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RATE OF CONVERGENCE TO GAUSSIAN MEASURES
ON n-SPHERES AND JACOBI HYPERGROUPS

By Michael Voit

Universität Tübingen

In this paper we prove central limit theorems of the following kind: let
Sd ⊂ R

d+1 be the unit sphere of dimension d ≥ 2 with uniform distribu-
tion ωd. For each k ∈ N, consider the isotropic random walk �Xk

n�n≥0 on Sd

starting at the north pole with jumps of fixed sizes � �Xk
n�X

k
n−1� = π/

√
k

for all n ≥ 1. Then there is some k0�d� such that for all k ≥ k0�d�, the dis-
tributions 
k of Xk

k have continuous, bounded ωd-densities fk. Moreover,
there is a (known) Gaussian measure ν on Sd with ωd-density h such that
�fk − h�∞ = O�1/k� and �
k − ν� = O�1/k� for k → ∞, where O�1/k� is
sharp. We shall derive this rate of convergence in the central limit theorem
more generally for a quite general class of isotropic random walks on com-
pact symmetric spaces of rank one as well as for random walks on �0� π�
whose transition probabilities are related to product linearization formulas
of Jacobi polynomials.

Introduction. The purpose of this paper is to derive a Berry–Esséen-type
central limit theorem for isotropic random walks on unit spheres Sd ⊂ R

d+1

for d ≥ 2 and, more generally, on compact symmetric spaces of rank 1. To
stress this analogy, let us first recapitulate the classical setting (see [1], [8]
and [9] for details).

Let �Yl�l≥1 be a sequence of i.i.d. R-valued, centered random variables hav-
ing third moments with common distribution µ ∈M1�R�. Then, for k ∈ N, the
normalized variables Yl/

√
k are µk distributed with µk�A� �= µ�√kA� �A ⊂

R a Borel set), and the random variables X
�k�
n �= �1/√k�∑n

l=1 Yl are µ
�n�
k -

distributed (with respect to usual convolution powers) and form a random
walk �X�k�

n �n≥0 on R. The theorem of Berry and Esséen now states that the
distribution functions of µ�k�k tend uniformly to a normal distribution function
with O�1/√k�.

Now consider the unit sphere Sd ⊂ R
d+1 of dimension d ≥ 2 with fixed

North Pole x0 ∈ Sd and uniform distribution ωd; regard the group SO�d� of
rotations as the subgroup of SO�d + 1� stabilizing x0. A stationary random
walk �Xn�n≥0 on Sd is called isotropic (with respect to x0) if it starts in x0 at
time 0 and if its transition probabilities are SO�d+ 1�-invariant. This yields
that the distributions of these chains are SO�d�-invariant, and that they are
determined completely by the distribution µ ∈M1��0� π�� of the angles

� �Xn�Xn−1� ⊂ �0� π�� n ∈ N�
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between two successive jumps. In this way, if some probability measure µ ∈
M1��0� π�� is given, we form the probability measure µk ∈ M1��0� π/√k��
with µk�A� �= µ�√kA� �A ⊂ �0� π� a Borel set) and consider the associated
random walk �X�k�

n �n≥0 on Sd starting in x0. We shall prove that under a mild
restriction on µ (“µ must not be concentrated in 0 too much”) there is some
k0�d� such that for all k ≥ k0�d�, the distributions 
k of X�k�

k have continuous,
bounded ωd-densities fk. Moreover, there is a (known) Gaussian measure ν
on Sd with ωd-density h such that

�fk − h�∞ = O�1/k� and �
k − ν� = O�1/k� for k→∞�

where O�1/k� is sharp. For Gaussian measures on spheres see, for instance,
[12] and [28]. Our convergence result is stronger than the classical theorem
of Berry and Esséen in two ways: the rate of convergence is O�1/k� instead of
O�1/√k�, and we have convergence with respect to the total variation norm
which is stronger than uniform convergence of the distribution functions.

The convergence result above will be derived in a more general setting.
First of all, it holds for all compact symmetric spaces of rank 1 (i.e., projective
spaces are also included) while the second generalization is motivated by its
proof; it is as follows: Using the projection d̃� Sd → �0� π�, x �→ � �x� x0�, we
see that for all k ∈ N the sequences �d̃�X�k�

n ��n≥0 form Markov chains on �0� π�
starting in 0 where their transition probabilities are related to an abstract
convolution structure on �0� π� induced by product linearization formulas of
the spherical functions, that is, in our setting, certain Jacobi polynomials (see
Helgason [13]). It is now a matter of fact that Jacobi polynomials form such
a convolution structure on �0� π� for all indices α ≥ β > −1 with β ≥ −1/2
or α + β ≥ 0, that this convolution structure is a hypergroup and that it
makes sense to study random walks on �0� π� whose transition probabilities
are closely related to this hypergroup structure (see [10, 11], [15], [3], [14]).
In this way, it is natural to establish a limit theorem for random walks on
arbitrary Jacobi hypergroups on �0� π� from which the limit results for compact
symmetric spaces of rank 1 then easily follow.

This paper is organized as follows: in Section 1 we first recapitulate some
facts on isotropic random walks and Gaussian measures on compact symmetric
spaces of rank 1 and on Jacobi hypergroups on �0� π�. The main result will be
stated in Theorem 1.6 in the latter setting. After a brief discussion, we shall
transfer it to a central limit theorem on unit spheres. Section 2 deals with
a main ingredient of the proof of Theorem 1.6, namely inequalities relating
norms of functions and measures on �0� π� with norms of their Jacobi–Fourier
transforms. We state and prove these inequalities in the general setting of
compact commutative hypergroups and then specialize it to the case of Jacobi
hypergroups on �0� π�. An inequality of this type was used first by Diaconis
and Shashahani [7] for compact (or, more specifically, for finite) groups. It
recently turned out that inequalities of this kind have many applications in
probability theory, mainly for bounds of convergence to uniformity; see, for
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instance, [6], [18], [19], [20], [25]. Finally, the proof of Theorem 1.6 will be
completed in Section 3 by using the whole machinery of (asymptotic) properties
of Jacobi polynomials.

1. Isotropic random walks on compact symmetric spaces of rank
one and on Jacobi hypergroups.

1.1. Compact two-point homogeneous spaces. Let �X�d� be a (nontrivial)
compact connected two-point homogeneous space; that is, X admits a compact
group G of isometries such that for all x�y�u� v ∈ X with d�x�y� = d�u� v�
there exists some g ∈ G with g�x� = u and g�y� = v. By the classification of
Wang [27], these spaces are exactly the compact symmetric spaces of rank 1,
and are equal either to the sphere Sn ⊂ R

n+1 �n ≥ 1�, to the projective space
P
n�K� �n ≥ 2, and K = R�C or the field of quaternions), or to the projective

plane P
2�O� over the octonions.

Consider the compact stabilizer subgroup H of some point x0 ∈ X. Then
the homogeneous space G/H (equipped with the quotient topology) can be
identified with X, and the double coset space G//H �= �HgH� g ∈ G� with
the space XH �= �H�x�� x ∈X� of all H-orbits in X where both spaces again
carry the quotient topology. As G acts in a two-point homogeneous way, XH can
also be identified with the compact interval D �= �d�x� x0�� x ∈ X� ⊂ �0�∞�
via H�x� � d�H�x�� x0�. Without loss of generality we assume that D = �0� π�.
In this way,

�1�1� G//H �XH � �0� π��

Now consider the Banach-∗-algebra Mb�G� of all (signed) Borel measures on
G with the usual convolution and involution of measures. If ωH ∈ Mb�G� is
the Haar measure of H normalized by ωH�H� = 1, then Mb�G��H� �= �µ ∈
Mb�G�� ωH∗µ∗ωH = µ� is the Banach-∗-subalgebra of Mb�G� consisting of all
H-biinvariant measures; the canonical projection π� G→ G//H, g �→HgH,
induces an isometric isomorphism π̃ between the Banach spaces Mb�G��H�
and Mb�G//H�. Now transfer convolution and involution to Mb�G//H� such
that π̃ becomes an isomorphism of Banach-∗-algebras. In the two-point homo-
geneous setting above, these algebras are commutative, and the identification
(1.1) leads to an isomorphic commutative Banach-∗-algebra structure on the
Banach space Mb��0� π��. It is well known (Helgason [13] or Section 3.5 of
Bloom and Heyer [3]) that these convolution structures on �0� π� are related
to product formulas for Jacobi polynomials �P�α�β�

n �n∈N0
where α�β depend on

X as follows.
If X = Sn �n ≥ 1�, then α = β = �n− 2�/2.
If X = P

n�R� �n ≥ 2�, then α = �n− 2�/2, β = −1/2.
If X = P

n�C� �n ≥ 2�, then α = n− 1, β = 0.
If X = P

n�H� �n ≥ 2�, then α = 2n− 1, β = 1.
If X = P

2�O�, then α = 7, β = 3.
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1.2. Isotropic random walks on compact two-point homogeneous spaces.
Let X be a two-point homogeneous space as above. A stationary Markov
chain �Sn�n≥0 on Xis called an isotropic random walk if it starts at some
point x0 ∈ X (at time 0), and if its transition probabilities are G invariant,
that is,

�1�2� P
(
Sn ∈ A �Sn−1 = x

) = P
(
Sn ∈ g�A� �Sn−1 = g�x�)

for n ∈ N, x ∈ X, g ∈ G and Borel sets A ⊂ X. In order to study the
distributions of �Sn�n≥0, consider the stabilizer H of the starting point x0 ∈X
and use the identifications X � G/H and G//H � XH � �0� π�. Then the
mapping d̃� X→ �0� π�, x �→ d�x� x0�, corresponds to the canonical projection
G/H → G//H and the projection �d̃�Sn��n∈N0

becomes a Markov chain on
�0� π� by (1.2). Moreover, the transition probabilities of this Markov chain are
related to the convolution structure on �0� π� by

�1�3� P
(
d̃�Sn� ∈ A � d̃�Sn−1� = z

) = �δz ∗ µ��A� for n ∈ N� z ∈ �0� π�
and for Borel sets A ⊂ �0� π� where µ ∈ M1��0� π�� is just the distribution
of the jump distances from Sn−1 to Sn. Integration with respect to the kernel
�z�A� �→ δz∗µ�A� and induction yield that the distribution of d̃�Sn� is given by
the n-fold convolution power µ�n� for n ≥ 0 where µ�n� contains all information
of the distribution of Sn. In summary, isotropic random walks on X starting
in x0 are described completely by µ.

1.3. Random walks on Jacobi hypergroups. For α�β > −1, we define the
Jacobi polynomials by

P
�α�β�
n �x� �=2 F1�−n�n+ α+ β+ 1�α+ 1� �1− x�/2�� x ∈ R� n ≥ 0�

which are normalized by P
�α�β�
n �1� = 1 and orthogonal on �−1�1� with respect

to the weight �1 − x�α�1 + x�β. It was shown by Gasper [10, 11] that exactly
for indices α�β in the region

�1�4� P �= ��α�β� ∈ R
2� α ≥ β > −1 and �β ≥ −1/2 or α+ β ≥ 0��

there exist (unique) probability measures δs ∗ δt on �0� π� for all s� t ∈ �0� π�
such that

�1�5� P
�α�β�
n �cos s�P�α�β�

n �cos t� =
∫
�0� π�

P
�α�β�
n �cosu�d�δs ∗ δt��u�� n ∈ N0�

For α = β ≥ −1/2, (1.5) is just Gegenbauer’s product formula. The convolution
δs ∗ δt determined by (1.5) can be extended uniquely to a bilinear, commuta-
tive, associative and weakly continuous convolution ∗ on the Banach space
Mb��0� π�� of all (signed) Borel measures on �0� π�. Moreover, ∗ establishes
a hypergroup structure on �0� π�, and for certain α�β this convolution is ex-
actly the convolution derived in Section 1.1. For details, see [3], [13] and [15].
We do not need further details of this hypergroup here and omit an explicit
representation of its convolution.
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Now choose a probability measure µ ∈M1��0� π�� and introduce the Markov
chain �Xn�n≥0 on �0� π� associated with µ and the Jacobi-type hypergroup
above as follows: the chain starts at 0 at time 0, and the transition probabilities
satisfy

�1�6� P
(
Xn ∈ A �Xn−1 = z

) = �δz ∗ µ��A� for n ∈ N� z ∈ �0� π�
and A ⊂ �0� π� a Borel set. As in Section 1.2, we obtain that Xn is µ�n�

distributed for each n ∈ N with respect to Jacobi convolution powers of indices
�α�β� ∈ P.

Before we are able to state the main result of this paper, we need two
further definitions. The first one concerns Gaussian distributions on Jacobi
hypergroups on �0� π�.

1.4. Gaussian measures. For all �α�β� ∈ P, we define the functions

�1�7� q�n� �= q�α�β��n� �= −
(

d

dθ

)2

P
�α�β�
n �cos θ�

∣∣∣
θ=0
= n�n+ α+ β+ 1�

2�α+ 1�
and

�1�8� hn �= h
�α�β�
n �= �2n+ α+ β+ 1��α+ β+ 1�n�α+ 1�n

�α+ β+ 1�n!�β+ 1�n
for n ∈ N0. Then for all σ2 > 0, the heat kernel

�1�9� h
�α�β�
σ2 �θ�ϕ� �=

∞∑
n=0

h
�α�β�
n exp�−σ2q�n�/2�P�α�β�

n �cos θ�P�α�β�
n �cosϕ��

θ� ϕ ∈ �0� π�
is a positive continuous function on �0� π� × �0� π�. The continuity follows im-
mediately from �P�α�β�

n �x�� ≤ 1 for n ∈ N0, x ∈ �−1�1�; the positivity is shown,
for instance, in Bochner [4]. We mention that this positivity also follows from
Theorem 1.6; see Remark 1.8. The probability measure

�1�10�
dνσ2�θ�

�= h
�α�β�
σ2 �θ�0� +�α+ β+ 2�

+�α+ 1�+�β+ 1�2α+β+1
�sin θ�2α+1�1+ cos θ�β−α dθ

on �0� π� is called the Gaussian measure with “variance” σ2. The coefficients
h
�α�β�
n can be regarded as weights of the Plancherel measure (cf. Section 2.3).

Moreover, the measure

dω�α�β��θ� �= +�α+ β+ 2�
+�α+ 1�+�β+ 1�2α+β+1

�sin θ�2α+1�1+cos θ�β−α dθ� θ ∈ �0� π�

appearing in (1.10) is the normalized Haar measure of our hypergroup struc-
ture.

Gaussian measures on �0� π� associated with Jacobi polynomials have been
studied by many mathematicians from different points of view; see [16], [17],
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[20]. Last, we mention that for the cases considered in Section 1.1, the Gauss-
ian measures above are in fact projections of Gaussian measures on the un-
derlying symmetric space. For spheres, see also [12] and [28].

1.5. Condition (G). We say that a probability measure µ on �0� π� has
growth property (G) at point 0 if there exist constants c�p > 0 such that

�G� µ��0� ε�� ≤ c · εp for all ε ∈ �0� π��

Theorem 1.6. Let µ be a probability measure on �0� π� with property (G)
and variance

σ2 �=
∫ π

0
x2 dµ�x��

For k ∈ N, define the probability measure µk on �0� π/k� by

µk�A� �= µ
(√

kA
)
� A ⊂ �0� π� a Borel set�

Then, for all Jacobi hypergroups on �0� π� with indices �α�β� ∈ P with α >
−1/2, there exists some k0 = k0�α�β�µ� such that for each k ≥ k0, the distri-

bution µ
�k�
k has a continuous, bounded ω�α�β�-density fk, and the densities fk

tend uniformly on �0� π� to the Gaussian density h
�α�β�
σ2 � · �0�, with

�1�11� �fk − h
�α�β�
σ2 � · �0��∞ = O�1/k� for k→∞�

In particular, the convolution powers µ
�k�
k tend to the Gaussian measure νσ2

with respect to the total variation norm with

�1�12� �µ�k�k − νσ2� = O�1/k� for k→∞�

Finally, O�1/k� in (1.11) and (1.12) is sharp for all measures µ �= δ0 on �0� π�.

Remark 1.7. Comparing Theorem 1.6 with the theorem of Berry–Esséen,
we have a better order of convergence, and in particular we have convergence
with respect to the total variation norm, which is stronger than uniform con-
vergence of the distribution functions. We suppose that the reason for this
is as follows: the proof of the Berry–Esséen theorem needs a smoothing pro-
cedure (see [9] for details) which is in particular indispensible for discrete
measures. This smoothing is not necessary in our setting, because even for
discrete measures µ [with property (G)] the measures µ

�k�
k become absolutely

continuous with respect to Haar measure for k sufficiently large (see also the
proof of Theorem 1.6 in Section 3).

The case α = β = −1/2, which corresponds to the torus �z ∈ C� �z� = 1� and
which is not covered by Theorem 1.6, is in between the classical setting on R

and the setting of Theorem 1.6. We hope to analyze this interesting case in a
forthcoming paper.
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Remark 1.8. If µ is any probability measure on �0� π�with µ �= δ0, then the
convolution powers µ

�k�
k tend weakly to νσ2 . This weak result was proved, for

instance, in [24], and may be seen as a result in the long history of triangular
central limit theorems. Closely related central limit theorems can be found in
[5], [22], [30] and [3].

Finally, we mention that the convergence of the probability measures µ�k�k to
νσ2 ensures in particular that the heat kernel hσ2�θ�0� is always nonnegative.
The nonnegativity of the general heat kernel then follows from

hσ2�θ�ϕ� = hσ2�θ�0� ∗ δϕ� θ� ϕ ∈ �0� π�
with respect to the Jacobi convolution on �0� π�.

Remark 1.9. If a probability measure µ on �0� π� has property (G), then in
particular µ has no point mass in 0. Moreover, Conditon (G) is equivalent to

�1�13�
∫ π

0
t−q dµ�t� <∞ for some q > 0�

In fact, if (1.13) holds, then, by the Cauchy–Schwarz inequality,

µ��0� ε�� =
∫ ε

0
tq/2t−q/2 dµ�t� ≤

(∫ ε

0
tq dµ�t�

∫ π

0
t−q dµ�t�

)1/2

= O�εq/2�

as claimed. Conversely, if property (G) holds, then for 0 < q < p we obtain∫ 1

0
t−q dµ�t� ≤ µ��0�1��2q +

∞∑
n=2

µ��0�1/n����n+ 1�q − nq�

≤ µ��0�1��2q +
∞∑
n=2

n−pnq−1 <∞

as desired.

At the end of this section we transfer Theorem 1.6 to a limit result for
isotropic random walks on the unit sphere Sd ⊂ R

d+1, d ≥ 2, with uniform
distribution ωd. For this we use the north pole x0 = �1�0� � � � �0� and regard
SO�d� as stabilizer of x0 in SO�d + 1�. In this setting, Theorem 1.6 is as
follows.

Theorem 1.10. Let µ be a probability measure on �0� π� with property (G)
and variance σ2 �= ∫ π

0 x2 dµ�x�. For each k ∈ N, let �Xk
n�n≥0 be the isotropic

random walk on Sd starting in x0 such that the normalized jump distances
√
k · � �Xk

n�X
k
n−1� are µ-distributed for all n�

Then there is some k0 = k0�d�µ� such that for each k ≥ k0, the distributions

k of Xk

k have continuous, bounded ωd-densities fk, and the densities fk tend
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uniformly on Sd to the Gaussian density

�1�14�
hσ2�θ� =

∞∑
n=0

2n+ d− 1
d− 1

(
n+ d− 1

d

)

× exp
(−n�n+ d− 1�σ2

2d

)
P
��d−2�/2� �d−2�/2�
n �cos θ�

(with respect to polar coordinates x1 = cos θ, x2 = sin θ cosϕ� � � � on Sd) with

�fk − hσ2�∞ = O�1/k� for k→∞�

In particular, the distributions 
k tend to the Gaussian measure νσ2 �= hσ2ωd

on Sd with �
k − νσ2� = O�1/k� for k→∞.

It is clear that Theorem 1.10 can be stated for projective spaces in the
same way; we here omit details. Finally, we remark that Bingham [2] studied
nonisotropic random walks on S2 ⊂ R

3, which are also closely related to Jacobi
convolutions. It is clear that Theorem 1.10 can also be stated for these random
walks.

2. The Fourier transform on compact commutative hypergroups
and some inequalities. The main ingredients of the proof of Theorem 1.6
are inequalities of the Diaconis–Shashahani type. As we think that these
(more or less obvious) inequalities have many applications, we derive them
here in a quite general setting, namely for compact commutative hypergroups.
We first recapitulate some general facts about Fourier transform on compact
commutative hypergroups for the convenience of the reader; for further details
we refer to Section 2.2 of [3] and [14]. After having established the claimed
inequality in this general setting, we return to Jacobi hypergroups on �0� π�
at the end of this section.

2.1. Fourier transforms on compact commutative hypergroups. A compact
commutative hypergroup K is a compact Hausdorff space K together with
an abstract convolution ∗ on the Banach space Mb�K� of all (signed) Borel
measures on K such that �Mb�K�� ∗� becomes a commutative Banach alge-
bra. Moreover, for some further technical conditions, the following facts are
required.

1. If M1�K� is the space of all probability measures on K, then µ∗ν ∈M1�K�
for all µ� ν ∈M1�K�.

2. There exists an identity e ∈K with δe ∗µ = µ for all µ ∈M1�K�, and there
is a continuous involution ·−� K→K with δx ∗ δy = �δy ∗ δx�− and with

e ∈ supp�δx ∗ δy� ⇐⇒ x = y for all x�y ∈K�

The most familiar examples are given by the usual convolutions of measures
on compact commutative groups. Moreover, the above conditions are satified
for the Jacobi convolutions on �0� π� with e = 0 and the identity mapping as
involution.
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By Theorem 7.2A of [14], each compact commutative hypergroup K admits
a unique normalized Haar measure ω, that is, ω ∈M1�K� satisfies ω ∗µ = ω

for all µ ∈M1�K�. The dual space K̂ of K is given by

K̂ �=
{
α� K→ C continuous� α �≡ 0�∫
K
α�z�d�δx ∗ δy��z� = α�x�α�y� for x�y ∈K

}
�

where K̂ carries the discrete topology. The Fourier transform of µ ∈ Mb�K�
and a function f ∈ L1�K�ω� is given by

�2�1�
µ̂�α� �=

∫
K
α�x�dµ�x� and

f̂�α� �= f̂ω�α� �=
∫
K
α�x�f�x�dω�x�� α ∈ K̂�

As �α�x�� ≤ 1 for all α ∈ K̂ and x ∈K (see Section 2.2 of [3]), we obtain that

�2�2� �µ̂�α�� ≤ �µ� and �f̂�α�� ≤ �f�1

for all α ∈ K̂, µ ∈Mb�K� and f ∈ L1�K�ω�.
The Haar measure ω admits a dual Plancherel measure π on K̂ defined by

�2�3� π��α�� �=
(∫

K
�α�2 dω

)−1

� α ∈ K̂�

This measure leads to a Plancherel formula; that is, for f ∈ L2�K�ω� we have

�2�4�
∫
K
�f�2 dω =

∫
K̂
�f̂�2 dπ = ∑

α∈K̂
π��α���f̂�α��2�

The inverse Fourier transform of a function g ∈ L1�K̂� π� is given by

�2�5� ǧ�x� �= ∑
α∈K̂

g�α�π��α��α�x�� x ∈K�

where ǧ is a continuous function on K with

�2�6� �ǧ�∞ ≤ �g�1�

Finally, we recapitulate the following inversion theorem: if for some µ∈Mb�K�
its Fourier transform µ̂ is contained in L1�K̂� π�, then µ has a continuous ω
density with µ = �f̂�∨ω; see Theorem 2.2.36 in [3].

We are now in a position to derive the following inequalities.

Lemma 2.2. Let µ be a measure on a compact commutative hypergroup K.

(i) If µ has a continuous ω-density f, then

�2�7� �µ�2 ≤
∫
K
�f�2 dω = �f̂�2

2 = �µ̂�2
2 =

∑
α∈K̂

π��α���µ̂�α��2�

where the right-hand side may be equal to infinity.
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(ii) If µ̂ ∈ L1�K̂� π�, then µ has a continuous ω-density f with

�2�8� �µ� ≤ �f�∞ ≤ �f̂�1 = �µ̂�1�

Both results are obvious from (2.4) and (2.6), respectively, where in the
second case the inversion formula has to be employed. We here note that the
“Diaconis–Shashahani-type inequality” in (2.7) is stronger than (2.8) if one is
interested in estimates of �µ� only. However, �f�∞ can be estimated only by
using (2.8).

A similar, slightly weaker version of part (i) of Lemma 2.2 was recently
shown by Ross and Xu [19]; they applied their result to rates of convergence
of Metropolis Markov chains. A discrete version of 2.2 was also applied in [25]
to the Ehrenfest urn.

We next turn to the concrete examples of Section 1.

2.3. Examples. For all α ≥ β > −1 with β ≥ −1/2 or α+ β ≥ 0, the prod-
uct linearization (1.5) of Jacobi polynomials induces a compact commutative
hypergroup structure on �0� π�. Its normalized Haar measure is given by

�2�9� +�α+ β+ 2�
+�α+ 1�+�β+ 1�2α+β+1

�sin θ�2α+1�1+ cos θ�β−α dθ� θ ∈ �0� π�

and the dual space by K̂ = �Pn� n ∈ N0� (in fact, “⊃” follows from the lineariza-
tion (1.5) while the converse inclusion needs more care; cf. [15]). Moreover, as

�2�10�

(∫ π

0
�P�α�β�

n �cos θ��2 dω�θ�
)−1

= �2n+ α+ β+ 1��α+ β+ 1�n�α+ 1�n
�α+ β+ 1�n!�β+ 1�n

= h
�α�β�
n

(see, for instance, equation (4.3.3) in [21]), the Plancherel measure on K̂ is
given by the constants h

�α�β�
n . In view of the Fourier transform (2.1), Lemma

2.2 is as follows: if µ ∈Mb��0� π�� has a ω-density f, then

�µ�2 ≤ �µ̂�2
2 =

∞∑
n=0

h
�α�β�
n

∣∣∣∣∫ π

0
P
�α�β�
n �cos θ�dµ�θ�

∣∣∣∣2(2.11)

and

�µ� ≤ �f�∞ ≤ �f̂�1 =
∞∑
n=0

h
�α�β�
n

∣∣∣∣∫ π

0
P
�α�β�
n �cos θ�dµ�θ�

∣∣∣∣�(2.12)

In order to apply (2.11) or (2.12) to the proof of Theorem 1.6, we set µ �=µ
�k�
k −

νσ2 (cf. Section 1.4 and Theorem 1.6). Then

�2�13�
µ̂
�k�
k �n� = �µ̂k�n��k =

(∫ π

0
P
�α�β�
n �cos�θ��dµk�θ�

)k

=
(∫ π

0
P
�α�β�
n

(
cos

(
t/
√
k
))
dµ�t�

)k

�
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and, by (2.10) and the orthogonality of Jacobi polynomials,

�2�14� ν̂σ2�n� = exp
(
−q�n�σ2

2

)
for all n ≥ 0. Hence, (2.12) leads to

�2�15�

�µ�k�k − νσ2� ≤ �fk − hσ2� · �0��∞
≤

∞∑
n=0

hn

∣∣∣∣(∫ π

0
P
�α�β�
n

(
cos

(
t√
k

))
dµ�t�

)k

− exp
(
−q�n�σ2

2

)∣∣∣∣
whenever the right-hand side of (2.15) is finite and where fk is the ω-density
of µ�k�k . Equation (2.11) leads to a similar inequality.

To complete the proof of Theorem 1.6, we have to estimate the right-hand
side of (2.15); this will be done in Section 3.

3. Proof of the central limit theorem. We first give an outline of the
proof of Theorem 1.6 for the convenience of the reader. The proofs of several
technical steps of the proof will be postponed; they are contained in a sequence
of lemmas following the main body of the proof. Note that the superscripts
�α�β� are often omitted from now on.

3.1. Outline of the proof. First of all, (2.15) states that

�3�1�

�µ�k�k − νσ2� ≤ �fk − hσ2� · �0��∞
≤

∞∑
n=0

hn

∣∣∣∣(∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

)k

− exp
(
−q�n�σ2

2

)∣∣∣∣
=� Rk�

Now let A > 0 be a constant which will be fixed later. Then

Rk ≤
"A√k#∑
n=0

hn

∣∣∣∣(∫ π

0
Pn

(
cos

(
t/
√
k
))
dµ�t�

)k

−
(

1− q�n�σ2

2k

)k∣∣∣∣
+

"A√k#∑
n=0

hn

∣∣∣∣(1− q�n�σ2

2k

)k

− exp
(
−q�n�σ2

2

)∣∣∣∣
+ ∑

n≥"A√k#
hn exp

(
−q�n�σ2

2

)

+ ∑
n≥"A√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣k�

(3.2)
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We next have to estimate the four sums on the right-hand side of (3.2). In
order to handle the first one, we shall prove in Lemma 3.3 below that

�3�3�
∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t� = 1− q�n�σ2

2k
+ n4H

k2
�

where H = H�n�k�µ� is bounded by some constant independent of k and n.
This fact will be used in the proof of Lemma 3.4 below to show that, if the
constant A > 0 is sufficiently small, we find some constant C1 with

�3�4�
"A√k#∑
n=0

hn

∣∣∣∣(∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

)k

−
(

1− q�n�σ2

2k

)k∣∣∣∣ ≤ C1

k
�

We next turn to the second term. As

�3�5� q�n� = n�n+ α+ β+ 1�
2�α+ 1� � n ∈ N0�

we may choose the constant A > 0 sufficiently small such that

�3�6� q�n�σ2

2k
≤ 1 for all n ≤ A

√
k�

If we now use

�3�7� hn =
�2n+ α+ β+ 1��α+ β+ 1�n�α+ 1�n

�α+ β+ 1�n!�β+ 1�n
= O�n2α+1�

as well as the well-known inequality

�3�8� 0 ≤ e−z − �1− z/t�t ≤ e−zz2/t for t ≥ 1� z ∈ R� �z� ≤ 1�

then we find constants C2�C3 > 0 such that

�3�9�

"A√k#∑
n=0

hn

∣∣∣∣(1− q�n�σ2

2k

)k

− exp
(
−q�n�σ2

2

)∣∣∣∣
≤ C2

"A√k#∑
n=0

n2α+1n4 exp
(
−q�n�σ2

2

)
1
k
≤ C3/k�

Moreover, (3.7) and (3.8) also lead to

�3�10� ∑
n≥"A√k#

hn exp�−q�n�σ2/2� ≤ ∑
n≥"A√k#

n2α+1 exp�−C4n
2� = O�Ck

5�

for suitable constants C4 > 0 and 0 < C5 < 1. Finally, it will be shown in
Lemma 3.8 that for α > −1/2,

�3�11� ∑
n≥"A√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t/
√
k
))
dµ�t�

∣∣∣∣k ≤ C6 ·Ck
7

for suitable constants C6 > 0 and 0 < C7 < 1 and for k sufficiently large.
In summary, (3.2), (3.4), (3.9), (3.10) and (3.11) yield that Rk ≤ C/k for some
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constant C and for k sufficiently large. Therefore, in view of the inequality
(3.1), Theorem 1.6 follows.

In order to complete the proof of Theorem 1.6, we still have to establish
(3.3), (3.4) and (3.11). The proof of (3.3) will be based on the following Taylor
formula for Jacobi polynomials.

Lemma 3.2. For all α ≥ β > −1 there exists a constant C > 0 such that, for
all n ∈ N0 and x ∈ �−1�1�,∣∣∣∣P�α�β�

n �x� −
(

1− �1− x��n+ α+ β+ 1�n
2�α+ 1�

)∣∣∣∣ ≤ Cn4�1− x�2�

Proof. Taylor’s formula ensures that for each x ∈ �−1�1� there exists
some z ∈ �x�1� with∣∣P�α�β�

n �x� − (
1− �1− x�P�α�β�

n

′�1�)∣∣ ≤ 1
2�1− x�2P�α�β�

n

′′�z��

In view of our normalization P
�α�β�
n �1� = 1, (4.21.7) and (4.1.1) of [21] lead to

P
�α�β�
n

′�1� = �n+ α+ β+ 1�n
2�α+ 1� = q�n��

Also, (4.21.7) and (4.1.1) of Szegö [21] yield

P
�α�β�
n

′′�z� = n�n− 1��n+ α+ β+ 1��n+ α+ β+ 2�
4�α+ 1��α+ 2� P

�α+2� β+2�
n−2 �z��

As �P�α+2� β+2�
n−2 �z�� ≤ 1, the proof of the lemma is complete. ✷

Lemma 3.2 has the following consequence.

Lemma 3.3. Assume that α ≥ β > −1. Let µ be a probability measure on
�0� π� with σ2 = ∫ π

0 t2 dµ�t�. Then, for all n�k ∈ N,∫ π

0
P
�α�β�
n

(
cos

(
t√
k

))
dµ�t� = 1− q�n�σ2

2k
+ n4H

k2
�

where H =H�n�k�µ� is bounded by some constant independent of k and n.

Proof. As µ is a probability measure, Lemma 3.2 and �1 − cosx� ≤ x2/2
imply that∫ π

0
P
�α�β�
n

(
cos

(
t/
√
k
))
dµ�t� = 1− q�n�

∫ π

0

(
1− cos

(
t/
√
k
))
dµ�t� +R1

with

�3�12� �R1� ≤
n�n− 1��n+ α+ β+ 1��n+ α+ β+ 2�

8�α+ 1��α+ 2�4k2

∫ π

0
t4 dµ�t� = n4

k2
O�1��
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Moreover, since �1− cosx− x2/2� ≤ x4/24 and q�n� = O�n2�,

�3�13� q�n�
∣∣∣∣∫ π

0

(
1− cos

(
t√
k

)
− t2

�2k�
)
dµ�t�

∣∣∣∣ = n2

k2
O�1��

Lemma 3.3 now follows from (3.12) and (3.13). ✷

Lemma 3.3 has the following consequence.

Lemma 3.4. Assume that α�β�µ� σ2 are given as in Lemma 3.3. Then there
exists a constant A > 0 such that

"A√k#∑
n=0

hn

∣∣∣∣(∫ π

0
P
�α�β�
n

(
cos

(
t√
k

))
dµ�t�

)k

−
(

1− q�n�σ2

2k

)k∣∣∣∣ = O

(
1
k

)
�

Proof. Let H be given as in Lemma 3.3. Choose A > 0 sufficiently small
such that

�3�14� n4�H�
k2

≤ 1
2
q�n�σ2

2k
for all n ≤ A

√
k�

Applying the mean value theorem to the function x �→ �1− x�k together with
the inequality �1− z/k�k ≤ e−z [z� k > 0; cf. (3.8)], we obtain from (3.14) that

�3�15�

∣∣∣∣(1− q�n�σ2

2k
+ n4H

k2

)k

−
(

1− q�n�σ2

2k

)k∣∣∣∣
≤ n4�H�

k2
kmax

[(
1− q�n�σ2

2k
+ n4H

k2

)
�

(
1− q�n�σ2

2k

)]k−1

≤ n4�H�
k

(
1− q�n�σ2

4k

)k−1

≤ 2n4�H�
k

exp
(−q�n�σ2

4

)
for n ≤ A

√
k. As hn = O�n2α+1� by (3.7), it follows that

�3�16�
"A√k#∑
n=0

hn

∣∣∣∣(1− q�n�σ2

2k
+ n4H

k2

)k

−
(

1− q�n�σ2

2k

)k∣∣∣∣ = O

(
1
k

)
�

Thus, Lemma 3.4 is a consequence of Lemma 3.3.

We still have to establish (3.11). Its proof depends on estimations of the
growth of �P�α�β�

n �cos θ�� for large n and small θ. For this, we use Hilb’s formula
and compare the Jacobi polynomials with the (spherical) Bessel functions 5α

which are given by

5α�x� �= +�α+1�
(
x

2

)−α
Jα�x� �= +�α+1�

∞∑
n=0

�−1�n�x/2�2n
n!+�n+ α+ 1� � x ∈ C� α > −1

and normalized by 5α�0� = 1. With this normalization, Hilb’s formula is as
follows.
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Lemma 3.5. For α ≥ β > −1 with β ≥ −1/2 or α+β ≥ 0, let the remainder

R
�α�β�
n �θ� be given by

R
�α�β�
n �θ� �= P

�α�β�
n �cos θ� − 5α

(
θ

(
n+ α+ β+ 1

2

))
�

Then for each c > 0 there is a constant M > 0 with

R
�α�β�
n �θ� ≤

{
Mn−2� if 0 ≤ θ ≤ c/n�

Mn−2�θn�1/2−α� if c/n ≤ θ ≤ π/2�

Proof. Using our normalization P
�α�β�
n �1� = 5α�0� = 1, we may rewrite

Hilb’s formula for Jacobi polynomials (see Theorem 8.21.12 in [21]) as follows:(
sin θ

θ

)α+1/2(
cos

(
θ

2

))β−α
P
�α�β�
n �cos θ� − 5α

(
θ

(
n+ α+ β+ 1

2

))

=
{
θ2O�1�� if 0 ≤ θ ≤ c/n�

θ1/2−αn−3/2−αO�1�� if c/n ≤ θ ≤ π/2�

(c some constant). As �P�α�β�
n �cos θ�� ≤ 1 for θ ∈ R, Lemma 3.5 follows imme-

diately where in particular in the first case the condition θ ≤ c/n has to be
used.

We also notice here the following obvious consequence of the asymptotic
formula for Bessel functions (see [29], page 368).

Lemma 3.6. 5α�x� = O�1/xα+1/2� for x→∞.

Assume from now on that α ≥ β > −1 and the probability measure µ is
given as in Theorem 1.6. Then, in particular, α > −1/2 holds, and µ has the
following technical property.

Lemma 3.7. If a probability measure µ in �0� π� satisfies Condition (G),
then there exist constants M�r > 0 such that for each ε > 0 there exists δ > 0
with

µ��0� δ�� < ε and
∫ π

δ

1
tα+1/2

dµ�t� ≤Mε−r�

Proof. By Condition (G), we find c�p > 0 with µ��0� δ�� < cδp for all
δ ≥ 0. Hence, if ε > 0 is given, and if δ �= �ε/c�1/p, then µ��0� δ�� < ε and∫ π

δ
t−�α+1/2� dµ�t� ≤ δ−�α+1/2� = c�α+1/2�/pε−�α+1/2�/p

as claimed. ✷
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Using these preparations, we now proceed with the proof of (3.11).

Lemma 3.8. For each A > 0 there exist constants C�D > 0 and 0 < E < 1
with

∑
n≥"A√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t/
√
k
))
dµ�t�

∣∣∣∣k ≤ C ·Ek for all k ≥ D�

Proof. During the proof of this lemma, C1�C2� � � � denote constants inde-
pendent of k and n. According to Lemma 3.7 there exist constants M�r > 0
such that for

�3�17� εn�k �=
(√

k/n
)�α+1/2�/�1+r�

> 0�

we find δn�k > 0 with

�3�18� µ��0� δn�k�� < εn�k and
∫ π

δn�k

1
tα+1/2

dµ�t� ≤Mε−rn� k�

As �P�α�β�
n �x�� ≤ 1 for x ∈ �−1�1� and n ∈ N0, we see that

�3�19�
∫ δn�k

0

∣∣Pn

(
cos

(
t/
√
k
))∣∣dµ�t� ≤ εn�k�

Hence, using the remainder R
�α�β�
n of Lemma 3.5, we get∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣
≤ εn�k +

∫ π

δn�k

∣∣∣∣5α

(
t√
k

(
n+ α+ β+ 1

2

))∣∣∣∣dµ�t�
+

∫ π

δn�k

∣∣∣∣R�α�β�
n

(
t√
k

)∣∣∣∣dµ�t��
If α ≥ 1/2, then Hilb’s formula 3.5 yields that �R�α�β�

n �t/√k�� ≤ M/n2 and
hence ∫ π

δn�k

∣∣R�α�β�
n

(
t/
√
k
)∣∣dµ�t� ≤M/n2 for all n� t� k

and a suitable constant M. Moreover, if −1/2 < α < 1/2, then Lemma 3.5
yields that∫ π

δn�k

∣∣R�α�β�
n

(
t/
√
k
)∣∣dµ�t� ≤M/n2

(
1+

∫ π

δn�k

(
tn/

√
k
)1/2−α

dµ�t�
)
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for a suitable constant M. Summing up, for α > −1/2 we obtain that∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣
≤ εn�k +

∫ π

δn�k

∣∣∣∣5α

(
t√
k

(
n+ �α+ β+ 1�

2

))∣∣∣∣dµ�t�
+ C1

n2

(
1+

(√
k

n

)α−1/2)
�

If we apply Lemma 3.6 together with (3.17) and (3.18), then it follows that

�3�20�

∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣
≤ εn�k +C2

∫ π

δn�k

1
tα+1/2

dµ�t�
( √

k

n+ �α+ β+ 1�/2
)α+1/2

+ C1

n2

(
1+

(√
k

n

)α−1/2)
≤ C3εn�k +

C1

n2

(
1+

(√
k

n

)α−1/2)
for n ≥ 1. We next take some B ≥ A which will be fixed later. We use (3.20),
the elementary inequality

�a+ b�k ≤ 2k−1�ak + bk�� a� b ≥ 0� k ∈ N0�

as well as hn = O�n2α+1� and conclude that

�3�21�

∑
n≥"B√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣k

≤ C4
∑

n≥"B√k#
n2α+1

[
C3εn�k +

C1

n2
+C1

√
k
α−1/2

nα+3/2

]k

≤ C5
∑

n≥"B√k#
n2α+1

[
Ck

6

√
k
k�α+1/2�/�1+r�

nk�α+1/2�/�1+r� + Ck
7

n2k
+ Ck

8

√
k
k�α−1/2�

nk�α+3/2�

]

≤ C9

[
Ck

6

√
k
k�α+1/2�/�1+r�(

B
√
k
)2α+2−k�α+1/2�/�1+r�

+Ck
7

(
B
√
k
)2α+2−2k +Ck

8

√
k
k�α−1/2�(

B
√
k
)2α+2−k�α+3/2�]

with constants Ci independent of k, n and B. Now choose k and B sufficiently
large in view of the constants C6, C7, C8, α and r such that the right-hand
side of (3.21) has order O�1/2k� for k→∞.
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We next turn to the sum for "B√k# ≥ n ≥ "A√k#. If we apply hn = O�n2α+1�
and the first case of Hilb’s formula 3.5, then we obtain that

�3�22�

"B√k#∑
n="A√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣k
≤ C10�B−A�

√
k
(
B
√
k
)2α+1

× max
"B√k#≥n≥"A√k#

∣∣∣∣∫ π

0
Pn

(
cos

(
t√
k

))
dµ�t�

∣∣∣∣k

≤ C10
(
B
√
k
)2α+2

× max
�x−�α+β+1�/2�/√k∈�A�B�

(∣∣∣∣∫ π

0
5α

(
tx√
k

)
dµ�t�

∣∣∣∣+ C11

k

)k

We next observe that µ �= δ0 and that

�3�23� �5α�z�� < 1 for all z > 0� α > −1/2

with 5α�0� = 1. Therefore, the Hankel transform ϕ�z� �= ∫ π
0 5α�zt�dµ�t� of µ

satisfies �ϕ�z�� < 1 for all z > 0. As ϕ is continuous, it follows that there is a
constant C12 < 1 with

max
�x−�α+β+1�/2�/√k∈�A�B�

∣∣∣∣∫ π

0
5α

(
tx√
k

)
dµ�t�

∣∣∣∣ < C12 < 1�

Hence, if k is sufficiently large, then (3.22) implies that that we find constants
C13 and 0 < E < 1 with

"B√k#∑
n="A√k#

hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t/
√
k
))
dµ�t�

∣∣∣∣k ≤ C13E
k�

This completes the proof of the lemma. ✷

The proof of the upper bounds of Theorem 1.6 is now complete.

3.9. Remarks.

1. In the proof of Theorem 1.6, property (G) of the measure µ was needed only
for the final step of the proof in Lemma 3.8. In fact, it seems to be possible
that ∑

n≥"A√k#
hn

∣∣∣∣∫ π

0
Pn

(
cos

(
t/
√
k
))
dµ�t�

∣∣∣∣k
does not tend to 0 for k→∞ (or even diverges for all k ∈ N) whenever the
measure µ is concentrated “too much” in point 0. We however do not know
whether conditions considerably weaker than (G) are sufficient to ensure
that the statement of Lemma 3.8 remains valid.
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2. In order to make Theorem 1.6 more explicit, it would be interesting to have
explicit bounds C in

�µ�k�k − νσ2� ≤ C/k for all k ∈ N�

where C may depend on α, β and µ. It seems to be possible to obtain
reasonable explicit bounds in all steps of the proof above except possibly
for the final step in the proof of Lemma 3.8, which would need a more
careful discussion. However, in any case, the proof of Lemma 3.4 above
shows the constant becomes very large for small variances σ2.

3. Methods similar to the proof of Theorem 1.6 were applied in [25] to derive
asymptotic results for Markov chains related to the Ehrenfest urn model.
We think that the methods above can be also used to study the exact asymp-
totic behaviour of isotropic random walks and Gaussian semigroups on the
spheres Sn for n → ∞. Similar problems were recently discussed in [16],
[20] and [23].

At the end of this paper, we still show that O�1/k� in Theorem 1.6 is in fact
sharp.

Lemma 3.10. For each probability measure µ �= δ0 on �0� π� there exists a
constant c = c�α�β�µ� > 0 such that

�µ�k�k − νσ2� ≥ c/k for all k ∈ N�

Proof. We first use Taylor’s expansion of P�α�β�
n �cos θ� with P

�α�β�
n

′�1� and

r�n� �= P
�α�β�
n

′′�1� = n�n− 1��n+ α+ β+ 1��n+ α+ β+ 2�
4�α+ 1��α+ 2�

as in the proof of Lemma 3.2. Thus,

P
�α�β�
n

(
cos

(
t√
k

))
= 1−

(
t2

2k
− t4

24k2
+O

(
1
k3

))
q�n� +

(
t2

2k
+O

(
1
k2

))2 r�n�
2

+O

(
1
k3

)
= 1− t2q�n�

2k
+ t4

k2

(
q�n�
24

+ r�n�
8

)
+O�1/k3�

for k→∞. Hence, with m4 �=
∫ π

0 t4 dµ�t�,∫ π

0
P
�α�β�
n

(
cos

(
t√
k

))
dµ�t� = 1− σ2q�n�

2k
+ m4

k2

(
q�n�
24

+ r�n�
8

)
+O�1/k3��

Therefore, the power series

�1− at+ bt2�1/t = e−a
(
1+ �b− a2/2�t+O�t2�) for t→ 0
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leads to

�3�24�

(∫ π

0
P
�α�β�
n

(
cos

(
t√
k

))
dµ�t�

)k
= exp

(−σ2q�n�
2

)(
1+ R�n�

k
+O�1/k�

)
for k→∞ with

�3�25� R�n� �=m4

(
q�n�
24

+ r�n�
8

)
− σ4q�n�2

8
�

Using the definitions of q�n� and r�n� as well as α ≥ β ≥ −1/2, we readily
obtain that for all possible values of σ2 > 0 and m4 > 0 there exists some
n ≥ 1 with R�n� �= 0. Hence, (2.2) yields

�µ�k�k − νσ2� ≥ sup
n∈N

�µ̂�k�k �n� − ν̂σ2�n�� = O�1/k�

as claimed. ✷
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