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LADDER HEIGHTS, GAUSSIAN RANDOM WALKS
AND THE RIEMANN ZETA FUNCTION
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Let �Sn� n ≥ 0� be a random walk having normally distributed incre-
ments with mean θ and variance 1, and let τ be the time at which the ran-
dom walk first takes a positive value, so that Sτ is the first ladder height.
Then the expected value EθSτ, originally defined for positive θ, may be
extended to be an analytic function of the complex variable θ throughout
the entire complex plane, with the exception of certain branch point sin-
gularities. In particular, the coefficients in a Taylor expansion about θ = 0
may be written explicitly as simple expressions involving the Riemann
zeta function. Previously only the first coefficient of the series developed
here was known; this term has been used extensively in developing ap-
proximations for boundary crossing problems for Gaussian random walks.
Knowledge of the complete series makes more refined results possible; we
apply it to derive asymptotics for boundary crossing probabilities and the
limiting expected overshoot.

1. Introduction. Let X1�X2� � � � be independent and distributed as
N�θ�1�, the normal distribution with mean θ and variance 1. Consider the
random walk �Sn� n ≥ 0� consisting of the partial sums Sn = X1 + · · · +Xn.
The first time τ = inf�n� Sn > 0� that the random walk is positive is called
the first ladder epoch, and the first positive value Sτ taken by the random
walk is called the first ladder height.

The Riemann zeta function ζ is originally defined for Re�z� > 1 by the series
ζ�z� = ∑∞

n=1 n
−z. This definition is extended by analytic continuation to the

entire complex plane except z = 1, where ζ has a simple pole. For example,
the extension to Re�z� < 0 may be seen from Riemann’s functional equation
[see (19)], which expresses ζ�z� in terms of ζ�1 − z�. Calculation of the zeta
function is routine; it is implemented in the computer package Mathematica,
for example.

For positive θ, the expected value of Sτ depends on θ; let us write it as EθSτ

to indicate this dependence. The main subject of this paper is the behavior of
EθSτ near θ = 0. In particular, we show that the function θ �→ EθSτ can be
continued analytically to a neighborhood of the origin, and we find its Taylor
expansion about θ = 0. The next theorem is our main result.
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Theorem 1.1. The expected first ladder height EθSτ may be extended to be
an analytic function in a neighborhood of θ = 0; it has the expansion

EθSτ =
1√
2

exp
{ −θ√

2π

∞∑
n=0

ζ� 1
2 − n�

n!�2n+ 1�
(−θ2

2

)n}
(1)

in the disk ��θ� < 2
√
π�.

Previously only the n = 0 term in the expansion of Theorem 1.1 was known
explicitly. We will also determine the extent to which the function θ �→ EθSτ

can be analytically continued throughout the complex plane. It turns out that
the function has branch points at �√2πk ± i

√
2πk� k �= 0� k integer�; in

particular, it can be analytically continued to a neighborhood containing the
real axis.

Our starting point is a classical expression for EθSτ from the fluctuation
theory of random walks; see (5). As θ ↓ 0, the series in (5) converges ever
more slowly, whereas the convergence in the Taylor expansion (1) that we
shall derive from it becomes more rapid. The behavior of EθSτ as θ ↓ 0 is
of particular significance for applications such as heavy traffic limit theorems
for queues [see, e.g., Whitt (1974) and Asmussen (1987)] and the corrected
diffusion approximations of Siegmund (1979).

Theorem 1.1 is based on a result (see Theorem 2.1 in Section 2) about
power series of the form

∑∞
n=1 n

−αe−nw, which also arise in other contexts. For
each α, this series represents an analytic function of w in the right half-plane
�Re�w� > 0�. We investigate the analytic continuation of this function; we are
particularly interested in continuing to a neighborhood of w = 0. Most of the
work was in fact done by Hardy (1905), who investigated certain questions
about power series, including the behavior of the series

∑∞
n=1 n

−αzn about the
point z = 1. So our problem involves a reparametrization of Hardy’s. This
reparametrization turns out to be felicitous, in that the resulting expansion
has a neat and explicit expression in terms of the zeta function: whereas
Hardy stopped with the first coefficient in his expansion, we obtain explicit
expressions for all of the coefficients in ours. To keep the present paper self-
contained, some of our development will closely follow Hardy’s.

For simplicity, our treatment here is confined to random walks with Gaus-
sian increments, which is the case that has been the most important in appli-
cations. The Gaussian case also plays a central role in the theory; a heuristic
sense of this may be obtained by combining the central limit theorem with
the basic identity (5) below, which holds for general increment distributions.
An intricate analysis in this spirit was carried through by Lai (1976), who
analyzed more general increment distributions—although with the additional
restriction of zero mean—by expanding around the Gaussian case. Likewise,
the importance of the series

∑∞
n=1 n

−αzn goes beyond the Gaussian case; in-
deed a two-term asymptotic expansion of this series as z increases to 1 forms
a cornerstone of the analysis of Lai (1976).
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Moments of the first ladder height have been studied in the general set-
ting of an exponential family of distributions �Fθ� θ ∈ ��, which may be
written in the form Fθ�dx� = eθx−ψ�θ�F0�dx�. For example, the normal family
�N�θ�1�� θ ∈ R� under consideration here is a special case having ψ�θ� = θ2/2.
Let Pθ and Eθ denote probability and expectation when the distribution of Xi

is Fθ. Under the assumptions that � contains an interval around 0, E0X1 = 0,
and the distribution F0 is nonlattice, Siegmund (1979) showed that for a > 0,

EθS
a
τ = E0S

a
τ +

a

a+ 1
�E0S

a+1
τ �θ+ o�θ�(2)

as θ ↓ 0. The question of whether the remainder o�θ� in (2) is actually O�θ2�
was left open by Siegmund’s development. Under the slightly strengthened
hypothesis that the distribution F0 is strongly nonlattice, Chang (1992) re-
placed the o�θ� by caθ

2 +O�θ3�. Here ca is a constant defined in terms of F0
whose general form is rather complicated, but it takes a simple form when
a = 1 and the distribution F0 is symmetric about 0. For the normal family,
these previous results gave

EθSτ =
1√
2

exp
[
ρθ+O�θ3�]�(3)

where ρ = E0�S2
τ�/�2E0Sτ� �= 0�583.

The quantity ρ has an interesting history. It arose in a paper of Chernoff
(1965), who studied discrete and continuous versions of the problem of sequen-
tially testing whether the drift of a Brownian motion is positive. In the discrete
version corresponding to a given δ > 0, the Brownian motion is observed only
at times 0� δ�2δ� � � � � Both the discrete and continuous versions have optimal
solutions of the form: stop the Brownian motion at the first observation that
crosses a certain boundary. Denoting the optimal boundaries for the discrete
problem and the continuous problem by xδ = xδ�t� and x = x�t�, respectively,
Chernoff (1965) showed, in his notation, that

xδ�t� = x�t� + ẑ
√
δ+ o�

√
δ� as δ ↓ 0�(4)

It turns out that the number ẑ is in fact −ρ. A more fundamental probabilistic
interpretation of ρ is as a limiting expected overshoot: defining the overshoot
Rb = Sτ�b� − b, where τ�b� is the first passage time inf�n� Sn > b�, standard
results from renewal theory say that Rb converges in distribution to a ran-
dom variable R∞, and E0R∞ = E0�S2

τ�/�2E0Sτ�. Siegmund’s result (2) with
a = 1 shows that the limiting expected overshoot ρ is also the coefficient of θ
in the expansion of EθSτ/E0Sτ as θ ↓ 0. As for numerical computation, Cher-
noff (1965) and Siegmund (1979) expressed ρ as an integral and Lai (1976)
expressed ρ as the sum of a series. At the time their work was done, Lai and
Siegmund were not aware of the connection to the work of Chernoff; Hogan
(1986) explained the connection between the solution of Chernoff ’s problem
and the limiting expected overshoot.

As far as we are aware, the only previous observation that relates Gaussian
random walks and the zeta function is the tantalizing final sentence of the
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following quotation from Chernoff (1965) about his result (4):

This result involves relating the original problem to an asso-
ciated problem and studying the limiting behavior of the so-
lution of the associated problem. This solution corresponds
to the solution of a Wiener–Hopf equation. Results of Spitzer
can be used to characterize the solution of the Wiener–
Hopf equation and yield ẑ as an integral, which, as Gordon
Latta pointed out to the author, is equal to ζ�1/2�/�2π�1/2 =
−0�5824.

[References omitted. Also, the quoted numerical value is slightly incorrect;
to 4 decimal places it should be −0�5826.] That ρ = −ζ�1/2�/�2π�1/2 can be
seen by comparing (3) and the expansion in Theorem 1.1. Lai (1976) partially
rediscovered the expansion of Hardy by a different method. However, Lai’s
development recovered only the same terms that Hardy gave explicitly, and
did not establish analyticity or relate the results to the zeta function.

The first ladder height plays a fundamental role in the theory and appli-
cations of random walks and renewal theory; see, for example, the treatises
of Asmussen (1987), Feller (1971), Prabhu (1980) and Siegmund (1985), all of
which feature ladder variables prominently. The particular area of application
that originally motivated this investigation is the asymptotic approximation of
boundary crossing probabilities for random walks. In addition to certain areas
of applied probability such as queueing theory [e.g., Asmussen (1987)] and in-
surance risk analysis [Grandell (1991)], such boundary crossing problems arise
in statistics from the study of sequential procedures, which typically sample
until a certain random walk crosses a certain boundary; see Siegmund (1985)
and Woodroofe (1982). They also arise in some nonsequential procedures such
as likelihood ratio tests for a change point [e.g., Siegmund (1986)]. Here the
likelihood ratio involves a random walk indexed by the possible change points
and the test rejects if the maximum of the likelihood ratio exceeds some level,
so that significance levels and P-values are boundary crossing probabilities.
Some of the most useful and accurate approximations are derived by taking
a limit as the drift of the random walk tends to zero and the boundary tends
to infinity. Knowledge of the expected amount by which a random walk over-
shoots a high level is a basic requirement for the development of this theory.
Since this limiting expected overshoot is Eθ�S2

τ�/�2EθSτ�, to obtain asymp-
totics for the overshoot as θ→ 0, the behavior of moments of the first ladder
height as θ→ 0 must be understood.

The analytic continuation and Taylor expansion of logEθSτ are developed
in the next section. In the final section we discuss some simple applications
to the study of boundary crossing probabilities.

2. Analytic continuation of E� S�. The relation

logEθτ =
∞∑
n=1

1
n
Pθ�Sn ≤ 0� for θ > 0
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is a standard fact in the fluctuation theory of random walks; see, for example,
Theorem 3 on page 416 of Feller (1971). Wald’s equation EθSτ = θEθτ gives

EθSτ = θ exp
( ∞∑

n=1

1
n
Pθ�Sn ≤ 0�

)
�(5)

Differentiating (5) with respect to θ, which can be justified by dominated con-
vergence, and using normality of Sn, we obtain

d

dθ
logEθSτ =

1
θ
− 1√

2π

∞∑
n=1

�exp�−θ2/2��n√
n

(6)

for θ > 0. This motivates our study of series of the form
∑
n−αe−nw; we are

particularly interested in the case α = 1/2 and w = θ2/2, and we would
like to determine the behavior of the series around w = 0. This is done in
Theorem 2.1.

Notation. It will be convenient to define c�α� = 2πi/$�1 − α�. Since
the Gamma function $�z� is analytic at all z ∈ C except the points z =
0�−1�−2� � � �, where it has simple poles, it follows that c�α� is an entire func-
tion, with zeros at positive integer values of α. From the relation $�α�$�1−α� =
π/ sin�πα� we obtain the alternative expression c�α� = 2i$�α� sin�πα� for all
complex α other than the nonpositive integers 0�−1�−2� � � � �

Theorem 2.1. For each α ∈ C, the function

Hα�w� �= c�α�
∞∑
n=1

n−αe−nw − 2πiwα−1�(7)

which is analytic in the half-plane �Re�w� > 0�, may be analytically continued
to the disk ��w� < 2π�. In that disk, for each α ∈ C other than the positive
integers, Hα has the Taylor series expansion

Hα�w� = c�α�
∞∑
n=0

ζ�α− n��−w�
n

n!
�(8)

Remark. With the appropriate interpretation, (8) holds also when α is a
positive integer. In this case, the product c�α�ζ�α − n� should be interpreted
as 0, except for the case n = α− 1, where one uses the fact that c�α�ζ�α− n�
has a removable singularity at α = n+ 1.

Theorem 1.1 is an easy consequence: taking α = 1/2 and w = θ2/2 and
using the fact that $�1/2� = √π (so that c�1/2� = 2i

√
π) gives

∞∑
n=1

�exp�−θ2/2��n√
n

−
√

2π�θ2�−1/2 =
∞∑
n=0

ζ�1/2− n�
n!

(−θ2

2

)n

�

Combining this with (6) we get

d

dθ
logEθSτ =

−1√
2π

∞∑
n=0

ζ�1/2− n�
n!

(−θ2

2

)n

�
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Theorem 1.1 is obtained by integrating, exponentiating and using the fact that
E0Sτ = 1/

√
2.

Proof of Theorem 2.1. Removing the ray R− = �x ∈ R� x ≤ 0� from the
complex plane leaves a domain C \ R− on which the logarithm function may
be defined to be single-valued and analytic by

log u = log �u� + iarg�u��
where −π < arg�u� < π, say. We then adopt the definition uz = ez log u; for
each z ∈ C this is also an analytic function of u for u ∈ C \R−. Having fixed a
branch of the logarithm, certain operations require a bit of care; for example,
a fact that we will use below is

�xy�z = xzyz if �arg�x� + arg�y�� < π�(9)

For small positive δ, let Cδ denote the contour

Cδ=�x+iδ� −δ−1 ≤ x ≤ 0�+�δeiθ� π/2 ≥ θ ≥ −π/2�+�x−iδ� 0 ≥ x ≥ −δ−1��
traversed as shown in the dashed curve in Figure 1. Here the addition of
contours indicates successive traversal in the positive direction (i.e., whatever
direction the contour had as originally defined). Taking a > 0 and b ∈ �0�2π�,
let

Lδ = �−δ−1 + iy� − δ ≥ y ≥ b− 2π� + �x+ i�b− 2π�� − δ−1 ≤ x ≤ a�
+ �a+ yi� b− 2π ≤ y ≤ b� + �x+ bi� a ≥ x ≥ −δ−1�
+ �−δ−1 + iy� b ≥ y ≥ δ��

this is the solid contour in Figure 1. Further, let

L = �x+ i�b− 2π�� −∞ < x ≤ a� + �a+ yi� b− 2π ≤ y ≤ b�
+ �x+ bi� a ≥ x > −∞�

Fig. 1.
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Fig. 2.

and let L′δ denote the difference L−Lδ, as shown in Figure 2. Finally, let �
denote the domain

� = �u� Re�u� < a and b− 2π < Im�u� < b��
bounded by L, and let �0 be a bounded domain containing the point 0 such
that the closure of �0 is contained in � .

Lemma 2.2 (Hardy). Let Hα be as defined in (7), and define

Iα�w� �= e−w
∫
L

uα−1

e−u − e−w
du�(10)

Then for each a ∈ C, Hα�w� is an analytic function of w for Re�w� > 0, and
Iα�w� is analytic for w ∈ � . For all w ∈ � ∩ �Re�w� > 0� and Re�α� > 0 we
have Hα�w� = Iα�w�.

Proof. Let α be arbitrary. Clearly Hα�w� is an analytic function of w
for Re�w� > 0, since the series in the definition (7) converges uniformly in
�Re�w� ≥ c� for all c > 0. Defining ρ = sup�Re�−w�� w ∈ �0�, for each
δ ∈ �0�1/ρ� the integral

∫
Lδ

uα−1

e−u − e−w
du(11)

is easily seen to be an analytic function of w for w ∈ �0; for example, one
could use a combination of Fubini’s and Morera’s theorems, or Section 2.83 of
Titchmarsh (1939). Furthermore, for w ∈ �0,∣∣∣∣ uα−1

e−u − e−w

∣∣∣∣ ≤ �uα−1�
�e−u� − eρ

holds for Re�−u� > ρ. Thus,
∫
L′δ

uα−1

e−u − e−w
du→ 0 as δ→ 0�
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with the convergence being uniform over w ∈ �0. Therefore,

lim
δ→0

∫
Lδ

uα−1

e−u − e−w
du =

∫
L

uα−1

e−u − e−w
du(12)

is analytic in w on the domain �0, so that, by the arbitrary nature of �0, (12)
is analytic on all of � , and hence so is Iα.

Next let Re�α� > 0. A change of variables in the definition $�α� =∫∞
0 xα−1e−x dx gives

n−α = 1
$�α�

∫ 0

−∞
�u�α−1enu du

for n ≥ 1. From this, for Re�w� > 0 we obtain
∞∑
n=1

n−αe−nw = e−w

$�α�
∫ 0

−∞
�u�α−1

e−u − e−w
du�(13)

by Fubini’s theorem.
For w inside the closed contour Cδ +Lδ,∫

Cδ+Lδ

uα−1

e−u − e−w
du = −2πiewwα−1�(14)

This can be seen by integrating over a small circle about w, or by changing
variables and using Cauchy’s integral formula. Therefore, for each w ∈ � \R−,
(14) holds for sufficiently small positive δ.

Next observe that for Re�α� > 0,

lim
δ→0

∫
Cδ

uα−1

e−u − e−w
du = −2i sin�πα�

∫ 0

−∞
�u�α−1

e−u − e−w
du for w ∈ � \ R−�(15)

Indeed, since �u± iδ�α−1 → �u�α−1 exp�±iπ�α− 1�� for u < 0 as δ ↓ 0, routine
dominated convergence arguments show that for w ∈ � \ R−,

lim
δ↓0

∫ 0

−�1/δ�
�u± iδ�α−1

e−�u±iδ� − ew
du = −e±iπα

∫ 0

−∞
�u�α−1

e−u − e−w
du�

Thus, (15) follows from the statement
∫ −π/2
π/2

�δeiθ�α−1

e−δeiθ − e−w
iδeiθ dθ→ 0 as δ ↓ 0�

which holds for Re�α� > 0.
Therefore, by (12), (14) and (15),

−2πiewwα−1 = lim
δ→0

∫
Cδ+Lδ

uα−1

e−u − e−w
du

= −2i sin�πα�
∫ 0

−∞
�u�α−1

e−u − e−w
du+

∫
L

uα−1

e−u − e−w
du

for w ∈ � \ R− and for Re�α� > 0. Combining this with (13) gives Hα�w� =
Iα�w� for w ∈ � ∩ �Re�w� > 0� provided that Re�α� > 0. ✷



LADDER HEIGHTS AND THE ZETA FUNCTION 795

A key idea, also used by Hardy, is to consider the analyticity of various
expressions as functions of the variable α as well as w. In the proof of the
theorem, we will establish certain identities first for values of α with large
real part, then argue by analytic continuation that the identities hold for
other values of α. The next lemma prepares the way.

Lemma 2.3. Let Hα and Iα be as defined in (7) and (10). Then for each
w ∈ � ∩ �Re�w� > 0�, the functions α �→ Hα�w� and α �→ Iα�w� are both
entire. Also, for each nonnegative integer k, the kth derivative

I�k�α �0� =
dk

dwk
Iα�w�

∣∣∣∣
w=0

is an entire function of α.

Proof. For Re�w� > 0, the sum
∑∞

1 n−αe−nw converges uniformly over
α in bounded sets, so the sum is an entire function of α, and hence so is
α �→Hα�w�. For w ∈ � , the integral (11) is an analytic function of α for small
enough positive δ, and the convergence in (12) is uniform over α in bounded
sets. Therefore, α �→ Iα�w� is entire in α.

To prove the final assertion of the lemma we will use the expansion

e−w

e−u − e−w
= 1

e−u − 1
+

∞∑
n=1

�e−w − 1�n
{

e−u

�e−u − 1�n+1

}
for �e−w − 1� < �e−u − 1��

Letting α be arbitrary, note that if we take w in a small enough neighborhood
� of 0 so that ��e−w − 1�/�e−u − 1�� ≤ r < 1 holds for all w ∈ � and u ∈ L,
then

∫
L
�uα−1�

∞∑
n=0

∣∣∣∣ �e
−w − 1�n

�e−u − 1�n+1

∣∣∣∣ �du� =
∫
L

�uα−1�
�e−u − 1�

∞∑
n=0

∣∣∣∣e
−w − 1
e−u − 1

∣∣∣∣
n

�du�

≤
∞∑
n=0

rn
∫
L

�uα−1�
�e−u − 1� �du� <∞�

Therefore, we may interchange sum and integral to obtain

Iα�w� = e−w
∫
L

uα−1

e−u − e−w
du

=
∫
L

uα−1

�e−u − 1� du+
∞∑
n=1

�e−w − 1�n
∫
L

uα−1e−u

�e−u − 1�n+1
du

(16)

for w ∈ � . The convergence is uniform over w ∈ � .
To evaluate the derivatives I

�k�
α �0�, write

dk

dwk
�e−w − 1�n

∣∣∣∣
w=0

=
n∑

j=0

(
n

j

)
�−j�k�−1�n−j�
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this is 0 if n > k. Since (16) expresses Iα�w� as a uniformly convergent series of
analytic functions in the neighborhood � , we may differentiate term-by-term
to obtain

dk

dwk
Iα�w�

∣∣∣∣
w=0

=
k∑

n=1

{∫
L

uα−1e−u

�e−u − 1�n+1
du

} n∑
j=0

(
n

j

)
�−j�k�−1�n−j�(17)

However, for each n > 0, the integral
∫
L

uα−1e−u

�e−u − 1�n+1
du(18)

defines an entire function of α, again by an easy combination of Fubini’s and
Morera’s theorems. So the desired derivatives in (17) are entire in α. ✷

To complete the proof of Theorem 2.1, by Lemma 2.2, for each α ∈ C we
have

Iα�w� =
∞∑
k=0

I�k�α �0�
wk

k!

for all w in a neighborhood of 0. The idea will be to evaluate the derivatives
I
�k�
α �0� by using the function Hα.

Let w ∈ � ∩ �Re�w� > 0�. Then Lemma 2.2 gives Hα�w� = Iα�w� for
all α with Re�α� > 0. Therefore, by Lemma 2.3 and analytic continuation,
Hα�w� = Iα�w� holds for all α ∈ C.

Next let α be arbitrary. Since we have just shown that Hα�w� = Iα�w�
for all w ∈ � ∩ �Re�w� > 0�, and since both Hα�·� and Iα�·� are analytic on
� ∩ �Re�w� > 0�, for each nonnegative integer k we have the equality of the
kth derivatives

H�k�
α �w� = I�k�α �w� for w ∈ � ∩ �Re�w� > 0��

However, by Lemma 2.2, each derivative I
�k�
α �w� is an analytic function of w

for w ∈ � . Therefore, we may compute I
�k�
α �0� as the limit

I�k�α �0� = lim
w↓0

I�k�α �w� = lim
w↓0

H�k�
α �w�

as w decreases to 0 along the real axis. Performing the last differentiation
gives

I�k�α �0� = lim
w↓0

{
�−1�kc�α�

∞∑
n=1

n−�α−k�e−nw − 2πi�α− 1� · · · �α− k�wα−k−1
}
�

which, for Re�α� > k+1, is obviously �−1�kc�α�ζ�α−k�. Finally, by Lemma 2.3
and analytic continuation, the equality I

�k�
α �0� = �−1�kc�α�ζ�α−k� holds for α

throughout the entire complex plane, except for the (removable) singularity of
c�α�ζ�α−k� at α = k+1. Thus, for α other than positive integers, Iα, which is
the analytic continuation of Hα to a neighborhood of 0, has the Taylor series
claimed in the theorem.
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By the functional equation of Riemann [see, e.g., Section 4.44 of Titchmarsh
(1939)], which expresses ζ�1− z� in terms of ζ�z� for z �= 1,

ζ�α− k�
k!

= 2α−kπα−k−1 cos�π�−α+ k+ 1�/2�$�k+ 1− α�
k!

ζ�k+ 1− α��(19)

Since $�k + 1 − α�/�k!� ∼ k−α and ζ�k + 1 − α� → 1 as k → ∞, it is easy to
see that the radius of convergence of the power series

∑
ζ�α − k��−w�k/�k!�

is 2π. This proves Theorem 2.1. ✷

Next we investigate the complete analytic continuation of the function θ �→
EθSτ; we will see that it may be continued to the whole plane, with countably
many rays removed.

Theorem 2.4. For each integer J ≥ 0, the difference

c�α�
∞∑
n=1

n−αe−nw − 2πi
J∑

j=−J
�w− 2πji�α−1�

which is analytic in the half-plane �Re�w� > 0�, may be analytically continued
to the disk ��w� < 2π�J+ 1��, where it has the Taylor expansion

2i�2π�α
∞∑
k=0

(
α− 1
k

)
sin�π�α− k�/2�.J�α�k�

(
w

2π

)k

�(20)

where .J�α�k� = ζ�k+ 1− α� −∑J
j=1 j

−�k+1−α�.

Proof. Start by writing

$�k+ 1− α� = �−1�k�α− 1��α− 2� · · · �α− k�$�1− α��
so that

$�k+ 1− α�
k!

= �−1�k
(
α− 1
k

)
$�1− α� = �−1�k

(
α− 1
k

)
2πi
c�α� �

Further substituting 1
2 �exp�iπ�k+ 1− α�/2� + exp�−iπ�k+ 1− α�/2�� for

cos�π�−α+ k+ 1�/2� in (19), we obtain

c�α�
∞∑
k=0

ζ�α− k�
k!

�−w�k = �2π�α�iαT− − �−i�αT+��(21)

where

T± =
∞∑
k=0

(
α− 1
k

)(±iw
2π

)k

ζ�k+ 1− α��

For J ≥ 0, use the definition of .J�α�k� to write

T± =
∞∑
k=0

(
α− 1
k

)(±iw
2π

)k

.J�α�k� +
J∑

j=1

jα−1
∞∑
k=0

(
α− 1
k

)(±iw
2πj

)k

�
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this involves an interchange of order of summation that is easily justified if
�w� < 2π. By the binomial theorem,

�2π�α exp�∓iπα/2�
J∑

j=1

jα−1
∞∑
k=0

(
α− 1
k

)(±iw
2πj

)k
= �∓2πi�α

J∑
j=1

jα−1
(
1± iw

2πj

)α−1

= ∓2πi
J∑

j=1

�w∓ 2πji�α−1�

In the last equality we have used (9) together with the assumption that �w� <
2π. Thus, for �w� < 2π,

c�α�
∞∑
k=0

ζ�α− k�
k!

�−w�k − 2πi
J∑

j=1

�w+ 2πji�α−1 − 2πi
J∑

j=1

�w− 2πji�α−1

= �2π�α
{

exp�iπα/2�
∞∑
k=0

(
α− 1
k

)(−iw
2π

)k

.J�α�k�

− exp�−iπα/2�
∞∑
k=0

(
α− 1
k

)(
iw

2π

)k

.J�α�k�
}

= �2π�α2i
∞∑
k=0

(
w

2π

)k(α− 1
k

)
.J�α�k� sin�π�α− k�/2��

so that, by Theorem 2.1,

c�α�
∞∑
k=0

n−αe−nw − 2πi
J∑

j=−J
�w− 2πji�α−1

= −2i�2π�α
∞∑
k=0

(
w

2π

)k(α− 1
k

)
.J�α�k� sin�π�k− α�/2�

holds for ��w� < 2π� Re�w� > 0�. For fixed J, simple estimates show that

.J�α�k� ∼ �J+ 1�−�k+1−Re�α�� as k→∞�

so that the last power series has radius of convergence 2π�J+ 1�. ✷

In summary, the function Gα�w� = c�α�∑∞
n=1 n

−αe−nw can be continued
throughout the complex plane except for branch point singularities at the
points 2πki for integers k (and so we must remove a ray, say Rk = �x+2πki �
x ≤ 0�, from the plane for each branch point 2πki). Since Gα is periodic (with
period 2πi) in the right half-plane �Re�w� > 0�, its analytic continuation is
clearly periodic in the domain C \ ⋃∞

k=−∞Rk. The branch point singularities
of Gα are of the form Bα�k�w� = 2πi�w − 2πki�α−1; that is, for each k, the
difference Gα −Bα�k can be analytically continued to a neighborhood of 2πki.
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The expected first ladder height involves the difference G1/2−B1/2�0 in a very
simple way; in fact,

d

dθ
logEθSτ =

i

2
√

2π

{
G1/2

(
θ2

2

)
−B1/2�0

(
θ2

2

)}
�

However, we know that G1/2�w� −B1/2�0�w� may be analytically continued to
all w in the domain C \⋃k �=0 Rk. Thus, EθSτ may be continued for θ through-
out the complex plane, except for branch point singularities at the points
θ = 2

√
πke±iπ/4 for nonzero integers k (and the attendant rays removed).

In particular, EθSτ is clearly continuable to a horizontal strip that contains
the real axis.

Finally, we remark that in any fixed disk ��w� < c�, as J increases, the
series in (20) converges more and more rapidly, so that Theorem 2.4 provides
a computationally efficient method of calculating Gα�w�.

3. Applications. Perhaps the most fundamental of boundary crossing
problems for random walks is determining the probability that a random walk
with negative drift ever attains a positive level b. Letting τ�b� denote the
first passage time inf�n� Sn > b�, we want to approximate the probability
P−θ�τ�b� <∞�, where θ > 0.

Corollary 3.1. There exists r > 0 such that, for 0 ≤ θ < 2
√
π,

P−θ�τ�b� <∞� = exp
{
−2θ

[
b− 1√

2π

∞∑
n=0

ζ� 1
2 − n�

n!�2n+ 1�
(−θ2

2

)n

+O�e−rb�
]}

as b→∞.

Proof. The overshoot (or residual) Rb over the level b is defined by Rb =
Sτ�b� −b when τ�b� is finite. By Wald’s likelihood ratio identity [e.g., Siegmund
(1985), page 13],

P−θ�τ�b� <∞� = Eθ�exp�−2θSτ�b��� = exp�−2θb�Eθ�exp�−2θRb���(22)

Under Pθ, we have τ�b� <∞ with probability 1, and, as b tends to infinity, Rb

converges in distribution to a random variable R∞ having probability density
Pθ�Sτ > x�/�EθSτ� with respect to Lebesgue measure for x > 0. The expec-
tation Eθ�exp�−2θRb�� converges to ν�θ� �= Eθ�exp�−2θR∞��, where we have
adopted the notation ν used by Siegmund. Corollary 2.3 of Chang (1992) shows
that this convergence is exponentially fast: for θ∗ > 0, there exist C <∞ and
r > 0 such that

�Eθ�exp�−2θRb�� − ν�θ�� ≤ Cθ exp�−rb�(23)

for all θ ∈ �0� θ∗� and all b ≥ 0. The fact that θ∗ > 0 may be chosen arbitrarily
follows from the fact that the family of distributions �N�θ�1�� 0 ≤ θ ≤ θ∗� is
uniformly strongly nonlattice, that is,

inf
0≤θ≤θ∗

inf
�t�≥δ

�1−Eθ�exp�itX��� > 0 for all δ > 0�
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We have

ν�θ� = 1
EθSτ

∫ ∞
0

exp�−2θx�Pθ�Sτ > x�dx = 1
EθSτ

1
2θ
�1−Eθ�exp�−2θSτ����

However, letting τ− denote the first descending ladder epoch inf�n� Sn ≤ 0�,
Wald’s likelihood ratio identity, symmetry of the normal distribution and du-
ality [e.g., Corollary 8.39 of Siegmund (1985)] give

1−Eθ�exp�−2θSτ�� = 1−P−θ�τ <∞� = Pθ�τ− = ∞� = 1/�Eθτ��
so that

ν�θ� = 1
�EθSτ��2θEθτ�

= 1
2�EθSτ�2

�

From this, our Taylor series for logEθSτ may be transformed into a Taylor
series for log ν�θ� about θ = 0, resulting in

ν�θ� = exp
{
θ

√
2
π

∞∑
n=0

ζ� 1
2 − n�

n!�2n+ 1�
(−θ2

2

)n}
�(24)

Combining this with (22) and (23) proves the corollary. ✷

For example, in a diffusion normalization, which assumes that θ→ 0 and
b→∞ with θb � 1, clearly the error term O�e−rb� is dominated by each power
of θ. More generally, we could let θ → 0 and b → ∞ much slower than in a
diffusion normalization, as in the following statement.

Corollary 3.2. If θ ↓ 0 and b→∞ in such a way that

b

log�1/θ� → ∞�

then

P−θ�τ�b� <∞� ≈ exp
{
−2θ

[
b− 1√

2π

∞∑
n=0

ζ� 1
2 − n�

n!�2n+ 1�
(−θ2

2

)n]}
�

The meaning of the last display is as an asymptotic expansion in the sense
of Poincaré; that is, for each N,

P−θ�τ�b� <∞� = exp
{
−2θ

[
b− 1√

2π

N∑
n=0

ζ� 1
2 − n�

n!�2n+ 1�
(−θ2

2

)n

+O�θ2N+2�
]}

�

Siegmund (1985) discusses further applications of the function ν. The ex-
pansion (24) completes the result ν�θ� = e−ρθ + o�θ2� given in (4.38) of Sieg-
mund (1985).

Other results that follow easily from Theorem 2.1 are explicit expressions
for the moments E0�Sp

τ �. These may be found by calculating along the lines
shown by Lai (1976), using our expansion of the series

∑
n−αe−nw about w = 0;
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here the series with values of α other than α = 1/2 arise. For example, the
results for the third and fourth moments are

E0�S3
τ� =

3√
2

(
1
4
+ ζ2�1/2�

2π

)
= 1�25035

and

E0�S4
τ� =

ζ�3/2�
π3/2

− ζ3�1/2�
π3/2

− 3ζ�1/2�
2
√
π

= 2�26433�

For another example of information that can be extracted from Theorem 1.1,
define the function ρ�θ� = EθR∞; note that the value of ρ�0� is the number
−ζ�1/2�/√2π we have been calling ρ. The first derivative ρ′�0� = 1/4 is known.
The second derivative ρ′′�0� can be obtained by equating the expansion (24)
for the function ν�θ� with its definition Eθ�exp�−2θR∞��, writing the Taylor
expansion of the exponential up to order θ2, and using (2). The result of this
calculation, which also makes use of the moments E0�S3

τ� and E0�S4
τ� given

in the previous paragraph, is

ρ′′�0� = ζ�3/2�
2�2π�3/2 = 0�08293�

Concluding remarks.

1. An Associate Editor raised a question that we had also puzzled over
ourselves: for negative θ, is there a nice probabilistic interpretation of the
analytic continuation of EθSτ? In particular, one might entertain Eθ�Sτ� τ <
∞� and Eθ�Sτ � τ <∞� as plausible candidates. In fact neither is correct. By
inspection of (1), the analytic continuation may be expressed as 1/�2E−θSτ�
for θ ≤ 0. Differentiating the Wiener–Hopf factorization

�1−Eθ�exp�iλSτ�� τ <∞���1−Eθ�exp�iλSτ−�� τ− <∞�� = 1−Eθ�exp�iλX1��
twice with respect to λ and setting λ = 0 shows that

1
2E−θSτ

= Eθ�Sτ� τ <∞�
1+ 2θρ�−θ� + θ2

for θ ≤ 0, where the function ρ is as defined in the previous paragraph. This
is easily seen to lie strictly between Eθ�Sτ� τ < ∞� and Eθ�Sτ � τ < ∞� as
θ ↑ 0.

2. After this work was done we learned of another occurrence of ζ�1/2� in
a related problem; see Asmussen, Glynn, and Pitman (1995).
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