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SYMMETRIC LANGEVIN SPIN GLASS DYNAMICS

By G. Ben Arous and A. Guionnet

Ecole Normale Superieure and Université de Paris Sud

We study the asymptotic behavior of symmetric spin glass dynamics in
the Sherrington–Kirkpatrick model as proposed by Sompolinsky–Zippelius.
We prove that the averaged law of the empirical measure on the path space
of these dynamics satisfies a large deviation upper bound in the high tem-
perature regime. We study the rate function which governs this large
deviation upper bound and prove that it achieves its minimum value at
a unique probability measure Q which is not Markovian. We deduce an
averaged and a quenched law of large numbers. We then study the evo-
lution of the Gibbs measure of a spin glass under Sompolinsky–Zippelius
dynamics. We also prove a large deviation upper bound for the law of the
empirical measure and describe the asymptotic behavior of a spin on path
space under this dynamic in the high temperature regime.

1. Introduction. The Sherrington–Kirkpatrick (S–K) model is a mean
field simplification of the spin glass model of Edwards–Anderson. The behavior
of its static characteristics, such as its partition function, has been intensively
studied by physicists (see [12] for a broad survey). There are few mathematical
results available (except for [1], [6], [9] and [17]).

In [12], it is argued that studying dynamics might be simpler since it avoids
using the “replica trick” and the Parisi ansatz for symmetry breaking, which
are yet to be put on firm ground. It seems that, in the physics literature,
the first attempt to study the dynamics of S–K is due to Sompolinsky and
Zippelius (see [15]), who chose a Langevin dynamics scheme.

In [3], we followed this strategy for asymmetric dynamics (which are not
directly relevant to the study of statics for the S–K model). We obtained there
a full large deviation principle for path space empirical measure averaged on
the Gaussian couplings (for short times or large temperatures). This large
deviation principle enabled us to derive the so-called self-consistent limiting
dynamics, which proved to be non-Markovian.

Here we want to attack the real problem, that is, symmetric dynamics.
We prove only a strong large deviation upper bound with a good rate func-
tion. Minimizing this rate function gives a theorem on convergence to self-
consistent limiting dynamics, which we identify, though in a rather cryptic
form.

We can do this only in a short time or high temperature regime, and so this
prevents us from drawing any conclusion for the behavior in large time, at
fixed temperature, which would be a line of attack to study the equilibrium
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measure. Weaker results concerning these dynamics are proved in [11] for any
time and temperature.

To be more specific, let us recall that the S–K Hamiltonian is given, for
x = �x1� � � � � xN� ∈ �−1�1�N, by

HN
J �x� =

−1√
N

N∑
i� j=1

Jijx
ixj�

where the randomness in the spin glass is here modeled by the �Jij�i≤j which
are independent centered Gaussian random variables, and where Jij = Jji.
The Gibbs probability measure one would like to study (for N large) is given
by

exp�−βHN
J �x��

ZN�J�
α⊗N�dx��

where α = 1
2�δ−1 + δ1� and β is the inverse of temperature.

Here ZN�J� is the partition function

ZN�J� =
1

2N
∑

x∈�−1�1�N
exp�−βHN

J �x���

If one replaces the hard spins �−1�+1� by continuous spins, that is, by spins
taking values in R, or as we shall see in a bounded interval of R, and if one
replaces the measure α = 1

2�δ−1 + δ1� by α�dx� = �e−2U�x�/
∫
e−2U�x� dx�dx,

where U is, for instance, a double well potential on R, then the Langevin
dynamics for this problem are given by

dx
j
t = dBjt − ∇U�xjt �dt+

β√
N

∑
1≤i≤N

Jjix
i
t dt�(1)

where B is an N-dimensional Brownian motion.
We want to understand the limiting behavior (for large N) of the law, say

PNβ �J�, of these randomly interacting diffusions given the initial law, say µ⊗N0 .
As in [3], we will only study bounded spins; that is, we will assume that

U�x� is defined on a bounded interval 
−A�A� and tends to infinity when
�x� → A sufficiently fast to insure our spins xj stay in the interval 
−A�A�.

However, we will not assume as in [3] that the the whole matrix �Jij�i�j
is made of i.i.d N�0�1� random variables but rather assume the symmetry
of couplings; that is, we will here suppose that the random matrix �Jij�i� j is
symmetric, that is, Jij = Jji. More precisely, we will suppose that under the
diagonal, the Jij’s are i.i.d N�0�1� and N�0�2� on the diagonal. Such a choice
of covariance is nice from the technical point of view since it makes the law of
the Jij’s invariant by rotation. On the other hand, it does not interfere with
the limit behavior of the spin glass.

So, under this symmetry hypothesis, our dynamics (1) are reversible and
their invariant measure is given by the Gibbs measure:

µNJ �dx� = exp
{
−βHN

J �x� − 2
N∑
i=1

U�xi�
} N∏
i=1

dxi�
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Thus the symmetry hypothesis is crucial to understanding S–K dynamics. On
the other hand, this model is much more difficult to understand than the
asymmetric one.

Our first goal is to study the empirical measure µ̂N = �1/N�∑N
i=1 δxi on

path space. There is no reason for this to be a simple problem, since, for
fixed interaction J, the variables �x1� � � � � xN� are not exchangeable. So we
first study the law of the empirical measure µ̂N averaged on the interaction,
leaving for a later work the study of J almost sure properties of this law.

The main result of this paper is large deviation upper bounds for this aver-
aged law in a large temperature (or short time) regime, which entails a propa-
gation of chaos result, that is, a theorem on convergence to a probability mea-
sure on path space that we describe explicitly as the law of a non-Markovian,
highly nonlinear, solution of a stochastic differential equation (see Corollary
3.2). The existence and uniqueness problems for this limit law are not obvi-
ous and are the analogue here of the existence and uniqueness problem for
asymmetric spin glass dynamics as obtained in [3].

As in [3], we then deduce that the quenched law of the empirical mea-
sure converges exponentially fast to δQ, which entails quenched laws of large
numbers.

We finally underline how our method can be used to study the evolution of
the Gibbs measure µNJ under Sompolinski–Zippelius dynamics and prove that,
in the high temperature or short time regime, the quenched law of the em-
pirical measure converges to the weak solution of a new nonlinear stochastic
differential equation.

The organization of the paper is as follows.
In Section 2, we state and prove the strong large deviation upper bound.

For more detail, see the following.

1. In Section 2.1, we introduce the rate function and state the strong large
deviation upper bound (see Proposition 2.2 and Theorem 2.3).

2. In Section 2.2, we prove that the law of the path space dynamics averaged
on the couplings is absolutely continuous with respect to the law of these
dynamics with no couplings and show that its Radon–Nikodym derivative
is a function of the empirical measure.

3. In Section 2.3, we study the continuity properties of this density.
4. In Section 2.4, these continuity properties enable us to prove that the rate

function is a good rate function in the short time or high temperature
regime.

5. In Section 2.5, we prove the strong large deviation upper bound in the short
time or high temperature regime by first proving an exponential tightness
result and then a weak large deviation upper bound.

In Section 3, we study the minima of the good rate function and prove
that it achieves its minimum value at a unique probability measure, say Q.
We describe Q as the unique solution of a fixed point problem in Theorem
3.14. This gives a propagation of chaos result stated in Corollary 3.3. In order
to give a hint about what kind of result this approach leads to, let us state
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here Corollary 3.3.(ii): For any bounded continuous functions �f1� � � � � fm� on
C�
0�T�� 
−A�+A���

lim
N→∞

�
[∫
f1�x1� · · ·fm�xm�dPNβ �J��x�

]
=

m∏
i=1

∫
fi�x�dQ�x��

where � is the expectation over the Gaussian couplings.
In Section 3.1, we characterize the minima of the good rate function.
In Section 3.2, we reduce the problem of finding these minima to a fixed

point problem and then we show that this fixed point problem has at most one
solution.

In Section 4, we apply our strategy to the stationary law of spin glass
dynamics starting from the Gibbs measure. To this end, we need to suppose
that β is small enough so that we are below the phase transition and that the
free energy concentrates as proved by Talagrand (see [17]). Then, the study of
the law of the empirical measure is reduced to that of the law of the empirical
measure starting from the nonnormalized Gibbs measure ZNJ ×µNJ , which can
be studied following the above procedure. We then describe the asymptotic
behavior of the empirical measure.

2. Averaged and quenched large deviation upper bounds.

2.1. Statement of the large deviation upper bound. We first make precise
the setting of our model: let A be a strictly positive real and U be a C2 func-
tion on the interval �−A�A
 such that U tends to infinity, when �x� → A,
sufficiently fast to insure that

lim
�x�→A

∫ x
0

exp 2U�y�
(∫ y

0
exp−2U�z�dz

)
dy = +∞�

For any number N of particles, any temperature (= 1/β) and J =
�Jij�1≤i� j≤N ∈ R

N×N, we consider the following system � N
β �J� of inter-

acting diffusions. For j ∈ �1� � � � �N�,

� N
β �J� =


dx

j
t = −∇U�xjt �dt+ dBjt +

β√
N

N∑
i=1

Jji x
i
t dt�

Law of x0 = µ⊗N0 �

where �Bj�1≤j≤N is anN-dimensional Brownian motion and µ0 is a probability
measure on 
−A�A� which does not put mass on the boundary �−A�+A�.
Under these assumptions, we recall Proposition 2.1 of [3].

Proposition 2.1. For each J ∈ R
N⊗N, � N

β �J� has a unique weak solution
and, almost surely, sups≤T sup1≤j≤N�xjs � does not reach A.

In the following pages, we will focus on the evolution of this dynamical
system until a time T and denote by PNβ �J� the weak solution of � N

β �J�
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restricted to the sigma algebra �T = σ�xis� 1 ≤ i ≤ N� s ≤ T�, and by P⊗N

the weak solution of � N
0 �J� restricted to �T.

Let WA
T be the space of continuous functions from 
0�T� into 
−A�A�. Then

Proposition 2.1 insures that PNβ �J� is a probability measure on
(
WA
T

)N
.

We now suppose that the Jij’s are random and that their distribution is
given by the following.

1. For any integer numbers �i� j�, Jij = Jji.
2. If i < j, the Jij’s are independent centered Gaussian variables with covari-

ance 1.
3. The Jii’s are independent centered Gaussian variables with covariance 2.

They are also independent of the �Jij�i<j.
We shall denote by γ the law of the Jij’s and by � expectation under γ. We

have already noticed in [3] that PNβ �J� is a measurable function of the Jij’s.
Further, we will be interested in the averaged law QN

β :

QN
β =

∫
PNβ �J�ω��dγ�ω��

The aim of this section is to prove that the law of the empirical measure under
QN
β satisfies a large deviation upper bound, which entails a quenched large

deviation upper bound. To this end, we first define the rate function H which
governs this upper bound (see Proposition 2.2). In order to define H, we need
some notation and definitions that will also be useful later.

1. Let

� =
{
µ ∈�+

1 �WA
T�
/∫ (∫ T

0
�∇U�xs��ds

)2

dµ�x� < +∞
}
�

2. Let µ be a probability measure in � . We denote by L2
µ�WA

T� the space of
the square integrable functions under µ. Hence L2

µ�WA
T� is a Hilbert space

with scalar product �f�g�µ =
∫
gfdµ.

3. Let I be the identity on L2
µ�WA

T�.
4. Let �T be an integral operator on L2

µ�WA
T� with kernel

bT�x�y� =
∫ T

0
xtyt dt�

Then �T is a symmetric nonnegative Hilbert–Schmidt operator in L2
µ�WA

T�
[for any µ ∈�+

1 �WA
T�].

5. Let λi be the eigenvalues of �T in L2
µ�WA

T�, and �Ei�i∈N be an orthonormal
basis of eigenvectors of �T such that �TEi = λiEi. Since �T is nonneg-
ative, the λi’s are nonnegative so that we can define a symmetric positive
Hilbert–Schmidt operator log�I+ β2�T� in L2

µ�WA
T� by

∀ i ∈ N� log�I+ β2�T�Ei = log�1+ β2λi�Ei�
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6. We define another integral operator �T with kernel

aT�x�y� = 1
2

(
xTyT − x0y0 +

∫ T
0
xs∇U�ys�ds+

∫ T
0
ys∇U�xs�ds

)
�

Then �T is a symmetric Hilbert–Schmidt operator in L2
µ�WA

T�, since∫ �∫ T0 �∇U�xs��ds�2 dµ is finite.
7. We denote by trµ the trace in L2

µ�WA
T�.

8. Let I� ∣∣P� be the relative entropy with respect to P:

I
(
µ
∣∣P) =


∫

log
dµ

dP
dµ� if µ� P�

+∞� otherwise�

Proposition 2.2 (Definition). We can define a map * from � into R by

*�µ� = −1
2

trµ log
(
I+ β2�T

)+ ∫ ∞
0

trµ
(
�T exp�−λ�T�

)2 exp
{−λ
β2

}
dλ(2)

and a map H from �+
1 �WA

T� into R by

H�µ� =
{
I
(
µ
∣∣P)− *�µ�� if I

(
µ
∣∣P) <∞�

+∞� otherwise.

Proof. We first show that * is well defined and finite for any µ in � [see
(11) too].

Indeed, as �T is a nonnegative Hilbert–Schmidt operator, trµ log�I+ β2�T�
is well defined and is finite according to (11) for any µ ∈�+

1 �WA
T�.

Moreover, since exp�−λ�T� is a bounded operator and �T is Hilbert–
Schmidt for µ ∈� ��T exp�−λ�T� is Hilbert–Schmidt and its square is trace
class. Further, since �T is nonnegative, trµ��T exp�−λ�T��2 ≤ trµ��T�2. So,
for any µ in � , the second term in the right-hand side of (2) exists and is
bounded.

Moreover, we will see later (see Lemma A.8) that, when I�µ�P� is finite,∫ �∫ T0 �∇U�xs��ds�2 dµ is finite so that �µ ∈ �+
1 �WA

T�/I�µ�P� < +∞� ⊂ � .
Thus, H is well defined and finite on �µ ∈�+

1 �WA
T�/I�µ�P� < +∞�. ✷

We shall prove the following theorem.

Theorem 2.3. If 2β2A2T < 1, then we have the following:

(i) H is a good rate function; that is, H takes its values in 
0�+∞� and, for
all M ∈ R, �H ≤M� is a compact subset of �+

1 �WA
T�.

(ii) For any closed subset F of �+
1 �WA

T�,

lim sup
N→∞

1
N

logQN
β

(
1
N

N∑
i=1

δxi ∈ F
)
≤ − inf

F
H�
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From Theorem 2.3, we can deduce the following quenched large deviation
upper bound as in [3].

Theorem 2.4. If 2β2A2T < 1, for any closed subset F of �+
1 �WA

T� and for
almost all J,

lim sup
N→∞

1
N

logPNβ �J�
(

1
N

N∑
i=1

δxi ∈ F
)
≤ − inf

F
H�

We omit the proof that Theorem 2.3 implies Theorem 2.4 since it parallels
the proof given in [3], Appendix C. The strategy of the proof of Theorem 2.3
is the following.

1. First, we prove (see Section 2.2) that QN
β is absolutely continuous with

respect to P⊗N and that the Radon–Nikodym derivative ofQN
β with respect

to P⊗N is equal, in the large deviation scaling, to exp�N*�µ̂N��. Hence,
according to Laplace-type methods, Theorem 2.3(ii) is not surprising (see
[2] and [7]).

2. Once we are motivated by this last result, we study H and prove that it is
a good rate function.

3. Finally, following a method very similar to the one we developed in [3],
Section 3, we prove the upper bound result.

2.2. Study of QN
β . We first show that QN

β is absolutely continuous with
respect to P⊗N and give the Radon–Nykodim derivative of QN

β with respect
to P⊗N.

The Girsanov theorem implies that, for almost all couplings J, PNβ �J� is
absolutely continuous with respect to P⊗N and describes its Radon–Nikodym
derivative. Thus, it is not hard to see that, if we denote by Bi the process
defined by Bit = Bt�xi� = xit − xi0 +

∫ t
0 ∇U�xis�ds, then

MN
β�T = �

[
dPNβ �J�
dP⊗N

]
= �

[
exp

N∑
j=1

{
β
∫ T

0

(
1√
N

N∑
i=1

Jjix
i
t

)
dB

j
t

− β
2

2

∫ T
0

(
1√
N

N∑
i=1

Jjix
i
t

)2

dt

}]
�

(3)

and we have the following proposition.

Proposition 2.5. We have QN
β � P⊗N and

dQN
β

dP⊗N =MN
β�T�

In order to study the law of the empirical measure under QN
β , we want to

prove that MN
β�T is a function of the empirical measure. More precisely, let I

be the identity in the tensor product space L2
µ�WA

T� ⊗L2
µ�WA

T� and trµ⊗µ the
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trace in L2
µ�WA

T� ⊗L2
µ�WA

T�. We then define

*�µ� = −1
4

trµ⊗µ log
( �I+ β2�T ⊗ I+ β2I⊗�T�
�I+ β2�T� ⊗ �I+ β2�T�

)

− 1
4

trµ log�I+ 2β2�T� − β2T trµ��I+ 2β2�T�−1�T� +
β2T

4
�

Denote in short µ̂N for the empirical measure 1
N

∑N
i=1 δxi .

We are going to prove the following statement.

Theorem 2.6.

(i) We have, P⊗N almost surely,

MN
β�T = exp�N*�µ̂N� + *�µ̂N���

(ii) There exists a finite constant C = C�β�T�A� such that, for any discrete
probability measure on WA

T , µ ∈�+
1 �WA

T�, if dim�µ� denotes the dimension of
the image of �T in L2�µ�,∣∣*�µ�∣∣ ≤ 1

2C�1+ dim�µ�1/2��*�µ� + 1��
so, if D = expC, P⊗N almost surely,

D−1−√N exp
{
N

(
1− C√

N

)
*�µ̂N�

}
≤ dQN

β

dP⊗N ≤D1+√N exp
{
N

(
1+ C√

N

)
*�µ̂N�

}
�

Remark. It is obvious that
∫ �∫ T0 �∇U�xs��ds�2 dP�x� is finite. Hence,∫ �∫ T0 �∇U�xs��ds�2 dµ̂N�x� = �1/N�∑N

i=1�
∫ T

0 �∇U�xis��ds�2 is P⊗N almost
surely finite, that is, µ̂N ∈� , P⊗N almost surely. Thus, *�µ̂N� is well defined,
P⊗N almost surely.

To prove Theorem 2.6, we shall use spectral theory.
2.2.1. Spectral calculus. In the following pages, an integerN will be given.

We may regard J = �Jij�1≤i� j≤N as an element of the space � N of the N ×
N real symmetric matrices. For any �x1� � � � � xN� such that

∫ T
0 �∇U�xis��ds is

finite for any i ∈ �1� � � � �N�, we define two other symmetric matrices A and
B in R

N×N by

Aij =
1

2
√
N

(∫ T
0
xit dB

j
t +
∫ T

0
x
j
t dB

i
t

)
= 1

2
√
N

(
xiTx

j
T − xi0xj0 +

∫ T
0
xis∇U�xjs �ds+

∫ T
0
xjs∇U�xis�ds− δijT

)
�

Bij =
1
N

∫ T
0
xitx

j
t dt�

Let λi be the eigenvalues of B and ei be the eigenvectors of B in R
N such that

Bei = λiei. We prove the following.
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Proposition 2.7. We have, P⊗N almost surely,

MN
β�T = exp

{
β2

N∑
i� j=1

�e∗iAej�2
1+ β2λi + β2λj

− 1
4

N∑
i� j=1

log�1+ β2λi + β2λj�

− 1
4

N∑
i=1

log�1+ 2β2λi�
}
�

Proof. If tr denotes the trace in � N, since J = J∗, we get

1√
N

N∑
i� j=1

Jji

∫ T
0
xit dB

j
t =

N∑
i� j=1

AijJji = tr�AJ��

1
N

N∑
i� j� k=1

JjiJjk

∫ T
0
xitx

k
t dt = tr�JBJ∗� = tr�JBJ��

So, since � denotes the expectation with respect to the Gaussian variable J,
we get that, for any x = �x1� � � � � xN� such that

∫ T
0 �∇U�xis��ds is finite for

1 ≤ i ≤N and so P⊗N almost surely,

MN
β�T = �

[
exp
{
β tr�JA� − 1

2β
2 tr�JBJ�}]�

Using the usual rules of computation for Gaussian variables (see [13], Propo-
sition 8.4), we get

MN
β�T = �

[
exp
{
−1

2
β2 tr�JBJ�

}]
× exp

{
1
2
β2�

[
�tr�JA��2 exp�−�1/2�β2 tr�JBJ��

� 
exp�−�1/2�β2 tr�JBJ���
]}
�

(4)

Lemma 2.8.

�
[
exp
{− 1

2β
2 tr�JBJ�}]

= exp
{
− 1

4

N∑
i� j=1

log�1+ β2�λi + λj�� − 1
4

N∑
i=1

log�1+ 2β2λi�
}
�

Proof. We have chosen the �Jij�1≤i� j≤N’s so that their law is invariant by
rotation on R

N; that is, for any orthogonal matrix O, the law of �Jij�1≤i� j≤N
is invariant by the action J→ OJO∗. Thus, if O is an orthogonal matrix such
that OBO∗ is a diagonal matrix D = diag�λ1� � � � � λN�, then

�
[
exp
{− 1

2β
2 tr�JBJ�}]

= �
[
exp
{− 1

2β
2 tr�JDJ�}]

= exp
{
− 1

4

N∑
i� j=1

log�1+ β2�λi + λj�� − 1
4

N∑
i=1

log�1+ 2β2λi�
}
� ✷
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Lemma 2.9.

�

[
�tr�JA��2 exp�−�1/2�β2 tr�JBJ��

� 
exp�−�1/2�β2 tr�JBJ���
]
= 2

N∑
i� j=1

�e∗iAej�2
1+ β2�λi + λj�

�

Proof. Let Ã = OAO∗. Since the law of J is invariant by rotation,

�

[
�tr�JA��2 exp−�1/2�β2 tr�JBJ�

� 
exp−�1/2�β2 tr�JBJ��
]

= �

[
�tr�JÃ��2 exp−�1/2�β2 tr�JDJ�

� 
exp−�1/2�β2 tr�JDJ��
]

=∑
ijkl

ÃijÃkl�

[
JjiJlk

exp−�1/2�β2 tr�JDJ�
� 
exp−�1/2�β2 tr�JDJ��

]
�

However,

�

[
JijJkl

exp−�1/2�β2 tr�JDJ�
� 
exp−�1/2�β2 tr�JDJ��

]

=



0� if �j� i� �= �k� l� and �l� k��
1

1+ β2�λi + λj�
� if �j� i� = �k� l� or �l� k�� i �= j�

2
1+ β2�λi + λj�

� if i = j = k = l�

Since Ã = Ã∗, we conclude

�

[
�tr�JA��2 exp−�1/2�β2 tr�JBJ�

� 
exp−�1/2�β2 tr�JBJ��
]
= 2

N∑
i� j=1

Ã2
ij

1+ β2�λi + λj�
�

Finally, according to the definition of O, if ei is the eigenvector of B associated
with the eigenvalue λi, then Ãij = e∗iAej, so we have proved Lemma 2.9. ✷

According to (4), Lemmas 2.8 and 2.9 give Proposition 2.7.
2.2.2. Proof of Theorem 2�6. We shall now use Proposition 2.7 to express

MN
β�T as a function of the empirical measure (and of N). To this end, we shall

use that L2
µ̂N�WA

T� and R
N are isomorphic whenever the xi’s are distinct, and

so P⊗N-a.s. More precisely, we shall prove that the operator B in R
N and the

integral operator �T on L2
µ̂N�WA

T� with kernel
∫ T

0 xtyt dt are identical after

the natural identification of R
N and L2

µ̂N (when the xi’s are distinct). For
convenience, we state without proof the following trivial identification.
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Proposition 2.10. Let �x1� � � � � xN� ∈ �WA
T�N and µ̂N = �1/N�∑N

i=1 δxi .

(i) Let

ψ� L2
µ̂N�WA

T� �→ R
N�

Z→ 1√
N
�Z�x1�� � � � �Z�xN���

Then ψ is an isomorphism from �L2
µ̂N�WA

T�� � � �µ̂N� into R
N endowed with the

Euclidean scalar product. Moreover,

ψ�T = Bψ�

As a consequence, if �E1�E2� are eigenvectors of �T with eigenvalues �λ1� λ2�,
then �ψ�E1�� ψ�E2�� are eigenvectors of B with eigenvalues �λ1� λ2� and, for
�i� j� ∈ �1�2�, ψ�Ei�∗ψ�Ej� = �Ei�Ej�µ̂N .

(ii) If the xi are distinct, there exists an orthonormal basis �Ei�1≤i≤N of

eigenvectors of �T in L2
µ̂N�WA

T� with eigenvalues �λi�1≤i≤N; �TEi = λiEi.

Then �ψ�Ei��1≤i≤N is an orthonormal basis of eigenvectors of B and Bψ�Ei� =
λiψ�Ei�.

Corollary 2.11. Almost surely P⊗N the operators �T on L2
µ̂N�WA

T� and B

on R
N have the same eigenvalues and there exists a one-to-one map between

their N eigenvectors.

Corollary 2.11 is a direct consequence of Proposition 2.10(ii) since, as P is
the law of a diffusion, P does not put mass on points of WA

T so that the xi are
P⊗N almost surely distinct.

As a consequence of Proposition 2.7, Proposition 2.10 and Corollary 2.11,
we find the following.

Proposition 2.12. We have, P⊗N almost surely,

logMN
β�T = −1

4
trµ̂N⊗µ̂N log

(
I+ β2�T ⊗ I+ β2I⊗�T

)
+ β2N trµ̂N⊗µ̂N

((
I+ β2I⊗�T + β2�T ⊗ I

)−1
�T ⊗�T

◦� )
− β2T trµ̂N

((
I+ 2β2�T

)−1
�T

)− 1
4

trµ̂N log
(
I+ 2β2�T

)+ β2T2

4
�

where I denotes the identity in the tensor product space L2
µ̂N�WA

T� ⊗L2
µ̂N�WA

T�
and � the symmetry operator in L2

µ̂N�WA
T� ⊗ L2

µ̂N�WA
T� such that, for any

�f�g� ∈ L2
µ̂N�WA

T�,

� �f⊗ g� = g⊗ f�
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Proof. We stated in Proposition 2.7 that

logMN
β�T = −1

4

N∑
i� j=1

log�1+ β2λi + β2λj� −
1
4

N∑
i=1

log�1+ 2β2λi�

+ β2
N∑

i� j=1

�e∗iAej�2
1+ β2�λi + λj�

�

(5)

According to Corollary 2.11, P⊗N-a.s, the operators B in R
N and �T in

L2
µ̂N�WA

T� have the same eigenvalues �λi�1≤i≤N, so that

N∑
i=1

log�1+ 2β2λi� = trµ̂N log�I+ 2β2�T�(6)

and
N∑

i� j=1

log�1+ β2λi + β2λj� = trµ̂N⊗µ̂N log�I+ β2�T ⊗ I+ β2I⊗�T��(7)

We now focus on
∑N
i�j=1 �e∗iAej�2/1+ β2�λi + λj�. It is an easy matter to

see that this term does not depend on the choice of the basis of eigenvectors
of B. Let �Ei�1≤i≤N be an orthonormal basis of eigenvectors of �T. We choose
�ei = ψ�Ei��1≤i≤N as in Proposition 2.10(ii).

Then

e∗iAej =N−1
N∑

k� l=1

Ei�xk�Ak� lEj�xl�

=N−3/2
N∑

k� l=1

Ei�xk�
1
2

(∫ T
0
xkt dBt�xl� +

∫ T
0
xlt dBt�xk�

)
Ej�xl�

=N1/2�Ei��TEj�µ̂N −
T

2
N−1/2δij�

so that

N∑
i� j=1

�e∗iAej�2
1+ β2�λi + λj�

=N
N∑

i� j=1

�Ei��TEj�2
µ̂N

1+ β2�λi + λj�

−T
N∑
i=1

�Ei��TEi�µ̂N
1+ 2β2λi

+ T
2

4
�

(8)

However,

�Ei��TEj�2
µ̂N = �Ei ⊗Ej� ��T ⊗�T

◦� �Ei ⊗Ej�µ̂N⊗µ̂N�

1
1+ β2�λi + λj�

= �Ei ⊗Ej� �I+ β2I⊗�T + β2�T ⊗ I�−1Ei ⊗Ej�µ̂N⊗µ̂N
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and since �Ei⊗Ej�1≤i� j≤N is an orthonormal basis of the tensor product space
L2
µ̂N�WA

T� ⊗L2
µ̂N�WA

T�, we deduce that

N∑
i� j=1

�Ei��TEj�2
µ̂N

1+ β2�λi + λj�

= trµ̂N⊗µ̂N
((

I+ β2I⊗�T + β2�T ⊗ I
)−1

�T ⊗�T
◦� )�

(9)

Equations (5)–(9) achieve the proof of Proposition 2.12. ✷

Proof of Theorem 2.6(i). We show here that Theorem 2.6(i) is equivalent
to Proposition 2.12. In fact, we can see that

β2 trµ̂N⊗µ̂N
((

I+ β2I⊗�T + β2�T ⊗ I
)−1

�T ⊗�T
◦� )

=
∫ ∞

0
trµ̂N��T exp�−λ�T��2 exp

{
− λ

β2

}
dλ

in view of the following resolvent formula.

Lemma 2.13.

β2 (
I+ β2I⊗�T + β2�T ⊗ I

)−1

=
∫ ∞

0
exp−�λ�T� ⊗ exp−�λ�T� exp

{
− λ

β2

}
dλ�

The proof of this lemma is trivial as soon as we notice that this equality is
true on the orthonormal basis �Ei ⊗Ej�1≤i� j≤N of L2

µ̂N�WA
T� ⊗L2

µ̂N�WA
T�.

Thus, by definition of *, Proposition 2.12 implies that

logMN
β�T = −1

2
N trµ̂N log

(
I+ β2�T

)+ *�µ̂N�
+N

∫ ∞
0
trµ̂N��T exp�−λ�T��2 exp

{
− λ

β2

}
dλ

=N*�µ̂N� + *�µ̂N��

Proof of Theorem 2.6(ii). We finally bound *.

Lemma 2.14. There exists a finite constant C = C�β�A�T� such that, for
any probability measure µ on WA

T ,∣∣*̄�µ�∣∣ ≤ C�dim�µ�1/2 + 1��1+ *�µ���

where dim�µ� denotes the dimension of the image of �T in L2�µ�.
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Proof. Let λi be the eigenvalues of �T in L2
µ�WA

T�. Then

*�µ� = −1
4

∞∑
i� j=0

log
( �1+ β2λi + β2λj�
�1+ β2λi��1+ β2λj�

)

− 1
4

∞∑
i=0

log�1+ 2β2λi� +
β2T2

4
−Tβ2

∞∑
i=1

�Ei��TEi�µ
1+ 2β2λi

�

(10)

Since the λi’s are nonnegative, for any i ∈ N, 0 ≤ log�1+ 2β2λi� ≤ 2β2λi. So

0 ≤
∞∑
i=0

log�1+ 2β2λi� ≤ 2β2
∞∑
i=0

λi = 2β2 trµ�T ≤ 2β2A2T�(11)

Moreover, for any positive real numbers �a� b�, we have the elementary in-
equality

exp�−ab� ≤ 1+ a+ b
�1+ a��1+ b� ≤ 1�

So

−�β2A2T�2 ≤ −β4�trµ��T��2 = −β4
∞∑

i� j=0

λiλj

≤
∞∑

i� j=0

log
(

1+ β2�λi + λj�
�1+ β2λi��1+ β2λj�

)
≤ 0�

(12)

Finally, we observe that for any real numbers �a� b� and any positive α, we
have

2�ab� ≤ αa2 + α−1b2

so that ∑
i

∣∣∣∣�Ei��TEi�µ
1+ 2β2λi

∣∣∣∣ ≤ dim�µ�1/2∑
i

�Ei��TEi�2
µ

1+ 2β2λi
+ dim�µ�1/2

≤ dim�µ�1/2�*�µ� + β2A2T� + dim�µ�1/2�
(13)

where we have used the bound (11) in the last line.
Lemma 2.14 is a direct consequence of (10)–(13). ✷

2.3. Continuity properties of *. In order to study the rate function H and
to prove the large deviations upper bound theorem, we first have to study the
map *. Since this study is rather heavy and technical, we will only state the
results here, leaving the proofs and details in the Appendix. To this end, let us
first define linear functions 3ν which are given, for any probability measure ν
on WA

T , by

3ν�µ� = 1
2β

2
∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�ν�∇U�xs��∇U�xt��µ�
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Then * can be approximated by the sum of a continuous function and a linear
function in the following sense.

Proposition 2.15. There exists a finite constant C0 such that, for any prob-
ability measure µ in � , for any probability measure ν in �+

1 �WA
T�, for any

positive real number M, there exists a bounded continuous function *M such
that ∣∣*�µ� − *M�µ� − 3ν�µ�∣∣ ≤ C0

(
1
M

+ dT�µ� ν�
)
C�µ��

where dT is the Wasserstein distance which is defined by

dT�µ� ν� = inf
{∫

sup
s≤T

�x1
s − x2

s �2 dξ�x1� x2�
}1/2

(14)

where the infimum is taken on the probability measures ξ on WA
T ×WA

T with
marginals µ and ν and C�µ� = �∫ �∫ T0 ∇ ∪ �xt�dt�2dµ�x��3/2 + s.

2.4. H is a good rate function. Let us now show that H is a good rate
function, that is, Theorem 2.3(i). We first prove that H is nonnegative. This
fact is not trivial since we cannot prove a large deviation lower bound. In order
to see that, we first derive an alternative expression for *, which will also be
useful for identifying the minima of H.

2.4.1. An alternative expression for *. We denote by Xs the evaluation at
time s, that is, the map from WA

T into R such that for any x ∈WA
T , Xs�x� = xs.

We denote by at the function in L2
µ�WA

T� ⊗L2
µ�WA

T� defined by

at = 1
2

(
Xt ⊗Xt −X0 ⊗X0 +

∫ t
0
Xs ⊗∇U�Xs�ds+

∫ t
0
∇U�Xs� ⊗Xs ds

)
�

According to Itô’s formula, at is also given, under any probability measure
µ� P, by

at = 1
2

(∫ t
0
dBs ⊗Xs +

∫ t
o
Xs ⊗ dBs

)
�

where Bt�x� = xt − x0 +
∫ t

0 ∇U�xs�ds�
We then define, for any probability measure µ in � , a function Fµ in

L2
µ�WA

T� by

F
µ
t �x� = 2

∫
yt
(
I+ β2�t ⊗ I+ β2I⊗�t

)−1
at�x�y�dµ�y��

Let µ satisfy I� �P� < ∞. Then B is a semimartingale under µ according
to Girsanov’s theorem. Moreover, Fµ is previsible and belongs to L2

µ�WA
T�, so

that
∫ T

0 F
µ
s dBs is well defined under µ and belongs to L1

µ�WA
T�.

Lemma 2.16. Let µ ∈ �I� �P� < +∞�; then

*�µ� =
∫ (
β2
∫ T

0
F
µ
t �x�dBt�x� −

β4

2

∫ T
0
�Fµt �x��2 dt

)
dµ�x��
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Proof. Let �T = �I+ β2�T ⊗ I+ β2I⊗�T�−1.
By the definition of *2, we have

1
β2
*2�µ� = trµ⊗µ��T�T ⊗�T

◦� ��

Since aT is the kernel of �T, we get

1
β2
*2�µ� = �aT��TaT�µ

= 1
4

〈∫ T
0
Xt ⊗ dBt +

∫ T
0
dBt ⊗Xt��T

×
(∫ T

0
Xt ⊗ dBt +

∫ T
0
dBt ⊗Xt

)〉
µ

�

where we write � � �µ instead of � � �µ⊗µ for the scalar product in L2
µ�WA

T� ⊗
L2
µ�WA

T� for simplification.
At this point, we have not used the existence of stochastic integrals against

B since aT is pointwise defined. We shall now take into account that we sup-
pose that I�µ�P� is finite, so that µ � P and

∫ T
0 Xt ⊗ dBt is well defined in

L2
µ�WA

T� ⊗L2
µ�WA

T�.
Since �T is symmetric, we get

1
β2
*2�µ� =

1
2

〈∫ T
0
Xt ⊗ dBt��T

(∫ T
0
Xt ⊗ dBt +

∫ T
0
dBt ⊗Xt

)〉
µ

�(15)

We want to apply Itô’s formula in (15). To this end, we study the martingale
properties of the processes contained in the bracket of the right-hand side of
(15). We first observe that

�T

∫ T
0
Xt ⊗ dBt = �I+ β2�T ⊗ I�−1

∫ T
0
Xt ⊗ dBt

− β2�I+ β2�T ⊗ I�−1�TI⊗�T

∫ T
0
Xt ⊗ dBt�

(16)

However,

I⊗�T

∫ T
0
Xt ⊗ dBt�x�y� =

∫
dµ�z�

∫ T
0
ytzt dt

∫ T
0
xt dBt�z��

so that, using the semimartingale representation of B, we see that I ⊗
�T

∫ T
0 Xt⊗dBt has finite variations. As a consequence, �I+β2�T⊗I�−1�TI⊗

�T

∫ T
0 Xt⊗dBt has finite variations. Moreover, �I+β2�T⊗I�−1

∫ T
0 Xt⊗dBt =∫ T

0 �I+β2�T�−1Xt⊗dBt and, for any y ∈WA
T , �∫ s0 �I+β2�T�−1Xt�y�⊗dBt�s≤T

is a martingale under P with martingale bracket with
∫ s

0 yt dBt equal to∫ s
0 �yt�I+ β2�T�−1Xt�y��dt.
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As a conclusion, (16) implies that, for any y ∈WA
T , ��T

∫ s
0 Xt⊗dBt�y� ���s≤T

is a semimartingale whose martingale bracket with
∫ s

0 yt dBt is equal to∫ s
0 �yt�I+ β2�T�−1Xt�y��dt. Hence, Itô’s formula implies that〈∫ T

0
Xt ⊗ dBt��T

∫ T
0
Xt ⊗ dBt

〉
µ

=
∫ (∫ ∫ T

0
yt dBt�x��T

∫ T
0
Xt ⊗ dBt�y�x�dµ�x�

)
dµ�y�

= 2
〈∫ T

0
Xt ⊗ dBt��T

∫ t
0
Xs ⊗ dBs

〉
µ

+
∫ T

0
�Xt� �I+ β2�T�−1Xt�µ dt�

Similarly, we find〈∫ T
0
Xt ⊗ dBt� �T

∫ T
0
dBt ⊗Xt

〉
µ

= 2
〈∫ T

0
Xt ⊗ dBt� �T

∫ t
0
dBs ⊗Xs

〉
µ

�

so that we have proved

1
β2
*2�µ� = 2

〈∫ T
0
dBt ⊗Xt��Tat

〉
µ

+ 1
2

∫ T
0
�Xt� �I+ β2�T�−1Xt�µ dt�(17)

We now focus on the dependence of �T on the time variable T. Let �s be an
integral operator in L2

µ�WA
T� with kernel ds�x�y� = xsys. Then we state the

following.

Lemma 2.17. For any probability measure µ in WA
T , for any �f�g� in

L2
µ�WA

T� ⊗L2
µ�WA

T�,

�f��Tg�µ = �f�g�µ − β2
∫ T

0
�f��t�I⊗�t +�t ⊗ I��tg�µ dt�

Proof. Let 8n = �0 = t0 < t1 < · · · < tn+1 = T� be a subdivision of 
0�T�.
Let �8n� = max0≤k≤n �tk+1 − tk� and let

�m =
m∑
k=1

�tk−1
�tk − tk−1�� �0 = 0

and

�m = (I+ β2�m ⊗ I+ β2I⊗�m

)−1
�

Then

β2
n∑
k=0

�k�I⊗�tk +�tk ⊗ I��k+1�tk+1 − tk� = I− �n+1�(18)
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To prove Lemma 2.17, we can assume without loss of generality that f = g =
f1 ⊗ f2 where �f1� f2� are in L2

µ�WA
T� and satisfy

∫
f2

1 dµ =
∫
f2

2 dµ = 1. Then∣∣�f1 ⊗ f2� ��T ⊗ I+ I⊗�T −�n+1 ⊗ I− I⊗�n+1�f1 ⊗ f2�µ
∣∣

=
n∑
k=0

∫ tk+1

tk

(�f1� �Xt −Xtk
��2
µ + �f2� �Xt −Xtk

��2
µ

)
dt

≤ 2
∫ n∑
k=0

∫ tk+1

tk

�xt − xtk�2 dtdµ�x��

But the canonical process is bounded and continuous under µ, so that

lim
�8n�→0

∫ n∑
k=0

∫ tk+1

tk

�xs − xtk�2 dsdµ�x� = 0�

Hence

lim
�8n�→0

∣∣�f1 ⊗ f2� ��T ⊗ I+ I⊗�T −�n+1 ⊗ I− I⊗�n+1�f1 ⊗ f2�µ
∣∣ = 0�

Since �T and �n+1 are positive operators, we deduce

lim
�8n�→0

∣∣�f1 ⊗ f2� ��n+1 − �T�f1 ⊗ f2�µ
∣∣ = 0

and, similarly,

lim
�8n�→0

�f1 ⊗ f2�
n∑
k=0

�k�I⊗�tk +�tk ⊗ I��k+1�tk+1 − tk�f1 ⊗ f2�µ

=
∫ T

0
�f1 ⊗ f2��t�I⊗�t +�t ⊗ I��tf1 ⊗ f2�µ dt�

So (18) gives Lemma 2.17 when �8n� tends to zero. ✷

Since
∫ t

0 Xs⊗dBs and
∫ t

0 dBs⊗Xs (and so at) belong to L2
µ�WA

T�⊗L2
µ�WA

T�
for any t ≤ T, we can apply Lemma 2.17 in (17). We find

1
β2
*2�µ� = 2

〈∫ T
0
dBt ⊗Xt��tat

〉
µ

+ 1
2

∫ T
0
�Xt� �I+ β2�T�−1Xt�µ dt

− β2
∫ T

0

〈
�t�I⊗�t +�t ⊗ I��t

×
(∫ t

0
dBs ⊗Xs +

∫ t
0
Xs ⊗ dBs

)
�
∫ s

0
dBu ⊗Xu

〉
µ

dt�

(19)
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We can use Itô’s formula for the last term of the right-hand side of (19) as we
did previously to prove (17). We find〈

�t�I⊗�t +�t ⊗ I��t
(∫ t

0
dBs ⊗Xs +

∫ t
0
Xs ⊗ dBs

)
�
∫ s

0
dBu ⊗Xu

〉
µ

=
〈
�I⊗�t +�t ⊗ I��tat��t

∫ t
0
dBu ⊗Xu

〉
µ

− 1
2

∫ t
0
��t�I+ β2�t�−1Xs� �I+ β2�t�−1Xs�µ ds�

(20)

Moreover, since the kernel of �t is dt�x�y� = xtyt, we find

��t�I+ β2�t�−1Xs� �I+ β2�t�−1Xs�µ = �Xt� �I+ β2�t�−1Xs�2
µ

and 〈
�I⊗�t +�t ⊗ I��tat��t

∫ t
0
dBu ⊗Xu

〉
µ

=
∫
dµ�x�

∫
dµ�y�yt�t

∫ t
0
dBu ⊗Xu�x�y�

∫
dµ�z�zt�tat�x� z�

+
∫
dµ�x�

∫
dµ�y�yt�t

∫ t
0
dBu ⊗Xu�y�x�

∫
dµ�z�zt�tat�z� x�

= 2
∫
dµ�x�

(∫
dµ�z�zt�tat�z� x�

)2

�

(21)

where (21) comes from the symmetry of the function �x� z� → �tat�x� z�. Let

F
µ
t �x� = 2

∫
dµ�y�yt�t at�x�y��

Then (21) reads〈
�I⊗�t +�t ⊗ I��tat!�t

∫ t
0
dBu ⊗Xu

〉
µ

= 1
2

∫
�Fµt �x��2 dµ�x��

Thus, (20) becomes〈
�t�I⊗�t +�t ⊗ I��t

(∫ t
0
dBs ⊗Xs +

∫ t
0
Xs ⊗ dBs

)
�
∫ s

0
dBu ⊗Xu

〉
µ

= 1
2

∫
�Fµt �x��2 dµ�x� − 1

2�Xt� �I+ β2�t�−1Xs�2
µ�

and so (19) shows

*2�µ� =
∫
dµ�x�

(
β2
∫ T

0
�Fµt �x��dBt�x� −

β4

2

∫ T
0
�Fµt �x��2 dt

)
+ β

2

2

∫ T
0
�Xt� �I+ β2�T�−1Xt�µ dt

+ β
4

2

∫ T
0
dt
∫ t

0
�Xt� �I+ β2�t�−1Xs�2

µ ds�

(22)
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We can compute

β2
∫ T

0
�Xt� �I+ β2�T�−1Xt�µ dt+ β4

∫ T
0
dt
∫ t

0
�Xt� �I+ β2�t�−1Xs�2

µ ds

= β2
∫ T

0
�Xt� �I+ β2�t�−1Xt�µ dt = trµ log�I+ β2�T��

(23)

Equations (22) and (23) complete the proof of Lemma 2.16. ✷

2.4.2. H is nonnegative.

Lemma 2.18. The rate function H maps �+
1 �WA

T� into R
+; that is, for any

µ satisfying I� �P� < +∞,

*�µ� ≤ I�µ�P��(24)

Proof. Let µ ∈ �I� �P� < +∞�. We can apply Lemma 2.16. Since Fµt �x�
is a previsible function along the canonical filtration �t = σ�xs� s ≤ t�, under
P, Mµ

t �x� = β2
∫ t

0 F
µ
s �x�dBs�x� is a local continuous martingale along the

filtration ��t�t≤T, with quadratic variation �Mµ�t = β4
∫ t

0�F
µ
s �x��2 ds.

Let τK = inf�t/�Mµ
t − 1

2�Mµ�t� > K�. Since Mµ is continuous, τK is a
stopping time for the canonical filtration. As a consequence, mµ

T∧τK =M
µ
T∧τK−

1
2 < Mµ >T∧τK is measurable. According to the definition of τK, mµ

T∧τK is
bounded by K.

We now apply the relative entropy property,∫
m
µ
T∧τK�x�dµ�x� ≤ I�µ�P� + log

∫
expmµ

T∧τK�x�dP�x��(25)

But �expmµ
t∧τK�t≤T is a bounded martingale with respect to the filtration

��t∧τK�t≤T. Hence, for any positive real number K,∫
expmµ

T∧τK�x�dP�x� =
∫

expmµ
0 �x�dP�x� = 1�

so that (25) becomes ∫
m
µ
T∧τK�x�dµ�x� ≤ I�µ�P��(26)

Thus, to deduce Lemma 2.18 from (26), we need to show that:

lim
K→∞

∫
m
µ
T∧τK�x�dµ�x� =

∫
m
µ
T�x�dµ�x��(27)

Since �mµ
T∧τK � ≤ �mµ

T� and mµ
T∧τK�x� converges to mµ

T�x� when K tends to
infinity for any x such that mµ

T�x� is finite, the dominated convergence theo-
rem shows that (27) is satisfied as soon as mµ

T belongs to L1�µ�. To establish
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this last point, we only need to prove that �Mµ�T =
∫ T

0 �F
µ
t �x��2 dt belongs to

L1�µ�. However, since �T is positive,∫ ∫ T
0
�Fµt �x��2 dtdµ�x�

≤ 4A2
∫ T

0

∫
��tat�x�y��2 dµ⊗2�x�y�dt

≤ A2
∫ T

0

∫ (∫ t
0
ys dBs�x� +

∫ t
0
xs dBs�y�

)2

dµ⊗2�x�y�dt�

Using the relative entropy property and the monotone convergence theorem,
we conclude that [see (29)], for any positive real number α small enough, there
exists a finite constant ξ such that∫ ∫ T

0
�Fµt �x��2 dtdµ�x� ≤

2
α
A2TI�µ�P� + ξ�

Thus, for any µ in �I� �P� < +∞�, mµ
T belongs to L1�µ� so that (26) and (27)

imply ∫
m
µ
T�x�dµ�x� ≤ I�µ�P��

that is, Corollary 2.18. ✷

2.4.3. H is a good rate function. We first show that the entropy relative
to P is bounded in terms of H.

Lemma 2.19. If 2β2A2T < 1, there exists a strictly positive real number α
and a finite constant C, C > 0, such that

H�µ� ≥ αI�µ�P� −C�

Proof. Let µ ∈�+
1 �WA

T�.
If I�µ�P� = +∞, then H�µ� = +∞ so that Lemma 2.19 is true. Otherwise,

I�µ�P� is finite so that H�µ� = I�µ�P� − *�µ�. Moreover,

*�µ� = *1�µ� + *2�µ� ≤ *2�µ��

but

*2�µ� = β2 trµ⊗µ
(�I+ β2�t ⊗ I+ β2I⊗�t�−1�T ⊗�T

◦� )
≤ β2 trµ�� 2

T�

= β2

4

∫ (∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2

dµ⊗2�x�y��
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Thanks to the relative entropy properties, for any x ∈ WA
T and any positive

real number κ:

κ
β2

4

∫ (∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2

dµ�y�

≤ I�µ�P� + log
∫

exp
{
κ
β2

4

(∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2}
dP�y��

and then, for any positive real number ε ≥ 0,

κε
β2

4

∫ (∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2

dµ⊗2�x�y�

≤ �1+ ε�I�µ�P�

+ log
∫

exp
{
κε
β2

4

(∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2}
dP⊗2�x�y��

(28)

Let J be a centered Gaussian variable with covariance 1.∫
exp
{
κε
β2

4

(∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)2}
dP⊗2�x�y�

= �

[∫
exp
{√

κε

2
βJ

(∫ T
0
xt dBt�y� +

∫ T
0
yt dBt�x�

)}
dP⊗2�x�y�

]
≤ �

[(∫
exp
{
κεβ2J2

(∫ T
0
x2
t dt+

∫ T
0
y2
t dt

)}
dP⊗2�x�y�

)1/2]
= �

[∫
exp
{
κεβ2J2

∫ T
0
x2
t dt

}
dP�x�

]
≤ � 
exp�κεβ2A2TJ2�� = 1√

1− 2κεβ2A2T
�

(29)

where the last equality holds as soon as 2κεβ2A2T < 1. However, we supposed
that 2β2A2T < 1 in order to choose κε > 1 small enough so that 2κεβ2A2T <
1. We then choose ε > 0 so that 1 + ε < κε. Hence, inequalities (28) and (29)
show that we can find a strictly positive real number α = �κε− 1− ε�/κε and
a finite constant C = 1/�κε

√
1− 2κεβ2A2T� such that

*�µ� ≤ �1− α�I�µ�P� +C�
so that

H�µ� ≥ αI�µ�P� −C� ✷

We now prove that H is lower semicontinuous. We assume in the follow-
ing that 2β2A2T < 1. Take a sequence µk of probability measures converg-
ing to a probability measure µ and choose a subsequence �nk� such that
lim inf k H�µk� = limk H�µnk�.
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We distinguish the case where I�µnk �P� stay bounded for large k from the
case where we can find a subsequence µnk�K� such that I�µnk�K� �P� ≥K.

In the first case, we suppose that I�µnk �P� stay bounded for k larger than
some k0. Then C�µ� is uniformly bounded by a finite constant L for k ≥ k0,
according to Lemma A.8. Moreover, Lemma 2.15 says that, for any positive
real number M, for any k ≥ k0,∣∣*�µnk� − *M�µnk� − 3µ�µnk�∣∣ ≤ C0L

(
1
M

+ dT�µ�µnk�
)
�(30)

Hence, for any k ≥ k0,

H�µnk� ≥ I�µnk �P� − *M�µnk� − 3µ�µnk� −C0L

(
1
M

+ dT�µ�µnk�
)
�(31)

Let Qµ be a probability measure on WA
T , absolutely continuous with respect

to P, such that

dQµ

dP
�x� = 1

Zµ
exp
{

1
2
β2
∫ T

0

∫ T
0
��I+ β2�T�−1xs� xt�µ∇U�xs�∇U�xt�dtds

}
�

where

Zµ =
∫

exp
{

1
2β

2
∫ T

0

∫ T
0
��I+ β2�T�−1xs� xt�µ∇U�xs�∇U�xt�dtds

}
dP�x��

In the regime 2β2A2T < 1, Zµ is finite. Note that

dQµ

dP
�x� = 1

Zµ
exp3µ�δx��

Then, we can prove as in Appendix B of [3] that

I�·�P� − 3µ = I�·�Qµ� − logZµ�(32)

so that (31) becomes

H�µnk� ≥ I�µnk �Qµ� − logZµ − *M�µnk� −C0L

(
1
M

+ dT�µ�µnk�
)
�(33)

Since I�·�Qµ� is l.s.c and *M is continuous, (33) gives

lim inf
n→∞ H�µn� = lim

k→∞
H�µnk�

≥ I�µ�Qµ� − logZµ − *M�µ� −C0L
1
M

= I�µ�P� − 3µ�µ� − *M�µ� −C0L
1
M

by (32)

≥H�µ� − 2C0L
1
M

by (30)�

Since the last inequality holds for any real number M, we conclude that
lim infn→∞H�µn� ≥H�µ�.
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In the other case, we can find a subsequence np�K� such that limK I�µnp�K� �P�
= +∞ and then Lemma 2.19 implies that

lim inf
k→∞

H�µk� = lim
k→∞

H�µnk� = lim
K→∞

H�µnp�K�� = +∞�

so that we also get lim inf k→∞H�µk� ≥H�µ��
Moreover, H is a good rate function. Indeed, for any positive real number

R, �H ≤ R� is a compact set as it is a closed set (H is l.s.c) which is included
in a compact set, since, by Lemma 2.19, the relative entropy I� �P� is bounded
on �H ≤ R�.

2.5. Proof of the large deviation upper bound. As in the asymmetric ver-
sion of dynamics, we first prove an exponential tightness result, and we then
prove a weak large deviation upper bound, that is, Theorem 2.3(ii) when F
is compact. We finally deduce from these two results Theorem 2.3(ii) for any
closed subset F.

Lemma 2.20. If 2β2A2T < 1, there exists α > 1 and a finite constant C
such that ∫ ( dQN

β

dP⊗N

)α
dP⊗N ≤ CN�

Proof. With the notation of Section 2.2.1,∫ ( dQN
β

dP⊗N

)α
dP⊗N =

∫
�

[
exp
{
βTr�JA� − 1

2
β2Tr�JBJ�

}]α
dP⊗N

≤
∫
�

[
exp
{
αβTr�JA� − 1

2
β2αTr�JBJ�

}]
dP⊗N�

Let �p�q� be conjugate exponents. The Hölder inequality gives∫ ( dQN
β

dP⊗N

)α
dP⊗N ≤ �

[∫
dP⊗N exp

{
αpβTr�JA� − 1

2
β2α2p2Tr�JBJ�

}]1/p

× �

[∫
dP⊗N exp

{
1
2
qβ2α�pα− 1�Tr�JBJ�

}]1/q

�

Recall that

exp
{
αpβTr�JA� − 1

2
β2α2p2Tr�JBJ�

}

= exp
{
αpβ

N∑
i=1

∫ T
0

(
1√
N

N∑
j=1

Jijx
j
t

)
dB

j
t

− 1
2
β2α2p2

N∑
i=1

∫ T
0

(
1√
N

N∑
j=1

Jijx
j
t

)2

dt

}



SYMMETRIC LANGEVIN SPIN GLASS DYNAMICS 1391

is a supermartingale, so that we find, for conjugate exponents �p�q�,∫ ( dQN
β

dP⊗N

)α
dP⊗N ≤ �

[∫
dP⊗N exp

1
2
qβ2α�pα− 1�Tr�JBJ�

]1/q

�(34)

But, if �λi�1≤i≤N are the eigenvalues of B, we can prove as in Lemma 2.8 that

�
[
exp 1

2qβ
2α�pα− 1�Tr�JBJ�]

= exp
(
− 1

4

N∑
i� j=1

log�1− qβ2α�pα− 1��λi + λj��

− 1
4

N∑
i=1

log�1− 2qβ2α�pα− 1�λi�
)
�

(35)

whenever α is close enough to one. Indeed, since the λi’s are positive,

λi ≤
N∑
i=1

λi =
1
N

N∑
i=1

∫ T
0
�xit�2 dt ≤ A2T� P⊗N-a.s.

But we supposed that 2β2A2T < 1, so we can find α > 1 small enough and
two conjugate exponents p and q such that maxi�j

(
qβ2α�pα− 1��λi + λj�

) ≤
2qβ2α�pα− 1�A2T < 1. Then, the right-hand side of (35) is finite.

More precisely, we can find a finite constant c such that, for any x smaller
than 2qβ2α�pα− 1�A2T < 1 (see Appendix B of [3]),

− log�1− x� ≤ cx�
so that equality (35) implies

�
[
exp 1

2qβ
2α�pα− 1�Tr�JBJ�]

≤ exp�cqβ2α�pα− 1�A2T�(exp
{ 1

2cqβ
2α�pα− 1�A2T

})N
�

which proves Lemma 2.20. ✷

We turn to the proof of the weak upper bound.

Lemma 2.21. If 2β2A2T < 1, for any compact subset K of �+
1 �WA

T�,

lim sup
N→∞

1
N

logQN
β �µ̂N ∈K� ≤ − inf

K
H�

Proof. LetK be a compact subset of �+
1 �WA

T�. For any positive real num-
ber δ, we can cover K by a finite number p of open balls B�µi� δ� for Wasser-
stein’s distance dT:

B�µi� δ� = �ν ∈�+
1 �WA

T�/dT�µi� ν� < δ�� K ⊂ ⋃
1≤i≤p

B�µi� δ��
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Let L be a positive real number and let 	L be defined by

	L =
{
µ ∈�+

1 �WA
T�
/∫ (∫ T

0
�∇U�xt��dt

)2

dµ�x� ≤ L
}
�

We then bound QN
β �µ̂N ∈K�:

QN
β �µ̂N ∈K� ≤ QN

β �µ̂N ∈ 	 c
L� +

p∑
i=1

QN
β

(
µ̂N ∈K ∩	L ∩B�µi� δ�

)
�(36)

(a) Estimate of QN
β �µ̂N ∈ 	 c

L�. We use the Hölder inequality with the real
number α > 1 introduced in Lemma 2.20 and its conjugate exponent σ :

QN
β �µ̂N ∈ 	 c

L� =
∫
µ̂N∈	 c

L

dQN
β

dP⊗N dP
⊗N

≤
(∫

µ̂N∈	 c
L

(
dQN

β

dP⊗N

)α
dP⊗N

)1/α

P⊗N�µ̂N ∈ 	 c
L�1/σ

≤ CNP⊗N�µ̂N ∈ 	 c
L�1/σ �

(37)

Using Chebyshev’s inequality, we get, for any positive real number r,

P⊗N�µ̂N ∈ 	 c
L� ≤ exp�−rNL�

∫
exp
[
r
N∑
i=1

(∫ T
0
�∇U�xit��dt

)2]
dP⊗N

≤ exp�−rNL�
(∫

exp
[
r

(∫ T
0
�∇U�xt��dt

)2]
dP

)N
�

(38)

But, if r is small enough,
∫

exp
r�∫ T0 �∇U�xt��dt�2�dP is finite (see the proof
of Lemma A.8), so that, in conclusion of (37) and (38), we find, in the high
temperature regime 2β2A2T < 1, a strictly positive real number r and a
finite constant D such that we can state the following.

Lemma 2.22. For any positive real number L,

QN
β �µ̂N ∈ 	 c

L� ≤ exp
−r�L−D�N��

(b) Estimate of QN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��. According to Theorem 2.6,

QN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��

≤ D1+√N
∫
	L∩K∩B�µi�δ�

expN
(

1+ C√
N

)
*�µ̂N�dP⊗N�

so that the Hölder inequality and Lemma 2.20 imply

lim sup
N→∞

1
N

logQN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��

≤ lim sup
N→∞

∫
	L∩K∩B�µi�δ�

expN*�µ̂N�dP⊗N�
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However, we saw in Proposition 2.15 that, for any probability measure µ in
	L ⊂� ,

�*�µ� − *M�µ� − 3µi�µ�� ≤ C0

(
1
M

+ dT�µ�µi�
)
C�µ��

On the subset 	L ∩K ∩B�µi� δ�, C�µ� is uniformly bounded by mL = L3/2+1
and dT�µi�µ� by δ, so that

lim sup
N→∞

∫
	L∩K∩B�µi�δ�

exp
N*�µ̂N��dP⊗N

≤ C0

(
1
M

+ δ
)
mL

+ lim sup
N→∞

∫
K∩B�µi�δ�

exp
N�*M�µ̂N� + 3µi�µ̂N���dP⊗N�

(39)

Let Qµi
be a probability measure on WA

T , absolutely continuous with respect
to P such that

dQµi

dP
= 1
Zµi

exp3µi�δx��

The measure Qµi
is well defined in the regime 2β2A2T < 1 and Zµi is then

finite. Then (38) reads

QN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��

≤ CZNµi exp
{
C0

(
1
M

+ δ
)
mLN

}
×
∫
K∩B�µi�δ�

expN�*M�µ̂N��d�Qµi
�⊗N�

(40)

Using Sanov’s theorem, we deduce

lim
N→∞

1
N

logQN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��

≤ logZµi +C0

(
1
M

+ δ
)
mL − inf

K∩B�µi�δ�
�I� �Qµi

� − *M��
(41)

As in Appendix B of [3], we find that

I�µ�Qµi
� =
{
I�µ�P� − 3µi�µ� + logZµi� if I�µ�P� < +∞�
+∞� otherwise.

However, we recall (see Lemma A.5) that

�3µi�µ� − 3�µ�� ≤ c′dT�µ�µi�
∫ (∫ T

0
�∇U�xt��dt

)2

dµ�
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and since we saw in the proof of Lemma A.8 that there exist two finite con-
stants c1 and c2 such that∫ (∫ T

0
�∇U�xt��dt

)2

dµ ≤ c1I�µ�P� + c2�

we find two finite constants C1 and C2 such that (41) becomes

lim sup
N→∞

1
N

logQN
β �µ̂N ∈ 	L ∩K ∩B�µi� δ��

≤ C2

(
1
M

+ δ
)
mL − inf

µ∈K∩B�µi�δ�
��1−C1δ�I�µ�P� − 3�µ� − *M�µ���

(42)

If we recall (36), Lemma 2.22 and (42), we proved that

lim sup
N→∞

1
N

logQN
β �µ̂N ∈K�

≤ max
{
−r�L−D��

C2

(
1
M

+ δ
)
mL − inf

µ∈K
��1−C1δ�I�µ�P� − 3�µ� − *M�µ��

}
�

(43)

We now need to show the following.

Corollary 2.23.

lim
δ↓0

lim
M↑∞

− inf
µ∈K
(�1−C1δ�I�µ�P� − 3µ�µ� − *M�µ�

) ≤ − inf
K
H�

To this end, we give a technical lemma.

Lemma 2.24. If 2β2A2T < 1, there exists α < 1 and a finite constant ξ such
that, for any positive real number M, for any probability measure µ,

*M�µ� + 3�µ� ≤ αI�µ�P� + ξ�

The proof of Lemma 2.24 follows the lines of the proof of Lemma 2.19; we
omit it.

Proof of Corollary 2.23. We choose δ small enough such that κ = 1 −
C1δ− α > 0, so that Lemma 2.24 implies

�1−C1δ�I�µ�P� − 3�µ� − *M�µ� ≥ κI�µ�P� − ξ�(44)

so that, if we distinguish the case where infKH = infK�I�µ�P� − *�µ�� is
finite from the case where it is not, we find as follows:

(i) if infKH = +∞, then infK I�µ�P� = +∞ so that (44) implies that, for
any positive real number M, infµ∈K��1−C1δ�I�µ�P�−3µ�µ�−*M�µ�� = +∞;
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(ii) if infKH < +∞, since H is a good rate function, we can find a finite
real number R such that

inf
K
H = inf

K∩�I≤R�
H�

However, for any real number R′, (44) implies

− inf
µ∈K

��1−C1δ�I�µ�P� − 3µ�µ� − *M�µ��

≤ max
{
− inf
µ∈K∩�I≤R′�

��1−C1δ�I�µ�P� − 3�µ� − *M�µ��!−κR′ + ξ
}
�

(45)

By Lemma 2.15, we know that, for any probability measure µ in � ,∣∣*�µ� − *M�µ� − 3�µ�∣∣ ≤ C0

M
C�µ��

so that Lemma A.8 shows that there exists a finite constant k such that, for
any real number R′,

sup
�I� �P�≤R′�

∣∣*− *M − 3∣∣ ≤ k

M

(�R′�3/2 + 1
)
�

Thus

inf
K∩�I≤R′�

��1−C1δ�I� �P� − 3− *M�

≥ inf
K∩�I≤R′�

�I� �P� − *� −C1δR
′ − k

M
��R′�3/2 + 1�

= inf
K∩�I≤R′�

H−C1δR
′ − k

M
��R′�3/2 + 1��

Therefore, (45) implies that, if c = max�k�C1�,
− inf
µ∈K
(�1−C1δ�I�µ�P� − 3�µ� − *M�µ�

)
≤ max

{
− inf
K∩�I≤R′�

H+ c
(
δ+ 1

M

)(�R′�3/2 + 1
)! −κR′ + ξ

}
�

so that, for any real number R′ ≥ R,

lim
δ↓0

lim
M↑∞

− inf
K
��1−C1δ�I� �P� − 3− *M�

≤ max
{
− inf
K∩�I≤R′�

�H�!−κR′ + ξ
}
= max

{
− inf

K
H! −κR′ + ξ

}
�

We finally let R′ ↑ +∞ so that we get Corollary 2.23. ✷

We can end the proof of Lemma 2.21. If we let δ tend to zero and M tend
to infinity in (43), Corollary 2.23 implies that, for any positive real number L:

lim sup
N→∞

1
N

logQN
β �µ̂N ∈K� ≤ max

{
− r�L−D�! − inf

K
H
}
�

So that, letting L tend to infinity proves Lemma 2.21. ✷
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We finally deduce Theorem 2.3(ii) from Lemmas 2.20 and 2.21; that is, we
show the following.

Lemma 2.25. If 2β2A2T < 1, for any closed set F of �+
1 �WA

T�,

lim sup
N→∞

1
N

logQN
β �µ̂N ∈ F� ≤ − inf

F
H�

Proof. It is well known (see, for instance, [8], Lemma 3.2.7) that the law
of the empirical measure under P⊗N is exponentially tight; that is, for any
real number L, there exists a compact subset KL of �+

1 �WA
T� so that

P⊗N(µ̂N ∈Kc
L

) ≤ exp�−LN��
Then Lemma 2.20 implies that the law of the empirical measure under QN

β

is exponentially tight since, if α > 1 is chosen as in Lemma 2.20 and σ is the
conjugate exponent of α, we have

QN
β �µ̂N ∈Kc

L� ≤
(∫ ( dQN

β

dP⊗N

)α
dP⊗N

)1/α

P⊗N�µ̂N ∈Kc
L�1/σ

≤ �C1/α�N exp
{
−L
σ
N

}
�

Thus, the weak large deviation upper bound of Lemma 2.21 implies Lemma
2.25 (see [8], Lemma 2.15, page 40). ✷

3. Existence and uniqueness of the minima of the rate function.
We shall use Theorem 2.3 to study the convergence of the law DNβ�T of the
empirical measure under QN

β .
We recall that, for any probability measure µ in � , we defined in Lemma

2.16 a function Fµt on WA
T by

F
µ
t �x� = 2

∫
dµ�y�yt

(
I+ β2�t ⊗ I+ β2I⊗�t

)−1
at�x�y��

Then we have the theorem.

Theorem 3.1. The rate function H achieves its minimum value �= 0� at a
unique probability measure Q on WA

T which is implicitly defined by

Q� P
dQ

dP
�x� = exp

{
β2
∫ T

0
F
Q
t �x�dBt�x� −

β4

2

∫ T
0
�FQt �x��2 dt

}
�

We can also give a pathwise description of the minima of H.

Corollary 3.2. The good rate functionH achieves its minimum value at a
unique probability measure Q which is the solution of the nonlinear stochastic
differential equation

dxt = −∇U�xt�dt+ dBt + β2F
Q
t �x�dt�

Law of x = Q� Law of x0 = Q��0
= µ0�
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The proof is a direct consequence of Girsanov’s Theorem which implies that
Theorem 3.1 and Corollary 3.2 are equivalent (see [3], Theorem 6.13, for more
details).

Moreover, whenH is l.s.c., we know thatH achieves its minimum value. As
a consequence, if 2β2A2T < 1, there exists a unique solution of the nonlinear
stochastic differential equation described above.

Furthermore, QN
β being an exchangeable law, a result due to Sznitman (see

Lemma 3.1 in [15]) allows deducing from Theorem 3.1 the propagation of chaos
result.

Corollary 3.3. Let 2β2A2T < 1.

(i) DNβ�T converges weakly to δQ. In particular, if F is a bounded continuous

function on �+
1 �WA

T�, then

lim
N→∞

∫
F�µ̂N�dQN

β = F�Q��

(ii) For any bounded continuous functions �f1� � � � � fm� on WA
T ,

lim
N→∞

∫ ∫
f1�x1� · · ·fm�xm�dPNβ �J��x�dγ =

m∏
i=1

∫
fi�x�dQ�

We can also deduce (as in [3], Appendix C) from Theorems 2.4 and 3.1 that
the quenched law of the empirical measure converges exponentially fast to δQ,
so we have the following.

Corollary 3.4. Let 2β2A2T < 1.

(i) If F is a bounded continuous function on �+
1 �WA

T�, then, for almost
all J,

lim
N→∞

∫
F�µ̂N�dPNβ �J� = F�Q��

(ii) For almost all J and for any bounded continuous function f on WA
T ,

lim
N→∞

1
N

N∑
i=1

f�xi� =
∫
fdQ a.s.

The proof of Theorem 3.1 will need two steps.
First, we shall prove that H achieves its minimum value on the set M1 of

probability measures on WA
T defined by

M1 =
{
Q/Q� P

dQ

dP
�x� = exp

{
β2
∫ T

0
F
Q
t �x�dBt�x� −

β4

2

∫ T
0

(
F
Q
t �x�

)2
dt

}}
�

In a second step, we shall prove that M1 is reduced to a unique probability
measure.
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3.1. Study of the minima of H. We first prove that any minimum of H is
equivalent to P.

Lemma 3.5. If Q minimizes H, then Q is equivalent to P.

Lemma 3.5 is a straightforward consequence of Lemma 3.6.

Lemma 3.6. Let Q be a probability measure on WA
T which minimizes H.

Then we have the following conditions:

(i) Q� P;
(ii) denote B = �x ∈WA

T/�dQ/dP��x� = 0� and δ = P�B�,
(a) I��Q+ s�BP/1+ sδ� �P� = I�Q �P� + sδ log s+O�s��
(b) if 2β2A2T < 1, *��Q+ s�BP�/1+ sδ� = *�Q� +O�s�,

so that

H

(
Q+ s�BP

1+ sδ
)
−H�Q� = δs log s+O�s��

Remark 3.7. We do not think that the condition 2β2A2T < 1 is really
crucial in Lemma 3.6(ii)(b) but we leave it since we are not able to prove any
large deviation upper bound result without it.

Proof. (i) Since I�Q �P� is finite, Q� P.
(ii)(a) One can compute

I

(
Q+ s�BP

1+ sδ
∣∣ P) = 1

1+ sδI�Q
∣∣ P� − log�1+ sδ�

1+ sδ + sδ

1+ sδ log
s

1+ sδ �(46)

which gives (ii)(a).
(ii)(b) We state a result even stronger than Lemma 3.6(ii)(b).

Lemma 3.8. If 2β2A2T < 1, for any probability measure µ in � , and for

any signed measure ν such that ν�WA
T� = 0 and

∫ �∫ T0 �∇U�xs��ds�2d�ν� is finite
and for which µ + δν is a probability measure when δ is small enough, * is
Gateaux-differentiable at µ in the direction ν.

This lemma can be proved by expanding *1 and *2 in powers of β (which can
be done under the assumption that 2β2A2T < 1) and then by showing that
each term of these expansions are Gateaux-differentiable in a neighborhood
�µ+κν� κ ≤ δ� of µ and that the series of these derivatives is absolutely and
uniformly bounded on this neighborhood. We leave the proof to the reader.

We now prove that, if Q minimizes H, then Q belongs to M1.

Lemma 3.9. If Q minimizes H, then Q is the solution of the nonlinear
equation

Q� P
dQ

dP
= exp

{
β2
∫ T

0
F
Q
t dBt −

β4

2

∫ T
0
�FQt �2 dt

}
�
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To prove Lemma 3.9, we study the Taylor expansion of H at Q in the direc-
tion of ν = ψ ·Q, for bounded measurable functions ψ such that

∫
ψdQ=0.

Lemma 3.10. Let 2β2A2T < 1.

(i) I��1+ sψ� ·Q�P� = I�Q�P� + s ∫ �log�dQ/dP��ψdQ+ o�s�.
(ii) *��1 + sψ� ·Q� = *�Q� + s

∫ �β2
∫ T

0 F
Q
t dBt − �β4/2� ∫ T0 �FQt �2 dt +

YT�ψdQ+ o�s�,
where �Ys�s≤T is the previsible process with finite variations defined by

Ys�y� =
∫ {
β2
∫ s

0
h
Q
t �x�y�dBt�x� − β4

∫ s
0
F
Q
t �x�hQt �x�y�dt

}
dQ�x��

if h
Q
t �x�y� = DFQt 
δy��x�.

The reader can prove Lemma 3.10 using Lemma 2.16.

Proof of Lemma 3.9. Since Q minimizes H,

lim
s→0

1
s
�H��1+ sψ� ·Q� −H�Q�� = 0�

Hence, according to Lemma 3.10,∫ {
log

dQ

dP
− β2

∫ T
0
F
Q
t dBt +

β4

2

∫ T
0
�FQt �2 dt−YT

}
ψdQ = 0�

Since this equality is true for any bounded measurable function ψ such that∫
ψdQ = 0, we deduce that there exists a finite constant cQ such that, Q

almost surely, and so P almost surely by Lemma 3.5,

log
dQ

dP
= β2

∫ T
0
F
Q
t dBt −

β4

2

∫ T
0
�FQt �2 dt+YT + cQ�

However, �dQ/dP∣∣
�t
�t≤T must be a local martingale (see [14], Chapter VIII)

so that, by uniqueness of the semimartingale decomposition,

log
dQ

dP
= β2

∫ T
0
F
Q
t dBt −

β4

2

∫ T
0
�FQt �2 dt� ✷

3.2. Existence and uniqueness problem for the minima of H. The aim of
this section is to prove that M1 is reduced to a unique probability measure Q,
that is, that the rate functionH achieves its minimum value at a unique prob-
ability measure Q. We will first show that H achieves its minimum value at
a unique probability measure. Independently, we can construct this minimum
in the regime 3β2A2T < 1.

Theorem 3.11. (i) For any time and temperature, there exists at most one
probability measure Q such that I�Q�P� < +∞ which is a solution of

Q� P
dQ

dP
= exp

{
β2
∫ T

0
F
Q
t �x�dBt�x� −

β4

2

∫ T
0
�FQt �x��2 dt

}
�



1400 G. BEN AROUS AND A. GUIONNET

(ii) If 3β2A2T < 1, there exists a unique probability measure Q such that
I�Q�P� < +∞ which is a solution of

Q� P
dQ

dP
= exp

{
β2
∫ T

0
F
Q
t �x�dBt�x� −

β4

2

∫ T
0
�FQt �x��2 dt

}
�

We shall use a fixed point argument to prove Theorem 3.11. To this end,
we first study the functions Fµ, and, more precisely, show the following.

Lemma 3.12. For any probability measure µ in �I� �P� < +∞� and for any
s≤T,

EP

[
exp
{
β2
∫ s

0
F
µ
t dBt −

β4

2

∫ s
0
�Fµt �2 dt

}]
≡ 1�

so that �exp�β2
∫ s

0 F
µ
t �x�dBt�x� − �β4/2� ∫ s0 �Fµt �x��2 dt��s≤T is a �P��t�-

martingale.

To prove Lemma 3.12, we show the following.

Lemma 3.13. For any probability measure µ such that I�µ�P� < ∞, there
exists a bounded previsible process fµ such that

F
µ
t �x� =

∫ t
0
��I+ β2�t�−1Xt�Xs�µ dBs + fµt �x�

and there exists a finite constant c1 such that, for any µ such that I�µ�P� <∞,

sup
x∈WA

T

sup
t≤T

�fµt �x��2 ≤ c1 �1+ I�µ�P�� �

Proof. Denote Vt = ∇U ◦Xt and recall that

F
µ
t �x� =

∫
dµ�y�yt�t

(∫ t
0
Xs ⊗ dBs +

∫ t
0
dBs ⊗Xs

)
�y�x��

where, according to Lemma 2.13,

�t =
1
β2

∫ ∞
0
dλ exp

{
− λ

β2

}
exp�−λ�t� ⊗ exp�−λ�t��(47)

Let µ ∈ �I� �P� < +∞�. Then B is a semimartingale under µ so that we can
write

F
µ
t �x� =

∫
dµ�y�yt�t

∫ t
0
Xu ⊗ dBu�x�y�

+
∫
dµ�y�yt�t

∫ t
0
Xu ⊗ dBu�y�x��

(48)
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Moreover, ∫
dµ�y�yt�t

∫ t
0
Xu ⊗ dB�y�x�

=
∫
dµ�y��I+ β2�t�−1Xt�y�

∫ t
0
yu dBu�x�

− β2
∫ t

0
dsxs

∫
dµ�y��I+ β2�t�−1Xt�y�

×
∫
dµ�z�zt�t

∫ t
0
Xu ⊗ dBu�y� z��

(49)

Let

m
µ
s�t�x� =

∫
dµ�y�ys�t

∫ t
0
Xu ⊗ dBu�x�y��

Then we deduce from (48) and (49) that

F
µ
t �x� =mµ

t� t�x� +
∫ t

0
��I+ β2�t�−1Xt�Xs�µ dBs

− β2
∫ t

0
dsxs�mµ

s� t�X�! �I+ β2�t�−1Xt�µ�

Denote

f
µ
t �x� =mµ

t� t�x� − β2
∫ t

0
dsxs�mµ

s� t�X�! �I+ β2�t�−1Xt�µ�

It is obvious that fµ is a continuous previsible process. To bound fµ, we first
bound mµ

s� t�x�. According to the definition (47) of �t, if �� ��µ denotes the norm
in L2

µ, then

�mµ
s�t�x�� =

∣∣∣∣ 1
β2

∫ ∞
0
dλ exp

{
− λ

β2

}〈
exp�−λ�t�Xs!

∫ t
0

exp�−λ�t�Xu�x�dBu
〉
µ

∣∣∣∣
≤ A

β2

∫ ∞
0
dλ exp

{
− λ

β2

}∣∣∣∣
∣∣∣∣∫ t0 exp�−λ�t�Xu�x�dBu

∣∣∣∣
∣∣∣∣
µ

�

However, we prove in (67) that exp�−λ�t�Xu�x� is bounded by A�1+ λA2t�.
So that, if one follows the strategy of the proof of Lemma 2.19, one finds that,
for any p > 1, there exists a finite constant Cp = − 1

2 log�1− �1/p�� such that∣∣∣∣
∣∣∣∣∫ t0 exp�−λ�t�Xu�x�dBu

∣∣∣∣
∣∣∣∣2
µ

≤ 2pA2�1+ λA2t�2t {I�µ�P� +Cp} �
Thus

�mµ
s� t�x�� ≤ A2�1+ β2A2t�

√
2pt
√
I�µ�P� +Cp�

so that

�fµt �x�� ≤ A2�1+ β2A2t�2
√

2pt
√
I�µ�P� +Cp� ✷(50)
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We now turn to the proof of Lemma 3.12
Since �Ms = exp�β2

∫ s
0 F

µ
t dBt − �β4/2� ∫ s0 �Fµt �2 dt��s≤T is a supermartin-

gale, it is enough to prove that, for any t ≤ T,
∫
Mt dP = 1. We denote

K̃t
µ�s� u� = ��I+ β2�t�−1Xs�Xu�µ�

According to Lemma 3.13, we have

MT = exp
{
β2
∫ T

0

∫ t
0
K̃t
µ�t� s�dBs dBt −

β4

2

∫ T
0

(∫ t
0
K̃t
µ�t� s�dBs

)2

dt

}
× exp

{
β2
∫ T

0
f
µ
t dBt −

β4

2

∫ T
0
�fµt �2 dt

}
× exp

{
−β4

∫ T
0
f
µ
t

∫ t
0
K̃t
µ�t� s�dBs dt

}
�

We have already studied in [3], Section 6, the local martingale

M1
u = exp

{
β2
∫ u

0

∫ t
0
K̃t
µ�t� s�dBs dBt −

β4

2

∫ u
0

(∫ t
0
K̃t
µ�t� s�dBs

)2

dt

}
�

and we proved there that M1 is a uniformly integrable �P��t�-martingale.
Thus, we can define a probability measure P′, absolutely continuous with
respect to P, such that P′ =M1

T ·P. So that, for any u ≤ T,∫
MudP =

∫
exp
{
β2
∫ u

0
f
µ
t

(
dBt−β2

∫ t
0
K̃t
µ�t� s�dBs dt

)
−β

4

2

∫ u
0
�fµt �2 dt

}
dP′�

Girsanov’s theorem implies that B′
u = Bu − β2

∫ u
0

∫ t
0 K̃

t
µ�t� s�dBs dt is a

Brownian motion under P′. But fµ is bounded, so that �exp�β2
∫ u

0 f
µ
t dB

′
t −

�β4/2� ∫ u0 �fµt �2 dt��u≤T is a �P′��t�-martingale. Thus, for any u ≤ T,∫
MudP = 1�

As a consequence of Lemma 3.12, we can define, for any µ ∈ �I� �P� < +∞�,
a probability measure L�µ� on WA

T , absolutely continuous with respect to P,
such that

dL�µ�
dP

= exp
{
β2
∫ T

0
F
µ
t dBt −

β4

2

∫ T
0
�Fµt �2 dt

}
�

It is clear that M1 can be characterized as the set of the fixed points of the
map L. Hence, Theorem 3.11 is equivalent to Theorem 3.14.

Theorem 3.14. (i) For any time and temperature, there exists at most one
probability measure Q in �I� �P� < +∞� such that L�Q� = Q.

(ii) If 2β2A2T < 1, there exists a unique probability measureQ in �I� �P� <
+∞� such that L�Q� = Q.
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We shall prove Theorem 3.14 through a contraction argument.
Let ��t�t≤T be the natural filtration on �+

1 �WA
T� defined by �t = σ�xs�

s ≤ t�. For any real number a ≥ 1, let 	 �a� be the subset of �+
1 �WA

T� defined
by

	 �a� =
{
µ ∈�+

1 �WA
T�/µ� P

∫ (dµ
dP

)a
dP < +∞

}
�

For positive real number a, a ≥ 1, we define an La variational distance D�a�
T

on 	
�a�
T by

D
�a�
T �µ� ν� =

(∫ ∣∣∣∣dµdP − dν

dP

∣∣∣∣a dP)1/a

�

On 	
�a�
T , the variational topology induced by D�a�

T is stronger than the weak
topology. More precisely, for any positive real number a, a ≥ 1, for any µ and
ν in 	

�a�
T ⊂ 	

�1�
T ,

dT �µ� ν� ≤ D�1�
T �µ� ν� ≤ D�a�

T �µ� ν� �(51)

We will denote, for any time t ≤ T and for any probability measures µ and
ν in 	

�a�
T , D�a�

t �µ� ν� = D�a�
T �µ∣∣

�t
� ν
∣∣
�t
�.

We shall prove the following.

Proposition 3.15. We can find a real number a, a > 1, a strictly positive
real number q such that for any probability measures µ and ν in �I� �P� <∞�
and for any t ≤ T,

D
�a�
t �L�µ��L�ν��2aq ≤ Z�µ� ν�

∫ t
0

(
D
�a�
s �µ� ν�)2aq ds�

where, if we denote by b the conjugate exponent of a, we can find finite constants
C and C′ so that we can choose

Z�µ� ν� = C
(

1+
∫ ∫ T

0
�∇U�xs��dsd�µ+ ν�+

(∫ (∫ T
0
�∇U�xs��ds

)b
dP

)1/b)4aq

× expC′�I�µ�P� + I�ν�P���

Remark 3.16. We notice that Lemma 3.19 implies that, for a > 1 small
enough, L−1�	 �a�� is included in �I� �P� < ∞� so that D�a�

s �L�µ��L�ν�� is
well defined for I�µ�P� <∞, I�ν�P� <∞ when a is small enough.

Proposition 3.15 already implies that L has at most one fixed point in
�µ� I�µ�P� < ∞� according to Gronwall’s lemma. The proof of the existence
is slightly more demanding since we construct a sequence of probability mea-
sures converging to the fixed point of L for which we need to make sure that
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the entropy is uniformly bounded. The control of the entropy necessitates a
high temperature assumption. Indeed, if we define a sequence �µn�n≥0 by

µ0 = P� µn+1 = L�µn��
then I�µn�P� is finite for any integer n. In fact, I�µ0�P� = 0 is finite, and, by
induction over n, I�µn+1�P� = �β4/2� ∫ ∫ T0 �Fµnt �2 dtdµn+1 is finite, according
to Lemma 3.13. More precisely, we have the lemma.

Lemma 3.17. Let, for λ > 0, ξ�λ� = 2
5�λ/1− λ2���1+λ�5−1�. Then, for any

ξ > ξ�β2A2T�, there exists a finite constant α�ξ� such that

I�µn+1�P� ≤ ξI�µn�P� + α�ξ��

One can notice ξ is increasing and that, if λ = 1/3, ξ�λ� < 1 so that, if
3β2A2T ≤ 1, we can bound the entropy of µn with respect to P uniformly in
n. It is now trivial to deduce the existence of Q for β small enough.

We will not prove Lemma 3.17 (see [10] for details), but will turn to the
proof of Proposition 3.15, which necessitates several technical lemmas.

Let

X
µ
t �x� = β2

∫ t
0
Fµs �x�dBs�x� −

β4

2

∫ t
0
�Fµs �x��2 ds�

Then we obtain the following result.

Lemma 3.18. For any conjugate exponents �p�q�, for any probability mea-
sures µ and ν in �I� �P� < +∞�:

D
�a�
t �L�µ��L�ν��a

≤
(∫

�Xµ
t −Xν

t �aq dPt
)1/q

×
(∫ 1

0
dα

(∫
exp�apXµ

t �dPt
)1−α(∫

exp�apXν
t�dPt

)α)1/p

�

(52)

Proof. The proof is identical to that of Lemma 7.5 in [3].

We first bound the second term in the right-hand side of (52).

Lemma 3.19. If ap−1 is small enough (more precisely if β2ap�ap−1�A2T <
1), we can find a finite constant C1 such that, for I�µ�P� < ∞ and for any
t ≤ T, ∫

exp�apXµ
t �dP ≤ exp�C1�I�µ�P� + 1���
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Proof. We have∫
exp�apXµ

t �dP =
∫

exp
{
apβ2

∫ t
0
Fµs dBs − ap

β4

2

∫ t
0
�Fµs �2 ds

}
dP�

With the notation of the proof of Lemma 3.12,∫
exp�apXµ

t �dP =
∫
�M1

t �ap exp
{
apβ2

∫ t
0
fµs dB

′
s − ap

β4

2

∫ t
0
�fµs �2 ds

}
dP�

Let �p′� q′� be conjugate exponents. The Hölder inequality gives∫
exp�apXµ

t �dP

≤
(∫

�M1
t �app

′
dP

)1/p′

×
(∫

exp
{
apq′β2

∫ t
0
fµs dB

′
s − apq′

β4

2

∫ t
0
�fµs �2 ds

}
dP

)1/q′

�

(53)

We have already proved in [3], Lemma 6.10, that, if β2app′�app′ −1�A2T < 1,
there exists a finite constant c�app′�, independent of t ≤ T, and µ ∈�+

1 �WA
T�,

such that (∫
�M1

t �app
′
dP

)1/p′

≤ c�app′��

Since we supposed that ap− 1 is small enough so that β2ap�ap− 1�A2T < 1,
we can choose p′ close enough to 1 so that β2app′�app′ − 1� < 1. With such a
choice of p′, (53) becomes∫

exp�apXµ
t �dP

≤ c�app′�
(∫

exp
{
apq′β2

∫ t
0
fµs dB

′
s − apq′

β4

2

∫ t
0
�fµs �2 ds

}
dP

)1/q′

�

(54)

We now bound the second term in the right-hand side of (54). We recall that

B′
t = Bt + β2

∫ t
0

∫ s
0
K̃s
µ�s� u�dBu ds�

so that the Cauchy–Schwarz inequality gives∫
exp
{
apq′β2

∫ t
0
fµs dB

′
s − apq′

β4

2

∫ t
0
�fµs �2 ds

}
dP

≤
(∫

expapq′β4
{
�2apq′ − 1�

∫ t
0
�fµs �2 ds

− 2
∫ t

0
fµs

∫ s
0
K̃s
µ�s� u�dBu ds

}
dP

)1/2

�



1406 G. BEN AROUS AND A. GUIONNET

By Lemma 3.13 and since B is a Brownian motion under P and using the
Jensen inequality, we find∫

exp
{

2apq′β4c
1/2
1 �I�µ�P� + 1�1/2

∫ t
0

∣∣∣∣∫ s0 K̃s
µ�s� u�dBu

∣∣∣∣ds}dP
≤ 2
t

∫ t
0

∫
exp
{

2apq′β4c
1/2
1 �I�µ�P� + 1�1/2t

∫ s
0
K̃s
µ�s� u�dBu

}
dPds

≤ 2 exp�2�apq′β4�2c1�I�µ�P� + 1�t3A4��
so that (54) shows that, for any t ≤ T,∫

expapXµ
t dP ≤ 2c�app′� exp

{
2apβ4c1�apq′�1+ β4T3A2� − 1��I�µ�P� + 1�}�

which gives Lemma 3.19. ✷

In the following pages, we will choose ap close enough to 1 so that Lemma
3.19 holds and, for later convenience, so that aq ≥ 2.

We now bound the first term in the right-hand side of (52).

Lemma 3.20. Let b = a/�a− 1�. We can find a finite constant C2 such that,
for any probability measures �µ� ν� with I�µ�P� <∞, I�ν�P� <∞∫
�Xµ

t −Xν
t �aq dP

≤ C2

(
1+
∫ ∫ T

0
�∇U�xs��dsd�µ+ ν� +

(∫ (∫ T
0
�∇U�xs��ds

)b
dP

)1/b)2aq

×
(∫ t

0
D
�a�
s �µ� ν�2aq ds

)1/2

�

Proof. One can see, using the Burkholder–Davis–Gundy inequality (see,
for more details, the proof of Lemma 6.10 in [3]), that there exists a finite
constant cq such that

∫
�Xµ

t −Xν
t �aq dP ≤ cq

(
1+
(∫ t

0

∫
�Fµs +Fνs�2aq dPds

)1/2)
×
(∫ t

0

∫
�Fµs −Fνs�2aq dPds

)1/2

�

(55)

We focus on the second term in the right-hand side of (55). We want to prove
that Fµ satisfies a Lipschitz type property.

Lemma 3.21. For any time T, there exists a finite constant AT such that,
for any paths x and y, for any probability measures µ and ν and for any time
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t ≤ T, ∣∣Fµt �x� −Fνt�y�∣∣ ≤ AT ∫ t
0
���∇U�Xu���µ + ��∇U�Xu���ν�du

×
(
sup
u≤t

�xu − yu� + dt�µ� ν�
)

+AT
(
Kt�µ� ν� +

∫ t
0
�∇U�xs� − ∇U�ys��ds

)
�

where dt is the Wasserstein’s distance between µ and ν and

KT�µ� ν� = sup
u� v≤T

{∣∣∣∣∫ ∇U�Xu�Xv dν −
∫
∇U�Xu�Xv dµ

∣∣∣∣}�
As a consequence, for any positive a� b such that a−1 + b−1 = 1, there exists
a finite constant C3 such that, for any probability measures µ and ν with
I�µ�P� <∞, I�ν�P� <∞, for any x in WA

T and for any s ≤ T,∣∣Fµs �x� −Fνs�x�∣∣ ≤ C3

(
1+
∫ ∫ T

0
�∇U�ys��dsd�µ+ ν��y�

+
(∫ (∫ T

0
�∇Us�ds

)b
dP

)1/b)
D
�a�
s �µ� ν��

Proof.

Fµs �x� =
1
β2

∫
dµ�y�ys

∫ ∞
0
dλ exp

{
− λ

β2

}
×
[

exp�−λ�s�Xs�x� exp�−λ�s�Xs�y�

− exp�−λ�s�X0�x� exp�−λ�s�X0�y�

+ exp�−λ�s�
(∫ s

0
exp�−λ�s�Xu�x�Vu du

)
�y�

+ exp�−λ�s�
(∫ s

0
exp�−λ�s�Xu�y�Vu du

)
�x�
]
�

For any probability measure µ in � , the right-hand side of the last equality
belongs to L1

µ�WA
T� ⊗L1

exp�−�λ/β2�dλ��R+�, so that we can use Fubini’s theorem,
which gives

Fµs �x� =
1
β2

∫ ∞
0
dλ exp

{
− λ

β2

}
×
[
�exp�−λ�s�Xs�Xs�µ exp�−λ�s�Xs�x�

− �exp�−λ�s�Xs�X0�µ exp�−λ�s�X0�x�
+
∫ s

0
exp�−λ�s�Xu�x��exp�−λ�s�Xs�Vu�µ du

+ exp�−λ�s�
(∫ s

0
�exp�−λ�s�Xu�Xs�µVu du

)
�x�
]
�

(56)
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Since we shall compare the action of �s in L2
µ with its action in L2

ν , we shall
be more precise and denote �

µ
s the operator in L2

µ with kernel bs�x�y� =∫ s
0xuyu du. Moreover, since the second inequality of the lemma can be deduced

from the first one by the Hölder inequality, we will concentrate on the first
only. According to (56), it is not hard to deduce Lemma 3.21 from the following.

Lemma 3.22. (i) There exists a finite constant k1 such that, for any positive
real number λ and for any probability measures µ and ν on WA

T ,

sup
u≤s�v≤s

∣∣�Xu� exp�−λ�µ
s �Xv�µ − �Xu� exp�−λ�ν

s�Xv�ν
∣∣ ≤ k1�1+ λ�2ds�µ� ν��

(ii) There exists a finite constant k2 such that, for any µ� ν ∈ �+
1 �WA

T�, for

any measurable function h in L2
µ�WA

s � ∩L2
ν�WA

s � and for any �x� x̄� in WA
T ,∣∣exp�−λ�µ

s �h�x� − exp�−λ�ν
s�h�x̄�

∣∣
≤ k2�1+ λ�2

{
�h�x� − h�x̄�� +

∫ s
0

∣∣∣∣∫ h�y�yud�ν − µ��y�
∣∣∣∣du

+
(∫

�h�d�ν + µ�
)(
ds�µ� ν� +

∫ s
0
�xv − x̄v�dv

)}
�

(iii) There exists a finite constant k3 such that, for any probability measure
µ in � , ∣∣exp�−λ�µ

s �h�x� − h�x�
∣∣ ≤ k3�1+ λ�2

∫
�h�dµ�

Proof. (i) has already been proved in [3], Lemma A.4. The proof of (ii) is
quite similar to that of (67). We write

exp�−λ�µ
s �h�x� = h�x� − λ

∫ s
0
duxu

∫
yuh�y�dµ�y�

+
∫ λ

0
dα
∫ α

0
dα′
∫ s

0

∫ s
0
dudvxu�exp�−α′�µ

s �Xu�Xv�µ

×
∫
h�y�yv dµ�y��

(57)

Thus

∣∣exp�−λ�µ
s �h�x� − exp�−λ�ν

s�h�x�
∣∣ ≤ 4∑

i=1

Liλ�µ� ν��(58)

where

L1
λ�µ� ν� = λ

∣∣∣∣∫ s0 duxu
∫
yuh�y�dµ�y� −

∫ s
0
duxu

∫
yuh�y�dν�y�

∣∣∣∣�
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L2
λ�µ� ν� = A

∫ λ
0
dα
∫ α

0
dα′
∫ s

0

×
∫ s

0
dudv

∣∣�exp�−α′�µ
s �Xu�Xv�µ

− �exp�−α′�µ
s �Xu�Xv�ν

∣∣∣∣∣∣∫ h�y�yv dµ�y�
∣∣∣∣�

L3
λ�µ� ν� = A3Tλ2

∫ s
0
dv

∣∣∣∣∫ h�y�yv dµ�y� − ∫ h�y�yv dν�y�
∣∣∣∣�

L4
λ�µ� ν� = A3λ2T

∫
�h�d�µ+ ν�

∫ s
0
�xu − x̄u�du�

It is not difficult to bound L1
λ:

L1
λ�µ� ν� ≤ λA2

∫
�h�d�µ+ ν�

∫ s
0
�xu − x̄u�du+ λA

∫ s
0
�yuh�y�d�µ− ν��y��du�

Moreover, we use Lemma 3.22(i) to bound L2
λ:

L2
λ�µ� ν� ≤ A2

∫ λ
0
dα
∫ α

0
dα′
∫ s

0

∫ s
0
dudv

× ∣∣�exp�−α′�µ
s �Xu�Xv�µ − �exp�−α′�µ

s �Xu�Xv�ν
∣∣ ∫ �h�y��dµ�y�

≤ 1
2A

2k1T
2λ2�1+ λ�2

∫
�h�dµds�µ� ν��

Putting these bounds together gives Lemma 3.22(ii). The proof of (iii) is very
similar; we omit it. ✷

As a consequence of Lemma 3.21, we find∫ t
0

∫
�Fµs −Fνs�2aq dsdP

≤ C2aq
3

(
1+
∫ ∫ T

0
�Vs�dsd�µ+ ν� +

(∫ (∫ T
0
�Vs�ds

)b
dP

)1/b)2aq

×
∫ t

0
D
�a�
s �µ� ν�2aq ds�

(59)

Similarly, we can bound the first term in the right-hand side of (55) and prove
that there exists a finite constant C4 such that for any time t ≤ T,∫ t

0

∫
dP�Fµs +Fνs�2aq ds

≤ C4

(
1+
∫ ∫ T

0
�Vs�dsd�µ+ ν� +

(∫ (∫ T
0
�Vs�ds

)b
dP

)1/b)2aq

�

(60)

Thus, (55), (59), (60) give Lemma 3.20. ✷
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Finally, Lemmas 3.18, 3.19 and 3.20 imply that we can find finite constants
C and C1 such that, for any probability measures µ and ν in �I� �P� <∞�,

D
�a�
t �L�µ��L�ν��a

≤ C
(

1+
∫ ∫ T

0
�Vs�dsd�µ+ ν� +

(∫ (∫ T
0
�Vs�ds

)b
dP

)1/b)4aq

× exp
C1

p
�I�µ�P� + I�ν�P��

(∫ t
0

(
D
�a�
s �µ� ν�)2aq ds)1/2q

�

which is Lemma 3.15.

Remark 3.23. According to the proof of Lemma A.8, we can see the follow-
ing:

(i)
∫ T

0 �∇U�xs��ds belongs to LbP�WA
T�, for any positive real b;

(ii) there exist real numbers ξ and η such that, for any probability measure
µ in �+

1 �WA
T�,
∫ ∫ T

0 �∇U�xs��dsdµ ≤
√
ξI�µ�P� + η.

Thus, Lemma 3.15 implies that there exist finite constants c and c′ such that

D
�a�
t �L�µ��L�ν��2aq ≤ c

(
1+
√
I�µ�P� +

√
I�ν�P�

)4aq

× exp c′�I�µ�P� + I�ν�P��
(∫ T

0

(
D
�a�
s �µ� ν�)2aq ds)�(61)

4. Averaged evolution of the Gibbs measure. In this section, we study
Sompolinski–Zippelius dynamics, starting from the Gibbs measure µNJ :

µNJ �dx� =
1

ZNJ
exp
{
−βHN

J �x� − 2
N∑
i=1

U�xi�
} N∏
i=1

dxi�

where we recall that

HN
J �x� =

−1√
N

N∑
i� j=1

Jijx
ixj

and

ZNJ =
∫

exp
{
−βHN

J �x� − 2
N∑
i=1

U�xi�
} N∏
i=1

dxi�

Let P̃Nβ �J� be the weak solution on WA
T of the stochastic differential system

dxit = −∇U�xit�dt+ dBit +
β√
N

N∑
i=1

Jijx
j
t dt�

Law of x0 = µNJ !
P̃Nβ �J� exists and is unique for any finite couplings �Jij�1≤i≤j≤N.
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We shall prove that the law of the empirical measure under P̃Nβ �J� con-
verges in the high temperature regime and when the potential U is even,
which entails an averaged propagation of chaos result.

More precisely, with the notations of Section 2, we define, for any probability
measure µ in � , a function F̃µ by

F̃
µ
t �x� = 2

∫
yt�t�at +X0 ⊗X0��x�y�dµ�y��

Then the asymptotic and averaged behavior of a spin is described by the non-
linear stochastic differential system

dxt = −∇U�xt�dt+ dBt + β2F̃
µ
t �x�dt�

Law of x = µ� Law of x0 = q�
dq�x0� = exp�2β2�X0�X0�qx2

0� exp�−2U�x0��dx0�

(62)

One can prove as in Section 3 that this nonlinear system admits a unique
solution, say Q̃, in the high temperature regime �2β2A2T < 1 and 4β2A4 < 1�.

The main theorem of this section is the following.

Theorem 4.1. If U is even, if β is small enough and if 2β2A2T < 1, for

almost all J, the law of the empirical measure under P̃Nβ �J� converges to δQ̃
exponentially fast.

So we deduce the averaged propagation of chaos result.

Corollary 4.2. If U is even, if β is small enough and if 2β2A2T < 1,

Q̃N
β �= � 
P̃Nβ �J�� is Q̃ chaotic; that is, for any bounded continuous functions

�f1� � � � � fm� on WA
T ,

lim
N→∞

�

[∫
f1�x1� · · ·fm�xm�dP̃Nβ �J��x�

]
=

m∏
i=1

∫
fi�x�dQ̃�

Remark 4.3. The restriction on high temperature is due to the state-
ment that we are below the phase transition, that is, that the free energy
�1/N� logZNJ converges and that the initial law � 
µNJ � is chaotic [more
precisely, that (3) admits a unique solution at time T = 0]. The condition
of an even potential is needed to prove that the free energy �1/N� logZNJ
converges.

Remark 4.4. Since the Sompolinski–Zippelius dynamics are reversible
and µNJ is an invariant measure for these dynamics, Q̃N

β is stationary. As a

consequence, Theorem 4.1 implies that Q̃ is stationary in the high temper-
ature regime. This property, which was not trivial a priori, gives us a new
strategy to study Q̃.
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Theorem 4.1 comes from Theorem 4.5 where we state a quenched large
deviation upper bound for the law of the empirical measure under P̃Nβ �J�.

The rate function which governs this large deviation upper bound is slightly
different from that which governs the deviations of the empirical measure
under the quenched law PNβ �J� starting from an independent law as stated
in Theorem 2.4. Indeed, a new term appears from the interaction between the
couplings �Jij�i� j of the initial distribution and those of the dynamic. More
precisely, for any µ in � , let

f�µ� = β2�X0 ⊗X0��TX0 ⊗X0�µ⊗µ + 2β2�X0 ⊗X0��TaT�µ⊗µ�

With the definition of * given in Section 2, we define a new map *̃ from �
into R by

*̃�µ� = *�µ� + f�µ��
Let P be the weak solution of the stochastic differential equation

dxt = −∇U�xt�dt+ dBt�

Law of x0 = α = �1/Z� exp�−2U�x��dx where Z =
∫

exp�−2U�x��dx�

Let H̃ be the map from �+
1 �WA

T� into R ∪ �+∞� defined by

H̃�µ� =
{
I�µ�P� − *̃�µ� + inf �I�µ�P� − β2�X0�X0�2

µ�� if I�µ�P� < +∞�
+∞� otherwise.

In other words, if H denotes the rate function which governs the large devi-
ation upper bound of Theorem 2.4 under the quenched law PNβ �J�, starting
from the independent law µ⊗N0 with the specific choice of µ0�dx� = α�dx� =
�1/Z� exp�−2U�x��dx, then

H̃�µ� =
{
H�µ� − f�µ� + inf �I�µ�P� − β2�X0�X0�2

µ�� if H�µ� < +∞�
+∞� otherwise.

Then we have Theorem 4.5.

Theorem 4.5. (i) If 2β2A2T < 1, H̃ is a good rate function.
(ii) If 2β2A2T < 1, if β is small enough and if the potential U is even, for

any closed subset F of �+
1 �WA

T� and for almost all J,

lim sup
N→∞

1
N

log P̃Nβ �J��µ̂N ∈ F� ≤ − inf
F
H̃�

Theorem 4.1 can be deduced from Theorem 4.5, thanks to the study of the
minima of H̃, which shows that the following.
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Property 4.6. If 4β2A2 < 1 and 2β2A2T < 1, H̃ achieves its minimal
value at a unique probability measure Q̃ which is described by the nonlinear
system (62).

The strategy of the proof of Theorem 4.5 is the following.

1. We first notice that, when the potential U is even and the temperature
is high enough, the following concentration of measure result holds: there
exist finite constants Cβ and Kβ, Cβ > 0 such that, for N large enough
and for 0 < v ≤ 8βA2

√
N,

γ

(
J
/∣∣∣∣ 1
N

log
ZNJ

� 
ZNJ �

∣∣∣∣ > v+ Kβ√
N

)
≤ exp�−Cβv2N��(63)

The concentration of the free energy to its mean value has been proved by
Bovier, Gayrard and Picco ([5], Section 3) and by Talagrand ([17], Chapter
12), in the Ising spin model. Its extension to the continuous setting was
shown in [11].

As a consequence, the Borel–Cantelli lemma shows that a large devi-
ation upper bound for the law of the empirical measure under QN

β �=
�
[

ZNJ
� 
ZNJ �

P̃Nβ �J�
]

with rate function H̃ will give Theorem 4.5.

2. Then, we prove that the law of the empirical measure under QN
β satisfies

a large deviation upper bound.

Property 4.7. If 2β2A2T < 1, for any closed subset F of �+
1 �WA

T�,

lim sup
N→∞

1
N

logQN
β �µ̂N ∈ F� ≤ − inf

F
H̃�

The proof of Property 4.7 is quite similar to that of Theorem 2.3; its main
steps are to show that the probability measure QN

β is absolutely continuous
with respect to QN

β and express its density as a function of the empirical
measure, to study the continuity properties of this density, to deduce from this
study that H̃ is a good rate function and to get Property 4.7 from the large
deviation upper bound stated for QN

β in Theorem 2.3 in the high temperature
regime 2β2A2T < 1. The details are given in [10].

APPENDIX

In order to study the rate function H and to prove the large deviations
upper bound theorem, we need to study the map *. We recall that, for any µ
in � , we defined *�µ� by

*�µ� = −1
2

trµ log�I+ β2�T� +
∫ ∞

0
trµ��T exp�−λ�t��2 exp−

{
λ

β2

}
dλ�
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Let

*1�µ� = − 1
2 trµ log�I+ β2�T��

*2�µ� =
∫ ∞

0
trµ��T exp�−λ�t��2 exp−

{
λ

β2

}
dλ�

= β2 trµ⊗µ
(�I+ β2I⊗�T + β2�T ⊗ I�−1�T ⊗�T

◦� )�
so that

* = *1 + *2�

We will prove first that *1 is a bounded continuous function. In a second step
we will approximate *2, on “large” subsets of �+

1 �WA
T� (see Lemma A.8), by

the sum of a linear function and a bounded continuous function (see Lemma
A.6).

A.1. Continuity of *1.

Lemma A.1. The mapping *1 is a bounded continuous function:

− 1
2β

2A2T ≤ *1�µ� ≤ 0�

Proof. It is quite easy to see (see [13], Proposition 8.4) that

*1�µ� = log �µ

[
exp
{
− 1

2β
2
∫ T

0
G2
t dt

}]
�

where G is a centered Gaussian process with covariance

�µ 
GtGs� =
∫
dµ�x�xsxt�

However, for any probability measures �µ� ν� on WA
T , if ξ denotes a probability

measure on WA
T ×WA

T with marginals µ and ν and if we denote by �ξ the ex-
pectation over the centered bidimensionnal Gaussian process with covariance
�ξ
GitGjs � =

∫
xitx

j
s dξ�x1� x2�, where �i� j� ∈ �1�2�, then

� exp*1�µ� − exp*1�ν�� ≤ �ξ

[∣∣∣∣exp
{
− 1

2β
2
∫ T

0
�G1

t �2 dt
}

− exp
{
− 1

2β
2
∫ T

0
�G2

t �2 dt
}∣∣∣∣]

≤ 1
2β

2�ξ

[∣∣∣∣∫ T0 �G1
t �2 dt−

∫ T
0
�G2

t �2 dt
∣∣∣∣]

≤ 1
2β

2�ξ

[∫ T
0
�G1

t −G2
t �2 dt

]1/2

�ξ

[∫ T
0
�G1

t +G2
t �2 dt

]1/2

≤ β2AT

(∫
sup
s≤T

�x1
s − x2

s �2 dξ�x1� x2�
)1/2

�
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Since this last inequality holds for any probability measure ξ with marginals
µ and ν, we proved that exp�*1� is Lipschitz with respect to the Wasserstein
distance.

As a consequence, exp�*1� is continuous with respect to the weak topology.
Moreover, the Jensen inequality implies that exp�*1� is lower bounded. In fact,
for any µ ∈�+

1 �WA
T�, we find

exp*1�µ� = �µ

[
exp
{
− 1

2β
2
∫ T

0
G2
t dt

}]
≥ exp

{
− 1

2β
2�µ

[∫ T
0
G2
t dt

]}
= exp

{
− 1

2β
2
∫
dµ
∫ T

0
x2
t dt

}
≥ exp

{− 1
2β

2A2T
}
�

Thus, the continuity of exp�*1� implies that of *1. ✷

A.2. Approximation of *2. Let M be a positive real number and ρM be
a smooth map from R

+ into 
0�1� such that ρM�x� = 1 if x ≤ M, ρM�x� =
0 if x ≥ M + 1. For t≤T, let VM

t be the map from WA
T into R such that

VM
t =ρM�

∫ T
0 �Vu�du�Vt� For any probability measure µ on WA

T , we define an
integral operator � M

T on L2
µ�WA

T� by its kernel,

aMT �x�y� = 1
2

(
xTyT − x0y0 +

∫ T
0
xsV

M
s �y�ds+

∫ T
0
ysV

M
s �x�ds

)
�

We then define a map *M2 from �+
1 �WA

T� into R by

*M2 �µ� =
∫ ∞

0
trµ
(
� M
T exp�−λ�T�

)2 exp
{
− λ

β2

}
dλ�

Lemma A.2. *M2 is bounded and continuous.

Proof. Since �T is a positive operator, for any positive real number λ and
for any probability measure µ,

trµ
(
� M
T exp�−λ�T�

)2 ≤ trµ
(
� M
T

)2 ≤ 4A2�A+M+ 1�2�(64)

so that

0 ≤ *M2 �µ� ≤ 4β2A2�A+M+ 1�2�
Moreover, thanks to the dominated convergence theorem, (64) implies that
it is enough to prove that µ → trµ�� M

T exp�−λ�T��2 is continuous for any
positive real number λ to show that *M2 is continuous. Since �T is a bounded
operator,

trµ
(
� M
T exp�−λ�T�

)2 = ∞∑
k�m=0

�−λ�k+m
k!m!

trµ
(
� M
T ��T�k� M

T ��T�m
)
�

Once again, by the dominated convergence theorem, it is enough to prove that,
for any integers �k�m�, µ→ trµ�� M

T ��T�k� M
T ��T�m� is continuous. This is
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obvious since �T and � M
T have bounded continuous kernels. Hence, *M2 is

continuous. ✷

One would like to prove that limM→∞ �*2 − *M2 � = 0 when µ ∈ � . This is
difficult because *M2 contains a singular term, say 3M, that we will substract
off.

More precisely, let

3M�µ� = 1
2β

2
∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�µ�VM

s �V
M
t �µ�

Similarly, let

3�µ� = 1
2β

2
∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�µ�Vs�Vt�µ�

and define a map C from � into R by

C�µ� =
(∫

dµ�x�
(∫ T

0
�∇U�xt��dt

)2)3/2

+ 1�

Lemma A.3. If we define a map FM from � into R by

*2 − *M2 = FM + 3− 3M�
then there exists a finite constant c such that, for any µ in � ,∣∣FM�µ�∣∣ ≤ c

M
C�µ��

Proof. Let �c be the integral operator with kernel ac�x�y� = 1
2�xTyT −

x0y0� and � M
d be the integral operator with kernel

aMd �x�y� = 1
2

(∫ T
0
xsV

M
s �y�ds+

∫ T
0
ysV

M
s �x�ds

)
�

Then, � M
T = �c +� M

d . We can expand *M2 :

*M2 �µ� =
∫ ∞

0

(
trµ
((
� M
d +�c

)
exp�−λ�T�

)2) exp−��λ/β2��dλ

=
∫ ∞

0

{
1
2

∫ T
0

∫ T
0
dsdu�exp�−λ�T�Xs�V

M
u �µ�exp�−λ�T�Xu�V

M
s �µ

+ 1
2

∫ T
0

∫ T
0
dsdu�exp�−λ�T�Xs�Xu�µ�exp�−λ�T�VM

u �V
M
s �µ

+ trµ
(
�c exp�−λ�T�

)2 + 2 trµ
(
� M
d exp�−λ�T��c exp�−λ�T�

)}
× exp

{
− λ

β2

}
dλ�
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We can similarly expand *2 so that we find

�FM�µ�� = ∣∣*2�µ� − *M2 �µ� − 3�µ� + 3M�µ�
∣∣

≤
4∑
i=1

∫ ∞
0
Liλ�M�µ� exp

{
− λ

β2

}
dλ�

(65)

where

L1
λ�M�µ� = 1

2

∣∣∣∣∫ T0
∫ T

0
dsdu�exp�−λ�T�Xs�Vu −VM

u �µ�exp�−λ�T�Xu�Vs�µ
∣∣∣∣�

L2
λ�M�µ� = 1

2

∣∣∣∣∫ T0
∫ T

0
dsdu�exp�−λ�T�Xs�V

M
u �µ�exp�−λ�T�Xu�Vs −VM

s �µ
∣∣∣∣�

L3
λ�M�µ� = 1

2

∣∣∣∣∫ T0
∫ T

0
dsdu�exp�−λ�T�Xs�Xu�µ

× (��exp�−λ�T� − I�Vu�Vs�µ − ��exp�−λ�T� − I�VM
u �V

M
s �µ
)∣∣∣∣�

L4
λ�M�µ� = 2

∣∣∣∣trµ(�� ∞
d −� M

d � exp�−λ�T��c exp�−λ�T�
)∣∣∣∣�

To bound �Liλ�M�µ��1≤i≤4, we first show that exp�−λ�T�Xs is a uniformly
bounded operator on L2

µ�WA
T�.

One can see that

exp�−λ�T� = I−
∫ λ

0
�T exp�−α�T�dα�(66)

so that, for any x in WA
T :

exp�−λ�T�Xs�x� = xs −
∫ λ

0
�T exp�−α�T�Xs�x�dα

= xs −
∫ λ

0

∫ T
0
xt�Xt� exp�−α�T�Xs�µ dtdα

However, since �T is positive, ��Xt� exp�−α�T�Xs�µ� ≤ ��Xt��µ��Xs��µ ≤ A2 so
that

sup
s≤T

sup
x∈WA

T

�exp�−λ�T�Xs�x�� ≤ A+A3Tλ�(67)

Thus we can bound L1
λ�M�µ�:

L1
λ�M�µ� ≤ 1

2�A+A3Tλ�2Eµ
[∫ T

0

∣∣Vs −VM
s

∣∣ds]Eµ[∫ T
0
�Vs�ds

]
�(68)

Similarly,

L2
λ�M�µ� ≤ 1

2�A+A3Tλ�2Eµ
[∫ T

0

∣∣Vs −VM
s

∣∣ds]Eµ[∫ T
0
�Vs�ds

]
�
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Moreover, according to (66),

��exp�−λ�T� − I�Vu�Vs�µ

= −
∫ λ

0
��T exp�−α�T�Vs�Vu�µ dα

= −
∫ λ

0

∫ T
0
�exp�−α�T�Vs�Xt�µ�Vu�Xt�µ dαdt�

So that we can bound L3
λ�M�µ� using (67), we get

L3
λ�M�µ� ≤ A4T�1+A3Tλ�Eµ

[∫ T
0
�Vs −VM

s �ds
]
Eµ

[∫ T
0
�Vs�ds

]
�

Finally, L4
λ�M�µ� may easily be bounded. More precisely, we find

L4
λ�M�µ� ≤ 4A2�A+A3Tλ�Eµ

[∫ T
0
�Vs −VM

s �ds
]
�

Therefore, we can find a finite constant c such that, for any µ ∈ � , for any
positive real number M,∣∣FM�µ�∣∣ = ∣∣*2�µ� − *M2 �µ� − 3�µ� + λM�µ�

∣∣
≤

4∑
i=1

∫ ∞
0
Liλ�M�µ� exp

{
− λ

β2

}
dλ

≤ c

2
Eµ

[∫ T
0
�Vs −VM

s �ds
](
Eµ

[∫ T
0

∣∣Vs

∣∣ds]+ 1
)
�

However,

Eµ

[∫ T
0

∣∣Vs −VM
s

∣∣ds] ≤ 1
M
Eµ

[(∫ T
0

∣∣Vs

∣∣ds)2]
�

so that we have proved∣∣FM�µ�∣∣ ≤ c

M

(
Eµ

[(∫ T
0

∣∣Vs

∣∣ds)2]3/2

+ 1
)
= c

M
C�µ�� ✷

Now, we have to control both terms 3 and 3M. First, 3M is a “good” map
since the following holds.

Lemma A.4. 3M is bounded and continuous.

Proof. We write

LM�µ� = 1
2β

2
∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�µ�VM

s �V
M
t �µ

= 1
2β

2
∫ (∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�µVM

s �x�VM
t �x�

)
dµ�x��
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We first remark that µ→ ��I+ β2�T�−1Xs�Xt�µ is continuous for the weak
topology. Indeed, if we denote by Kµ the integral operator in L2

dt �
0�T�� with
kernel

∫
xsxt dµ�x�, then, for any x in WA

T , Kµx�t� = �TXt�x�, so that

〈�I+ β2�T�−1Xs�Xt

〉
µ
=
∫
x�s�(IL2

dt�
0�T�� + β2Kµ

)−1
x�t�dµ�x� = K̃T

µ �s� t��

We have already proved in [3], Appendix A, Lemma A.4, that µ→ K̃T
µ �s� t� is

Lipschitz for the Wasserstein distance dT [whose definition is given in (14)].
More precisely, there exists a finite constant k such that, for any probability
measures µ and ν on WA

T ,

sup
s� t≤T

∣∣K̃T
µ �s� t� − K̃T

ν �s� t�
∣∣ ≤ kdT�µ� ν��(69)

Since dT is compatible with the weak topology, (69) implies that µ → ��I +
β2�T�−1Xs�Xt�µ is continuous for the weak topology.

Thus, �x�µ�→∫ T0 ds ∫ T0 dt��I+β2�T�−1Xs�Xt�µVM
s �x�VM

t �x� is a bounded
continuous function on WA

T ×�+
1 �WA

T� so that 3M is bounded and continu-
ous. ✷

To control 3, we introduce linear functions 3ν which are given, for any
probability measure ν on WA

T , by

3ν�µ� = 1
2β

2
∫ T

0
ds
∫ T

0
dt��I+ β2�T�−1Xs�Xt�ν�Vs�Vt�µ�

Note that 3�µ� = 3µ�µ�.
Then we have the lemma.

Lemma A.5. There exists a finite constant c′ such that, for any probability
measure ν on WA

T , for any probability measure µ on WA
T ,

�3ν�µ� − 3�µ�� ≤ c′C�µ�dT�µ� ν��

Proof. According to (69), for any probability measure ν on WA
T ,

∣∣3ν�µ� − 3�µ�∣∣ = 1
2β

2

∣∣∣∣∫ T0
∫ T

0

(
K̃T
µ �s� t� − K̃T

ν �s� t�
)�Vs�Vt�µ dsdt

∣∣∣∣
≤ 1

2β
2kdT�µ� ν�

∫ (∫ T
0
�Vs�ds

)2

dµ

≤ 1
2β

2kdT�µ� ν�C�µ��

From Lemmas A.2–A.5, we deduce the following.
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Lemma A.6. (i) *M2 − 3M is a bounded continuous function.
(ii) We can find a finite constant C0 such that, for any positive real number

M, for any probability measure ν on WA
T , for any µ ∈� ,

∣∣*2�µ� − *M2 �µ� + 3M�µ� − 3ν�µ�
∣∣ ≤ C0

(
1
M

+ dT�µ� ν�
)
C�µ��(70)

Finally, if we recall that we proved in Lemma A.1 that *1 is bounded and
continuous and if we write

*M = *1 + *M2 − 3M�

then we have proved the crucial result of this section, Proposition A.7.

Proposition A.7. (i) *M is bounded and continuous.
(ii) There exists a finite constant C0 such that, for any probability measure

µ in � , for any probability measure ν in �+
1 �WA

T�,

∣∣*�µ� − *M�µ� − 3ν�µ�∣∣ ≤ C0

(
1
M

+ dT�µ� ν�
)
C�µ��

Finally, we prove that C�µ� is bounded when the entropy relative to P is
bounded.

Lemma A.8. For any positive real number M, there exists a finite constant
m�M� so that, for any probability measure µ such that I�µ∣∣P� ≤ m�M�,
C�µ� ≤M.

Proof. Let ρ be a smooth approximation of the sign of ∇U; that is, let ρ be
a continuously differentiable function such that there exists a finite constant
C so that

ρ�x�∇U�x� = �∇U�x�� if �∇U�x�� > 1� ��ρ��∞ ≤ 1� ��ρ′��∞ ≤ C�

Then ∣∣∣∣∫ T0 �∇U�xs��ds−
∫ T

0
ρ�xs�∇U�xs�ds

∣∣∣∣ ≤ 2T�

and Itô’s formula implies that, under P, if r is a twice continuously differen-
tiable function such that r′ = ρ,

r�xT� = r�x0� +
∫ T

0
ρ�xs��−∇U�xs�ds+ dBs� + 1

2

∫ T
0
ρ′�xs�ds�
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so that ∣∣∣∣∫ T0 �∇U�xs��ds−
∫ T

0
ρ�xs�dBs

∣∣∣∣ ≤ 2A+
(
C

2
+ 2
)
T�(71)

Moreover, for any positive real number ε such that ε < �1/8T�, we can use
relative entropy and supermartingale properties as in Lemma 2.19 to get that∫

dP exp
{
ε

(∫ T
0
ρ�xs�dBs

)2}
≤ 1
�1− 8Tε�1/4 �(72)

Thus, (71) and (72) (with ε = 1/16T) imply that∫ (∫ T
0
�∇U�xs��ds

)2

dµ�x�

≤ 2
(

2A+
(
C

2
+ 2
)
T

)2

+ 2
∫ (∫ T

0
ρ�xs�dBs�x�

)2

dµ�x�

≤ 2
(

2A+
(
C

2
+ 2
)
T

)2

+ 32TI�µ�P� + 8T log 2�

(73)

Since C�µ� = �∫ �∫ T0 �∇U�xs��ds�2 dµ�x��3/2 + 1, it is obvious that (73) gives
Lemma A.8. ✷
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