the case where I(u,, | P) stay bounded for large £ from the
case where we can find a subsequence u,, k) such that I(u,, k)| P) > K.

In the first case, we suppose that I(u,, | P) stay bounded for % larger than
some kq. Then C(u) is uniformly bounded by a finite constant L for & > kg,
according to Lemma A.8. Moreover, Lemma 2.15 says that, for any positive
real number M, for any & > kg,

1
GO TG = () = Ao = Col (37 + driasn,)).
Hence, for any & > &,
1
G )= T, 1)~ Tin) = A, n) = oL 37+ i in,) ).

Let @, be a probability measure on W4, absolutely continuous with respect
to P, such that

Q

(x) exp{ B> f f (I + B?%Br) xg, x, ) u VU (x5)VU (x, )dtds}
where
Z, = / exp{%ﬁz /0 ' /O T((I + B2%Br) ta,, xt)MVU(xS)VU(xt)dtds} dP(x).

In the regime 28%2A%T < 1, Z,, is finite. Note that
dQM

p ()= S exp Au(8,)-

Then, we can prove as in Appendix B of [3] that
(32) I(|P)—A,=1(|Q,)—log Z,,
so that (31) becomes

1
(33 H(u,) 2 Iy, 1Q,) — 109 Z,, ~T¥ (1) - COL(M +dr(p, m)
Since I(-|Q,) is l.s.c and I'™ is continuous, (33) gives
liminf H(u,) = lim H(u,,)

1
> I(uQ,) —log Z, — I () — CoL 47

= I(ulP) ~ A, (1) ~ T(w) ~ CoL = by (32)
> H(u) ~2CoL 4 by (30)

Since the last inequality holds for any real number M, we conclude that
liminf, . H(u,) > H(uw).
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In the other case, we can find a subsequence n ,(K) such that limg I(u, k)| P)
= 400 and then Lemma 2.19 implies that

liminf H(uy) = lim H(u,,) = im H(, ) = +00,

so that we also get liminf,_,  H(u) > H(w).

Moreover, H is a good rate function. Indeed, for any positive real number
R, {H < R} is a compact set as it is a closed set (H is l.s.c) which is included
in a compact set, since, by Lemma 2.19, the relative entropy I( | P) is bounded
on {H < R}.

2.5. Proof of the large deviation upper bound. As in the asymmetric ver-
sion of dynamics, we first prove an exponential tightness result, and we then
prove a weak large deviation upper bound, that is, Theorem 2.3(ii) when F
is compact. We finally deduce from these two results Theorem 2.3(ii) for any
closed subset F.

LEMMA 2.20. If 282A2T < 1, there exists a > 1 and a finite constant C
such that

dQév : N N
/(dP®N> dpeN < CV.

Proor. With the notation of Section 2.2.1,

o

f( de;v >”‘dp®N = /é’[exp{BTr(JA) - %BzTr(JBJ)}] dP®N

dP®N
< / &[exp{aBTr(JA) - %BzaTr(JBJ)H dpeN .

Let (p, q) be conjugate exponents. The Holder inequality gives

1/p

dY \ 1
/(df@@) dpeN < ap[/dP@’N exp{ap,BTr(JA) - zﬁzazpzTr(JBJ)”
1 1/q
x 5[/ dpeN exp{zqﬁza(pa — 1)Tr(JBJ)” .
Recall that
exp{ap,BTr(JA) — %BzazpzTr(JBJ)}

N 1,1 N ; ;
= ex > — Y J;x; |dB
p{apBiZl/O <vN j=1 ! t) '

1222N re1 ¥ j2
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is a supermartingale, so that we find, for conjugate exponents (p, g),

1/q

N \ «a
(34) f <5§£\7> dP®N < @0[ f dP®N exp %qﬂza( pa — 1)Tr(JBJ)]

But, if (A;);_,.y are the eigenvalues of B, we can prove as in Lemma 2.8 that

&[exp %qua(pa - 1)Tr(JBJ)]

N
= exp(—% Z log(1 — gBa(pa —1)(A; + Aj))

i, j=1

(35)
N
13" log(1 — 2qBPa( par — mi)),

i=1

whenever « is close enough to one. Indeed, since the A;’s are positive,
N 1 N T .
NN = Z/ (xi)?dt < A’T, P®N.as.
i=1 N Do

But we supposed that 282A?T < 1, so we can find @ > 1 small enough and
two conjugate exponents p and g such that max; ; (¢B%a(pa —1)(A; + A;)) <
2qB%a(pa — 1)A?T < 1. Then, the right-hand side of (35) is finite.

More precisely, we can find a finite constant ¢ such that, for any x smaller
than 2qB%a(pa — 1)A?T < 1 (see Appendix B of [3]),

—log(1 — x) < cx,
so that equality (35) implies
&lexp 3qB%a(pa — 1)Tr(JBJ)]
< exp{cqB2a( pa — 1)A2T}(exp| tcqBa( pa — 1)A?T})",

which proves Lemma 2.20. O
We turn to the proof of the weak upper bound.
LEMMA 2.21. If 282A2T < 1, for any compact subset K of .4, (W#%),

Iimsup%log QY (AN e K) < —inf H.

N—o0

PROOF. Let K be a compact subset of .#;,"(W#). For any positive real num-
ber 8, we can cover K by a finite number p of open balls B(u;, 6) for Wasser-
stein’s distance dp:

B(Mis 6) = {V € '//l-‘r(W?)/dT(/-‘“w V) < 8}’ K C U B(/'Li’ 5)

1<i<p
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Let L be a positive real number and let _#;, be defined by

= {M ey W/ | ( [ VUG dt)zdm) < L}.

We then bound @} (4N € K):
b

36)  QF(LN e K)<@F (N e )+ X QY (&Y € KN/ N B(u;, ).
i=1

(a) Estimate of Qf}’(,&N € /7). We use the Hdélder inequality with the real
number « > 1 introduced in Lemma 2.20 and its conjugate exponent o

QNN e /)= 9
B L aNe st dP®N

@) QN N o
< (/I;Nejc( B ) dP®N> P®N(/.LN c jf)l/o
L

dP®N

dP®N
< CNP®N(ﬂN c D/lf)l/(r-

Using Chebyshev’s inequality, we get, for any positive real number r,

PN(AN e /) < exp{—rNL}/exp[rié(/oT VU (x1)] dt>2] dpeN

< exp{_rNL}(/ exp[r(/OT VU (x,)| dt)z] dP)N.

But, if r is small enough, fexp[r(fOT |VU(x,)| dt)?] dP is finite (see the proof
of Lemma A.8), so that, in conclusion of (37) and (38), we find, in the high
temperature regime 2B%A2T < 1, a strictly positive real number r and a
finite constant D such that we can state the following.

(38)

LEMMA 2.22. For any positive real number L,
QY (A" e /) < exp[-r(L — D)N].

(b) Estimate of Qf}’ a e 4, N KN B(u;,8)). According to Theorem 2.6,
QY (N € £, N K N B(w;, 8))

< Dl+«/ﬁ/

exp N(l + i)r(,zN) dp®V,
£,NKNB(w;,8)

VN

so that the Hélder inequality and Lemma 2.20 imply

lim sup L log @Y (i € £, N K N B(,;, 8))
N—oo N

< limsup exp NT(aN)dpP®Y .,

Nooo /fLmeBwi,a)
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However, we saw in Proposition 2.15 that, for any probability measure w in
jL C :/,

IT() = TM () = A, (m)] < Co(% +dp(p, MJ) C(w).

On the subset ./, N K N B(w;, 8), C(x) is uniformly bounded by m; = L3241
and dp(u;, ) by 8, so that

limsup exp[ NT(a™)] dP®Y
N—oo JZNKNB(u;,5)
1
+ limsup exp[ N{TY (™) + A, (")} dP®YN.

N—-oo JKNB(w;,d)

Let @, be a probability measure on W‘}‘, absolutely continuous with respect
to P such that

dq,, 1
P =7 exp A, (8,)

M

The measure @, is well defined in the regime 282A%T < 1 and Z,, is then
finite. Then (38) reads

QY (AN € 4,1 K N B(u;, 5))
1
N
(40) ECZ/"LL exp{C(,(M—i-B)mLN}

x | exp N{T(3™)}d(Q,,)*Y.
KNB(u;.5)

Using Sanov’s theorem, we deduce

.1 N(aN
]\Ifl—T;oNIOg Qp (A € £ N K N B(u;, 8))
(41) 1 M
<lo z_+c(—+a)m — inf_(I(]Q,)—T™).
92, +Col 37 L KmB(M’&)( (1Q,) )

As in Appendix B of [3], we find that

I(ulP) — A, (n)+10g Z,, if I(u|P) < +oo,
+00, otherwise.

I(M|QM)={

However, we recall (see Lemma A.5) that

1N )~ A = €t ) [ ([ 1901 0e)
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and since we saw in the proof of Lemma A.8 that there exist two finite con-
stants ¢, and ¢, such that

T 2
[([) 1v0Goldr) du < cluiP) + .
we find two finite constants C; and C, such that (41) becomes

1
lim sup N log @Y (A" € 4, N K N B(w;, 8))

N—o0

1 .
< Co( 37 +0)me - (1= Ca)(ulP) = M) = T ()

(42)

If we recall (36), Lemma 2.22 and (42), we proved that

1
lim sup — log QY (AN € K)

N—oo
(43) < max{—r(L — D),

Ca(( 37 +8)me = N (@ - CLOMIP) ~ AGw) ~ T (u)].

We now need to show the following.

COROLLARY 2.23.

lim lim — in

50 M1oo Mdf{ (1= C18)I(ulP) = Ay(r) - M™(w) < - ir}]{f H.

To this end, we give a technical lemma.

LEMMA 2.24. 1f 2B2A%T < 1, there exists a < 1 and a finite constant ¢ such
that, for any positive real number M, for any probability measure u,

() + A(w) < al(u|P) + &

The proof of Lemma 2.24 follows the lines of the proof of Lemma 2.19; we
omit it.

PrOOF OF COROLLARY 2.23. We choose é small enough such that k = 1 —
C.6 —a > 0, so that Lemma 2.24 implies

(44) (1= C18)I(u|P) — A(w) = T () = xI(u|P) — &,
so that, if we distinguish the case where infx H = inf x(I(u|P) — I'(n)) is
finite from the case where it is not, we find as follows:

(i) if infx H = 400, then inf g I(u|P) = +o00 so that (44) implies that, for
any positive real number M, inf . ((1— C18)I(u|P)—A,(n) —TM(n)) = +oo;
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(ii) if infx H < 400, since H is a good rate function, we can find a finite
real number R such that

inf H= inf
K Kn{I<R}

However, for any real number R’, (44) implies
- ig}‘{((l — C18)I(u|P) — Au(p) =T ()

“o inf 1—C8)I(u|P)—A 4 R
< — — — — -

smax|~ inf (1= Cyd)I(wIP)~ AGw) ¥ (w)); ~<R + £].

By Lemma 2.15, we know that, for any probability measure w in .#,

(1) = TM () = A(p)| < %C(M%

so that Lemma A.8 shows that there exists a finite constant & such that, for
any real number R/,

sup [IT-TY —Al< i((R/)S/erl).
{I( |P)<R'} M
Thus
- _ _ ™™
Kﬁ'{?;R,}((l Ci8)I(|P)—A-T")

. ’ k 7\3/2
> KQI{?ER,}(I( [P) =1) = C1dR — - ((R)™" +1)

_ : ’ k \3/2
= Kml{rIER,}H —C,8R — M((R )¥e +1).
Therefore, (45) implies that, if ¢ = max{k, C,},

—inf (1= Cid)I(ulP) = M) ~ T (w))

H 1 "N\3/2 . /
fmax{—Kml{?zR,}H+c(6+M)((R) +1);—«kR +§},
so that, for any real number R’ > R,

- - _. _ _ _ M
Iéli‘glll/llmc |rl}f((1 C8)I(|P)—A-T")

< max{— ot (H); KR g} _ max{— inf H; kR’ + g}.

We finally let R’ 1 400 so that we get Corollary 2.23. O

We can end the proof of Lemma 2.21. If we let § tend to zero and M tend
to infinity in (43), Corollary 2.23 implies that, for any positive real number L:

Iimsup%log QY (AN e K) < max{— r(L - D); —inf H}

N—o0

So that, letting L tend to infinity proves Lemma 2.21. O
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We finally deduce Theorem 2.3(ii) from Lemmas 2.20 and 2.21; that is, we
show the following.

LEMMA 2.25. If 282A2T < 1, for any closed set F of .2, (W#),

Iimsup% log Q) (i e F)=<-— ir}lf H.

N—oo

Proor. It is well known (see, for instance, [8], Lemma 3.2.7) that the law
of the empirical measure under P2V is exponentially tight; that is, for any
real number L, there exists a compact subset K, of .#;(W#) so that

PeN(pN € K§) < exp{—LN}.
Then Lemma 2.20 implies that the law of the empirical measure under Qf}’
is exponentially tight since, if « > 1 is chosen as in Lemma 2.20 and o is the
conjugate exponent of «, we have

dQN a 1/a
QY e K5) = ([(Gpow) oY) PN e Ky

< (Cl/“)Nexp{—éN}.

Thus, the weak large deviation upper bound of Lemma 2.21 implies Lemma
2.25 (see [8], Lemma 2.15, page 40). O

3. Existence and uniqueness of the minima of the rate function.
We shall use Theorem 2.3 to study the convergence of the law Hf;{T of the
empirical measure under QY.

We recall that, for any probability measure w in .#, we defined in Lemma
2.16 a function F} on W4 by

-1
Fi(x)= Z/dp,(y)yt (T+ B*% 1+ B*I® B,) " ax, y).
Then we have the theorem.

THEOREM 3.1. The rate function H achieves its minimum value (= 0) at a
unique probability measure @ on W? which is implicitly defined by

4
@« PoEm =enlp [ P - E [ (Flwyar,

We can also give a pathwise description of the minima of H.

COROLLARY 3.2. The good rate function H achieves its minimum value at a
unique probability measure @ which is the solution of the nonlinear stochastic
differential equation

dx, = —VU(x,)dt + dB, + B*F2(x)dt,
Law of x = @, Law of xy = Q| % = Ko-
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The proof is a direct consequence of Girsanov's Theorem which implies that
Theorem 3.1 and Corollary 3.2 are equivalent (see [3], Theorem 6.13, for more
details).

Moreover, when H is l.s.c., we know that H achieves its minimum value. As
a consequence, if 282A2T < 1, there exists a unique solution of the nonlinear
stochastic differential equation described above.

Furthermore, @Y being an exchangeable law, a result due to Sznitman (see
Lemma 3.1 in [15]) allows deducing from Theorem 3.1 the propagation of chaos
result.

COROLLARY 3.3. Let 282A%T < 1.

() Hfg\fT converges weakly to 8. In particular, if F' is a bounded continuous
function on .#;"(W#), then

lim [F(aY)dQ) = F(Q).

(ii) For any bounded continuous functions (f4, ..., f,,) on W4,
Nim [ [ fi) - Fue™) AP (I)(x) dy = I [ fix)dQ.

We can also deduce (as in [3], Appendix C) from Theorems 2.4 and 3.1 that
the quenched law of the empirical measure converges exponentially fast to §),
so we have the following.

COROLLARY 3.4. Let 2B2A%T < 1.

(i) If F is a bounded continuous function on .#;"(W#%), then, for almost
all J,

; ~N N/ Ty _
lim [ F(aY)dPY(J) = F(Q).
(ii) For almost all J and for any bounded continuous function f on W4,

o1 Xy
Z\I[@mﬁgf(x):ffdQ as.

The proof of Theorem 3.1 will need two steps.
First, we shall prove that H achieves its minimum value on the set M, of
probability measures on W# defined by

M, = {Q/Q < P%(x) = eXp{Bz A " FO(x)dB,(x) - %4 /()T(F?(x))zdt”.

In a second step, we shall prove that M is reduced to a unique probability
measure.
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3.1. Study of the minima of H. We first prove that any minimum of H is
equivalent to P.

LEMMA 3.5. If @ minimizes H, then @ is equivalent to P.
Lemma 3.5 is a straightforward consequence of Lemma 3.6.

LEMMA 3.6. Let @ be a probability measure on W% which minimizes H.
Then we have the following conditions:

() <P,
(ii) denote B = {x € W#/(dQ/dP)(x) = 0} and & = P(B),
(@ I((Q+slzP/1+58)| P)=I(Q|P)+sblogs+ O(s),
(b) if 2B2A%T <1, T((Q + sl zP)/1+58) =T(Q) + O(s),
so that
Q + S]].BP _
REMARK 3.7. We do not think that the condition 282A%T < 1 is really
crucial in Lemma 3.6(ii)(b) but we leave it since we are not able to prove any
large deviation upper bound result without it.

Proor. (i) Since I(Q | P) is finite, @ <« P.
(ii)(a) One can compute

Q+slyP 1

which gives (ii)(a).
(ii)(b) We state a result even stronger than Lemma 3.6(ii)(b).

log(1 + sd) sd o s
1+s6 1+s6 gl+36'

LEMMA 3.8. If 2B2A%T < 1, for any probability measure u in .#, and for
any signed measure v such that »(W#) = 0 and f(fOT |VU (x,)| ds)?d|v] is finite
and for which u + év is a probability measure when 6 is small enough, I' is
Gateaux-differentiable at w in the direction v.

This lemma can be proved by expanding I'; and I, in powers of 8 (which can
be done under the assumption that 282A?T < 1) and then by showing that
each term of these expansions are Gateaux-differentiable in a neighborhood
{u+ kv, k < &} of u and that the series of these derivatives is absolutely and
uniformly bounded on this neighborhood. We leave the proof to the reader.

We now prove that, if @ minimizes H, then @ belongs to M.

LEMMA 3.9. If @ minimizes H, then @ is the solution of the nonlinear
equation

dQ_ 2 T Q 54 T @42
Q<<Pd—P_exp{B fo F§ dBt—E/O(Ft) dt}.
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To prove Lemma 3.9, we study the Taylor expansion of H at  in the direc-
tion of » = ¢ - Q, for bounded measurable functions ¢ such that [ ¢ d@ =0.

LEMMA 3.10. Let 2B%A%T < 1.

(i) I((L+s¢) - QIP) = I(Q|P) + s [(Iog(dQ/dP))is dQ + os).
(i) T((1 + s¥)-Q) = [(Q) + s [{B2 )] FEdB, — (B*/2) [T (F2)2dt +
Yo} d@ + os),

where (Y )7 is the previsible process with finite variations defined by
Vi) = {62 [ #8091 - 5 [ FEGRR ) dt] @),
0 0
it h?(x, y) = DFP[5,](x).
The reader can prove Lemma 3.10 using Lemma 2.16.

PROOF OF LEMMA 3.9. Since @ minimizes H,

lim ~(H(1+5¢) - @) ~ H(Q)) =0

Hence, according to Lemma 3.10,

d T 4 T
/{Iog dg Bzfo FthBt—i—%/o(FtQ)zdt—YT}tjfszo.

Since this equality is true for any bounded measurable function ¢ such that
J¥d@Q =0, we deduce that there exists a finite constant ¢, such that, @
almost surely, and so P almost surely by Lemma 3.5,

dQ
log — P

However, (dQ/dPL?)KT must be a local martingale (see [14], Chapter VIII)
so that, by uniqueness of the semimartingale decomposition,

T 4 T
_32/ FthBt—B—/ (F2dt+Yp+cq.

Q B* @2

IogdP_B/FdB /(F)dt 0

3.2. Existence and uniqueness problem for the minima of H. The aim of
this section is to prove that M, is reduced to a unique probability measure @,
that is, that the rate function H achieves its minimum value at a unique prob-
ability measure @. We will first show that H achieves its minimum value at
a unique probability measure. Independently, we can construct this minimum
in the regime 3p2A%T < 1.

THEOREM 3.11. (i) For any time and temperature, there exists at most one
probability measure @ such that I(Q|P) < +oo which is a solution of
dQ

4
@<« PiE =ewls [ Flmas -5 [[(reparl.
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(i) If 3B%2A%T < 1, there exists a unique probability measure @ such that
I(Q|P) < +oo which is a solution of

e

4
@<« PSR = e [ PGB - &

> 7/OT(FE?(x))Zdt}.

We shall use a fixed point argument to prove Theorem 3.11. To this end,
we first study the functions F*, and, more precisely, show the following.

LEMMA 3.12. For any probability measure w in {I( |P) < +oo} and for any
s<T,

s 4 s
Ep[exp{ﬁzfo F"“dB, - %/O (F';)Zdt” =1,

so that (exp{B? [; F}(x)dB,(x) — (B*/2) [3(F{(x))*dt})ser is a (P, Z)-
martingale.

To prove Lemma 3.12, we show the following.

LEMMA 3.13. For any probability measure u such that I(u|P) < oo, there
exists a bounded previsible process f* such that

FiG) = [ (T+B8) X, X,), dB, + f1(x)

and there exists a finite constant ¢, such that, for any x such that I(u|P) < oo,

sup sup |£(%)[* < ¢y (1 + I(1|P)).

xeW4 t=<T
Proor. Denote V, = VU o X, and recall that
t t
Fi) = [ dunnti( [ X, 9 dB.+ [ dB,o X, )(3.)
0 0
where, according to Lemma 2.13,
1 A
(47) € = E/O dArexp e exp{—A%,} ® exp{—\%,}.

Let uw € {I( |P) < +oo}. Then B is a semimartingale under u so that we can
write

t
Fix) = [du(y)y.6, [ X, ®dB,(x, )
(48) °

t
+ [ dm)yet, [ X, @ dB,(y, %)
0
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Moreover,
t
[ dn()y.i [ X, ©dBy.x)
t
= [du()I + B22) X () [ v, dB,(x)
(49) t °
B [ dsx, [ du(n)(I +B°%5) X ()
t
x /d,u(z)ztgtfo X, ®dB,(y, 2).
Let

¢
m(x) = [ du(y)ye6, | X, ®dB,(x. ).
Then we deduce from (48) and (49) that

Fi@) = mi @) + [ (I + B2)7X,, X,), B,

t
= B [ dsx(ml (X (1 + BB) X,
Denote
t
Fix) = mil () = B [ dsx(m (X0 (1 + B%) 7 X ),

It is obvious that f* is a continuous previsible process. To bound f*, we first

bound m{ ,(x). According to the definition (47) of ¢,, if || ||, denotes the norm

in LZ, then

Imh (x)] = Iifw drex {—i}<ex (-AB,) X '/tex {(-A%,} X (x)dB > |
s,t - IBZ 0 p Bz p t s 0 p t u u MI

A > A t
< ﬁfo d)\exp{—?}l‘/o exp{—r%,} X ,(x)dB,

I

However, we prove in (67) that exp{—A%,}X ,(x) is bounded by A(1+ AA?t).
So that, if one follows the strategy of the proof of Lemma 2.19, one finds that,
for any p > 1, there exists a finite constant C, = —% log(1 — (1/p)) such that

2
<2pA*(1+ 2A%t)*t{I(n|P)+C,}.

"

m¥ (x)| < A%(1+ B2A%)\/2pt [ I(ulP) + C,,
so that

(50) 1 ()| < A%(1+ B2A20)2pt, [ I(ul P) + C,. 0

H [ expt-Am) X, (x) B,

Thus
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We now turn to the proof of Lemma 3.12
Since (M, = exp{p? 5 F{ dB, — (B*/2) [, (F})?dt}),p is a supermartin-
gale, it is enough to prove that, for any ¢ < T, [ M, dP = 1. We denote

K'(s,u) = ((I+B2B) X, X,),

According to Lemma 3.13, we have
My = exp{IBZ/OT /Ot R (t,s)dB,dB, - %4 /OT</; R (t, s)st>2dt}
<ol [ rtam,- B [y ae)
X eXp{_BA /OT e /ot I?L(t, s)dB, dt}.
We have already studied in [3], Section 6, the local martingale

u ot 4 u t 2
1 _ 2 ¢ _ P ¢
M: = exp{,B /0 fo K (t,5)dB,dB, - 5 /0 (/O K, s)st> dt},
and we proved there that M?! is a uniformly integrable (P, % )-martingale.
Thus, we can define a probability measure P’, absolutely continuous with
respect to P, such that P’ = M7, - P. So that, for any u < T,

u t - B4 u

_ 2 © _p2? ¢ P N2 /
[ M, ap = fexp{;s [ 7 (dBt B[ KM(t,s)stdt) 5 | ah dt}dP.
Girsanov's theorem implies that B, = B, — B2 [ [+ I?L(t, s)dB,dt is a
Brownian motion under P’. But f* is bounded, so that (exp{B? J, /¥ dB, —
(B*/2) [ (Fi)?dt}),<r is a (P, F;)-martingale. Thus, for any u < T,

/ M,dP =1.

As a consequence of Lemma 3.12, we can define, for any u € {I( |P) < 400},

a probability measure L(u) on W#, absolutely continuous with respect to P,
such that

dL T 4T
dg)“):exp{;#fo F;‘dBt—%/o (F{;*)Zdt}.

It is clear that M, can be characterized as the set of the fixed points of the
map L. Hence, Theorem 3.11 is equivalent to Theorem 3.14.

THEOREM 3.14. (i) For any time and temperature, there exists at most one
probability measure @ in {I( |P) < 400} such that L(Q) = Q.

(ii) 1f2B82A%T < 1, there exists a unique probability measure @ in {I( |P) <
+oo} such that L(Q) = Q.
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We shall prove Theorem 3.14 through a contraction argument.

Let (F),-r be the natural filtration on .#,"(W#%) defined by ¥, = o(x,,
s < t). For any real number a > 1, let .#(®) be the subset of .#;"(W#) defined
by

a dp

For positive real number a, e > 1, we define an L* variational distance D(qf‘)
on £\ by

a 1/a
(@) du dv
D (M,V)=< == dP) .
T /|dP dP!

On /(“), the variational topology induced by D(T“) is stronger than the weak
topology. More precisely, for any positive real number a, a > 1, for any p and

vin A c Y,

1 a
(51) dp (u,v) < DY (1, %) < DY (7).
We will denote, for any time ¢ < T and for any probability measures u and
vin 47, Di(n,v) = DY (ul,,, v ,).
We shall prove the following.

ProposITION 3.15. We can find a real number a, a > 1, a strictly positive
real number g such that for any probability measures uw and v in {I( |P) < oo}
and forany t < T,

DL (), L0 = 2, ) [ (D, 1) ds,

where, if we denote by b the conjugate exponent of a, we can find finite constants
C and C’ so that we can choose

Z(,v) = c<1+ / fo " VU ) dsd(u+v) + ( f ( /0 ! |VU(xs)|ds)de>l/b>4aq
x exp C'{I(u|P) + I(v|P)}.

REMARK 3.16. We notice that Lemma 3.19 implies that, for ¢ > 1 small
enough, L~1(#@) is included in {I( |P) < oo} so that Dga)(L(,u),L(v)) is
well defined for I(u|P) < oo, I(v|P) < oo when a is small enough.

Proposition 3.15 already implies that L has at most one fixed point in
{u: I(n|P) < oo} according to Gronwall’'s lemma. The proof of the existence
is slightly more demanding since we construct a sequence of probability mea-
sures converging to the fixed point of L for which we need to make sure that
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the entropy is uniformly bounded. The control of the entropy necessitates a
high temperature assumption. Indeed, if we define a sequence (u,),-o by

Mo = P, Mnt1 = L(/“Ln)>

then I(w,|P) is finite for any integer n. In fact, I(uy|P) = 0 is finite, and, by

induction over n, I(u, 1|P) = (B“/Z)][OT(FQL”)2 dtdu,,, is finite, according
to Lemma 3.13. More precisely, we have the lemma.

LEMMA 3.17. Let, for A > 0, £(A) = 2(A/1 — A?){(1+A)°—1}. Then, for any
&> £(B2A2T), there exists a finite constant «a(¢) such that

I(pp 41| P) < E1(py | P) + a(§).

One can notice ¢ is increasing and that, if A = 1/3, ¢(A) < 1 so that, if
3B?A?T < 1, we can bound the entropy of u, with respect to P uniformly in
n. It is now trivial to deduce the existence of @ for 8 small enough.

We will not prove Lemma 3.17 (see [10] for details), but will turn to the

proof of Proposition 3.15, which necessitates several technical lemmas.
Let

t 34 ¢
X{(x) = B2 [ Fi(x)dBy(x) - 5 [ (Fi(x))* ds.
0 2 Jo
Then we obtain the following result.

LEmMA 3.18. For any conjugate exponents ( p, g), for any probability mea-
sures w and v in {I( |P) < +oo}:

D{(L(u), L(v))
1/q
sy =([1x-xeear,)

y (/01 da(/ exp{ap X"} dpt>1_a (/ exp{ap X"} dPt>a>

PROOF. The proof is identical to that of Lemma 7.5 in [3].

1/p

We first bound the second term in the right-hand side of (52).

LEMMA 3.19. Ifap—1 is small enough (more precisely if B2ap(ap—1)A?T <
1), we can find a finite constant C; such that, for I(u|P) < oo and for any
t<T,

[ expfap Xt} dP < exp{Cy(I(ul P) + 1)}.
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PrROOF. We have
¢ 4 ot
/exp{apX';}dp _ /exp{ap,BZ/ F“dB, — apB—/ (Fry? ds} dP.
0 2 Jo
With the notation of the proof of Lemma 3.12,
¢ 34 t
[exptapxyap = [y explapg? || rraB; - apl [ (o2 ds)ap.
0 2 Jo "
Let (p/, ¢') be conjugate exponents. The Holder inequality gives

/ exp{ap X"} dP
(53) < (/(M%)app’ dP) 1/p

t BA t 1/q
/ 2 " /o ’ w2
x (/exp{apq B [ redB,—apg' - [ (1) ds} dP) .
We have already proved in [3], Lemma 6.10, that, if B2app’(app’ —1)A?T < 1,

there exists a finite constant c(app’), independent of ¢t < T, and u € .24, (W%),
such that

) 1/p
( [ty dP) < c(app').
Since we supposed that ap — 1 is small enough so that B2ap(ap — 1)A?T < 1,

we can choose p’ close enough to 1 so that B%app’(app’ — 1) < 1. With such a
choice of p’, (53) becomes

/ exp{ap X"} dP
(54) ¢ 4 ot 1/q
< C(app/)</exp{apq/62fo ft dB; —apq“%/o(f’;)z ds} dP) .

We now bound the second term in the right-hand side of (54). We recall that
t S5 o
/ 2 s
B, =B,+8 /0 /O Ks(s,u)dB, ds,

so that the Cauchy—Schwarz inequality gives
¢ 4 .t
[exolapa's? [ 2a, - apa' ;[ (o as|ap
0 2 Jo
t
< ([expapq/ﬁ“{(Zapq/ ~1) [ (F2)ds
0

t s 1/2
_ © s
2/0 fs/O Bs (s, u)dBuds}dP> .
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By Lemma 3.13 and since B is a Brownian motion under P and using the
Jensen inequality, we find

t S ~
/exp{zapqzﬁztci/z([(MP) + 1)1/2/0 Ifo K} (s,u)dB,

ds} dP

2 t ) s
=< ;/0 fexp{Zapq B4c1/2(I(M|P) + 1)1/2t/0 K; (s, u)dBu} dPds
< 2exp{2(apq’ B*)?ci(I(n|P) + 1) A%},

so that (54) shows that, for any ¢t < T,
/exp apX{ dP < 2c(app)exp{2apBici(apq (1 + B*T3A%) — 1)(I(u|P) + 1)},
which gives Lemma 3.19. O

In the following pages, we will choose ap close enough to 1 so that Lemma
3.19 holds and, for later convenience, so that aq > 2.
We now bound the first term in the right-hand side of (52).

LEMMA 3.20. Let b =a/(a —1). We can find a finite constant C, such that,
for any probability measures (u, v) with I(u|P) < oo, I(v|P) < o0

[1x4 - x7p0 ap

= 02<1 +/ /oT VU (x,)| dsd( +v) + (f (/OT VU (x,)| ds)b dp)l/b>zaq
« (/Ot D(sa)(;u, V)Zaq ds)l/z.

PrROOF. One can see, using the Burkholder-Davis—Gundy inequality (see,
for more details, the proof of Lemma 6.10 in [3]), that there exists a finite
constant c, such that

; 1/2
/|X;‘—X;|aqdpgcq(1+(f f|F’;+F;|2“quds) >
0

" 1/2
x (/0 /|F/; — F7|Pea des>

We focus on the second term in the right-hand side of (55). We want to prove
that F'* satisfies a Lipschitz type property.

(55)

LEMMA 3.21. For any time T, there exists a finite constant A, such that,
for any paths x and y, for any probability measures n and » and for any time
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t<T,
[P = Fi)| = Ap [ (VUKD + (VU(X)D,) du
x (sUp i = vl + i, )

n AT(Ktw, 0+ [ IVU() - VU () ds),

where d, is the Wasserstein's distance between u and » and

Ko, v) = sup{

u,v<T

/VU(Xu)XUdV . /VU(Xu)XU dp,H.
As a consequence, for any positive a, b such that a=* + 571 = 1, there exists
a finite constant C; such that, for any probability measures u and v with

I(u|P) < oo, I(v|P) < oo, for any x in W4 and for any s < 7,

P2 = P = Co(1+ [ [ 19U dsd(u+ 1))

+ (f(foT vU,| ds>de>l/b) DL (u, v).

PROOF.
1 00 A
Fh(x) = ?/du(y)ysfo dkexp{—ﬁ}
y [exp{—ws}xsmexp{—ms}my)
— exp{—AZ} Xo(x) exp{—AZ} Xo(y)

+ exp{—ws}( [ w15 X, 0, du)(y)

+ exp{—A,@s}</()s exp{-AZ,) X, (y)V, du)(x):|.

For any probability measure u in .#, the right-hand side of the last equality
belongs to L}L(W‘T‘) ® L;xp{—(/\/ﬁz)d)\}(R+)' so that we can use Fubini’s theorem,
which gives

wiey— L[ _A
Fi(x)= Bzfo dAexp{ BZ}
x [(exp{—A@s}Xs, X,), eXp{-AB,} X ()
(56) - (exp{_/\‘%s}Xs’ XO),u exp{_/\‘%s}XO(x)

+ [ exp{-AB} X, (1) (exp{-AZ,} X, V), du
0

+ exp{—)\.@s}</Os(exp{—)u%'s}Xu, X,),Va du)(x)]
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Since we shall compare the action of %, in Li with its action in L2, we shall
be more precise and denote %5 the operator in Li with kernel b (x, y) =
fosxuyu du. Moreover, since the second inequality of the lemma can be deduced

from the first one by the Hdélder inequality, we will concentrate on the first
only. According to (56), it is not hard to deduce Lemma 3.21 from the following.

LEMMA 3.22. (i) There exists a finite constant %, such that, for any positive
real number A and for any probability measures u and v on W4,

sup }(Xu’ exP{_)\gg}th - (Xu’ exp{_/\@:}Xv>v| = kl(l + )\)st(/‘L> V)'

u<s,v<s

(i) There exists a finite constant %, such that, for any u, v € //f(W‘}‘), for
any measurable function A in L2(W#)n L2(W#) and for any (x, &) in W4,

lexp{—AZ4}h(x) — exp{—AZ.}h()|

s| |
< k(1 + A)2{|h<x> = h@|+ [ [ H)3.d - w)()] du

+([1nde+ ) (dutuar) + [l - 2l av) |

(iii) There exists a finite constant k5 such that, for any probability measure
®in .4,

lexp{—A%"}h(x) — h(x)| < k(1 + A)? f \h| du.

PRrooOF. (i) has already been proved in [3], Lemma A.4. The proof of (ii) is
quite similar to that of (67). We write

exp{-AB, Hh(x) = h(x) = A [ dux, [ y,h(y)du(y)
(57) + /0A da /Oa do’ /0 fo du dv x, (exp{—a/ B4} X, X,),
x fh(y)yv du(y).

Thus

4
(58) |exp{ A%} (x) — exp{-AZ}h(x)| < 3 Li(w,v),

=1

where

L) = A [ dus, [ 3 b di() = [ du, [ 5,h(5) )

>
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A o s
L2(u,v) = A/ da/ do//
0 0 0
S
xf du dv|(exp{—a' B} X, X,),
0

>

- (exp{_a/‘@g}qu Xv>v|

/h(y)yudu(y)

fh(y)yv dp(y) = fh(y)yv dv(y)

>

L3, v) = A3T)\2/o dv

Li(u.v) = A°NT [ [Rld(u+») /O Ix, — &, du.
It is not difficult to bound L;:
Lk, v) < AA2 [ 1Bld(n +) [ 15, = 2l du+AA [ |y () - )(3)] du
Moreover, we use Lemma 3.22(i) to bound L2:
L2(u,v) < AZ/:dafoada//:/;dudv
x |(exp{-a' Bt} X, X,), — (exp{-a'BL} X, Xu>ylf|h(y)|dﬂ»(y)
< LA, T2N%(1+ \)? / \h|dpd (1, v).

Putting these bounds together gives Lemma 3.22(ii). The proof of (iii) is very
similar; we omit it. O

As a consequence of Lemma 3.21, we find

fotf|Fg‘—F:|2“‘1 dsdP

o0 seir(ue f f Widsanenrs (J(f was) ar) )"

t
X / Di")(u, )24 ds,
0

Similarly, we can bound the first term in the right-hand side of (55) and prove
that there exists a finite constant C, such that for any time ¢t < T,

/OtfdP|F'; + FY|29 ds

< C4<1+//0T V.| dsd(u+v)+ (/(/()T|Vs|ds)bdp>l/b>zaq.

Thus, (55), (59), (60) give Lemma 3.20. O

(60)



1410 G. BEN AROUS AND A. GUIONNET

Finally, Lemmas 3.18, 3.19 and 3.20 imply that we can find finite constants
C and C; such that, for any probability measures w and v in {I( |P) < oo},

DI(L(p), L))"

<oue ] [ wdsatros (f([vaas) ar) )"

C, L@ 2ag ;)%
x exp —H{I(ulP)+ I(P)} /0 (D (w, )" ds ),
which is Lemma 3.15.

REMARK 3.23. According to the proof of Lemma A.8, we can see the follow-
ing:

(1) fOT |VU (x,)|ds belongs to L%(W#), for any positive real b;

(i) there exist real numbers ¢ and 7 such that, for any probability measure

win .4 (W), [ f) 1VU(x,)|dsdp < JEI(uIP) + 7.
Thus, Lemma 3.15 implies that there exist finite constants ¢ and ¢’ such that
a a daq
DL (), L)X < e(1+/I(u|P) +/1(4]P))

x exp ¢ {I(u|P) + 1(V|P)}(/()T(Dga>(m V)2 ds).

(61)

4. Averaged evolution of the Gibbs measure. In this section, we study
Sompolinski—Zippelius dynamics, starting from the Gibbs measure ,u,y:

N 1 N N Ny
wy(dx) = ﬁexp{—BHJ (x)—2)" U(x’)} []dx,
J

i=1 i=1

where we recall that
N -1 XN o
Hj(x) = — Jiatxd
! VN i,Jzzl ’
and

zZ¥ = /exp{—,BH?(x) -2y U(x’)} [1dx".
i=1 i=1
Let ﬁg(J) be the weak solution on W# of the stochastic differential system
dxi = —VU(x!)dt + dB: + - % Jx] dt,
VN 5

Law of xo = ul;

ﬁf;’(J) exists and is unique for any finite couplings (;;)1<;<j<n-
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We shall prove that the law of the empirical measure under 132’(J) con-
verges in the high temperature regime and when the potential U is even,
which entails an averaged propagation of chaos result.

More precisely, with the notNations of Section 2, we define, for any probability
measure u in .#, a function F* by

Fi(x) =2 [ yia,+ Xo ® Xo)(, y) du(y).

Then the asymptotic and averaged behavior of a spin is described by the non-
linear stochastic differential system

dx, = —VU(x,)dt +dB, + B2F"(x)dt,
(62) Law of x = u, Law of xg = q,
dq(xo) = exp{2B8*(X,, Xo>qx(2)} exp{—2U(xq)} dxo.

One can prove as in Section 3 that this nonlinear system admits a unique
solution, say @, in the high temperature regime {282 A?T < 1and 482A* < 1}.
The main theorem of this section is the following.

THEOREM 4.1. If U is even, if 8 is small enough and if 282A%T < 1, for
almost all J, the law of the empirical measure under Pf;’(J) converges to 35
exponentially fast.

So we deduce the averaged propagation of chaos result.

COROLLARY 4.2. If U is even, if g is small enough and if 28%2A%T < 1,
Qf;’ = é’[Pf;V(J)] is @ chaotic; that is, for any bounded continuous functions

(fl""7fm)on WA:

Bim 6] [ i) £ PR | = 11 i a@

REMARK 4.3. The restriction on high temperature is due to the state-
ment that we are below the phase transition, that is, that the free energy
(1/N)log Zf}’ converges and that the initial law e”[,uf}’] is chaotic [more
precisely, that (3) admits a unique solution at time T = 0]. The condition
of an even potential is needed to prove that the free energy (1/N)log Zf}’
converges.

REMARK 4.4. Since the Sompolinski—Zippelius dynamics are reversible
and ,uy is an invariant measure for these dynamics, Qf;’ is stationary. As a
consequence, Theorem 4.1 implies that @ is stationary in the high temper-
ature regime. This property, which was not trivial a priori, gives us a new
strategy to study Q~
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Theorem 4.1 comes from Theorem 4.5 where we state a quenched large

deviation upper bound for the law of the empirical measure under ﬁg’(J).
The rate function which governs this large deviation upper bound is slightly
different from that which governs the deviations of the empirical measure
under the quenched law Pf;’(J) starting from an independent law as stated
in Theorem 2.4. Indeed, a new term appears from the interaction between the

couplings (J;;); ; of the initial distribution and those of the dynamic. More

precisely, for any w in .#Z, let
f(p)=B*(Xo® X, €7 X ® Xo)pou + 2B% (X, ® X, €rar) uopu-

With the definition of I" given in Section 2, we define a new map T from .#
into R by

() =T() + £ ().
Let P be the weak solution of the stochastic differential equation
dx, =—-VU(x,)dt+dB,,

Law of xg = a = (1/Z)exp{—2U(x)} dx where Z = /exp{—ZU(x)} dx.

Let H be the map from .2, (W#) into R U {400} defined by

I(u|P) - T(p) + inf(I(ul P) — B*(Xo, Xo)2),  if I(ulP) < +oc,

~+o00, otherwise.

H(p) = {

In other words, if H denotes the rate function which governs the large devi-
ation upper bound of Theorem 2.4 under the quenched law Pf;V(J), starting

from the independent law ,uff’N with the specific choice of uy(dx) = a(dx) =
(1/Z)exp{-2U(x)} dx, then
() = H(w) — f(n) +inf(I(u|P) — B*(Xo, Xo)2), if H(n) < +oo,
00, otherwise.

Then we have Theorem 4.5.

THEOREM 4.5. (i) If 282A2T < 1, H is a good rate function.
(i) If 2B2A%T < 1, if B is small enough and if the potential U is even, for
any closed subset F' of V%l*(W‘}‘) and for almost all J,

lim sup% log PY(J)(iN € F) < — inf H.

N—oo

Theorem 4.1 can be deduced from Theorem 4.5, thanks to the study of the
minima of H, which shows that the following.
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PROPERTY 4.6. If 48242 < 1 and 282A2T < 1, H achieves its minimal

value at a unique probability measure @ which is described by the nonlinear
system (62).

The strategy of the proof of Theorem 4.5 is the following.

1. We first notice that, when the potential U is even and the temperature
is high enough, the following concentration of measure result holds: there
exist finite constants Cz and K, Cg > 0 such that, for N large enough

and for 0 < v < 8842/N,

1 zy K
63 J —Io—J>v+—B>§ex ~C4v2N}.

The concentration of the free energy to its mean value has been proved by
Bovier, Gayrard and Picco ([5], Section 3) and by Talagrand ([17], Chapter
12), in the Ising spin model. Its extension to the continuous setting was
shown in [11].

As a consequence, the Borel-Cantelli lemma shows that a large devi-
ation upper bound for the law of the empirical measure under Qg’ =

& [%ﬁgw)] with rate function H will give Theorem 4.5.

2. Then, we prove that the law of the empirical measure under Qfgv satisfies
a large deviation upper bound.

PROPERTY 4.7. If 2B2A%T < 1, for any closed subset F of .#,"(W#3),

1 — ~
limsup — log @Y (a" € F) < —inf H.
msup 3 9Qs (A7 € F) = —in

The proof of Property 4.7 is quite similar to that of Theorem 2.3; its main
steps are to show that the probability measure Qf}’ is absolutely continuous

with respect to ng and express its density as a function of the empirical
measure, to study the continuity properties of this density, to deduce from this
study that Hisa good rate function and to get Property 4.7 from the large
deviation upper bound stated for Q;}’ in Theorem 2.3 in the high temperature

regime 282A?T < 1. The details are given in [10].

APPENDIX

In order to study the rate function H and to prove the large deviations
upper bound theorem, we need to study the map I". We recall that, for any u
in .#, we defined I'(u) by

() = _%tr“ log(I + B2%y) +/0°O tr, (o7 exp{—\%,})? exp—{%} d.
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Let
[y(p) = —3tr, log(I + B*%r),
o0 A
() = /0 tr, (o/p exp{—A%,})* exp _{E} da,
= B tre, (I + B2I ® By + BBy @ ) o/p ® o/p 0 .S),
so that

=T, +T,.

We will prove first that I'; is a bounded continuous function. In a second step
we will approximate I',, on “large” subsets of V//f(W?) (see Lemma A.8), by
the sum of a linear function and a bounded continuous function (see Lemma
A.6).

A.1. Continuity of I';.
LEMMA A.1. The mapping I'; is a bounded continuous function:
—3B*APT <Ty(u) < 0.
PROOF. It is quite easy to see (see [13], Proposition 8.4) that
T
Iy (w) = log fﬂ[exp{—%BZ/ G? dt”,
0
where G is a centered Gaussian process with covariance
.0G,G,] = [ du(x)xx,.

However, for any probability measures (u, v) on W4, if ¢ denotes a probability
measure on W? X Wé with marginals u and v and if we denote by & the ex-
pectation over the centered bidimensionnal Gaussian process with covariance

&[GIGE] = [ xix] dé(xt, x2), where (i, j) € {1, 2}, then
T
e Ta(u) — exp (o) = & jexo 362 [ (G at]
0

|
| - exp{—%ﬁ2 /OT(Gf)2 dt}H

IA

s | Ghrae- [ @par

1/2

IA

12 r 1 2\2 vz T 1 2\2
1B aﬂg[/o (G} - G?) dt} Q[/o (G} + G?) dt]
1/2
< AT [sup st - 22 dea?, %))
s<T



SYMMETRIC LANGEVIN SPIN GLASS DYNAMICS 1415

Since this last inequality holds for any probability measure ¢ with marginals
w and v, we proved that exp(I';) is Lipschitz with respect to the Wasserstein
distance.

As a consequence, exp(I'y) is continuous with respect to the weak topology.
Moreover, the Jensen inequality implies that exp(I';) is lower bounded. In fact,
for any u e .4 (W%), we find

T T
expl“l(,u)zfu[exp{—%ﬁzfo Gfdt”zexp{—% Z‘fu[/o Gfdt“

1p2 T 2 102 A2
- exp{—5[3 /d;u/o x; dt} > exp{—3B°A°T}.
Thus, the continuity of exp(I'y) implies that of I';. O

A.2. Approximation of T',. Let M be a positive real number and p;, be
a smooth map from R* into [0, 1] such that p,(x) = 1 if x < M, py(x) =
0ifx > M+ 1 For t<T, let VM be the map from W# into R such that

VM =pM(fOT|Vu| du)V,. For any probability measure u on W#, we define an
integral operator .oz} on Lﬁ(W‘}‘) by its kernel,

T T
¥ (v, 9) = §(xrm = w30 + [ V¥ ds+ [ 5,V ds).
We then define a map T') from .#;/(W%) into R by

o0 A
I (w) = /O tr, (o} exp{—A%y})? exp{—ﬁ} dA.

LEMMA A.2. T is bounded and continuous.

PRrROOF. Since %7 is a positive operator, for any positive real number A and
for any probability measure u,

(64) tr, (/2! exp{—AB7})? < tr, (/1) < AA%(A + M +1)?,
so that
0<TM(u) <4B2A%(A+ M +1)%.

Moreover, thanks to the dominated convergence theorem, (64) implies that
it is enough to prove that © — trM(&/Tz‘l exp{—A%r})? is continuous for any
positive real number A to show that I'}! is continuous. Since %, is a bounded
operator,

[} (_/\)k+m

tr, (/M exp{-Az})> = Y iy
k. m=0 .

tr, (o (B)* ot (Br)™).

Once again, by the dominated convergence theorem, it is enough to prove that,
for any integers (k, m), u — tr, (o4 (Br)* o2 (%7)™) is continuous. This is
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obvious since %, and o/} have bounded continuous kernels. Hence, I'} is
continuous. O

One would like to prove that limy,_, . |[, — T¥| = 0 when u € .#. This is
difficult because T'¥ contains a singular term, say AY, that we will substract

off.
More precisely, let

T T
MM ()= 3p° [ ds [ (L + Baar) "X, X)), (VL V),
Similarly, let

T T
Mp) =38 [ ds [ di{(I+ B°Br) X XV Vi

and define a map C from .# into R by
T 2\ 3/2
o) = (fane( [ IvUGoIar) )+
0

LEMMA A.3. If we define a map FM from .# into R by
I, —TY = FM L A AM,

then there exists a finite constant ¢ such that, for any u in .2,

[FY(w)] < 77C(w).

PrOOF. Let o7 be the integral operator with kernel a.(x, y) = %(xTyT -
x0¥o) and =ZM be the integral operator with kernel

M 1 r M T M
(v ) = 3( [ 5 VH@)ds+ [ 5,V ds).
Then, oM = of, + /M. We can expand T'3:
M) = [t (o4 + o) expl-amn)” ) exp (/7)) d
=/°° E/T/T dsdu(exp{—AB;}X,, VM) (exp{—AZ;}X,, VM)
0 2Jo Jo T s> Vulp T u> Vs /lu
1 T T M 1y
+ 5/0 /O ds du(exp{-ABr} X, X)), (exp{-ABp} VY VM)

+tr, (o exp{—/\,@T})2 +2tr, (o) exp{—AZr} o/, exp{—A@T})}

A
X exp{—ﬁ} dA.
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We can similarly expand I', so that we find

|FM ()| = [Ta(u) = T3 () — A(p) + AM ()|

(65) 4 o A
5;/0 LK,M(M)GXP{—E}W\,

where

>

T T
Liu(w) =3[ [ dsdulexp{-227}X,.V, = V), (exp{-221}X,. V.),,

T T |
LEw(w) = 3|[] [) dsdulexp{-Ar} X, VI (exp{-A2r} X, V, = VI, .

3 1 T T
L3 wm) =3[ [ dsdufexp{-227}X,. X,),

x ({(exp{-A&r} = DV, V), — ((exp{-rz7} — DV, V)

2

Li, M(M) =2

tr, ((o5° — A" exp{—AZBr}.of, exp{—A%By})|.

To bound (Lf\,M(M))lsism we first show that exp{—A%,} X is a uniformly

bounded operator on Li(W‘%).
One can see that

A

(66) exp{-ABpy =1 — / By exp{—aBy) da,
0

so that, for any x in W4:

A
exp{-ABr}X (x) = %, — | Bpexp{-a#r} X (x)da
0

A T
=xs—/0/0 (X, exp{—a#p}X,), dt da

However, since #y is positive, [( X, exp{—aZr} X ;)| < || X[ Xl < A? so
that

(67) sup sup |exp{—A%;} X (x)| < A+ A3TA.

s<T xeW#

Thus we can bound L} ,,(u):

T T
(68) Li,M(u)sg(A+A3TA)2EM[fO |VS—V£”|ds}EM[/O |Vs|ds]
Similarly,

T T
L§7M(,LL)§%(A+A3TA)2EM[/O |VS—V§”|ds}EM[/O |Vs|ds]
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Moreover, according to (66),
((exp{_/\%T} - I)Vua Vs)y.

A
= [ (#rexp{-a®r}V,, V,),da
0
A LT
= [ [ (exp{-a®Br}V., X}, (V,, X,),, dadt.
0 J0
So that we can bound Li,M(M) using (67), we get
T T
L3 (p) < A*T(1+ A3T/\)EM[/O IV, — VM| ds}EM[/O V|| ds]
Finally, Lﬁ’M(,u) may easily be bounded. More precisely, we find
T
L} () <4A%(A+ A3TA)EM[/O |V, — VM ds]

Therefore, we can find a finite constant ¢ such that, for any u € .#, for any
positive real number M,

|[FM ()| = [To(m) — T3 () — A(p) + AM ()|

4 s A
= L uwep| - 2| da

c T T
< EEM[/O IV, — v;”mﬂ(m[/o |Vs|ds] +1).

However,

T o 1 T 2
Eﬂ[/o v, -V} |ds}§MEM[</O |Vs|ds> }

so that we have proved

[P ()| < %(E,L[(/OT}VS}ds)Z]S/Z + 1) = -C(w). o

Now, we have to control both terms A and AY. First, AM is a “good” map
since the following holds.

LEMMA A.4. AM is bounded and continuous.

PrROOF. We write

M T T ' M M
LM(u)=38° [ ds [ di{(I+ B2r) X X ), (VYL VI,

=36 ([ ds [ deir+ B X XD VE@VE) diso),
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We first remark that u — ((I + p*%r) ' X, X,), is continuous for the weak
topology. Indeed, if we denote by fu the integral operator in L2, ([0, T']) with
kernel [ x,x,du(x), then, for any x in W#, fﬂx(t) = ABrX,(x), so that

((I+B°#r) ' X, X)), = /x(s)(ILgl([O,T]) + Bzfu)flx(t) dp(x) = I?,T(s, £).

We have already proved in [3], Appendix A, Lemma A.4, that u — I?g(s, t)is
Lipschitz for the Wasserstein distance d, [whose definition is given in (14)].
More precisely, there exists a finite constant £ such that, for any probability
measures pu and v on W#,

(69) sup |KT(s,t) — KI(s,t)| < kdp(p, v).
s, t<T

Since dp is compatible with the weak topology, (69) implies that u — ((I +
B?#%r) X, X,), is continuous for the weak topology.

Thus, (x, p) — [y ds [y dt((I +B2Br) 1 X,, X,), V¥ (x)V¥(x)is abounded
continuous function on W% x .#;"(W#) so that AM is bounded and continu-
ous. O

To control A, we introduce linear functions A, which are given, for any
probability measure v on W4, by

2 T T 2
M) =387 [ ds [ di((I+ B #0) X, X,V Vi),

Note that A(u) = A, (u).
Then we have the lemma.

LEMMA A.5. There exists a finite constant ¢’ such that, for any probability
measure » on W#, for any probability measure p on W4,

1A () = M| < ¢C(w)dr(p, v).

ProoF. According to (69), for any probability measure v on Wé,

T T A ~
M) = A = 38| [ [ (K(s.0) = K (5. 0)(V,. V) ds

T 2
< 1p%kd (. v) ( / |Vs|ds) du
< LBhd (. v)C ().

From Lemmas A.2-A.5, we deduce the following.
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LEMMA A.6. (i) Fé” — AM is a bounded continuous function.

(i) We can find a finite constant C, such that, for any positive real number
M, for any probability measure v on W‘%, for any u € ./,

(10) o) = T3 + A% () = A,)] = Cof 37 + a1, ) O,

Finally, if we recall that we proved in Lemma A.1 that I'; is bounded and
continuous and if we write

™ =T, +T¥ - AY,
then we have proved the crucial result of this section, Proposition A.7.

PROPOSITION A.7. (i) '™ is bounded and continuous.
(i) There exists a finite constant C, such that, for any probability measure
w in .#, for any probability measure v in .2, (W#),

) = T G0) = A, G| = Co 7 + ) ).

Finally, we prove that C(w) is bounded when the entropy relative to P is
bounded.

LEMMA A.8. For any positive real number M, there exists a finite constant
m(M) so that, for any probability measure p such that I(,u|P) < m(M),
C(w) < M.

PrOOF. Let p be a smooth approximation of the sign of VU, that is, let p be
a continuously differentiable function such that there exists a finite constant
C so that
p(x)VU(x) = [VU(x)| if [VU(x)| > 1, [lplle =1, [Pl =C.

Then

T T
)/ |VU(xs)|ds—f p(x,)VU(x,)ds| < 2T,
0 0

and Itd’s formula implies that, under P, if r is a twice continuously differen-
tiable function such that ' = p,

T T
r(xr) = r(xo) + [ p(x)(~VU(x,)ds +dB) +} [ p/(x))ds.
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so that

T T | C
(71) I/O VU (x,)| ds _/o p(x,) sti <2A + (E + 2) T.

Moreover, for any positive real number ¢ such that ¢ < (1/8T'), we can use
relative entropy and supermartingale properties as in Lemma 2.19 to get that

T 2 1
Thus, (71) and (72) (with ¢ =1/16T) imply that

[(f) o) ds)z du(x)
(73) < 2<2A + (g + 2) T>2 42 /(/OT p(x,) st(x)>2 du(x)

2
< 2(2A + (% + 2) T) + 32T (| P) + 8T log 2.

Since C(u) = (f(Jfy |VU(x,)|ds)? du(x))¥? + 1, it is obvious that (73) gives
Lemma A.8. O
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